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Abstract

We define the Anderson model on N and its finite volume restrictions. We es-
tablish the leading order asymptotic of the ground state energy of the latter and
present the main technical tools for the proof.

Introduction

Solids occur in nature in various forms, sometimes they are (almost) totally
ordered. In crystals the atoms or nuclei are distributed on a periodic lattice
(say the lattice Zd for simplicity) in a completely regular way. A quantum par-
ticle moving through a perfect crystal is described by its Hamiltonian, which
is composed by a kinetic energy term −∆ and a periodic potential Vper. Such
model is completely solvable by the Bloch-Floquet theory.

Crystal structure of Na-Cl.
Taken from: https://ast.wikipedia.org/wiki/Sal

Unfortunately, no real crystal is perfect. They have impurities or defects that
deviates them from the ideal model while keeping the physical properties con-
stant from sample to sample. The theory of random Schrödinger operators ac-
counts for such impurities by adding random perturbation to the Hamiltonian;
and looks for objects or properties that are somehow deterministic.

The Anderson Model

Philip Warren Anderson (1923 – 2020) was an American theoretical physicist
who first proposed a model for impurities [And58] back in 1958. He was later
awarded the Novel Prize in Physics in 1977 for his research on this topic.
Definition. Let {Vω(j)}j∈N be a sequence of independent and identically dis-
tributed, real random variables defined over a probability space (Ω,F ,P). The
Anderson model on N is a random Schrödinger operator indexed by ω ∈ Ω

Hω := −∆ + Vω : `2(N) −→ `2(N)
φ 7−→ Hωφ(j) := −∆φ(j) + Vω(j)φ(j)

where ∆φ(j) = −2φ(j)+φ(j−1)+φ(j+1) with the Dirichlet boundary condition
φ(0) = 0.
The independence of the potential guaranties this operator to have a determin-
istic spectrum

σ(Hω) = [0, 4] + supp distV (1), P-a.s.

But again, no real crystal is infinite. They have a really large (Avogadro≈
6× 1026) number of atoms. For this reason we introduce Hn,ω, the restriction of
Hω to n (very large) points with an extra Dirichlet boundary condition at n+ 1,
i.e. Hn,ω is the random matrix:

Hn,ω = −
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For each ω ∈ Ω, Hn,ω is a symmetric n × n matrix so it has n real eigenval-
ues counted with multiplicities. We denote the smallest eigenvalue by En,ω and
its unique eigenvector ψn,ω which can be chosen to be real, non-negative and
normalized.
The asymptotics of En,ω and ψn,ω are the main topic of our project.

(Partial) Results

From now on, we assume V (1) is bounded from below, hence by adding a con-
stant to Hω we can achieve 0 = inf supp distV (1).
We denote the cumulative distribution function of V (1) by F (x) = P [V (1) ≤ x].

Theorem 1. Suppose F (0) > 0, then

lim
n→∞

En,ω

/(π log(F (0))

log(n)

)2

= 1, P-a.s.

Theorem 2. Suppose there exist α, β, γ > 0 and an interval (0, a) in which F is
differentiable and satisfies

F (x) = γxα +O(xα+β) and F ′(x) = αγxα−1 +O(xα−1+β) as x→ 0,

then we have almost surely
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≤ lim sup
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≤ 4.

The proof of these theorems consist in deriving appropriate upper and lower
bounds for En using connected subsets in which V is uniformly bounded.

Auxiliary Lemmas

Lemma 1 (First obtained by [BW12]). Consider the operator A = −∆ +W on
`2({1, . . . , n}) with Dirichlet boundary conditions at j = 0, n+ 1, where W only
takes the values 0 and W+ > 0. Let µ be the principal eigenvalue of A, L the
size of the maximal connected component of 0’s of W , and C ≥ 1, then we have

L ≥ 1 ∨ 3π2C2
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Lemma 2. Let {pn}n∈N ⊆ (0, 1) be a decreasing sequence such that{
log(n)
|log(pn)|

}
n∈N

is an increasing one with lim
n→∞

log(n)

|log(pn)|
= ∞. Let {Xm,n}m,n∈N

be random variables defined on a probability space (Ω,F ,P) that satisfy:
i) {Xm,n}n∈N are I.D.D. following a Bernoulli(pm) distribution.

ii) {Xm,n}m∈N is a decreasing sequence.
Define Ln to be the size of the longest success run in {Xn,j}nj=1, then we have

P
[

lim
n→∞

Ln
log(n)/ |log(pn)|

= 1

]
= 1.

Remark. When Xm,n = X1,n for all m,n ∈ N this reduces to the celebrated
result of Erdös and Rényi [ER70] on the largest success run on n independents
Bernoulli trials of parameter p:

P
[

lim
n→∞

Ln
log(n)/ |log(p)|

= 1

]
= 1.

Forthcoming Research

•Extend Theorems 1 and 2 to higher dimensions (Method of enlargement of
obstacles [Szn98]).
•Find limit or limit distribution in Theorem 2.
• Is the mass of ψn,ω concentrated?
•Eigenvalue gap.
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