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Chapter 1

An introduction to
semiclassical analysis.

1.1 Mechanics.

1.1.1 Three approaches to classical mechanics.

The variational approach. The Maupertuis or Euler principle [M1744,
E1744] is the mechanical analogue of the Fermat principle in optics: a solid
of mass m = 1, moving under the effect of a force F = −gradV , with a total
energy E, follows a trajectory γ which minimizes the action

S(γ) =
∫ √

2(E − V (γ))‖dγ‖ (1.1)

among all curves with the same endpoints, and under the constraint that
‖γ̇(t)‖2

2 + V (γ(t)) = E for all t. More precisely, we should look for critical
points of S, among all paths with given endpoints, and constant total energy
E. Say we work on a Riemannian manifold (X, g), and ‖.‖x is the norm
defined on TxX by the riemannian metric : ‖v‖2

x = gx(v, v). In other words,
the Maupertuis principle says that the trajectories of energy E are geodesics
for a new, degenerate metric, 2(E − V (x))gx.

The dual formulation, due to Lagrange [L1788], is to find the extrema
of the functional

A(γ) =
∫ T

0

(‖γ̇(t)‖2
γ(t)

2
− V (γ(t))

)
dt (1.2)

among all curves going from x to y in a given time T . Let us introduce
the lagrangian L(x, v) = ‖v‖2x

2 − V (x); the movement is described by the
Euler-Lagrange equation

d

dt

(
∂L

∂v
(γ, γ̇)

)
=
∂L

∂x
(γ, γ̇), (1.3)
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or more explicitly Dγ̇ γ̇ = −gradV (γ). This second order equation defines a
local flow (φtEL) on the tangent bundle TX, called the Euler-Lagrange flow.

Hamiltonian point of view. The hamiltonian is the Fenchel–Legendre
transform of L with respect to the variable v :

H(x, ξ) = ξ.v − L(x, v)

with ξ = ∂L
∂v ; we are in a nice situation where the Legendre transformation

Leg : (x, v) 7→
(
x,
∂L

∂v

)

defines a diffeomorphism between the tangent bundle TX and the cotangent
bundle T ∗X. Its inverse is Leg−1 : (x, ξ) 7→

(
x, ∂H∂ξ

)
. In fact, in our case,

Leg is nothing else than the natural identification between TX and T ∗X,
provided by the riemannian metric. We can define a scalar product gx on
T ∗xX by gx(ξ, ξ) = gx(v, v) = ‖v‖2

x, with ξ = ∂L
∂v . The vector ξ is called the

momentum, and H(x, ξ) = gx(ξ,ξ)
2 + V (x) is the total energy of the system

(we will also denote gx(ξ, ξ) = ‖ξ‖2
x, but do not confuse the norms ‖.‖x on

T ∗xX and TxX !).
The Euler-Lagrange equation (1.3) is equivalent to Hamilton’s system of

equations, 



ẋ = ∂H
∂ξ

ξ̇ = −∂H
∂x ,

(1.4)

which define a local flow (φtH) on T ∗X, called the hamiltonian flow. This
flow is conjugate to (φtEL) via the diffeomorphism Leg. It preserves the
energy H, in the sense that H(x(t), ξ(t)) is constant for any trajecctory
of the flow (x(t), ξ(t)). The hamiltonian flow also preserves the Liouville
measure dx dξ.

If a is a function on T ∗X (an “observable quantity” in the language of
Heisenberg), and if we denote at = a ◦ φtH , we have

da

dt
= {H, a},

where {. , .} denotes the Poisson bracket, {H, a} =
∑
∂ξjH ∂xja−∂ξja ∂xjH.

A more intrinsic way of writing the Hamilton equations (1.4) would be
to see the vector field on the right hand side as the symplectic gradient of
H, with respect to the canonical symplectic form on T ∗X. Let us first define
the Liouville 1-form on the cotangent bundle, defined by

α(x,ξ)(P ) = ξ.dπ(P ) for all P ∈ T(x,ξ)(T
∗X),
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where π : T ∗X −→ X is the usual projection, and dπ its tangent map. The
cotangent bundle T ∗X can be endowed with the symplectic form

ω = −dα. (1.5)

In local coordinates, α = p.dq and ω = dq∧dp, if p and q denote respectively
the “momentum” and “position” functions, p(x, ξ) = ξ, q(x, ξ) = x. Check
that the right hand side of (1.4) is the expression in local coordinates of the
symplectic gradient XH of H, defined by dH = ω(XH , .). Check also that
the Poisson bracket is given by {f, g} = −ω(Xf , Xg) = dg(Xf ), for f, g two
functions on T ∗X.

One can show that the flow φH preserves the symplectic form ω. In the
language of symplectic geometry, a (local) diffeomorphism of T ∗X which
preserves ω is called a canonical transformation.

Hamilton–Jacobi equation, generating functions. The Hamilton–
Jacobi point of view meets many technical difficulties, but it is the key tool
to understand the semiclassical analysis of the Schrödinger equation.

Around 1830, Hamilton introduced a new point of view, by seeing the
action as a function of the endpoints x and y [H1830, H1834]. Let γ :
[0, T ] −→ X be a solution of the Euler–Lagrange equation, joining x to y in
time T . For simplicity, we work in the nice, but usually unrealistic situation,
where such a trajectory is unique. We can then consider the Lagrangian
action A(x, y;T ) =

∫ T
0 L(γ, γ̇)dt as a function of x, y, T , and check that

∂A

∂x
= −γ̇(0);

∂A

∂y
= γ̇(T ), (1.6)

and
∂A

∂T
= −E

where E is the energy E = ‖γ̇‖2
2 + V (γ), constant along the trajectory γ.

According to Hamilton, being able to solve the equations (1.4) is equiva-
lent to knowing the generating function A, solution of the Hamilton–Jacobi
equation

∂A

∂T
+H(x, ∂xA) = 0, (1.7)

for any initial condition (or even a large enough family of initial conditions).
By this procedure, the ordinary differential equations (1.3) or (1.4) have
been replaced by a single PDE. Quoting Hamilton, “even if it should be
thought that no practical facility is gained, yet an intellectual pleasure may
result from the reduction of [...] all researches respecting the forces and
motions of body, to the study of one characteristic function”.

Let us also consider the Legendre transform of A(x, y;T ) with respect
to the variable T ,

S(x, y;E) = ET +A(x, y;T ) (1.8)
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with
∂S

∂E
= T and

∂S

∂T
= −E.

This is nothing else as the Maupertuis action (1.1) of the trajectory γ joining
x to y with energy E:

S(x, y;E) =
∫ √

2(E − V (γ))‖γ̇‖dt =
∫ T

0
‖γ̇‖2dt.

To check it, note that
∫ √

2(E − V (γ))‖dγ‖ =
∫ T

0
‖γ̇‖2dt = ET +

∫ T

0

(‖γ̇‖2

2
− V (γ)

)
dt.

We still have
∂S

∂x
= −γ̇(0);

∂S

∂y
= γ̇(T ). (1.9)

The function S solves the stationary Hamilton–Jacobi equation,

H(x, ∂xS) = E. (1.10)

The solutions of the time–dependent Hamilton–Jacobi equation (1.7) and of
the stationary equation (1.10) are related by the Legendre transform (1.8).

The Hamilton–Jacobi equation (1.7) has a simple geometrical intepre-
tation. Consider a subset of the cotangent bundle T ∗X, of the form L0 =
{(x, dxA0), x ∈ Ω0}, with Ω0 an open subset of X. This is a particular case
of a Lagrangian submanifold in T ∗X (see Chapter 4). Let L0 evolve under
the Hamiltonian flow, and consider Lt = φtHL0: because φtH preserves the
symplectic form ω, Lt is still a lagrangian manifold. Let us assume that, for
t ∈ [0, T ], Lt still projects diffeomorphically on an open subset of Ωt ⊂ X.
This means exactly that Lt is of the form Lt = {(x, dxAt), x ∈ Ωt} for some
smooth function At. It can be shown that the relation Lt = φtHL0 is equiv-
alent to At solving the Hamilton–Jacobi equation (1.7), together with the
condition that Ωt is the image of L0 under the “exponential” map associated
with L0:

exptL0
: L0 −→ X, (1.11)
ξ 7→ π

(
φtHξ

)
(1.12)

(the notation π denotes the projection T ∗X −→ X).
This approach suffers from the notorious problem of caustics. Usu-

ally, the exponential map will only be a diffeomorphism if the energy H
is bounded on L0, and if t is small enough. For large times two kinds of
problems arise,

– exp is not injective (two trajectories starting in L0 land at the same
point in X)
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– the tangent map d exp is not injective (focal points, conjugate points).
Geometrically, this means that after some time Lt will cease to project

diffeomorphically on X. From a PDE point of view, this means that the
equation (1.7) does not, in general, have globally defined smooth solutions.

Although the problem of caustics makes the Hamilton–Jacobi equation
rather difficult to work with, it is, nevertheless, the key tool to understand
Schrödinger’s equation and its semiclassical analysis. Semiclassical methods
often break down with the appearance of caustics, or little after.

We now review Schrödinger’s view of mechanics, but also the work of
Born, Heisenberg and Jordan, which lead to the idea of quantization.

1.1.2 Quantum/wave mechanics.

At the beginning of the twentieth century, it became clear that classical
mechanics was not applicable to certain problems, like the study of energy
radiation in atoms. People started looking for new physical laws, but it was
not until 1925 that theories judged as satisfactory were elaborated. These
theories involve Planck’s constant h = 2π~ = 6, 626068.10−34m2.kg/s (the
“action quantum”), and one is supposed to recover classical mechanics when
letting h tend to 0 in the equations.

Quantenmechanik. In 1925, Heisenberg, Born and Jordan gave some
new laws of mechanics, supposed to replace the old Hamilton equations (1.4).
Consider a hamiltonian system with d degrees of freedom (meaning that the
manifold X has dimension d – in fact let us take X = Rd). In classical
mechanics the time evolution is given by equation (1.4), defining a flow on
the phase space T ∗X. According to the quantum mechanics of [BHJ25-II],
the time evolution of the system is ruled by the five following principles :

(0) The “phase space” is a now Hilbert space H.

(1) The “observable quantities” are described by linear operators (=
infinite matrices). They used a boldface letter a to denote the quantum
observable corresponding to the classical observable a; if a is a real–valued
function on T ∗X then the corresponding operator a is hermitian.

(2) Main rules : We consider, in particular, an algebra of operators
generated by the momentum and position observables, p = (p1,p2, ...,pd)
and q = (q1, ...,qd). They must obey the following commutation rules :

[
pk,ql

]
=

~
i
δkl, (1.13)

[
pk,pl

]
= 0, (1.14)[

qk,ql
]

= 0. (1.15)

Assume now that the classical observable f is defined by a power series

f(p, q) =
∑

αsrp
sqr.
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Then we should define the quantum observable f by

f(p,q) =
∑

αsr
1

s+ 1

s∑

l=0

ps−lqrpl.

This prehistoric “quantization rule” can be applied, in particular, to define
the hamiltonian operator H.

(3) A canonical transformation is a transformation that sends the ob-
servables (p,q) to new observables (P,Q) satisfying the same commutation
relations. We ask that a canonical transformation preserves hermitian op-
erators, and sends an observable of the form f(p,q) to f(P,Q). Such a
transformation is of the form P = SpS−1, Q = SqS−1, where S is a unitary
operator.

(4) The equations of motion are




ṗ = −∂H
∂q

q̇ = ∂H
∂p ,

(1.16)

where we define

∂f
∂x1

= lim
ε−→0

1
ε

(
f(x1 + ε1l,x2, ...,xs)− f(x1,x2, ...,xs)

)

for f(x1,x2, ...,xs) a power series in the s observables x1,x2, ...,xs (1l is the
identity operator).

It can be shown from formula (1.13) that we have the identity

[f ,g] =
~
i

(
∂f
∂p

∂g
∂q

− ∂f
∂q

∂g
∂p

)

holding for f ,g power series in the operators p and q.
In particular, the equations (1.16) can be reexpressed as

ḟ =
i

~
[H, f ]

for any observable f .
(5) To integrate the equation of motion, we must find a unitary operator

S such that
SHS−1 = W (1.17)

is diagonal. In other words, we look for a canonical transformation which
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allows to express the solutions of (1.16) as a superposition of periodic mo-
tions1.

In a basis where H is diagonal, we find, for any observable f , that the
matrix elements evolve according to

fnm(t) = fnm(0)e2iπνnmt; (1.18)

where the radiation sprectrum νnm (“physical spectrum”) is related to the
eigenvalues (En) of H (“mathematical spectrum”) by

νnm =
En −Em

h
.

Wellenmechanik. In 1926, Erwin Schrödinger, independently of the
work of Heisenberg, Born and Jordan, proposed a new equation, supposed
to describe the state of our system, when the value of the energy E is given
(in a force field −gradV , as above) : the “stationary” Schrödinger equation
is a second order PDE,

−~
2

2
4ψ + V ψ = Eψ, (1.19)

where E is the energy. As we shall see, this equation is closely related to the
stationary Hamilton–Jacobi equation (1.10). The evolution equation reads

i~
∂φ

∂t
=

(
−~

2

2
4+ V

)
φ. (1.20)

1The analogy with the theory of classical hamiltonian systems can be pushed further.
In fact, equation (1.16) can is a linear hamiltonian flow, in an infinite dimensional space.
Such systems are completely integrable, due to the fact that a unitary transformation
diagonalizing H always exists. To be more explicit, let (H, 〈., .〉) be a complex Hilbert
space, seen as a real vector space endowed with the symplectic form ω(φ, ψ) = =m〈φ, ψ〉.
If we use an orthonormal basis (en) to define coordinates, φ =

P
n(xn + iξn)en, then

(xn, ξn) are Darboux coordinates, meaning that ω =
P
n dxn ∧ dξn.

Let H be a self–adjoint operator; it can be used to define a quadratic hamiltonian
H(ψ) = 1

2
〈ψ,Hψ〉. If we consider quadratic observables, f(ψ) = 1

2
〈ψ, fψ〉, then the Poisson

bracket defined by ω correspond to the usual commutator bracket,

{f, g}(ψ) =
1

2
〈ψ, i[f ,g]ψ〉.

The Hamilton equations defined by H read dψ
dt

= −iHψ. Finally, linear transformations
preserving ω are of the form ψ 7→ Sψ where S is unitary.

Thus, finding a unitary S such that S−1HS is diagonal amounts to finding a linear
canonical transformation ψ 7→ Sψ which transforms the hamiltonian H into H(Sψ) =
1
2

P
(2πνn)2(x2

n + ξ2n). This means that we can integrate the equation of motion by de-
composing it into a superposition of infinitely many independent harmonic oscillators.
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These two forms of the equation are related by a time/energy Fourier trans-
form φ(t) =

∫
e−iEt/~ψEdE, which recalls the relation (1.8).

According to Schrödinger’s theory, the energy spectrum can be computed
by finding the values of E for which equation (1.19) admits solutions which
are “single–valued, finite, and continuous throughout configuration space”.

Schrödinger, motivated by the works of De Broglie, gives an interpreta-
tion of ψ as a “wave function”. “The true mechanical process is realised or
represented in a fitting way by the wave processes in q–space, and not by
the motion of image points in this space. The study of the motion of image
points, which is the object of classical mechanics, is only an approximate
treatment, and has, as such, just as much justification as geometrical or
“ray” optics has, compared with the true optical process”. This approxi-
mation is only justified when the dimensions of the system are very large
compared to the wave length : “we inevitably became involved in irremov-
able contradictions if we tried, as was very natural, to maintain also the
idea of paths of systems in these processes; just as we find the tracing of the
course of a light ray to be meaningless, in the neighbourhood of a diffraction
phenomenon”.

It is particularly interesting for us to note that Schrödinger derived
the form of his equation from the desired behaviour of the solutions when
~ −→ 0 :

Assume that our mechanical phenomenon is described by a wave func-
tion ψ, and assume that this wave has the particular form : ψ(x, 0) =
exp

(
iA(x,0)

~ + C
)

at t = 0. Assume also that for t > 0 the wave ψ looks like

ψ(x, t) ∼ exp
(
i
A(x, t)
~

+ C

)
+ small error. (1.21)

To find the form of the equation satisfied by ψ, Schrödinger postulates that
the phase A must approximately satisfy the Hamilton-Jacobi equation (1.7),
when the wave length is very small (semiclassical approximation). In other
words, we must (almost) see the wave move according to the classical motion.
Thus, the point is to find an equation, looking like a wave equation, and
such that (1.21) is an approximate solution if ∂A∂t +H(x, dxA) = 0 (1.7) and
~ −→ 0.

To find such an equation, Schrödinger actually works with the stationary
formulation : this means that A(x, t) is of the form A(x, t) = −Et + S(x)
where S solves H(x, dxS) = E (1.10). If S satisfies (1.10), then the local
speed of propagation of ψ is

u(x) =
−∂A

∂t

|∇A| =
E√

2(E − V (x))
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and the wave length is λ(x) = h√
2(E−V (x))

. This encourages Schrödinger to

propose the equation
∂2ψ

∂t2
= u24ψ.

From the expression of u, and the formula (1.21) supposed to give an ap-
proximate solution when λ −→ 0, we find −~22 4ψ + V ψ = Eψ.

The description of the semiclassical limit, yielding classical mechanics as
a limiting case of wave mechanics, is the same as in optics; it is a phenomenon
of constructive or destructive interferences (described in mathematics by
the stationary phase method). Let us try to put Schrödinger’s arguments
into mathematical words : they already contain the seeds of semiclassical
analysis. Every ψ can be written as

ψ(x) ∼
∫
a(x, θ) exp

(
i

~
A(x; θ)

)
dθ, (1.22)

where θ varies in an open set of Rd, and exp
(
i
~A(x; θ)

)
is a family parametrized

by θ (for instance, the plane wave in Rd, exp
(
i
~〈x, θ〉

)
), and a is a distri-

bution. By linearity of the Schrödinger equation, and by the approximate
form of the solutions (1.21), after time t the wave looks like

ψ(t, x) ∼
∫
a(x, θ) exp

(
i

~
A(t, x; θ)

)
dθ, (1.23)

where A(t, x; θ) is the solution of (1.7) with initial condition A(x; θ). If the
oscillations are very rapid (λ small) we expect all these waves to interfer
destructively, except at those points x where the phase has a stationary
point,

∂θA(t, x, θ0) = 0

(for some θ0). At such a point, we see essentially the wave exp
(
i
~A(t, x; θ0)

)
,

with the frequency vector ξ = ∂xA(t, x, θ0). Thus, the wave front at time t
is the subset of the cotangent space

L(t) = {(x, ξ), there exists θ0, ∂θA(t, x, θ0) = 0, ξ = ∂xA(t, x, θ0)} . (1.24)

Assuming each A(., ., θ) satisfies the Hamilton–Jacobi equation, check that
L(t) is precisely the image of L(0) under the hamiltonian flow (1.4) at time
t. In other words, the wave front is propagated according to the classical
hamiltonian flow.

“The point of phase agreement for certain infinitesimal manifolds of wave
systems, containing n parameters, moves according to the same laws as the
image point of the mechanical system” [Schr26-II].

Recall that this is an approximation, valid when the wave length λ is
very small; for mathematicians, this is the same as letting ~ tend to 0.
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Schrödinger writes :“I consider it a very difficult task to give an exact
proof that the superposition of these wave systems really produces a no-
ticeable disturbance in only a relatively small region surrounding the point
of phase agreement, and that everywhere else they practically destroy one
another through interference” [Schr26-II]. As we shall see in Section 1.4.2,
this problem can in fact be handled, imposing strong smoothness conditions
on the distribution a.

1.2 Weyl quantization.

In [Schr26-III], Schrödinger realizes, in the case of X = Rd, that his “wave
mechanics” is equivalent to the “quantum mechanics” introduced by Born,
Heisenberg and Jordan. A quantization procedure is a way to associate,
to every function on the classical phase space T ∗X = Rd × Rd, an op-
erator on the Hilbert space H = L2(Rd), so that the commutation rules
(1.13) are satisfied. Schrödinger suggests to associate the operator qk =
(multiplication by qk) to the coordinate function qk, and the operator pk =
~
i
∂
∂qk

to the function pk.
One must then decide of a convention to define the operator a(q,p)

associated to an arbitrary function a(q, p) of (q, p). For instance, the function
pkqk could be represented by the operator pkqk or by qkpk. Schrödinger
leaves this issue open, but recommends to quantize a hamiltonian of the
form

H(q, p) =
‖p‖2

2
+ V (q),

where ‖.‖ is a riemannian metric, by the operator H = −~22 4 + V , where
4 is the laplacian associated to the metric. In this representation, Heisen-
berg’s equation (1.17), requiring to diagonalize the operator H, can be writ-
ten −~22 4ψ + V ψ = Eψ, which is exactly Schrödinger’s equation (1.19).
Thus, the two theories will give the same values of the energy spectrum.
Schrödinger suggests, however, that two theories can be mathematically
equivalent without being physically equivalent.

Weyl quantization. Hermann Weyl [Weyl27] proposed to quantize
the observable Up0,q0(q, p) = e

i
~ (p0.q−q0.p) (q0, p0 ∈ Rd) by the operator

Up0,q0(q,p) = e
i
~ (p0.q−q0.p) (where (q,p) are defined by Schrödinger’s pre-

scriptions). Then, the Fourier transform allows to quantize any observable :
if a is decomposed into

a(q, p) =
∫
e
i
~ (p0.q−q0.p)â~(q0, p0)

dq0dp0

(2π~)d

Weyl’s quantization defines

a(q,p) =
∫
e
i
~ (p0.q−q0.p)â~(q0, p0)

dq0 dp0

(2π~)d
=: OpW~ (a),
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also given by the formula

OpW~ (a)f(x) =
1

(2π~)d

∫
a

(
x+ y

2
, ξ

)
e
i
~ ξ.(x−y)f(y)dy dξ.

The Schrödinger representation. The family of operators Up,q obeys
the following composition rule,

Up,q.Up′,q′ = Up+p′,q+q′e
i
~

1
2
(pq′−q′p). (1.25)

Consider the Heisenberg group Hd with d degrees of freedom, defined as
R2d+1 endowed with the composition rule

(p, q, t).(p′, q′, t′) =
(
p+ p′, q + q′, t+ t′ +

1
2
(pq′ − qp′)

)
, (p, p′, q, q′ ∈ Rd, t, t′ ∈ R).

Its Lie algebra is generated by P1, . . . , Pd, Q1, . . . , Qd, T with the relations

[Pj , Pk] = [Qj , Qk] = [Pj , T ] = [Qj , T ] = 0; [Pj , Qk] = δjkT.

The identity (1.25) can be reinterpreted by saying that

ρh(p, q, t) = e
it
~Up,q

defines a unitary representation from Hd into L2(Rd), called the Schrödinger
representation of parameter h. The associated infinitesimal representation
is Pk 7→ ∂

∂qk
= i
~pk, Qk 7→ i

~qk, T 7→ i
~I.

Theorem 1.1. (Stone–von Neumann 1930 [St30, vN31], see [Foll]) Every
irreducible unitary representation of Hd is equivalent to exactly one of the
following representations :

(a) ρh (h ∈ R \ {0}) acting on L2(Rd);
(b) σab(p, q, t) = e2πi(ap+bq), (a, b ∈ Rd) acting on C.

1.3 Born’s probabilitic interpretation of the Schrödinger
equation.

Born discovered that the square modulus |ψ|2 of the wave functions (satis-
fying the Schrödinger equation) could be used to predict the probability of
where the “particle” would be found. More precisely, if ψ is normalized so
that

∫ |ψ(t, x)|2dx = 1, then |ψ(t, x)|2 gives the probability density of find-
ing, in an experiment, the particle at x (at time t). This was the beginning
of a tense philosophical (or physical) debate on the correct interpretation of
the wave/particle duality.
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“Let me say at the outset, that in this discourse, I am opposing not
a few special statements of quantum physics held today (1950s), I am op-
posing as it were the whole of it, I am opposing its basic views that have
been shaped 25 years ago, when Max Born put forward his probability inter-
pretation, which was accepted by almost everybody. (E. Schrödinger, The
Interpretation of Quantum Physics. Ox Bow Press, Woodbridge, CN, 1995).

“I don’t like it, and I’m sorry I ever had anything to do with it” (Erwin
Schrödinger talking about quantum physics).

1.4 The semiclassical limit.

The main subject of these notes is to try to describe the localization of
the probability density |ψ(t, x)|2dx, for a Schrödinger eigenfunction, in the
semiclassical limit ~ −→ 0. The quantum/classical correspondence tells us,
intuitively, that the eigenfunctions, which correspond to stationary solutions
of the Schrödinger equation, should look like invariant probability measures
of the classical hamiltonian flow. In this section we give a quick survey of
the mathematical tools used to study this question.

It is not really satisfactory, and usually practically impossible, to study
the density |ψ(t, x)|2dx itself. This is because, when taking the modulus of
ψ, we lose some precious information on the frequency vector of ψ (related
to its phase, or complex argument). We need to study simultaneously the
Fourier transform of ψ. Of course, mathematically speaking, one cannot
study at the same time the local property of a function and of its Fourier
transform around some point (x, ξ) ∈ T ∗X. In physics, this is expressed by
Heisenberg’s uncertainty principle, saying that one cannot measure the local-
ization in position without perturbing a lot the momentum (and vice-versa).
Microlocal analysis2 is a collection of mathematical techniques allowing to
study the joint localization of a function and its Fourier transform; because
of the uncertainty principle, this can only be meaningful asymptotically,
when ~ −→ 0.

1.4.1 Fourier transform.

The Fourier transform

F~(u)(ξ) = û~(ξ) = (2π~)−d/2
∫

Rd
e−

i
~ ξ.xu(x)dx

allows to analyze a signal u in terms of its frequencies, at the scale ~. For
u ∈ C∞o , we have the decomposition

u(x) = (2π~)−d/2
∫

Rd
e
i
~ ξ.xû~(ξ)dξ .

2More precisely, we will present here its ~-dependent version, also called semiclassical
analysis.
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1.4.2 The stationary phase method.

It describes the asymptotic behaviour, as ~→ 0, of an integral of the form :

I(~) =
∫

RD
e
i
~S(x)a(x) dx

where a ∈ C∞o (RD) and S ∈ C∞(RD,R) .

The interferences between the different terms e
i
~S(x) are destructive, ex-

cept at the stationary points of the phase S. The precise statement is :

• If S has no critical/stationary point in the support of a, then I(~) =
O(~∞).

• If S has a unique critical point x0, supposed to be non–degenerate, in
the support of a, then there is an asymptotic development in powers
of ~, up to any order,

I(~) ∼ (2π~)D/2
eiσπ/4

|detS′′(x0)| 12
eiS(x0)/~




∞∑

j=0

~jaj


 (1.26)

where S′′(x0) is the hessian matrix of S at x0, σ = n+ − n− is the index of
S′′(x0) (the difference between the number of positive and negative eigen-
values), and a0 = a(x0). More generally, aj can be expressed in terms of the
derivatives of a up to order 2j, at the point x0.

For technical applications, one usually needs to work with functions a
which are not necessarily compactly supported, but have a well behaved
behaviour at infinity, and can be allowed to depend on ~. The choice of
a class of “symbols” is a technical issue, which depends on the aims, but
also on the tastes of the authors. For the sake of completeness we give an
example of a convenient class of symbols. However, it is not required to
understand all technical issues to read the next sections.

Symbol spaces. Let D, d > 0 be two integers, and let U be an open
subset of RD. Let us define symbols of order m (independent of ~) :

Σm(U × Rd) :=
{
a ∈ C∞(U × Rd;C)/

for every compact K ⊂ U, there exists C,

|Dα
zD

β
ξ a(z, ξ))| ≤ C(1 + |ξ|)m−|β| for all (z, ξ) ∈ K × Rd}.

For instance, this class contains functions which are homogeneous in a neigh-
bourhood of infinity. We denote Σ−∞ = ∩m∈ZΣm — this class contains the
smooth compactly supported functions C∞o (U × Rd).
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We also define semiclassical symbols of order m and degree l — thus
called because they depend on a parameter ~ :

Σm,l = {a~(z, ξ) = ~l
∞∑

j=0

~jaj(z, ξ), aj ∈ Σm−j} (1.27)

This means that a~(x, ξ) as an asymptotic development in powers of ~; in
the sense that

a− ~l
N−1∑

j=0

~jaj ∈ ~l+NΣm−N

for allN , uniformly in ~. In this context, we denote Σ−∞,+∞ = ∩m≥0Σ−m,m.
In these definitions, U × Rd can be replaced by a fiber bundle of rank d

on a D–dimensional manifold.

Fresnel integrals, generalized stationary phase method. We can
now describe the asymptotic behaviour, as h→ 0, of the integral :

IS~ (a) =
∫

U×Rd
e
i
~S(z,ξ)a(z, ξ) dzdξ

where S is smooth, homogeneous of degree n > 0 near infinity with respect
to ξ, and without critical points outside a compact subset of U × Rd. The
integral IS~ (a) is defined for a ∈ Σm,l

o , by continuation of the case a ∈ C∞o .
Here, the index ∗o in Σm,l

o means that a is compactly supported with respect
to z, with support independent on ~.

The method of stationary phase can still be applied in this setting.

1.4.3 Pseudodifferential operators.

A quantization procedure is a way to associate an operator to a classical ob-
servable a(p, q). Recall Schrödinger’s prescriptions, qk = (multiplication by qk),
and pk = ~

i
∂
∂qk

, compatible with Heisenberg’s commutation relations (1.13).
To extend this definition to an arbitrary function of (p, q), we meet an obvi-
ous problem : to quantize the function pkq2k, for instance, we could propose
the operators pkq2

k, q2
kpk, or qkpkqk. There are many quantization pro-

cedures. We already met the Weyl quantization, which combines several
remarkable features, like the fact that it associates a symmetric operator to
a real symbol. Later on, we shall also define the anti-Wick positive quanti-
zation, which associates a nonnegative operator to a nonnegative symbol.

The theory of pseudodifferential operators with small parameter allows
to describe the passage from the quantum theory to the classical theory
when ~ −→ 0. This is also called ~-dependent microlocal analysis, microlo-
cal analysis with small parameter, or semiclassical analysis. Pseudodifferen-
tial operators were first developed by Hörmander [Ho, Ho79] for the study
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of the regularizing properties of partial differential equations (without any
small parameter). Pseudodifferential operators with small parameter, ma-
nipulated by Maslov [Masl65] in the framework of semiclassical analysis,
developed by Voros in mathematical physics [Vor, Vor78], were perfectioned
by Sjöstrand, Robert, Helffer, [DimSjo, Rob]... I advise to read [Helffer1] for
a history of the first years of this theory in the seventies and an exhaustive
bibliography; see also [Helffer2] for a survey of applications.

Symbol spaces depend on authors, and can be extremely sophisticated.
Hörmander’s definition has no ~ and involves symbols which are homoge-
neous near infinity, allowing to describe the regularizing properties of op-
erators. The semiclassical symbol classes of [DimSjo] are rather aimed at
describing the behaviour of operators when ~ −→ 0, say in L2 norm. The
symbols we use here combine both approaches : taking ~ = 1 we would find
(one of) Hörmander’s symbol spaces.

Pseudodifferential operators. Let Ω be an open subset of Rd, and
let a = a~(x, y; ξ) ∈ Σm,l

o (Ω × Ω × Rd). Here the index o means that for
every compact K ⊂ Ω, there exists a compact K ′ such that a(x, y, ξ) = 0
for x ∈ K, y 6∈ K ′, ξ ∈ Rd. Let u be a smooth function. We define :

OP~(a)u(x) = (2π~)−d
∫
e
i
~ ξ.(x−y)a(x, y, ξ)u(y) dydξ,

the integral being well defined as a Fresnel integral. We denote ΨDOm,l(Ω)
these operators, called (proper) pseudodifferential operators of degree l and
order m, on Ω. The intersection ΨDO−∞,∞ of all the ΨDOm,l(Ω) are the
negligible operators : they are the operators with a smooth kernel K~, and
such that all derivatives of K~ are O(~∞) uniformly on compact sets.3

Note that several symbols a(x, y, ξ) can give the same operator OP~(a).
As a simple example, we note that a(x, y, ξ) = V (x) and a(x, y, ξ) = V (y)
both give the operator of multiplication by V . It is often convenient to
choose special representatives :

Weyl quantization. Left and right quantizations.
Here Ω = Rd.
We already met the Weyl quantization4, OpW~ (a) = OP~

(
a(x+y2 , ξ)

)
. If

a ∈ Σm,l
o (Rd×Rd) is compactly supported with respect to the first variable,

then OpW~ (a) ∈ ΨDOm,l.

3Usually, in this theory, all the assertions about operators hold modulo negligible op-
erators. Likewise, the assertions about functions hold modulo negligible functions. These
are the smooth functions u~(x) such that all derivatives are O(~∞) uniformly on compact
sets of X.

4I try to stick to the notation OP for symbols a ∈ Σ(Ω×Ω×Rd), and Op for symbols
a ∈ Σ(Ω× Rd).
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The inverse of Weyl quantization is explicit, given by the Wigner trans-
form : if K(x, y) is the kernel of the operator A, we let :

WA(x, ξ) = (2π~)−d/2
∫
e
ivξ
~ K

(
x+

v

2
, x− v

2

)
dv .

Then A = OpW~ (WA). In particular, the Weyl symbol of an operator is
unique.

Two other common quantizations are, the left quantization, defined by
OpL~ (a) = OP~ (a(x, ξ)) where a ∈ Σm,l

o (Rd×Rd) and the right quantization,
OpR~ (a) = OP~ (a(y, ξ)). The left and right symbols are both uniquely
determined by the operator (there are explicit inversion formulas, too).

Example 1.2. To quantize the observable a(p, q) = pq2, the left quantization
chooses q2p, the right quantization chooses pq2, and the Weyl quantization
forms the combination 1

4(pq2 + 2qpq + q2p) = 1
2(pq2 + q2p).

Exercise 1.3. On Rd × Rd, consider a lagrangian L(x, v) defined by a rie-
mannian metric,

L(x, v) =
1
2
gx(v, v) =

1
2

d∑

i,j=1

gij(x)vivj .

Check that the corresponding hamiltonian is

H(x, ξ) =
1
2
gx(ξ, ξ) =

1
2

d∑

i,j=1

gij(x)ξiξj ,

where (gij(x)) is the inverse of the matrix (gij(x)).
Write the explicit expression of the laplacian 4 associated to the metric

g (you may restrict yourself to d = 1 !).
Choose a quantization procedure Op~ = OpW~ ,OpL~ or OpR~ .
Show that

Op~(H) = −1
2
~2 4+~




d∑

j=1

bj(x)
~
i

∂

∂xj
+ c(x)




for certain functions bj , c, the expression of which depends on your choice
of Op~.

Show that there is a function d such that

−1
2
~24 = Op~


H(x, ξ) + ~


∑

j

bj(x)ξj + c(x)


 + ~2d(x)


 . (1.28)
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Compare with (1.27) to find the order and the degree of −~24 (of course,
differential operators are pseudodifferential operators !).

The expression of bj , c, d, does depend on the choice of Op~. The first
term H(x, ξ) does not, it is called the principal symbol of −1

2~
24.

Principal symbol. Let a~ ∈ Σm,0
o (Ω×Ω×Rd). Applying the operator

A~ = OP~(a~) ∈ ΨDOm,0 to a function of the form u(x)eiS(x)/~, where
u and S are smooth5, the method of stationary phase gives the following
asymptotics :

A~
(
u(x)eiS(x)/~

)
= a0

(
x, x, S′(x)

)
u(x)eiS(x)/~ +O(~).

This shows that the function a0(x, x, ξ) on Rd×Rd = T ∗Rd does not depend
on the choice of the symbol a~(x, y, ξ), but only on the operator A~. It is
called the principal symbol of A~, denoted σ0(A~). If σ0(A~) = 0, then A~
actually belongs to ΨDOm−1,1 (and conversely).

Remark 1.4. For a ∈ Σm,0
o , we note that OpW~ (a), OpL~ (a), OpR~ (a) all

have the same principal symbol a0(x, ξ). In other words,

OpW~ (a)−OpR/L~ (a) ∈ ΨDOm−1,+1.

Continuity. Trace class and Hilbert-Schmidt operators. An
operator in ΨDO0,0(Ω) is bounded from L2(Ω) to L2

loc(Ω), uniformly with
respect to ~.

An operator in ΨDOm,0(Ω), where Ω is, as before, an open subset of Rd,
is

• trace class if m < −d
• Hilbert-Schmidt if m < −d/2
In this case, the trace of OP (a) is given by the convergent integral,

TrOP(a) = (2π~)−d
∫

Ω×Rd
a(x, x, ξ)dxdξ . (1.29)

(This is the integral of the kernel of OP (a) on the diagonal.)

Product. If A~ ∈ ΨDOm1,0 and B~ ∈ ΨDOm2,0, then the product
A~B~ belongs to ΨDOm1+m2−1,1

o , and the principal symbols are multiplied :
σ0(A~B~) = σ0(A~)σ0(B~).

An equivalent statement : if a ∈ Σm1,0
o (Rd×Rd) and b ∈ Σm2,0

o (Rd×Rd),
then Op~(a)Op~(b) ∈ ΨDOm1+m2,0(Rd), and

Op~(ab)−Op~(a)Op~(b) ∈ ΨDOm1+m2−1,1(Rd). (1.30)
5Such a function is called a WKB state, see Chapter 4
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(thanks to Remark 1.4, this statement does not depend on the choice of
OpW , OpL or OpR).

Brackets. If A~ ∈ ΨDOm1,0 and B~ ∈ ΨDOm2,0, then the bracket
[A~, B~] belongs to ΨDOm1+m2−1,1, and

σ0
(
~−1[A~, B~]

)
=

1
i

{
σ0(A~), σ0(B~)

}
;

where {., .} is the Poisson bracket.
Equivalently : if a ∈ Σm1,0

o (Rd × Rd) and b ∈ Σm2,0
o (Rd × Rd), we have

[Op~(a),Op~(b)]−Op~

(
~
i
{a, b}

)
∈ ΨDOm1+m2−2,2 (1.31)

and again this statement does not depend on the choice of OpW , OpL or
OpR.

Remark 1.5. There is also an integrated version of this result, called the
Egorov Theorem. We will use it in the following form : assume the pseudod-
ifferential operator A~ is self–adjoint. Define the Schrödinger flow (U t~) =
(exp− it

~A~).
Let a ∈ C∞c (T ∗Rd). Then, for any given t in R,

‖U−t~ Op~(a)U
t
~ −Op~(a ◦ φtσ0(A~)

)‖L2 = O(~) , ~→ 0 . (1.32)

Here φtσ0(A~)
is the Hamiltonian flow defined by the Hamiltonian σ0(A~).

Pseudodifferential operators on a compact manifold. Let X be
a compact C∞ manifold of dimension d. Let (Ωi, ϕi) be a finite atlas of
X (X = ∪Ωi, ϕi : Ωi −→ Rd). Use the ϕi to define local coordinates
Φi : T ∗Ωi −→ Rd × Rd on T ∗X as follows :

Φi(x, p) = (ϕi(x), (dϕi(x))−1p).

Check that these are symplectic coordinates on T ∗X. Introduce a finite
partition of unity χi ∈ C∞o (Ωi) such that

∑
χ2
j = 1. For a ∈ Σm,l

o (T ∗X), we
let :

Op~(a)u =
∑

i

χi
[
OP~ (a ◦ Φi) (χiu ◦ ϕ−1

i )
] ◦ ϕi . (1.33)

The map a 7→ Op~(a) thus defined depends on the partition of unity and
of the local coordinates; but its range does not, modulo negligible operators.
The algebra ΨDOm,l(X) of pseudodifferential operators on X (modulo neg-
ligible operators) is thus well defined.

All the properties stated above can be extended to this case.
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1.5 Semiclassical measures, microlocal lifts.

A quantization procedure Op is said to be nonnegative if Op(a) is a nonnega-
tive operator as soon as a is a nonnegative function. The usual quantization
procedures do not have this property.

Positive quantization on Rd.

Example 1.6. (Coherent states) The coherent state (of size ~) centered at
(x0, ξ0) is defined as the normalized gaussian state

ex0,ξ0(x) =
1

(π~)d/4
e
i
~ ξ0.xexp

(
−‖x− x0‖2

2~

)

For (x, ξ) ∈ Rd × Rd, we shall denote Π(x,ξ) the orthogonal projector on
Ce(x,ξ).

Theorem 1.7. Let a ∈ C∞o (T ∗Rd). The operator defined by

Op+(a) = (2π~)−d
∫
a(x, ξ)Πx,ξ dxdξ

belongs to the class ΨDO−∞,0, it is self–adjoint (resp. nonnegative) if a is
real valued (resp. nonnegative). Its principal symbol is a(x, ξ).

We have Op+(1) = I, which allows to extend the definition of Op+ to
the case when a is constant in a neighbourhood of infinity in T ∗X.

This quantization is called the anti–Wick quantization.
To define a positive quantization procedure on a compact manifold X,

we choose an atlas of X and a subordinate partition of unity,
∑
χ2
j = 1.

For a ∈ C∞o (T ∗X), we let Op+
X(a) =

∑
j χj Op+

Rd(a)χj — where Op+
Rd(a)

is defined using local coordinates in the support of χj (see (1.33)). We can
extend this definition to the case when a is constant in a neighbourhood of
infinity in T ∗X, by letting Op+

X(1) = I .

Semiclassical measures. Let X be a compact riemannian manifold;
we denote Vol the riemannian volume on X. To a family (u~) of normal-
ized elements of L2(X,Vol), we can associate the family of distributions µ~
by the formula µ~(a) =

〈
u~,Op+

~ (a)u~
〉
L2(X,Vol)

. They are in fact proba-
bility measures on T ∗X. To be able to take weak limits when ~ −→ 0,
we see them as probability measures on the compactification T ∗X of T ∗X
obtained by adding a sphere bundle a infinity. By convention, we will call
the measures µ~ the Husimi measures, associated to the family (u~). The
term Wigner transform will be exclusively used in the case X = Rd, for
the distributions a 7→ 〈

u~,OpW~ (a)u~
〉

defined thanks to the Weyl quanti-
zation. These distributions are also called microlocal lifts of the probability
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measures |u~(x)|2dVol(x). This means that they project down to X to
|u~(x)|2dVol(x) + O(~), but also contain information about the local fre-
quency vector (Fourier transform) of u~.

Due to the uncertainty principle, these objects are not really meaningful
for fixed ~ > 0. In fact, their definition depends on a certain number of
arbitrary choices, coming into play in the definition of Op : local coordinates,
partition of unity, choice of the quantization procedure... However, the
semiclassical limits of these distributions do not depend on all these arbitrary
conventions. All of them give an operator Op(a) with principal symbol
a(x, ξ). In particular, if a ∈ Σ0,0

o (T ∗X), two definitions of Op(a) only differ
of O(~) in L2 operator norm.

We shall call semiclassical measure associated to the family (u~) any
limit point of the sequence (µ~) in the weak topology.

Example 1.8. (Coherent states)

u~(x) = ex0,ξ0(x) =
1

(π~)d/4
e
i
~ ξ0.xexp

(
−‖x− x0‖2

2~

)

Then there is a unique semiclassical measure, the Dirac mass at (x0, ξ0).

Example 1.9. (Lagrangian states/WKB states) Let u~(x) = b(x)e
i
~S(x)

where b and S are of class C∞. In Chapter 4, we will call such functions
lagrangian states associated to the lagrangian manifold L = {(x, dS(x))}.

There is a unique semiclassical measure associated to (u~), it is carried
by the lagrangian L and projects to X as the measure |b(x)|2 dVol(x).

Exercise 1.10. You have noted that we often omit to indicate the depen-
dence on ~ in the definition of Op (which should be denoted Op~). The choice
of scaling is, nevertheless, very important, and the properties observed vary
a lot according to the scaling.

In the previous example, show that the measures defined by

µ~,α(a) = 〈u~,Op+
~α(a)u~〉

concentrate to the 0-section in T ∗X if α > 1, to the sphere bundle at infinity
T ∗X \ T ∗X if α < 1.

When the u~ are the eigenfunctions of a hamiltonian operator as in
(1.19), one can apply the following theorem :

Theorem 1.11. Let P be a self–adjoint pseudodifferential operator, denote
p0 its principal symbol. Let (u~) be a family of tamed6 smooth functions,
such that Pu~ = O(~∞) and ‖u~‖L2 = 1. Let µ~ be the Husimi measures
associated to (u~). Then, every weak limit µ0 of the measures µ~ on T ∗X

6meaning that, for all N ∈ N, for any compact K, there exists k ∈ N such that the CN

norm of u~ on K is O(~−k)
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1. is a probability measure on T ∗X.

2. projects on X to a weak limit of the measures |u~(x)|2dVol(x).

3. is invariant under the hamiltonian flow of p0.

4. its restriction to T ∗X is carried by the energy level {p0 = 0}.
5. If p0 is elliptic at infinity, then µ0 is carried by T ∗X.

The first two items have already been proven.

Exercise 1.12. Prove the third item by using the relation σ0
(
~−1[P,Op(a)]

)
=

−i{p0, a} to show that
∫ {p0, a}dµ0 = 0 for any a ∈ C∞o (T ∗X).

Prove the fourth item by using the relation σ0 (Op(a)P ) = a p0 to show
that

∫
a p0 dµ0 = 0 for any a ∈ C∞o (T ∗X).

We do not give here the precise definition of “elliptic at infinity”. It
implies that P is invertible in a neighbourhood of infinity in the class of
pseudodifferential operators. More precisely, there exists a smooth a, taking
the constant value 1 in a neighbourhood of infinity in T ∗X, and a pseudod-
ifferential operator Op(b) such that

Op(a) = Op(b)P +R

where R ∈ ΨDO−∞,∞ is a negligible operator. From this fact, the last
item follows easily. The ellipticity criterion is satisfied by the Schrödinger
operator −~242 + V on a compact manifold X.

Eigenfunctions of the laplacian. Let (X, g) be a riemannian mani-
fold, and4 the laplacian onX associated to the metric. If (−~24−1)u~ = 0,
and if we denote µ~ the corresponding Husimi measures, then every limit
point of the family (µ~)~−→0 is a probability measure µ0 carried by the unit
cotangent bundle S∗X, invariant under the geodesic flow (apply Theorem
1.11 and remember Exercise 1.3). It is a widely open problem to find all the
possible limits among the invariant measure on S∗X.

In the case of the round sphere or a flat torus, it is easy to construct fam-
ilies of eigenfunctions (u~) for which µ~ converges to the uniform measure
on any given invariant lagrangian torus. On the flat torus Td = Rd/Zd for
instance, the family (e

i
~ ξ0.x), where ξ0 is a unitary vector (and of course ξ0

~ ∈
2πZd), has a unique semiclassical measure, the uniform measure on the la-
grangian torus {(x, ξ0), x ∈ Td}. More generally, for a completely integrable
system, one can use WKB methods [Brill26, Kr26, Wtz26, Kell58, Masl65] to
build quasimodes, in other words solutions of ‖(−~24−1)u~‖ = O(~∞), the
Husimi measures of which concentrate to any given invariant torus7. Histor-
ically, the case of completely integrable systems, or perturbations thereof,

7Note that ‖(−~2 4 −1)u~‖ ≤ ε‖u~‖ implies that 1 is an ε–neighbourhood of the
spectrum of −~24, but does not imply that u~ is close to an eigenfunction of the laplacian.
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was the most important, since it is related to the study of small atoms and
ions. The “opposite” case of chaotic systems has been studied only more
recently [Berr77, Vor77, Bo91], but the question of the localization of sta-
tionary motions in ergodic systems was already asked explicitly by Einstein
[Ein17].

In these notes, we shall focus on the case where the geodesic flow has a
very chaotic behaviour. When the geodesic flow is ergodic, the semiclassical
measures are essentially described by the Snirelman theorem [Sn74, Ze87,
CdV85] (see Chapter 2). Let X be a compact riemannian manifold; call
0 < λ1 ≤ λ2 ≤ · · · the eigenvalues of the laplacian, and let (ψj) be an
orthonormal basis of eigenfunctions : −4 ψj = λjψj . Denote µj the corre-
sponding Husimi measures (the semiclassical parameter is ~ = λ

−1/2
j ). We

shall call LE the desintegration of the Liouville measure dxdξ with respect
to the value E of the hamiltonian ‖ξ‖2

2 . We normalize LE to be a probabil-

ity measure on the energy layer {‖ξ‖22 = E}. If the geodesic flow on S∗X
is ergodic with respect to L 1

2
, then there is a “density 1” subsequence of te

family (µj) converging to L 1
2

:

Theorem 1.13 (Snirelman theorem). [Sn74, Ze87, CdV85] Assume that the
action of S∗X is ergodic, with respect to the Liouville measure L 1

2
. Then,

there exists a subset S ⊂ N of density 1, such that

µj −→
j−→+∞,j∈S

L 1
2
.

In specific examples, what we would like to know is whether the whole
sequence µj converges to the Liouville measure, or if there can be excep-
tional subsequences converging to other invariant measures. In the case of
nonpositively curved surfaces with flat cylinders, it is believed that certain
sequences of eigenfunctions concentrate asymptotically on these cylinders.
But in (strictly) negative curvature, it was conjectured by Rudnick and Sar-
nak [RudSa94] that the Liouville measure is the unique limit point of the
µjs. It would imply, in particular, that the sequence of probability measures
|ψj(x)|2dVol(x) on X converges weakly to the riemannian volume measure
Vol.
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Chapter 2

Entropy and localization of
eigenfunctions.

2.1 Motivations

The field of quantum chaos tries to understand how the chaotic behaviour
of a classical Hamiltonian system affects its quantum counterpart. For in-
stance, let X be a compact Riemannian C∞ manifold, with negative sec-
tional curvatures. The geodesic flow has the Anosov property, which is
considered as the ideal chaotic behaviour in the theory of dynamical sys-
tems. The corresponding quantum dynamics is the unitary flow generated
by the Laplace-Beltrami operator on L2(X). One expects that the chaotic
properties of the geodesic flow influence the spectral theory of the Lapla-
cian. The Random Matrix conjecture [Bo91] asserts that the large eigen-
values should, after proper renormalization, statistically resemble those of a
large random matrix, at least for a generic Anosov metric. The Quantum
Unique Ergodicity conjecture [RudSa94] (see also [Berr77, Vor77]) deals with
the corresponding eigenfunctions ψ: it claims that the probability density
|ψ(x)|2dx should approach (in a weak sense) the Riemannian volume, when
the eigenvalue tends to infinity. In fact a stronger property should hold for
the microlocal lift of this measure to the cotangent bundle T ∗X, which de-
scribes the distribution of the wave function ψ on the classical phase space
(position and momentum).

To describe the problem, we will adopt a semiclassical point of view, that
is, consider the eigenstates of eigenvalue unity of the semiclassical Laplacian
−~24, in the semiclassical limit ~ → 0. We denote by (ψk)k∈N an or-
thonormal basis of L2(X) made of eigenfunctions of the Laplacian, and by
(− 1

~2k
)k∈N the corresponding eigenvalues:

−~2
k4ψk = ψk, with ~k+1 ≤ ~k . (2.1)

We are interested in the high-energy eigenfunctions of −4, in other words
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the semiclassical limit ~k → 0.
To an eigenfunction ψk corresponds a distribution on T ∗X defined by

µk(a) = 〈ψk,Op~k(a)ψk〉L2(X), a ∈ C∞o (T ∗X) .

Here Op~k is a quantization procedure, set at the scale ~k, which associates a
bounded operator on L2(X) to any smooth phase space function a with nice
behaviour at infinity. If a is a function on the manifold X, we have µk(a) =∫
X a(x)|ψk(x)|2dx + O(~): the distribution µk is a microlocal lift of the

probability measure |ψk(x)|2dx into a phase space distribution. This means
that it contains the information about the frequency vector of ψk (in other
words, the momentum), in addition to the position distribution |ψk(x)|2dx.
The definition of µk is not canonical, it depends on a certain number of
choices, like the choice of local coordinates, or of the quantization procedure
(Weyl, anti-Wick, “right” or “left” quantization...); this somehow reflects the
fact that, for ~ > 0, it does not really make sense to study simultaneously the
position and frequency of the wave. Mathematically speaking, one cannot
study at the same time the local property of a function and of its Fourier
transform around some point (x, ξ) ∈ T ∗X. But the asymptotic behaviour
of µk when ~k −→ 0 does not depend on the arbitrary conventions involved
in its definition. We saw that it is possible to construct Op+

~k so that the
µk are probability measures, in which case we call them Husimi measures
associated to the eigenfunctions ψk. We call semiclassical measures the limit
points of the sequence (µk)k∈N, in the distribution topology.

The quantum hamiltonian −~242 generates the Schrödinger flow (U t~) =
(exp(it~42 )) acting unitarily on L2(X). A solution of (2.1) is an invariant
state of the flow (U t~), corresponding to the energy 1

2 of the hamiltonian. In
the semiclassical limit ~ −→ 0, “quantum mechanics converges to classical
mechanics”. We will denote |·|x the norm on T ∗xM given by the metric.
The geodesic flow (gt)t∈R is the Hamiltonian flow on T ∗X generated by the
Hamiltonian H(x, ξ) = |ξ|2x

2 . In the previous chapter we saw :

Proposition 2.1. Any semiclassical measure is a probability measure car-
ried on the energy layer S∗X = H−1(1

2). This measure is invariant under
the geodesic flow.

If the geodesic flow has the Anosov property — for instance if X has
negative sectional curvature — then there exist many invariant probability
measures on S∗X, in addition to the Liouville measure. The geodesic flow
has countably many periodic orbits, each of them carrying an invariant
probability measure. There are still many others, like the equilibrium states
obtained by variational principles [KH].

For manifolds with an ergodic geodesic flow (with respect to the Liouville
measure), it has been known for some time that almost all eigenfunctions
become uniformly distributed over S∗X, in the semiclassical limit. This
property is dubbed as Quantum Ergodicity :
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Theorem 2.2. [Sn74, Ze87, CdV85] Let X be a compact Riemannian man-
ifold, assume that the action of the geodesic flow on S∗X is ergodic with
respect to the Liouville measure L 1

2
. Let (ψk)k∈N be an orthonormal basis of

L2(X) consisting of eigenfunctions of the Laplacian (2.1), and let (µk) be
the associated distributions on T ∗X.

Then, there exists a subset S ⊂ N of density 1, such that

µk −→
k−→∞,k∈S

L 1
2
.

Proof: Let us recall the main lines of the argument, and see where the
ergodicity comes into play. For all a ∈ C∞o (T ∗X), one first shows, without
using any assumption on the dynamics, that

∑

j, λj≤E

∫
a dµj ∼

E−→+∞
bd

(2π)d
V ol(X)

∫

S∗X
a dL 1

2
× Ed/2. (2.2)

The constant bd is the volume of the euclidean d-dimensional ball. The idea
is to express in two different ways the trace of Op√E(a) : the trace can be
expressed either as a spectral sum

∑
k〈Op(a)ψk, ψk〉 or as the integral of the

kernel on the diagonal (1.29). There are some technical details we skip here
From (2.2) one can deduce the Weyl asymptotics :

N(E) = ]{j, λj ≤ E} ∼ bd
(2π)d

V ol(X)Ed/2

Thus, we have a Cesaro convergence :

1
N(E)

∑

j, λj≤E

∫
a dµj −→

E−→+∞

∫

S∗X
a dL 1

2
.

Using the ergodicity assumption, one can do better :

1
N(E)

∑

j, λj≤E

∣∣∣∣
∫
a dµj −

∫

S∗X
a dL 1

2

∣∣∣∣
2

−→
E−→+∞

0. (2.3)

We know from Theorem 1.11 (3.) that |∫ a dµj −
∫
a ◦ gt dµj | −→ 0 as

j −→ +∞, for any fixed t. Thus, we can write, for any given T ,

lim sup
E−→∞

1
N(E)

∑

j, λj≤E

∣∣∣∣
∫
a dµj −

∫

S∗X
a dL 1

2

∣∣∣∣
2

= lim sup
1

N(E)

∑

j, λj≤E

∣∣∣∣
∫
MTa dµj −

∫

S∗X
a dL 1

2

∣∣∣∣
2

≤ lim sup
1

N(E)

∑

j, λj≤E
µj

(
(MTa−

∫

S∗X
a dL 1

2
)2

)

= L 1
2

(
(MTa−

∫

S∗X
adL 1

2
)2

)
.
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We denoted MTa = T−1
∫ T
0 a ◦ gtdt the time average of a on the interval

[0, T ]. We used the Cauchy-Schwartz inequality, which requires to know that
the µj can be assumed to be probability measures (see §1.5. This was the
missing argument in Snirelman’s original paper). In the last line, we used
the Cesaro convergence of the sequence (µj). Letting at the end T tend to
+∞, the ergodicity assumption means that

L 1
2

(
(MTa−

∫

S∗X
a dL 1

2
)2

)
−→
T→∞

0;

which proves (2.3).
Finally, the Snirelman theorem results from the classical lemma :

Lemma 2.3. Let (an) be a sequence of nonnegative numbers. If

1
n

n∑

k=0

ak −→ 0

then there exists S ⊂ N of density 1 such that an−→
n∈S

0.

¤

Remark 2.4. The result was subsequently extended to more general hamil-
tonians [HelMR87], to ergodic billiards [GL93, ZeZw96]; and to certain dis-
crete time symplectic dynamical systems.

The question of knowing, in particular cases, if there can exist “excep-
tional” subsequences with a different behaviour is widely open. On a nega-
tively curved manifold, the geodesic flow satisfies the ergodicity assumption,
and in fact much stronger properties : mixing, K–property,... In this case,
the Quantum Unique Ergodicity conjecture [RudSa94] expresses the belief
that there exists a unique semiclassical measure, namely the Liouville mea-
sure on S∗X : the whole sequence (µk) converges to L 1

2
. In other words,

in the semiclassical régime all eigenfunctions should become uniformly dis-
tributed over S∗X.

So far the most precise results on this question were obtained for man-
ifolds X with constant negative curvature and arithmetic properties: see
Rudnick–Sarnak [RudSa94], Wolpert [Wol01]. In that very particular situ-
ation, there exists a countable commutative family of self–adjoint operators
commuting with the Laplacian : the Hecke operators. One may thus decide
to restrict the attention to common bases of eigenfunctions, often called
“arithmetic” eigenstates, or Hecke eigenstates. A few years ago, Linden-
strauss [Li06] proved that the arithmetic eigenstates become asymptotically
equidistributed (Arithmetic Quantum Unique Ergodicity). If there is some
degeneracy in the spectrum of the Laplacian, it could be possible that the
Quantum Unique Ergodicity conjectured by Rudnick and Sarnak holds for
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one orthonormal basis but not for another. In the arithmetic case, it is be-
lieved that the spectrum of the Laplacian has bounded multiplicity, in which
case it would be a harmless assumption to consider only Hecke eigenstates.

Nevertheless, one may be less optimistic about the general conjecture.
Faure–Nonnenmacher–De Bièvre exhibited in [FNDB03] a simple example
of a symplectic Anosov dynamical system, namely the action of the linear

hyperbolic automorphism
(

2 1
1 1

)
on the 2-torus, the Weyl–quantization

of which does not satisfy the Quantum Unique Ergodicity conjecture. In
this model, it is known [KurRud00] that there is one orthonormal family
of eigenfunctions satisfying Quantum Unique Ergodicity, but, due to high
degeneracies in the spectrum, one can also construct eigenfunctions with a
different behaviour. Precisely, [FNDB03] construct a family of eigenstates
for which the semiclassical measure consists in two ergodic components: half
of it is the Liouville measure, while the other half is a Dirac peak on a single
unstable periodic orbit. It was also shown that this half-localization on a
periodic orbit is maximal for this model [FN04] : a semiclassical measure
cannot have more than half the mass carried by a finite union of closed orbits.
Another type of semiclassical measure was recently obtained by Kelmer for a
quantized automorphism on a higher-dimensional torus [Kelm05]: it consists
in the Lebesgue measure on some invariant co-isotropic subspace of the torus.
For these torus automorphisms, the existence of exceptional eigenstates is
due to some nongeneric algebraic properties of the classical and quantized
systems.

2.2 Main result.

We wish to consider the Kolmogorov–Sinai entropy of semiclassical mea-
sures. We work on a compact manifold X of arbitrary dimension, and
assume that the geodesic flow has the Anosov property. In fact, our method
is very general, and can without doubt be adapted to more general Anosov
Hamiltonian systems.

The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt)-
invariant probability measure µ is a nonnegative number hKS(µ) that de-
scribes, in some sense, the complexity of a µ-typical orbit of the flow. The
precise definition will be given later, but for the moment let us just give
a few facts. A measure carried on a closed geodesic has zero entropy. In
constant curvature, the entropy is known to be maximal for the Liouville
measure. More generally, an upper bound on the entropy is given by the
Ruelle inequality: since the geodesic flow has the Anosov property, the en-
ergy layer S∗X is foliated into unstable manifolds of the flow, and for any
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invariant probability measure µ one has

hKS(µ) ≤
∣∣∣∣
∫

S∗X
log Ju(ρ)dµ(ρ)

∣∣∣∣ . (2.4)

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point
ρ ∈ S∗X, defined as the Jacobian of the map g−1 restricted to the unstable
manifold at the point g1ρ (the average of log Ju over any invariant measure
is negative). In fact, if µ is an invariant probability measure,

∫

S∗X
log Ju(ρ)dµ(ρ) = −

∫

S∗X

∑
λ+
j (ρ)dµ(ρ)

where λ+
j (ρ) are the positive Lyapunov exponents of ρ. If X has dimension

d and has constant sectional curvature −1, (2.4) just reads hKS(µ) ≤ d− 1.
Besides, equality holds in (2.4) if and only if µ is the Liouville measure on
S∗X [LY85].

Let µ be a (gt)–invariant probability measure on S∗X. According to the
Birkhoff ergodic theorem, for µ–almost every ρ ∈ S∗X, the weak limit

µρ = lim
|t|−→∞

1
t

∫ t

0
δgsρds

exists, and is an ergodic probability measure. We can then write

µ =
∫

S∗X
µρdµ(ρ),

which is called the ergodic decomposition of µ. Note that the ergodic prob-
ability measures are the extremal points of the compact convex set of (gt)–
invariant probability measures.

To understand the connection of our results with the previous discussion,
it is important to know that the entropy if an affine functional on the convex
set of (gt)–invariant probability measures. In fact, we have

hKS(µ) =
∫

S∗X
hKS(µρ)dµ(ρ).

In what follows, we consider a certain subsequence of eigenstates (ψkj )j∈N
of the Laplacian, such that the corresponding sequence (µkj ) converges to
a certain semiclassical measure µ (see the discussion preceding Proposi-
tion 2.1). The subsequence (ψkj ) will simply be denoted by (ψ~)~→0, using
the slightly abusive notation ψ~ = ψ~kj for the eigenstate ψkj . Each state
ψ~ satisfies

(−~2 4−1)ψ~ = 0 . (2.5)

Ii is proved in [A05] that the entropy of any semiclassical measure associated
with eigenfunctions of the laplacian is strictly positive. In [AN07] more
explicit lower bounds were obtained. We shall prove here the following
lower bound :
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Theorem 2.5. Let µ be a semiclassical measure associated to the eigen-
functions of the Laplacian on X. Then its metric entropy satisfies

hKS(µ) ≥
∣∣∣∣
∫

S∗X
log Ju(ρ)dµ(ρ)

∣∣∣∣−
(d− 1)

2
λmax , (2.6)

where d = dimM and λmax = limt→±∞ 1
t log supρ∈S∗X |dgtρ| is the maximal

expansion rate of the geodesic flow on S∗X.
In particular, if X has constant sectional curvature −1, this means that

hKS(µ) ≥ d− 1
2

. (2.7)

The bound (2.7) in the above theorem is much sharper than the bound
proved in [A05] in the case of constant curvature. On the other hand, if the
curvature varies a lot (still being negative everywhere), the right hand side
of (2.6) may be negative, in which case the above bound is trivial and the
result of [A05] is better. We believe this to be but a technical shortcoming
of our method, and would actually expect the following bound to hold:

hKS(µ) ≥ 1
2

∣∣∣∣
∫

S∗X
log Ju(ρ)dµ(ρ)

∣∣∣∣ . (2.8)

Our result is compatible with the kind of counter-examples obtained
by Faure–Nonnenmacher–De Bièvre [FNDB03]. It allows certain ergodic
components to be carried by closed geodesics, but says that others must
have positive entropy. Compare with the much stronger result obtained in
the arithmetic case by Bourgain and Lindenstrauss :

Theorem 2.6. [BLi03] Let X be a congruence arithmetic surface, and (ψj)
an orthonormal basis of eigenfunctions for the laplacian and the Hecke op-
erators.

Let µ be a corresponding semiclassical measure, with ergodic decompo-
sition µ =

∫
S∗X µ

ρdµ(ρ), then for almost all ergodic components we have
hKS(µρ) ≥ 1

9 .

Quantum Unique Ergodicity would mean that hKS(µ) =
∣∣∫
S∗X log Ju(ρ) dµ(ρ)

∣∣
[LY85]. We believe however that (2.8) is the optimal result that can be
obtained without using more precise information, like for instance upper
bounds on the multiplicities of eigenvalues. Indeed, in the above mentioned
examples of Anosov systems where the Quantum Unique Ergodicity conjec-
ture is wrong, the bound (2.8) is actually sharp [FNDB03, Kelm05, AN06].
In those examples, the spectrum has very high degeneracies, which allows for
much freedom to select the eigenstates, and could be responsible for the fail-
ure of Quantum Unique Ergodicity. Such high degeneracies are not expected
to happen in the case of the Laplacian on a negatively curved manifold. For
the moment, however, there is no clear understanding of the precise relation
between spectral degeneracies and failure of Quantum Unique Ergodicity.
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2.3 Definition of entropy, and main idea of the
proof.

Let µ be a probability measure on T ∗X. Let (P1, . . . , PK) be a finite mea-
surable partition of the unit tangent bundle : T ∗X = P1 t ... t PK . The
Shannon entropy of µ with respect to the partition P is

hP (µ) = −
K∑

k=1

µ(Pk) log µ(Pk). (2.9)

Assume now that µ is (gt)–invariant. For any integer n, denote P∨n the
partition formed by the sets Pα0 ∩ g−1Pα1 ... ∩ g−n+1Pαn−1 . Denote

hn(µ, P ) = hP∨n(µ)

= −
∑

(αj)∈{1,...,K}{0,...,n−1}
µ(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1) logµ(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1).

(2.10)

If µ is (gt)–invariant, it follows from the concavity of x 7→ −x log x that

hn+m(µ, P ) ≤ hn(µ, P ) + hm(µ, P ), (2.11)

in other words the sequence (hn(µ, P ))n∈N is subadditive. The entropy of µ
with respect to the action of geodesic flow and to the partition P is defined
by

hKS(µ, P ) = lim
n−→+∞

hn(µ, P )
n

= inf
n∈N

hn(µ, P )
n

. (2.12)

Note that µ(Pα0 ∩ g−1Pα1 ... ∩ g−n+1Pαn−1) measures the µ–probability to
visit successively Pα0 , Pα1 ,..., Pαn−1 at times 1, 2,..., n − 1 of the geodesic
flow. Roughly speaking, the entropy measures the exponential decay of these
probabilities when n gets large. It is easy to see that hKS(µ, P ) ≥ β if there
exists C such that µ(Pα0 ∩ g−1Pα1 ... ∩ g−nPαn) ≤ Ce−βn, for all n and all
α0, . . . , αn.

The entropy of µ with respect to the action of the geodesic flow is defined
as

hKS(µ) = sup
P
hKS(µ, P ), (2.13)

the supremum running over all finite measurable partitions P . Assume µ is
carried on the energy layer S∗X. Due to the Anosov property of the geodesic
flow on S∗X, it is known that the supremum (2.13) is reached as soon as
the maximum diameter of the sets Pk ∩ S∗X is small enough.

We will restrict our attention to partitions P which are actually par-
titions of the base X (lifted to T ∗X) : X = tKk=1Pk. This choice is not
crucial, but it simplifies certain aspects of the analysis.

32



The existence of the limit in (2.12), and the fact that it coincides with the
inf follow from a standard subadditivity argument. A crucial consequence is
that hKS(., P ) has an upper semicontinuity property : if (µk) is a sequence
of (gt)–invariant probability measures converging weakly to µ, then

hKS(µ, P ) ≥ lim sup
k

hKS(µk, P ) (2.14)

(provided µ does not charge the boundary of P ). In particular : if (µk)
converges weakly to µ, and if we have an estimate

µk(Pα0 ∩ g−1Pα1 ... ∩ g−nPαn) ≤ Cke
−βn

where β does not depend on k, we have hKS(µk, P ) ≥ β for all k, and this
estimate goes to the limit to yield hKS(µ, P ) ≥ β.

Since our semiclassical measure µ is defined as a limit of Husimi measures
associated to ψ~, a naive idea would be to estimate from below the entropy
of ψ~ and then take the limit.

A first problem is to decide how to define the ψ~–probability to visit
successively Pα0 , Pα1 ,..., Pαn−1 at times 1, 2,..., n− 1.

From the definition of the Husimi measures, a first idea could be to
consider

〈
ψ~,Op~

(
(1lPα0

) (1lPα1
◦ g1) . . . (1lPαn−1

◦ gn−1)
)
ψ~

〉
. (2.15)

To avoid dealing with characteristic functions (which are not quantized to
pseudodifferential operators), we can smooth them by convolution and try
replacing 1lPk by a smooth 1lsmPk . Even so, studying the large–n behaviour
of (2.15) is very problematic. In fact, the derivatives of (1lsmPα0

) (1lsmPα1
◦

g1) . . . (1lsmPαn−1
◦ gn−1) grow like en, so that when n reaches the size | log ~|

this function no longer belongs to any reasonable symbol space (the operator
is not a pseudodifferential operator).

We also note that an overlap of the form (2.15) is a hybrid expression:
this is a quantum matrix element, but the operator is defined in terms of
the classical flow ! From the point of view of quantum mechanics, it is
more natural to consider, instead, the operator obtained as the product of
Heisenberg-evolved quantized functions, namely

P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α1(1)P̂α0 . (2.16)

Here we used the shorthand notation P̂k
def= Op(1lsmPk ), k ∈ [1,K] (multipli-

cation operators), and P̂k(t) = U−t~ P̂kU
t
~. Instead of (2.15), a second idea

would be to consider
〈
ψ~, P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~

〉
. (2.17)
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as the ψ~–probability to visit successively Pα0 , Pα1 ,..., Pαn−1 at times 1, 2,...,
n − 1. However, the scalar product is a complex number, and can not be
directly manipulated as a probability.

Our third and final try is to consider

‖P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~‖2. (2.18)

In fact, if we do the smoothing of 1lPk so that
∑

k

(1lPk)
2 ≡ 1

then the norms (2.18) can actually be manipulated like probability mea-
sures :

∑
α0,...,αn−1

‖P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α1(1)P̂α0ψ~‖2 = 1,

and
∑
αn−1

‖P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α1(1)P̂α0ψ~‖2

= ‖P̂αn−2(n− 2) . . . P̂α1(1)P̂α0ψ~‖2.

Finally, using the Egorov theorem (1.32), we see that, for fixed n,

‖P̂αn−1(n−1) . . . P̂α1(1)P̂α0ψ~‖2 −→
~−→0

µ
(
(1lsmPα0

)2 (1lsmPα1
◦ g1)2 . . . (1lsmPαn−1

◦ gn−1)2
)

if the Husimi measures of ψ~ converge to µ. Apart from the smoothing, this
is the quantity we are interested in when computing entropy of µ (2.10).

We actually proved in [A05] that

‖P̂αn−1(n− 1) . . . P̂α1(1)P̂α0ψ~‖2 ≤ C

~d
e−(d−1)n,

say, in dimension d and constant curvature −1, and assuming the diameter
of the Pk is small enough1. From this, it would be tempting to deduce that
the entropy of the ψ~–Husimi measures is bounded below by d − 1, then
use the semicontinuity property (2.14) to deduce that hKS(µ) ≥ d− 1 (thus
proving quantum unique ergodicity).

Of course, we can not apply (2.14), since we are not in the situation
of a sequence (µk) of gt–invariant probability measures converging to µ.
To use (2.14) we need to know if a similar property holds in our quantum
framework, using expressions such as (2.18) to evaluate entropies. This is,
in fact, NOT the case : a factor of 2 is lost somewhere in the proof, and we
will end up proving

hKS(µ) ≥ d− 1
2

.

1To prove this estimate, we assume, without any loss of generality, that the injectivity
radius of X is larger than 1.
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Chapter 3

The entropic uncertainty
principle.

In this chapter, we start proving our main theorem, (2.6). To simplify the
notations we restrict ourselves to the case of constant curvature ≡ −1.

We start with a functional inequality called the “entropic uncertainty
principle”.

3.1 The abstract result...

We consider a complex Hilbert space (H, 〈., .〉), and denote ‖ψ‖ =
√
〈ψ,ψ〉

the associated norm. The same notation ‖.‖ will also be used for the operator
norm on L(H).

We define the following family of lp norms on HN : for Ψ = (Ψ1, . . . ,ΨN ) ∈
HN , we let

‖Ψ‖p def=

(
N∑

k=1

‖Ψk‖p
)1/p

, 1 ≤ p <∞ , and ‖Ψ‖∞ def= max
k
‖Ψk‖ . (3.1)

For p = 2, this norm coincides with the Hilbert norm deriving from the
scalar product

〈Ψ,Φ〉HN =
∑

k

〈Ψk,Φk〉H.

We can define similarly a family of lp norms on HM 3 Φ = (Φ1, . . . ,ΦM ):

‖Φ‖p def=




M∑

j=1

‖Φj‖p



1/p

, 1 ≤ p <∞ , and ‖Φ‖∞ def= max
j
‖Φj‖ . (3.2)

For Ψ ∈ HN with ‖Ψ‖2 = 1, we define its entropy,

h(Ψ) = −
N∑

k=1

‖Ψk‖2 log ‖Ψk‖2 ;
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(and we define similarly the entropy of a normalized vector Φ ∈ HM ).
Consider the action of a bounded operator T : HN → HM , which we

present as a M × N matrix (Tj k) of bounded operators on H. We denote
‖T‖p,q the norm of T from lp(H

N ) to lq(H
M ), for 1 ≤ p, q ≤ ∞.

Theorem 3.1 (Riesz interpolation theorem). [DunSchw, Section VI.10]
The function log ‖T‖1/a,1/b is a convex function of (a, b) in the square 0 ≤
a, b ≤ 1.

From this theorem, Maassen and Uffink derived a new form of uncer-
tainty relations [MaaUff88].

Theorem 3.2. Assume that ‖T‖2,2 = 1, which implies in particular that
‖Tjk‖ ≤ 1 for all k, j. Introduce the real number c(T ) = maxj,k‖Tjk‖ , where
the norm is the operator norm in L(H).

For all Ψ ∈ H such that ‖Ψ‖2 = 1 and ‖TΨ‖2 = 1, we have

h(TΨ) + h(Ψ) ≥ −2 log c(T ) .

Proof: In the case a = 1, b = 0, we have for any Ψ,

‖TΨ‖∞ = sup
j
‖(TΨ)j‖ ≤ sup

j,k
‖Tj,k‖

∑

k′
‖Ψk′‖ = sup

j,k
‖Tj,k‖ ‖Ψ‖1 ,

which can be written as ‖T‖1,∞ ≤ supj,k ‖Tj,k‖ def= c(T ).
Let us assume that T is contracting on l2 : ‖T‖2,2 ≤ 1. We take t ∈ [0, 1]

and at = 1+t
2 , bt = 1−t

2 to interpolate between (1/2, 1/2) and (1, 0); Theorem
3.2 implies that

‖T‖1/at,1/bt
≤ c(T )t .

This is equivalent to the following

Corollary 3.3. Let the operator T : HN −→ HM satisfy ‖T‖2,2 ≤ 1 and

call c(T ) def= supj,k ‖Tj,k‖. Then, for all t ∈ [0, 1], for all Ψ ∈ HN ,

‖TΨ‖ 2
1−t

≤ c(T )t ‖Ψ‖ 2
1+t

.

We define for any r > 0 or −1 < r < 0 the “moments”

Mr(Ψ) def=


∑

j

‖Ψj‖2+2r




1/r

.

Corollary 3.3 leads to the following family of “uncertainty relations”:

∀t ∈ (0, 1), ∀Ψ ∈ CN , M t
1−t

(TΨ)M −t
1+t

(Ψ) ≤ c(T )2 . (3.3)
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In the case ‖Ψ‖2 = 1, we notice that the moments converge to the same
value when r → 0 from above or below:

lim
r→0

Mr(Ψ) = e−h(Ψ) , where h(Ψ) = −
∑

j

‖Ψj‖2 log ‖Ψj‖2 .

If, furthermore, ‖TΨ‖2 = 1, then the limit t → 0 of the inequalities (3.3)
yield the Entropic Uncertainty Principle stated in Theorem 3.2. ¤

We shall use Theorem 3.2 in the following particular case :

Example 3.4. Suppose we have two partitions of unity (πk)Nk=1 and (τj)Mj=1,
that is, two families of operators on H such that

N∑

k=1

πkπ
∗
k = Id,

M∑

j=1

τjτ
∗
j = Id. (3.4)

Let U be a unitary operator on H. We can take Tj k = τ∗j Uπk.

Lemma 3.5. Let Tjk = τ∗j Uπk, for some bounded operator U : H → H.
Then we have the identity

‖T‖2,2 = ‖U‖L(H) .

Proof. The operator T may be described as follows. Consider a line and
column vectors of operators on H:

L
def= (π1, . . . , πN ) , as well as C =




τ∗1
. . .
τ∗M


 .

We can write T = CUL. We insert this formula in the identity

‖T‖2
2,2 = ‖T ∗T‖L(HN ) =

∥∥∥L†U∗C†CUL
∥∥∥

L(HN )

Using (3.4) for the τj , we notice that C†C = IdH, so that the norm above
reads ∥∥∥L†U∗UL

∥∥∥
L(HN )

.

Then, we use the identities
∥∥∥(UL)†(UL)

∥∥∥
L(HN )

=
∥∥∥(UL)(UL)†

∥∥∥
L(H)

=
∥∥∥(UL)L†U∗

∥∥∥
L(H)

= ‖UU∗‖L(H) ,

where we used (3.4) for the πk.
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Therefore, if U is contracting (resp. ‖U‖L(H) = 1) one has ‖T‖2,2 ≤ 1
(resp. ‖T‖2,2 = 1).

We also specify the vector Ψ by taking Ψk = π∗kψ for some normalized
ψ ∈ H. From (3.4), we check that ‖Ψ‖2 = ‖ψ‖, and also that (TΨ)j =
τ∗j Uψ. Thus, if ‖Uψ‖ = 1, the relation (3.4) also implies ‖TΨ‖2 = ‖Uψ‖ =
1. With this choice for T and Ψ, Theorem 3.2 reads as follows:

Theorem 3.6. Let U be an isometry on H, and let π, τ be two quantum
partitions of unity as in (3.4).
Define cτ,π(U) def= supj,k‖τ∗j U πk‖L(H).

Then, for any normalized ψ ∈ H, we have

hτ (Uψ) + hπ(ψ) ≥ −2 log cτ,π(U)

where hπ(ψ) = −∑N
k=1 ‖π∗kψ‖2 log ‖π∗kψ‖2 and hτ (ψ) = −∑M

j=1 ‖τ∗j ψ‖2 log ‖τ∗j ψ‖2.

Note that the definition hπ(ψ) = −∑N
k=1 ‖π∗kψ‖2 log ‖π∗kψ‖2 is somewhat

analogous to (2.9), π playing the role of the partition P and ψ the role of
the measure µ. We will call hπ(ψ) the Shannon entropy of the state ψ with
respect to the partition π.

3.2 ... applied to eigenfunctions of the laplacian...

In this section we define the data to input in Theorem 3.6, in order to
obtain informations on the eigenstates ψ~ and the semiclassical measures
µ considered in the previous chapters. Only the Hilbert space is fixed,
H

def= L2(X). All other data depend on the semiclassical parameter ~: the
quantum partitions π, τ , the unitary operator U . Besides we will need yet
another technical variant of Theorem 3.6.

3.2.1 Smooth partition of unity

To evaluate the Kolmogorov–Sinai entropy, we start by decomposing T ∗X
into a finite partition. We actually specify the form of the partition we want
to use. We work with a measurable partition (Pk)k=1,...,K of the base X :
X = tPk, that we lift to a partition of the phase space T ∗X.

For semiclassical methods we actually need to work with smooth func-
tions, so that we introduce a smooth partition of unity (1lsmPk ), obtained by
smoothing the characteristic functions (1lPk) with a convolution kernel. We
require that the smoothing be done so that

∑K
k=1(1l

sm
Pk

)2 = 1.
We finally denote P̂k = Op(1lsmPk ) (it is just the operator of multiplication

by 1lsmPk ). We have

∀x ∈M,
K∑

k=1

P̂ 2
k = I , (3.5)
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which means that they form a quantum partition of unity as in (3.4), which
we will call P(0).

3.2.2 Refinement of the partition under the Schrödinger flow.

We denote by U t = exp(it~4 /2) the quantum propagator. With no loss of
generality, we will assume that the injectivity radius of X is much greater
than 1, and work with the propagator at time one, U = U1. This propagator
quantizes the geodesic flow at time one, g1. The ~-dependence of U will be
implicit in our notations.

As one does to compute the Kolmogorov–Sinai entropy of an invariant
measure, we define a new quantum partition of unity by evolving and refining
the initial partition P(0) under the quantum evolution. For each time n ∈ N
and any sequence of symbols α = (α0 · · ·αn−1), αi ∈ [1,K] (we say that the
sequence α is of length |α| = n), we define the operators

P̂α = P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α0 . (3.6)

We keep using the notation A(t) = U−tAU t for the quantum evolu-
tion of an operator A. From (3.5) and the unitarity of U , the family of
operators

{
P̂α

}
|α|=n

obviously satisfies the relation
∑
|α|=n P̂α P̂

∗
α = IdL2 ,

and therefore forms a quantum partition which we call P(n). We also have∑
|α|=n P̂

∗
α P̂α = IdL2 , and we denote T(n) the partition of unity given by

the family of operators
{
P̂ ∗α

}
|α|=n

.

3.2.3

In the entropic uncertainty principle, Theorem 3.6, we shall input the fol-
lowing data :

• the quantum partition π = P(n) is given by the family of operators
{P̂α, |α| = n}. The quantum partition τ = T(n) is given by the family
of operators {P̂ ∗α, |α| = n}. The integer n will always be of order
K| log ~|, where K will be determined later.

• the isometry will be U = Un.

To apply Theorem 3.6 we would need an upper bound on cT(n),P(n)(U) =
max|α|=|α′|=n ‖P̂α′ U

n P̂α‖. We remark that P̂α′ U
n P̂α can be developed as

U−n+1P̂α′n−1
U · · ·UP̂α′1UP̂α′0UP̂αn−1 · · ·UP̂α1UP̂α0

or equivalently

Un+1P̂α′n(2n) · · · P̂α′1(n+ 1)P̂α′0(n)P̂αn−1(n− 1) · · · P̂α1(1)P̂α0 .
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The best bound we can hope for on the norm of these operators is certainly
the trivial one : cT(n),P(n)(U) ≤ 1. On the other hand, if we add an energy
cutoff Op~(χ) we can prove an interesting bound : see Theorem 3.9 below.

3.2.4 The main estimate

Let us assume (without loss of generality) that the injectivity radius of X is
greater than 1; and that the diameter of each Pk is small enough so that, for
every j, k, for every x, y ∈ Pj , Pk, there is at most one unit speed geodesic
joining x and y in time 1.

The estimate essentially proven in [A05] is :

Theorem 3.7. Let χ be an energy cut-off, that is, a smooth compactly
supported function vanishing outside H−1([1/2− ε, 1/2 + ε]).

Given K > 0 and a partition P(0), there exists ~K,P(0),χ such that, for
any ~ ≤ ~K,P(0),χ, for any positive integer n ≤ K| log ~|, and any pair of
sequences α, α′ of length n,

‖P̂α′ U
n P̂α Op(χ)‖ ≤ C ~−

d
2 e−(d−1)n(1 +O(ε))n . (3.7)

The constant C only depends on the Riemannian manifold.

Remark 3.8. If we were in variable curvature, instead of the exponent
d − 1 we would have a variable exponent depending on the local Lyapunov
exponents.

The idea in Theorem 3.7 is rather simple, although the technical imple-
mentation becomes cumbersome. We first show that any state in the image
of Op(χ) can be decomposed as a superposition of essentially ~−

d
2 normal-

ized lagrangian states, supported on lagrangian manifolds transverse to the
stable leaves of the flow. In fact the lagrangian states we work with are
truncated δ–functions, supported on spheres S∗zX. The action of the opera-
tor Un−1P̂α′ U

n P̂α = P̂α′n−1
U · · ·UP̂α′0UP̂αn−1 · · ·UP̂α0 on such lagrangian

states is described by the theory of Fourier integral operators (WKB meth-
ods), and is intuitively simple to understand : each application of U stretches
the lagrangian in the unstable direction whereas each multiplication by P̂α
chops a small piece of lagrangian. This iteration of stretching and cutting
accounts for the exponential decay. The proof is developed in Chapter 4.

In [AN07] the estimate of Theorem 3.7 was modified by optimizing the
shape of the cutoff χ : we considered a smooth function χ ∈ C∞(R; [0, 1]),
with χ(t) = 1 for |t| ≤ 1 and χδ(t) = 0 for |t| ≥ 1. Then, for some fixed
δ ∈ (0, 1), we rescale that function to obtain an ~-dependent cutoff near
S∗X:

∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗X, χδ(ρ; ~)
def= χ

(
~−1+δ(H(ρ)− 1/2)

)
.

(3.8)
The cutoff χδ is localized in a tubular neighbourhood of S∗X of width 2~1−δ
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Theorem 3.9. [AN07] Given K > 0 a partition P(0) and δ > 0 small
enough, there exists ~K,P(0),δ such that, for any ~ ≤ ~K,P(0),δ, for any positive
integer n ≤ K| log ~|, and any pair of sequences α, α′ of length n,

‖P̂α′ U
n P̂α Op(χδ)‖ ≤ C ~−

d−1
2
−δ e−(d−1)n(1 +O(hδ))n . (3.9)

The constant C only depends on the Riemannian manifold (M, g).

Theorem 3.9 essentially improves the prefactor ~−
d
2 of Theorem 3.7. Its

proof is similar, the main difficulty being to define Op(χδ) — the function
χδ does not fall into one of the usual “nice” classes of symbols, since its
derivatives explode quite fast when ~ −→ 0. To define Op(χδ) would be
much beyond the scope of these notes (see [SZ99, AN07]).

3.2.5 Technical variant of the entropic uncertainty principle.

It must have become clear now that we cannot apply Theorem 3.6 directly,
because we need to insert our energy cut-off Op(χ). On the other hand,
this frequency cut–off does not really bother us, since it hardly modifies the
eigenfunctions (see later (3.10)).

We generalize the statement of Theorem 3.6 by introducing an auxiliary
operator O.

Theorem 3.10. [AN07] Let O be a bounded operator on H. Let U be an
isometry on H.
Define cτ,πO (U) def= supj,k‖τ∗j Uπk O‖L(H).

Then, for any θ ≥ 0, for any normalized ψ ∈ H satisfying

∀k = 1, . . . ,N, ‖(Id− O)π∗kψ‖ ≤ θ ,

the entropies hτ
(
Uψ

)
, hπ

(
ψ

)
satisfy

hτ
(
Uψ

)
+ hπ

(
ψ

) ≥ −2 log
(
cπ,τO (U) + N θ

)
.

3.2.6 Applying the entropic uncertainty principle

We now precise all the data we will use in the entropic uncertainty principle,
Theorem 3.10:

• the quantum partition π = P(n), τ = T(n) have already been defined.
The integer n will be of order K| log ~|, where the choice of K will
be determined later. In the semiclassical limit, these partitions have
cardinality N = Kn ³ ~−K0 for some fixed K0 > 0.

• the isometry will be U = Un.
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• the operator O is O = Op(χδ). Since we are, at the end, interested
in eigenfunctions of the laplacian, we need to know that this operator
hardly modifies them. In fact, for any L > 0, there exists ~L such
that, for any ~ ≤ ~L, the Laplacian eigenstate satisfies

∀α, |α| = n ≤ K| log ~|, ‖(Op(χδ)− Id
)
P̂ ∗αψ~‖ ≤ ~L‖ψ~‖ . (3.10)

These means that, for an eigenfunction ψ~, all the states P̂ ∗αψ~ are
very sharply microlocalized near the energy layer S∗X.

• θ = ~L, and L will be chosen very large.

All these quantities are defined for n = K| log ~|, K will be determined
later, but fixed.

As in Theorem 3.10, the entropy associated with a state ψ ∈ H are given
by

hP(n)(ψ) = −
∑

|α|=n
‖P̂ ∗αψ‖2 log

(‖P̂ ∗αψ‖2
)
.

Similarly,
hT(n)(ψ) = −

∑

|α|=n
‖P̂αψ‖2 log

(‖P̂αψ‖2
)
.

We may apply Theorem 3.10 to any sequence of states satisfying (3.10).

Corollary 3.11. Define

cOpχδ(U
n) def= max

|α|=|α′|=n
‖P̂α′ U

n P̂α Op(χδ)‖ . (3.11)

Then for any normalized state φ satisfying (3.10),

hT(n)(Un φ) + hP(n)(φ) ≥ −2 log
(
cOpχδ(U

n) + hL−K0
)
.

We now apply Corollary 3.11 to the particular case of the eigenstates
ψ~. The estimate (3.9) can be rewritten as

cOpχδ(U
n) ≤ C ~−

d−1
2
−δe−(d−1)n(1 +O(~δ))n .

We choose L large enough such that ~L−K0 is negligible in comparison with
~−

d−1
2
−δe−(d−1)n.

Proposition 3.12. Let (ψ~)~→0 be any sequence of eigenstates (2.5). Then,
in the semiclassical limit, the entropies of ψ~ satisfy

hT(n)(ψ~) + hP(n)(ψ~) ≥ 2(d− 1)n+ (d− 1 + 2δ) log ~+ O(1) . (3.12)

This holds for n ≤ K| log ~| (K arbitrary) and ~ ≤ ~K,P(0),δ.
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3.3 ...and the conclusion.

Before taking the limit ~ → 0, we prove that a similar lower bound holds
if we replace n ³ | log ~| by some fixed no, and P(n) by the corresponding
partition P(no). Proposition 3.13 is the semiclassical analogue of the classical
subadditivity of entropy for invariant measures.

We introduce the Ehrenfest time nE(~) = (1−δ′)| log ~|
λmax

(δ′ fixed, arbitrar-
ily small). In constant curvature −1, the expansion rate of the geodesic flow
on S∗X is λmax = 1. The Ehrenfest time is the main limitation to use semi-
classical methods to understand the large time behaviour of the Schrödinger
flow : roughly speaking, we have U−t Op~(a)U t ∼ Op(a ◦ gt) for |t| ≤ nE(~)

2 ,
but for larger t we can no longer refer to the geodesic flow to understand
U−t Op~(a)U t. In other words, we can use our methods of classical ergodic
theory for |t| ≤ nE(~)

2 , and not afterwards.

Proposition 3.13 (Subadditivity). Let δ′ > 0. There is a function R(no, ~)
such that, for all integer no,

lim
~−→0

|R(no, ~)| = 0

and such that, for all no, n ∈ N with no + n ≤ nE(~) = (1−δ′)| log ~|
λmax

, for any
(ψ~) normalized eigenstates satisfying (2.5), the following inequality holds:

hP(no+n)(ψ~) ≤ hP(no)(ψ~) + hP(n)(ψ~) +R(no, ~) .

The non–commutative dynamical system formed by (U t) acting on pseu-
dodifferential operators is (approximately) commutative on time intervals of
length nE(~) :

‖[Op~(a)(t),Op~(b)(−t)]‖L2(X) = O(~cδ
′
),

for any time |t| ≤ nE(~)
2 , or equivalently (using the unitarity of U t)

‖[Op~(a)(t),Op~(b)]‖L2(X) = O(~cδ
′
),

for any time |t| ≤ nE(~). On such a time interval, we almost have a com-
mutative dynamical system, up to small errors tending to 0 with ~. This
roughly explains why the quantum entropy hP(no+n)(ψ~) has the same sub-
additivity property as the classical entropy (2.11), up to small errors, as
long as no + n remains bounded by the Ehrenfest time.

Thanks to this subadditivity, we may finish the proof of Theorem 2.5.
Although Proposition 3.12 held for n ≤ K| log ~| and K arbitrary, we are
now limited by Proposition 3.13 to K = 1−δ′

λmax
. For n = nE(~), Proposition

3.12 can be written

hP(n)(ψ~) + hT(n)(ψ~) ≥ 2(d− 1)n− (d− 1 + 2δ)λmax

(1− δ′)
n+ O(1) . (3.13)
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Let no ∈ N be fixed and n = nE(~). Using the Euclidean division
n = qno+ r (with r ≤ no), Proposition 3.13 implies that for ~ small enough,

hP(n)(ψ~)
n

≤ hP(no)(ψ~)
no

+
hP(r)(ψ~)

n
+
R(no, ~)
no

.

Of course a similar inequality holds with P replaced by T.
Using (3.12) and the fact that hP(r)(ψ~) stays uniformly bounded (by a

quantity depending on no) when ~→ 0, we find

1
2

[
hP(no),(ψ~)

no
+
hT(no),(ψ~)

no

]
≥ (d− 1)− (d− 1 + 2δ)λmax

2(1− δ′)
n

+ O(1)− R(no, ~)
2no

+ Ono(1/n) . (3.14)

We are now dealing with the partition P(no), n0 being fixed.

3.3.1 End of the proof

Let us take a subsequence of (ψ~k) such that the Husimi measures µk = µψ~k
converge to a semiclassical measure µ on S∗X, invariant under the geodesic
flow (see Prop. 2.1). We may take the limit ~k → 0 (so that n→∞) in the
expression above. The norms appearing in the definition of hP(no)(ψ~k) and
hT(no)(ψ~k)can be written as

‖P̂α ψ~k‖ = ‖P̂αno (no) · · · P̂α1(1)P̂α0 ψ~k‖ (3.15)

‖P̂ ∗α ψ~k‖ = ‖P̂α0P̂α1(1) · · · P̂αno (no)ψ~k‖ . (3.16)

For any sequence α of length no, the laws of pseudodifferential calculus
imply the convergence of ‖P̂ ∗α ψ~k‖2 and ‖P̂α ψ~k‖2 to the same quantity
µ({α}), where {α} is the function (1lsmPα0

)2 (1lsmPα1
)2 ◦ g1 . . . (1lsmPαno−1

)2 ◦ gno−1

on T ∗X. Thus hP(no)(ψ~k) and hT(no)(ψ~k) both semiclassically converge to
the classical entropy

hno(µ) def= hno(µ, (1l
sm
Pk

2)) = −
∑

|α|=no
µ({α}) logµ({α}) .

We have thus obtained the lower bound

hno(µ)
no

≥ (d− 1)− (d− 1 + 2δ)λmax

2(1− δ′)
. (3.17)

δ and δ′ could be taken arbitrarily small, and at this stage they can be let
vanish. Remember also that λmax = 1.

The Kolmogorov–Sinai entropy of µ (with respect to the partition X =
tPk) is by definition the limit of the first term hno (µ)

no
when no goes to infinity
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(2.10) (2.12), with the notable difference that the smooth functions (1lsmPk )2

should be replaced by the characteristic functions (1lPk). We note, however,
that the lower bound (3.17) does not depend on the derivatives of (1lsmPk )2: as
a result, the same bound carries over to the characteristic functions (1lPk).

We can finally let no tend to +∞, to obtain (2.7).
¤
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Chapter 4

WKB methods.

To prove our main estimate (Theorem 3.7), we need to describe the action
of the operator U t = exp(it~42 ) on “rapidly oscillating” functions, in the
limit ~ −→ 0. The idea, already used by Schrödinger, is first to describe the
action of exp(it~42 ) on functions of the form e

i
~S(x), called WKB functions

or lagrangian functions; and then to use the fact that all the functions we
consider are integral combinations of lagrangian functions.

4.1 Lagrangian submanifolds of T ∗X and generat-
ing functions.

We have seen that T ∗X is endowed with a “canonical” symplectic form ω,
defined as follows. Let Ω ⊂ X be an open subset of X, endowed with a
coordinate chart φ : X −→ Rd. Then T ∗Ω ⊂ T ∗X can be endowed with the
coordinate chart

Φ : T ∗Ω −→ Rd × (Rd)∗ (4.1)
(x, p) 7→ (φ(x), (Tφ∗x)−1p). (4.2)

On T ∗Ω, ω is defined as the pullback by Φ of the symplectic form
∑d

i=1 dqi∧
dpi of Rd × (Rd)∗. We leave it to the reader to check that this definition
does not depend on the choice of local coordinates. Thus, by choosing an
atlas of X, one can define ω on T ∗X, and the definition does not depend on
the atlas. In fact, ω can also be defined in a intrinsic way by formula (1.5).

Definition 4.1. A lagrangian submanifold, in the 2d-dimensional symplec-
tic manifold (T ∗X,ω), is a d-dimensional submanifold on which ω vanishes.

Equivalently, a submanifold L is lagrangian if and only if, for all z ∈ L,
TzL is its own ω-orthogonal in Tz(T ∗X).

Example 4.2. On T ∗Rd = Rd × (Rd)∗ endowed with the symplectic form∑d
i=1 dqi ∧ dpi, affine subspaces of the form Rd × {ξ0} or {x0} × Rd are
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examples of lagrangian submanifolds. More generally, for any manifold X,
the zero section {(x, 0), x ∈ X} ⊂ T ∗X is a lagrangian submanifold of T ∗X.
For any x ∈ X, the fiber T ∗xX is also lagrangian.

Generating functions.

Exercise 4.3. In Rd × (Rd)∗ endowed with the symplectic form
∑d

i=1 dqi ∧
dpi, consider an linear subspace of the form GraphA = {(x,Ax)} where
A is a linear operator from Rd to itself. Show that GraphA is lagrangian
if and only if A is symmetric for the canonical euclidean structure on Rd :
〈Ax, y〉 = 〈x,Ay〉. Of course, not all linear lagrangian subspaces of Rd×(Rd)∗
are of this form : for instance, {0} × Rd is not a graph.

Exercise 4.4. Generalization : let X be a smooth manifold and consider
T ∗X endowed with its usual symplectic structure. Let Ω ⊂ X be an open
subset of X, and let a be a smooth 1–form on Ω. Consider the graph
Graph a = {(x, ax)} ⊂ T ∗Ω. Show that Graph a is lagrangian if and only if
the 1–form a is closed : da = 0.

In particular, if Ω is simply connected, this implies the existence of a
smooth function S : Ω −→ R such that a = dS. The function S is called a
generating function of the lagrangian manifold Graph a.

This gives us more examples of lagrangian submanifolds !
We denote π : T ∗X −→ X the canonical projection.

Definition 4.5. Let L ⊂ T ∗X be a lagrangian submanifold. The caustic of
L is the set of points z ∈ L such that the restriction of π to L is not a local
diffeomorphism at z.

If z does not belong to the caustic, Exercise 4.4 shows there is a neigh-
bourhood of z in L which is the graph of the differential of a function S
(defined up to an additive constant). We say S is a generating function of
L near z.

What happens on the caustic ?
Let S(x, θ) be a real–valued function on ΩX ×ΩRN where ΩX is an open

subset of X and ΩRN an open subset of RN . Let CS =
{
(x, θ), ∂S∂θ = 0

}
. On

CS we assume that all the differentials d(x,θ)
∂S
∂θi

(i = 1, . . . , N) are linearly
independent : then CS is a smooth d–dimensional submanifold of ΩX×ΩRN
(recall d = dimX). Define jS : CS −→ T ∗X by jS(x, θ) = (x, ∂xS(x, θ)).

Proposition 4.6. The map jS is an immersion. Its image,

LS = {(x, ξ) ∈ T ∗X, there exists θ/∂θS(x, θ) = 0 and ξ = ∂xS(x, θ)}
is a lagrangian submanifold of T ∗X.

One calls S(., θ) a generating family (or generating function) of LS . Com-
pare with (1.24).
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Theorem 4.7. Every lagrangian submanifold L of T ∗X admits, locally, a
generating family. More precisely : for z0 ∈ L, let N = dimKer dπz0.
There is a neighbourhood Ω of z0 in T ∗X, an open subset ΩX of X and
an open subset ΩRN of RN , and finally a function S : ΩX × ΩRN −→ R
satisfying all the required conditions, such that

L ∩ Ω = LS .

Proof: Using (4.1) we see it is enough to consider the case X = Rd. Let
z0 = (x0, ξ0) ∈ T ∗Rd = Rd × (Rd)∗ and let L = Tz0L. It is a lagrangian
linear subspace of Rd × (Rd)∗. Let p : Rd × (Rd)∗ −→ Rd be the projection
on the first coordinate. By assumption, F = p(L) is a linear subspace of
Rd of dimension d − N . Let G be a supplementary subspace of F in Rd :
Rd = F ⊕ G. We have a corresponding decomposition of the dual space,
R∗d = G◦ ⊕ F ◦, where F ◦ is the space of linear forms vanishing on F , and
similarly for G◦. We leave it to the reader to check that the projection
P : L −→ F × F ◦ is an isomorphism.

Since L is tangent to L at z0, there is a neighbourhood Ω of z0 such that
P : L −→ F × F ◦ is a diffeomorphism. In other words, there is a smooth
map ϕ : (F ×F ◦)∩Ω −→ G×G◦ such that L∩Ω is the graph of ϕ. Writing
ϕ = (f, g) we have

L ∩ Ω = {(xF , f(xF , ξF ◦), g(xF , ξF ◦), ξF ◦), xF ∈ F, ξF ◦ ∈ F ◦} .

For L to be lagrangian we must have df ∧ dξF ◦ + dxF ∧ dg = 0, in other
words d(fdξF ◦ − gdxF ) = 0. This means there exists, in a neighbourhood
of z0, a function S(xF , ξF ◦) such that dS = fdξF ◦ − gdxF (equivalently,
f = ∂ξF◦S, g = −∂xFS). Consider the function

S(xF , xG, ξF ◦) = ξF ◦ .xG − S(xF , ξF ◦)

defined on an open subset of F ×G× F ◦ = Rd × F ◦. It is now straightfor-
ward to check this is a generating function of L ∩ Ω, and dimF ◦ = N as
announced. ¤

Example 4.8. Here is a fundamental example : in T ∗Rd = Rd × (Rd)∗
endowed with the canonical symplectic form

∑d
i=1 dqi ∧ dpi, a generating

function for T ∗xRd = {x} × (Rd)∗ is S(y, θ) =
∑d

i=1 θi(yi − xi) = 〈θ, y − x〉
(here N = d and θ varies in Rd).

Exercise 4.9. A crucial thing : (i) Show that a (connected) lagrangian
submanifold L is invariant under the hamiltonian flow of H if and only if
it is contained in some fixed energy layer {H = E}.

(ii) As a particular case, deduce that if H(x, dxS(x, θ)) = E for any
(x, θ), then the lagrangian manifold LS generated by S is invariant under
the hamiltonian flow.
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(iii) Assume now that S is a smooth function of (t, x, θ), and assume
that

∂S

∂t
+H(x, dxS) = 0

for all (t, x, θ). Denote St(x, θ) = S(t, x, θ). Show that the lagrangian man-
ifold LSt is the image of LS0 under gt. Hint : reduce the problem to the
previous one by considering the hamiltonian H(x, t, ξ, E) = H(x, ξ) + E on
T ∗(X × R).

4.2 Lagrangian distributions.

Let L be a lagrangian submanifold of T ∗X. For our applications we shall
only be interested in the case where L is relatively compact and where it
has a global generating function S : L = LS , S being defined on ΩX ×ΩRN .
In this case we define the notion of a lagrangian function associated to L as
follows :

Definition 4.10. We denote Om(X,LS) the space of functions of the form

u~(x) =
eiα(~)

(2π~)N/2

∫

ΩRN
ei
S(x,θ)
~ a~(x, θ)dθ

where
– α(~) is a real number depending on ~,
– the function a defined on ΩX ×ΩRN is smooth and has an asymptotic

development when ~ −→ 0,

a ∼
∞∑

j=0

~j+maj+m,

the asymptotic development holds in all Ck–norms on compact subsets,
– we assume that a is compactly supported with respect to the variable θ.

As usual, the class Om(X,LS) should actually be defined modulo negli-
gible functions, which, we recall, are smooth functions u~ for which all the
Ck–norms on compact sets are O(~∞). Then, one can prove [GS94] that
the definition of Om(X,LS) does not depend on the choice of the generating
function S :

Theorem 4.11. If LS = LS′ then Om(X,LS) = Om(X,LS′).

Example 4.12. On X = Rd, the Dirac mass at x

δx(y) =
1

(2π~)d

∫

Rd
e
〈ξ,y−x〉
~ dξ
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can be seen as a lagrangian distribution associated with the lagrangian sub-
manifold T ∗xRd ( S(y, ξ) = 〈ξ, y−x〉), but note that the symbol a(y, ξ) ≡ 1 is
not compactly supported. Let χ(y, ξ) be a smooth, positive, compactly sup-
ported function, call Ω a bounded open set containing the support of χ. Then
the function

δχx (y) =
1

(2π~)d

∫
e
〈ξ,y−x〉
~ χ(y, ξ)dξ

falls into the class O−d/2(Rd, T ∗xRd∩Ω). Assume χ takes the constant value
1 in a neighbourhood of a certain compact subset E ⊂ T ∗Rd. Then δχx is
often called a “delta–function truncated away from E” : it is a Dirac mass
whose frequencies near E have not been touched, while the frequencies out of
Ω have been removed.

4.3 WKB description of the operator U t = exp(it~42 ).

Remark 4.13. The initials WKB stand for Wentzel, Kramers and Bril-
louin, who independently proposed this method to find approximate solutions
of a 1-d stationary Schrödinger equation — in other words, to find approx-
imate eigenfunctions [Wtz26, Kr26, Brill26]. The method was later gen-
eralized by Keller and Maslov to higher dimension, but it only works for
completely integrable systems [Kell58, Masl65].

Here we present the WKB method applied to the evolutive Schrödinger
equation. It was first used by Van Vleck [VV28].

Consider an initial state u(0) of the form u(0, x) = a~(0, x) e
i
~S(0,x),

where S(0, •), a~(0, •) are smooth functions defined on a subset of Ω ⊂ X, a~
has a fixed compact support in Ω and has an asymptotic development a~ ∼∑

k ~k ak, valid in all Cn–norms. This represents a WKB (or Lagrangian)
state, supported on the Lagrangian manifold L(0) = {(x, dxS(0, x)), x ∈ Ω}.

The WKB method consists in looking for an approximate expression1

for the state ũ(t) def= U tu(0), in the form

u(t, x) = e
iS(t,x)
~ a~(t, x) = e

iS(t,x)
~

N−1∑

k=0

~kak(t, x) (4.3)

where N is a fixed, arbitrarily large integer. We want u(t) to solve ∂u
∂t =

i~4xu2 up to a remainder of order ~N . Computing explicitly both sides of
the equation, and identifying the successive powers of ~, we see that the

1often called an Ansatz
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functions S and ak must satisfy the following partial differential equations:




∂S
∂t +H(x, dxS) = 0 (Hamilton-Jacobi equation)

∂a0
∂t = −〈dxa0, dxS(t, x)〉 − a0

4xS(t,x)
2 (0-th transport equation) ,

∂ak
∂t = i4ak−1

2 − 〈dak, dS〉 − ak
4S
2 (k-th transport equation) .

(4.4)
Assume that, on a certain time interval — say s ∈ [0, 1] — the above
equations have a well defined smooth solution S(s, x), meaning that the
transported Lagrangian manifold L(s) = φsHL(0) is of the form L(s) =
{(x, dxS(s, x))}, where S(s) is a smooth function on the open set πL(s).
Under these conditions, we denote as follows the induced flow on X:

Gts : x ∈ πL(s) 7→ πgt−s
(
x, dxS(s, x)

) ∈ πL(t) , (4.5)

In the first chapter we introduced the exponential map associated to Ls :
we have Gts = expt−sLs

◦π−1. Note that Gss = I and that the following com-
position rule holds : Gt2t1 ◦Gt1t0 = Gt2t0 .

We then introduce the following (unitary) operator T ts , which transports
functions on πL(s) into functions on πL(t):

T ts(a)(x) = a ◦Gst (x) Jst (x)1/2 . (4.6)

Here Jst (x) is the Jacobian of the map Gst at the point x (measured with
respect to the Riemannian volume on X). It is given by

J ts(x) = exp
{∫ t

s
4S(

τ,Gτs(x)
)
dτ

}
. (4.7)

We leave it as an exercise to check this formula, and to deduce that the 0-th
transport equation in (4.4) is explicitly solved by

a0(t) = T t0 a0 , t ∈ [0, 1] . (4.8)

The higher-order terms k ≥ 1 are given by

ak(t) = T t0ak +
∫ t

0
T ts

(
i4 ak−1

2
(s)

)
ds . (4.9)

The function u(t, x) defined by (4.3) satisfies the approximate equation

∂u

∂t
= i~

4u
2
− i~N e

i
~S(t,x)4aN−1

2
(t, x) .
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From Duhamel’s principle and the unitarity of U t, the difference between
u(t) and the exact solution ũ(t) is bounded, for t ∈ [0, 1], by

‖u(t)− ũ(t)‖L2 ≤ ~N

2

∫ t

0
‖4aN−1(s)‖L2 ds ≤ C t ~N

(N−1∑

k=0

‖ak(0)‖C2(N−k)
)
.

(4.10)
The constant C is controlled by the volumes of the sets πL(s) (0 ≤ s ≤ t ≤
1), and by a certain number of derivatives of the flow Gst (0 ≤ s ≤ t ≤ 1).

Remark 4.14. Elaborating on these methods, one proves the following :
if u is a lagrangian state in Om(X,L), then U tu is a lagrangian state in
Om(X, gtL). We have proved it in the particular case when gtL is a graph
over X for all t. The operator U t is called a Fourier Integral Operator
associated with the transformation gt.

This is the property Schrödinger had looked for when introducing his
equation. We have, in addition, found the explicit formula for all the ak(t).
For k = 0, equation (4.8) is called the Van Vleck formula.

Exercise 4.15. Check the equations (4.4), and note they also hold in the
presence of a potential V .

4.4 Proof of the main estimate.

4.4.1 Decomposition of Op(χ)u into truncated delta–functions.

We prove Theorem 3.7 about the norm of the operator

P̂αn(n)P̂αn−1(n− 1)...P̂α0 Op(χ) = U−nP̂αnUP̂αn−1 ...UP̂α0 Op(χ)

(where we denote U t = exp(ith42 ) and U = U1). Since U t is unitary, the
norm of this operator is also the same as the norm of P̂αnUP̂αn−1 ...UP̂α0 Op(χ).

The pseudo-differential operator Op(χ) is defined in §1.4.3 :

Op(χ) =
∑

l

ϕl OP(χ) ϕl

where (ϕl) is an auxiliary partition of unity on X (
∑

l ϕl(x)
2 ≡ 1) such

that the support of each ϕl is endowed with local coordinates in Rd. In
local coordinates in the support of ϕl, OP(χ) is then defined by the usual
formula,

OP(χ)u(x) = (2π~)−d
∫
u(z)ei

〈ξ,x−z〉
~ χ(z, ξ)dzdξ. (4.11)

The function χ will be chosen of the form χ(z, ξ) = χ1(|ξ|z) where χ1 is
a smooth function on R+ supported in [1 − ε/2, 1 + ε/2] with χ1 ≡ 1 in a
neighbourhood of 1. For x ∈ Ωα0 , we can write

Op(χ)u(x) =
∑

l

∫
u(z)δlz(x)dz, (4.12)
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where we denote δlz the truncated δ-function

δlz(x) = ϕl(x)ϕl(z)
∫
e
i〈ξ,x−z〉

~ χ(z, ξ)
dξ

(2π~)d
. (4.13)

Each δlz is a lagrangian state associated with the lagrangian manifold T ∗zX∩
H−1

(
(1
2 − ε, 1

2 + ε)
)
. Equation (4.12) means that every state in the image

of Op(χ) can be decomposed as an integral combination of the lagrangian
states δlz. If we can estimate the norm of P̂αnUP̂αn−1 ...UP̂α0δ

l
z for any z,

we can use (4.12) to estimate the norm of P̂αnUP̂αn−1 ...UP̂α0 Op(χ)u for
arbitrary u, by writing

‖P̂αnUP̂αn−1 ...UP̂α0 Op(χ)u‖ ≤
∑

l

sup
z
‖P̂αnUP̂αn−1 ...UP̂α0δ

l
z‖

∫

X
|u(y)|dy

≤
∑

l

sup
z
‖P̂αnUP̂αn−1 ...UP̂α0δ

l
z‖
√

VolX‖u‖L2(X)

The estimates will be done by induction on n: we will propose an Ansatz
– that is, an approximate expression – for P̂αnUP̂αn−1 ...UP̂α0δ

l
z, valid for

“large” n. In what follows we omit the l superscript and just consider δz.

4.4.2 The Ansatz for n = 1.

At n = 0 we know that P̂α0δz(x) is a lagrangian state associated with the
lagrangian manifold L0 = T ∗zX ∩ H−1

(
(1
2 − ε, 1

2 + ε)
)
, a union of spheres

H−1(1
2 + η) ∩ T ∗zX.

From Remark 4.14, we know that U tP̂α0δz is a lagrangian state associ-
ated to

L0(t) = gt
(
T ∗zX ∩H−1

(
(
1
2
− ε,

1
2

+ ε)
))

.

If we assume that the injectivity radius ofX is greater than 1+100ε, then this
is a graph over X for 0 < t < 1 + ε. This is just saying that the exponential
map exptz is a diffeormorphism from T ∗zX ∩ H−1

(
(1
2 − ε, 1

2 + ε)
)

onto its
image, for 0 < t < 1 + ε.

This means we have an Ansatz

U tP̂α0δz ∼ (2π~)−d/2e
iS0(t,x|z)

h
( ∞∑

k=0

~kb0k(t, x|z)
)
. (4.14)

The function S0(t, x) is a generating function of the lagrangian manifold
L0(t).

Taking t = 1, we denote

v0(1;x|z) = e
iS0(t,x|z)

~ b0~(1, x|z), (4.15)

b0~(1, x|z) def=
( ∑N−1

k=0 ~kb0k(1, x|z)
)

(4.16)

It gives us an approximation to UP̂α0δz, the difference being bounded in
L2–norm by O(~N−

d
2 ).
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4.4.3 Iteration of the WKB Ansätze

In this section we will obtain an approximate Ansatz for P̂αn . . . UP̂α1UP̂α0δz.
Above we have already performed the first step, obtaining an approximation
v0(1|z) of UP̂α0δz. Until Lemma 4.16 we will fix the base point z, and omit
it in our notations when no confusion may arise; at the end we will obtain
an estimate which is uniform in z.

Applying the multiplication operator P̂α1 to the state v0(1) := v0(1|z),
we obtain another WKB state which we denote as follows:

v1(0, x) = b1~(0, x) e
i
~S

1(0,x) , with

{
S1(0, x) := S0(1, x|z) ,
b1~(0, x) := P̂α1(x) b

0
~(1, x|z) .

This state is associated with the lagrangian manifold

L1(0) = L0(1) ∩ T ∗Ωα1 .

If this intersection is empty, then v1(0) = 0, which means that P̂α1U v(0|z) =
O(~N ) in L2 norm. In the opposite case, we can evolve v1(0) following the
procedure described in §4.3. For t ∈ [0, 1], and up to an error OL2(~N ), the
evolved state U tv1(0) is given by the WKB Ansatz

v1(t, x) = b1~(t, x) e
i
~S

1(t,x) , b1~(t) =
N−1∑

k=0

b1k(t) .

The state v1(t) is associated with the Lagrangian L1(t) = gt L1(0), and the
function b1~(t) is supported inside πL1(t).

Evolved Lagrangians

We can iterate this procedure, obtaining a sequence of approximations

vj(t) = U t P̂αjv
j−1(1)+O(~N ) , where vj(t, x) = vj(t, x|z) = bj~(t, x|z) e

i
~S

j(t,x|z) .
(4.17)

(Again, z is fixed for the moment, and we will not always indicate in the
notations the z-dependence). To show that this procedure is consistent, we
must check that the Lagrangian manifold Lj(t) supporting vj(t) does not
develop caustics through the evolution (t ∈ [0, 1]), and that the projection
π : Lj(t) → X remains injective. These were the conditions required to
apply the WKB method.

We now show that these properties hold, due to the assumptions on the
classical flow.

The manifolds Lj(t) are obtained by the following procedure. Knowing
Lj−1(1), which is generated by the phase function Sj−1(1), we take for Lj(0)
the intersection

Lj(0) = Lj−1(1) ∩ T ∗Ωαj .
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If this set is empty, we then stop the construction. Otherwise, this La-
grangian is evolved into Lj(t) = gtLj(0) for t ∈ [0, 1]. Notice that the
Lagrangian Lj(t) corresponds to evolution at time j + t of a piece of L0(0):
it is made up of the image under the geodesic flow of a compact piece of the
fiber T ∗zX. If the geodesic flow is Anosov, the geodesic flow has no conju-
gate points — by a result of Klingenberg [Kl74]. This means precisely that
gtL0(0) will not develop caustics.

Because the injectivity radius is ≥ 1 + 100ε, any point x ∈ Ωαj can be
connected to another point x′ ∈ X by at most one geodesic of length ≤ 1+ε.
This ensures that, for any j ≥ 1, 0 ≤ t ≤ 1, the manifold Lj(t) projects
injectively to πLj .

Finally, we recall that L0(0) was obtained by propagating a piece of
T ∗zX ∩ H−1(1

2 − ε, 1
2 + ε). Since the geodesic flow on each energy layer

H−1(1/2+η) is Anosov, the sphere bundle H−1(1/2+η)∩T ∗zX is uniformly
transverse to the strong stable foliation in H−1(1/2 + η) — also a result of
[Kl74].

As a result, under the geodesic flow a piece of sphere H−1(1/2+η)∩T ∗zX
becomes exponentially close to an unstable leaf of H−1(1/2 + η) when t→
+∞. This transversality of spheres with the stable foliation is crucial in our
choice of the “basis” δz.

Exponential decay.

We now analyze the behaviour of the symbols bj~(t, x) appearing in (4.17),
when j →∞. These symbols are constructed iteratively: starting from the
function bj−1

~ (1) =
∑N−1

k=0 b
j−1
k (1) supported inside πLj−1(0), we define

bj~(0, x) = P̂αj (x) b
j−1
~ (1, x) , x ∈ πLj(0) . (4.18)

The WKB procedure of §4.3 shows that for any t ∈ [0, 1],

U t vj(0) = vj(t) +RjN (t) , (4.19)

where the transported symbol bj−1
~ (t) =

∑N−1
k=0 ~k b

j−1
k (t) is supported inside

πLj(t). The remainder satisfies

‖RjN (t)‖ ≤ C t ~N
(N−1∑

k=0

‖bjk(0)‖C2(N−k)
)
. (4.20)

To control this remainder when j → ∞, we need to bound from above the
derivatives of bj~. Lemma 4.16 below shows that all terms bjk(t) and their
derivatives decay exponentially when j →∞, due to the Jacobian appearing
in (4.6).
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To understand the reasons of the decay, we first look at the principal
symbol bj0(1, x). It satisfies the following recurrence:

bj0(1, x) = T j+1
j (P̂αj × bj−1

0 (1))(x) = (P̂αj × bj−1
0 (1)) ◦Gjj+1(x)

√
J jj+1(x) ;

(4.21)
using similar notations as above, the transport map Gs,t is defined, for
j ≤ s, t ≤ j + 1, by Gs,t := expt−s

Lj(s−j) ◦π−1, and maps πLj(s − j) to

π Lj (t− j). We denote J ts the jacobian ofGts. We recall thatGnn−1G
n−1
n−2 . . . G

2
1 =

Gn1 , where both sides are defined.
Iterating this expression, and using the fact that 0 ≤ P̂αj ≤ 1, we get at

time n and for any x ∈ πLn(0):

|bn0 (0, x)| ≤ |b00(1, G1
n(x))| ×

(
Jn−1
n (x)Jn−2

n−1 (Gn−1
n x) . . . J1

2 (G2
3(x)))

1/2 .

(4.22)
By the chain rule, this product of jacobians is simply J1

n(x)
1/2 = Jn1 (G1

n(x))
−1/2.

Recall that L0(0) intersected with each energy layer S1+ηX := {ξ ∈
T ∗X, ‖ξ‖ = 1 + η} is just a piece of the sphere S1+η

z X. Thus, if d(x, z) =
1 + η, the jacobian Jn1 (G1

n(x)) measures the expansion rate of the sphere
gn(S1+η

z X) : in dimension d and curvature ≡ −1, it grows asymptotically
like e(d−1)(1+η)n when n → ∞. If x ∈ πL1(0) (and if this last set is non-
empty) we have d(x, z) ≤ 1+ε (because L0(0) is contained in H−1(1

2−ε, 1
2 +

ε)). We obtain the following estimate on the principal symbol bn0 (0):

∀n ≥ 1 ‖bn0 (0)‖∞ ≤ ‖b00(1)‖∞ [exp(−n(d− 1− ε))]1/2 (4.23)

The following lemma, which we shall not prove here, shows that the
upper bound extends to the full symbol bn~(0, x) and its derivatives.

Lemma 4.16. Take any index 0 ≤ k ≤ N and m ≤ 2(N − k). Then there
exists a constant C(k,m) such that

∀n ≥ 1, ∀x ∈ πLn(0), |dmbnk(0, x|z)| ≤ C(k,m)nm+3k [exp(−n(d−1−ε))]1/2 .
(4.24)

This bound is uniform with respect to the initial point z. For (k,m) 6= (0, 0),
the constant C(k,m) depends on the partition P(0), while C(0, 0) does not.

Taking into account the fact that the remainders RjN (1) are dominated
by the derivatives of the bjk (see (4.20)), the above statement translates into

∀j ≥ 1, ‖RjN (1)‖L2 ≤ C(N) j3N [exp(−n(d− 1− ε))]1/2 ~N .

A crucial fact for us is that the above bound also holds for the propagated
remainder P̂αnU · · ·UP̂αj+1R

j
N (1), due to the fact that the operators P̂αjU

have norms less than 1. As a result, the total error at time n is bounded
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from above by the sum of the errors ‖RjN (1)‖. We obtain the following
estimate for any n > 0:

‖P̂αnUP̂αn−1 · · · P̂α1 v
0(1|z)−vn(0|z)‖ ≤ C(N) ~N

n∑

j=0

j3N [exp(−n(d−1−ε))]1/2.

(4.25)
The last term is bounded by C(N)~N . This bound is uniform with respect
to the initial point z.

4.4.4 Conclusion.

From (4.25), to estimate the norm of the vector P̂αnUP̂αn−1 · · · P̂α1 v
0(1|z)

up to O(~N ), we can use our Ansatz vn(0|z). From (4.24) and the definition
(4.17) of vn(0|z), we see that

‖vn(0|z)‖L2(X) ≤ [exp(−n(d− 1− ε))]1/2
N−1∑

k=0

C(k, 0)~kn3k. (4.26)

As required in Theorem 3.7, let us now take an arbitrary large K, and
n = K| log ~|. In the inequalities (4.23) and (4.26), the right hand term is
bounded below by a fixed power of ~ (more precisely, ~−

1
2
K(d−1−ε)). Thus,

we will choose N , the order of our WKB expansion, so that the remainder
(4.25) is negligible compared to ~−

1
2
K(d−1−ε).

Now, remember the relation (4.14) between v0(1|z) and UP̂α0δz : note
in particular the normalization factor (2π~)−d/2. The combination of (4.25)
and (4.26) gives us

‖P̂αnUP̂αn−1 · · · P̂α1U P̂α0δz‖L2(X) ≤
2

(2π~)d/2
[exp(−n(d−1−ε))]1/2 (4.27)

for n = K| log ~| and ~ ≤ ~K.
Combined with (4.12) and the subsequent discussion, we find

‖P̂αnUP̂αn−1 ...UP̂α0 Op(χ)u‖ ≤ 2l
√

VolX
(2π~)d/2

‖u‖L2(X)[exp(−n(d− 1− ε))]1/2

which is the announced result.
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eratoren, Math. Ann. 104, 570–578 (1931).
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