
SPECTRAL DEVIATIONS FOR THE DAMPED WAVE EQUATION

NALINI ANANTHARAMAN

Abstract. We prove a Weyl-type fractal upper bound for the spectrum of the damped
wave equation, on a negatively curved compact manifold. It is known that most of the
eigenvalues have an imaginary part close to the average of the damping function. We
count the number of eigenvalues in a given horizontal strip deviating from this typical
behaviour; the exponent that appears naturally is the “entropy” that gives the deviation
rate from the Birkhoff ergodic theorem for the geodesic flow. A Weyl-type lower bound
is still far from reach; but in the particular case of arithmetic surfaces, and for a strong
enough damping, we can use the trace formula to prove a result going in this direction.

1. Results and questions about the spectrum of the damped wave
equation

Let (M, g) be a smooth compact Riemannian manifold without boundary. Let a be a
C∞ real valued function on M . We study the “damped1 wave equation”,

(1.1)
(
∂2
t −4+ 2a(x)∂t

)
v = 0

for t ∈ R and x ∈M . We shall be interested in the stationary solutions, that is, solutions
of the form v(t, x) = eitτu(x) for some τ ∈ C. This means that u must satisfy

(1.2) (−4−τ 2 + 2iaτ)u = 0.

Equivalently, τ is an eigenvalue of the operator(
0 I
−4 2ia

)
acting on H1(M)×L2(M). For a = 0 this operator is the (anti-seladjoint) wave operator;
but for a 6= 0 the operator is not normal anymore. It is known that its spectrum is discrete
and consists of a sequence (τn) with =m(τn) bounded and |<e(τn)| −→ +∞ (see Section
2). One sees easily that =m(τn) ∈ [2 min(inf a, 0), 2 max(sup a, 0)] if <e(τn) = 0, and
=m(τn) ∈ [inf a, sup a] if <e(τn) 6= 0 [29]. One can also note, obviously, that −τ̄n is an
eigenvalue if τn is : the spectrum is symmetric with respect to the imaginary axis.

1The term “damped” applies to the case when a ≥ 0, that is to say, when the energy is decreasing. In
this paper the sign of a will be of no importance.
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2 N. ANANTHARAMAN

1.1. Background. Motivated by questions from control theory, Lebeau [17] was interested
in the so-called “stabilization problem” : define

ρ = sup
{
β, ∃C, E(ut) ≤ Ce−βtE(u0) for every solution u of (1.1)

}
where the energy functional is E(u) =

∫
M
|∇u|2. The stabilization problem consists in

finding some damping function a (necessarily nonnegative) such that ρ > 0. Lebeau
identified

ρ = 2 min {D(0), C(∞)}
where D(0) is a sort of “spectral gap” :

D(0) = inf {=m(τn), τn 6= 0}
and C(∞) is defined in terms of the Birkhoff averages of a along the geodesic flow

Gt : T ∗M −→ T ∗M,

C(∞) = lim
t−→+∞

inf
ρ∈T ∗M

1

t

∫ t

0

a(Gsρ)ds.

Lebeau also showed, on an example, that it is possible to have a spectral gap (D(0) > 0)
but no exponential damping (ρ = 0) : this surprising phenomenon is typical of non normal
operators.

Markus and Matsaev [19] proved an analogue of Weyl’s law, also found independently
later on by Sjöstrand [29] :

(1.3) ] {n, 0 ≤ <e(τn) ≤ λ} =

(
λ

2π

)d(∫
p−1]0,1[

dxdξ +O(λ−1)

)
where d is the dimension of M , p is the principal symbol of −4, namely the function
p(x, ξ) = gx(ξ, ξ) defined on the cotangent bundle T ∗M , and dxdξ is the Liouville measure
on T ∗M (coming from its canonical symplectic structure).

It is a natural question to ask about the distribution of the imaginary parts =m(τn)
in the interval [inf a, sup a]. For non normal operators, obtaining fine information on the
distribution of the spectrum is much harder than for normal operators – one of the reason
being the absence of continuous (or even smooth) functional calculus. Another related
difficulty is that there is no general relation between the norm of the resolvent and the
distance to the spectrum. Some techniques have being developed to obtain upper bounds
on the density of eigenvalues, but lower bounds are notoriously more difficult.

Assuming that the geodesic flow is ergodic with respect to the Liouville measure on
an energy layer, Sjöstrand proved that most of the τn have asymptotically an imagi-
nary part =m(τn) ∼ ā, where ā denotes the average of a on the energy layer S∗M =
{(x, ξ) ∈ T ∗M, gx(ξ, ξ) = 1} with respect to the Liouville measure :

Theorem 1.1. [29] Assume that the geodesic flow is ergodic with respect to the Liouville
measure on S∗M . For every C > 0, for every ε > 0, we have

] {n, λ ≤ <e(τn) ≤ λ+ C,=m(τn) 6∈ [ā− ε, ā+ ε]} = o(λd−1)

as λ goes to infinity.
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Remark 1.2. If C is not too small, one sees from (1.3) that there exists C̃ > 0 such that

] {n, λ ≤ <e(τn) ≤ λ+ C} ≥ C̃λd−1

for large λ. Thus, the theorem does say that a majority of the τn have =m(τn) ∈ [ā−ε, ā+ε].

Remark 1.3. More generally, without the ergodicity assumption, [29] proves the following
results. Introduce the functions on T ∗M ,

〈a〉T =
1

T

∫ T/2

−T/2
a ◦Gsds,

〈a〉∞ = lim
T−→+∞

〈a〉T ,

and the real numbers
a+ = lim

T−→+∞
sup
S∗M
〈a〉T ,

a− = lim
T−→+∞

inf
S∗M
〈a〉T .

The function 〈a〉∞ is well defined Liouville–almost–everywhere, by the Birkhoff theorem.
Lebeau [17] proves that for any ε > 0, there are at most finitely many n with τn 6∈

[a− − ε, a+ + ε], and Sjöstrand [29] proves that

] {n, λ ≤ <e(τn) ≤ λ+ C,=m(τn) 6∈ [ess inf〈a〉∞ − ε, ess sup〈a〉∞ + ε]} = o(λd−1).

1.2. Semiclassical formulation. As in [29] we reformulate the problem using semiclas-
sical notations. In doing so, we also generalize a little the problem. We introduce a
semiclassical parameter 0 < ~ � 1 and will be interested in the eigenvalues τ such that
~τ −→

~−→0
1. If we put τ = λ

~ with λ close to 1, then equation (1.2) can be rewritten as

(1.4)
(
−~24

2
− λ2

2
+ i~λa

)
u = 0,

or

(1.5) (P − z)u = 0

if we put z = λ2

2
, and

(1.6) P = P(z) = P + i~Q(z), P = −~24
2
, Q(z) = a

√
z.

The parameter z is close to E = 1
2
.

More generally, we will consider a spectral problem of the form (1.5) where

P = P(z) = P + i~Q(z), P = −~24
2
,

z ∈ Ω = ei]−s0,s0[]Emin, Emax[, with 0 < Emin <
1
2
< Emax < +∞, 0 < s0 <

π
4
. We will

assume that Q(z) ∈ ΨDO1 is a pseudodifferential operator that depends holomorphically
on z ∈ Ω, and that Q is formally self-adjoint for z real (the definition of our operator
classes is given in Section 9).
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We denote
Σ = Σ~ = {z ∈ Ω, ∃u, (P(z)− z)u = 0} .

The operator P has principal symbol po(x, ξ) = gx(ξ,ξ)
2

, and Q(z) has principal symbol
qz(x, ξ), taking real values for z real. In these notations, the previous results read as
follows : for any Emin < E1 ≤ E2 < Emax,

(1.7) ] {z ∈ Σ, E1 ≤ <e(z) ≤ E2} =
1

(2π~)d

[∫
p−1
o [E1,E2]

dxdξ +O(~)

]
(uniformly for all c > 0 and for all E1, E2 such that |E2 − E1| ≥ 2c~, E1 and E2 staying
away from Emin, Emax). One can show that =m(z)

~ (for z ∈ Σ) has to stay bounded if E1, E2

stay in a bounded interval. Fix some c > 0, and take E1 = E − c~ and E2 = E + c~. Let
us denote

q−E = lim
T−→+∞

inf
p−1
o {E}

〈qE〉T ,

q+
E = lim

T−→+∞
sup

p−1
o {E}

〈qE〉T ,

then we have, in the limit ~ −→ 0 [29],

(1.8) q−E + o(1) ≤ =m(z)

~
≤ q+

E + o(1)

for all z ∈ Σ such that E − c~ ≤ <e(z) ≤ E + c~. Finally, denote q̄E the average of qE on
the energy layer p−1

o {E}. Assuming that the geodesic flow is ergodic on p−1
o {E}, then for

any ε > 0, any c > 0,

(1.9) ]

{
z ∈ Σ, E − c~ ≤ <e(z) ≤ E + c~,

=m(z)

~
6∈ [q̄E − ε, q̄E + ε]

}
= o(~1−d).

The method of [29] allows to treat the case of a more general P (and thus a more general
Hamiltonian flow than the geodesic flow), and also to deal with the case when the flow is
not ergodic. However, in this paper we will stick to the case of an ergodic geodesic flow;
we will add even stronger assumptions in the next paragraph.

1.3. Questions, and a few results. We try to give (partial) answers to the three natural
questions :
(Q1) (Fractal Weyl law) Let I be an interval that does not contain q̄E. Can we

describe in a finer way the asymptotic behaviour for

]

{
z, E − c~ ≤ <e(z) ≤ E + c~,

=m(z)

~
∈ I
}

?

For instance, can we find

lim
~−→0

log ]
{
z ∈ Σ, E − c~ ≤ <e(z) ≤ E + c~, =m(z)

~ ∈ I
}

log ~
?
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(Q2) (Inverse problem) Suppose we know everything about P and about the dynamics
of the geodesic flow, but that Q is unknown. To what extent does the knowledge of the
eigenfrequencies {z ∈ Σ, E − c~ ≤ <e(z) ≤ E + c~} determine qE ?

Replacing P by B−1PB, where B is an elliptic pseudodifferential operator with positive
principal symbol b, amounts to replacing q by q − {po, log b}, where {., .} stands for the
Poisson bracket on T ∗M . Two smooth functions f and g on T ∗M are said to be cohomolo-
gous (with respect to the geodesic flow) if there exists a third smooth function h such that
f = g + {po, h}. This defines an equivalence relation, we write f ∼po g.

It is thus more natural to ask :
(Q2’) Does the knowledge of the eigenfrequencies {z ∈ Σ, E − c~ ≤ <e(z) ≤ E + c~}

determine the cohomology class of qE ?
If the length spectrum of M is simple, then one can most probably use a trace formula

and recover from the knowledge of Σ all the integrals of qE along closed geodesics. And this
is enough to determine the cohomology class of qE if M has negative sectional curvature :
the Livshitz theorem [18, 7] says that if two functions have the same integrals along all
closed geodesics, then they are cohomologous. Thus, the answer to (Q2) is probably “yes” if
M has negative sectional curvature and the length spectrum is simple (this last assumption
is satisfied generically, but unfortunately not for surfaces of constant negative curvature).

In fact, it also makes sense to ask whether some knowledge of the imaginary parts alone
{=m(z), z ∈ Σ, E − c~ ≤ <e(z) ≤ E + c~} allows to recover some information about qE.
For instance, one can ask the apparently simple question :
(Q3) (Very weak inverse problem) Let C denote a constant function. As follows from
(1.8), we have the implication

qE ∼po C on p−1
o {E} =⇒ =m(z)

~
−→

~−→0,z∈Σ,E−c~≤<e(z)+c~
C.

Does the converse hold ?

Main assumption on the manifold M : From now on, we assume that M has
constant sectional curvature −1. This implies the ergodicity of the geodesic flow on any
non-degenerate energy layer (with respect to the Liouville measure), and in fact a very
chaotic behaviour of trajectories (see Section 3). We will indicate how to generalize our
results in the case of surfaces of variable negative curvature; however, it is not clear what
to do in higher dimension and variable negative curvature.

In the following theorem, hKS stands for the Kolmogorov–Sinai entropy, or metric en-
tropy. It is an affine functional, taking nonnegative values, defined on M, the set of
G–invariant probability measures on T ∗M : see for instance [12] for the definition of
hKS. We will also denote ME ⊂ M the set of invariant probability measures carried by
p−1
o {E}. Since po is homogeneous it is enough to consider, for instance, the case E = 1

2
,

and p−1
o {E} = S∗M . For µ ∈ M 1

2
, we have hKS(µ) ≤ d − 1, with equality if and only if
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µ is the Liouville measure. We now fix E = 1
2
and we denote q = q 1

2
, q̄ = q̄ 1

2
, q+ = q+

1
2

,
q− = q−1

2

.
We fix some c > 0 and denote

Σ 1
2

=

{
z ∈ Σ,

1

2
− c~ ≤ <e(z) ≤ 1

2
+ c~

}
.

Theorem 1.4. Assume M has constant sectional curvature −1. Define

H(α) = sup

{
hKS(µ), µ ∈M 1

2
,

∫
q dµ = α

}
.

If α ≥ q̄, then for any c > 0

lim sup
~−→0

log ]
{
z ∈ Σ 1

2
, =m(z)

~ ≥ α
}

|log ~|
≤ H(α).

If α ≤ q̄, then for any c > 0

lim sup
~−→0

log ]
{
z ∈ Σ 1

2
, =m(z)

~ ≤ α
}

|log ~|
≤ H(α).

Remark 1.5. (see [16], §4, or [4], §3 for the argument) The function H is concave and
is identically −∞ outside [q−, q+]. It is continuous and strictly concave in [q−, q+], and
real analytic in ]q−, q+[ (note that q− = q+ if and only if q is cohomologous to a constant
on S∗M). The function H reaches its maximum d − 1 at the point q̄, and has finite
(nonnegative) limits at the endpoints q−, q+. In particular H is positive in the open
interval ]q−, q+[.

Remark 1.6. The key fact in the proof of Theorem 1.4 is the large deviation estimate
proved by Kifer [13],

lim
T−→+∞

log L 1
2
{ρ ∈ S∗M, 〈q〉T (ρ) ∈ I}

T
= sup {H(α), α ∈ I} − d− 1

for any interval I ⊂ R – where L 1
2
is the Liouville measure on p−1

o

{
1
2

}
= S∗M . This result

gives the volume of the set of trajectories deviating from the Birkhoff ergodic theorem. See
Section 3.

On a surface of variable negative curvature, we can generalize the result to :

Theorem 1.7. Assume M is a surface of variable negative curvature. Denote ϕ the
infinitesimal unstable Jacobian (see Section 3). Define

H(α) = sup

{
hKS(µ)∫
ϕ dµ

, µ ∈M 1
2
,

∫
q dµ = α

}
.

Then the same conclusion as in Theorem 1.4 holds.
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Remark 1.8. For a manifold of variable negative curvature and dimension d we would
expect the same to hold with H(α) = (d− 1) sup

{
hKS(µ)R
ϕ dµ

, µ ∈M 1
2
,
∫
q dµ = α

}
. However,

our proof does not work in this case. We stress again the fact that the function H attains
its maximum d− 1 only for α = q̄.

One may wonder if the lim sup in Theorem 1.4 is also a lim inf. This question is rem-
iniscent of the fractal Weyl law conjecture asked by Zworski and Sjöstrand, but in our
situation we can say with certainty that it is not true. Worse, one cannot expect the lower
bound to hold for a “generic” q. In a paper in preparation, Emmanuel Schenck2 is proving
that there exists δ > 0 such that =m(z)

~ ≤ q+− δ for all z ∈ Σ 1
2
, provided a certain criterion

on q is satisfied. The criterion reads Pr(q − d−1
2

) < q+, where the pressure functional Pr
is defined on the space of continuous functions on S∗M and is the Legendre transform of
−hKS (see Section 3). The functional Pr is lipschitz with respect to the C0 norm, and the
condition Pr

(
q − d−1

2

)
< q+ defines a non–empty open set in the C0 topology. For such a

q we cannot have

lim inf
~−→0

log ]
{
z ∈ Σ 1

2
, =m(z)

~ > q+ − δ
}

|log ~|
≥ H(q+ − δ),

since H is positive in ]q−, q+[ but the lim inf on the left-hand side is −∞.
In Sections 7 and 8, we investigate Question 3 in some special cases. We work on compact

hyperbolic surfaces (d = 2), and we study operators of the form

4ωf = 4f − 2〈ω, df〉+ ‖ω‖2
xf,

called “twisted laplacians” – here ω is a harmonic real-valued 1-form on M . Studying the
large eigenvalues of 4ω amounts to studying a fixed spectral window for the semiclassical
twisted laplacian

−~24ω

2
= −~24

2
+ ~2〈ω, d.〉 − ~2‖ω‖2

x

2
, ~ −→ 0.

This question falls exactly into the setting of §1.2, with q(x, ξ) = 〈ωx, ξ〉. Since q(x,−ξ) =
−q(x, ξ), we have q̄ = 0. We will denote Pr(ω) = Pr(q) the pressure of the function q,
defined in Section 3.2. It will also be interesting to note that q+ = −q− coincides with
the stable norm ‖ω‖s defined in Section 7.2, that ‖ω‖s + 1 ≥ Pr(ω) ≥ ‖ω‖s and that
Pr(tω)− |t|‖ω‖s −→

t−→∞
0 in the case of surfaces.

Theorem 1.9. Assume M is a compact arithmetic surface coming from a quaternion
algebra. Take ω 6= 0. Fix β ∈ (0, 1], and 0 < ε < β. Then, for every ~ small enough, there
exists z ∈ Sp(−~24ω

2
) with |<e(z)− 1

2
| ≤ ~1−β, such that

=m(z)

~
≥ Pr(ω)− 3

4
− 1 + ε

2β
.

2Private communication.
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Equivalently, given β ∈ (0, 1], and 0 < ε < β, for all T large enough, there exists rn such
that |<e(rn)− T | ≤ T β and

|=m(rn)| ≥ Pr(ω)− 3

4
− 1 + ε

2β
,

where rn is the “spectral parameter” defined by λn = −(1
4

+ r2
n).

Of course, we deduce immediately the following corollary :

Corollary 1. ]{n, |<e(rn)| ≤ T, |=m(rn)| ≥ Pr(ω) − 3
4
− 1+ε

2β
} ≥ T 1−β, asymptotically as

T −→ +∞.

Since Pr(ω) −→ 1 as ω −→ 0 (but Pr(ω) −→ +∞ as ‖ω‖s −→ +∞) this result is only
interesting if ‖ω‖s is large enough (depending on β). Note also that if ‖ω‖s is large enough
we have Pr(ω) < ‖ω‖s + 1

2
, so that the work of Emmanuel Schenck mentioned above will

show that there is a strip {=m(z) ≥ ‖ω‖s − δ} (δ > 0) that contains no rn.
The arithmetic case is special, in that the lengths of closed geodesics are well separated :

we can write a trace formula, find a lower bound on the geometric part (despite of its
oscillatory nature) and deduce a lower bound on the imaginary parts of eigenvalues. The
ideas are inspired by Hejhal’s book [8].

Remark 1.10. Another way of defining the twisted laplacian is to write M = Γ\H, where
H is the universal cover of M and Γ is a discrete group of isometries of H; to fix an origin
o ∈ H, and to write

4ωf(x) = e
R x
o ω ◦ 4

(
e−

R x
o ωf(x)

)
;

this operator preserves Γ-periodic functions, hence descends toM . The case where ω takes
purely imaginary values is self-adjoint, and analogous to the study of “Bloch waves”. The
case where ω takes real values is no longer self-adjoint.

Remark 1.11. Our motivation for working with twisted laplacians on hyperbolic manifolds
was that it is a case where the trace formula is exact. There was, a priori, hope to prove
finer results than in cases where the trace formula is not exact (in the latter case the space
of test functions to which the formula can be applied is more limited). A posteriori, we
never use any wild test function that wouldn’t be allowed in the general case. So, one can
think that the same result holds for our general operator (1.6) – provided one proves a
semiclassical trace formula first.

If we don’t assume arithmeticity, we can only treat the following operator :

−~24θ(~)ω

2
= −~24

2
+ ~2θ(~)〈ω, d.〉 − ~2θ(~)2‖ω‖2

x

2
, ~ −→ 0,

where θ(~) ≥ | log ~| and ~θ(~) −→ 0. In other words the non-selfadjoint perturbation is
stronger than in the previous cases.
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Theorem 1.12. Assume M is a compact hyperbolic surface. Take ω 6= 0. Take any
function f(~)� θ(~)3/2 log log ~1/2. Then there is a sequence ~n −→ 0 such that

sup

{
=m(z)

~nθ(~n)
, z ∈ Sp

(
−~2

n

4θ(~n)ω

2

)
, |<ez − 1

2
| ≤ ~nf(~n)

}
−→

n−→+∞
‖ω‖s,

the stable norm of ω.

See Section 7.2 for the definition of the stable norm. Note that with our previous
notations, ‖ω‖s = q+ = −q−, and Pr(tω)− |t|‖ω‖s −→

t−→∞
0 on a hyperbolic surface.

1.4. Links with quantum unique ergodicity. Question 3 has a rather close link with
the question of quantum unique ergodicity on negatively curved manifolds. To explain
what we mean, let us go back to the setting of the damped wave equation (our discussion
could apply as well to the generalized setting of Section 1.2).

A first easy remark is that

=m(τ) =
〈u, au〉
〈u, u〉

for a solution of (1.2). The fact that =m(τn) has no limit as n −→ +∞ implies that
the sequence of probability measures |un(x)|2dVol(x) has no limit either (where the un
are normalized eigenfunctions of the damped wave operator, of eigenvalue τn). Quantum
unique ergodicity – meaning the existence of a unique limit – is expected to hold for
normal operators such as the laplacian, but not for non self-adjoint perturbations, such as
the damped wave operator.

Remark 1.13. An interesting case, for which I have no clue, is the case of eigenfunctions
of 4 + ia. This case is different from the ones we considered before, because the non
self-adjoint perturbation is of smaller order. It is difficult to know what to predict here
concerning quantum unique ergodicity.

Here is another remark : consider the 1-parameter family of damped wave equations,

(1.10) (−4−τ 2
n + 2isaτn)un = 0,

where s is close to 0. In other words, we see the damped wave equation as a perturbation
of the spectral problem (−4−τ 2

n)un = 0. Now, τn(s) and un(s) depend on s, and assuming
we are on an analytic branch, we can calculate τ ′n(0),

τ ′n(0) = i〈un(0), aun(0)〉,
where un(0) is the (L2 normalized) solution to (− 4 −τ 2

n)un = 0 in our analytic branch.
On a negatively curved manifold, the quantum unique ergodicity conjecture predicts that
〈un, aun〉 tends to ā as τn goes to infinity – and the Shnirelman theorem says that this is
the case for a subsequence of indices n of “density 1” [27]. In some sense, the Shnirelman
theorem may be seen as an infinitesimal version (meaning a −→ 0) of Theorem 1.1. If the
quantum unique ergodicity conjecture is true, it also says that the answer to Question 3 is
“no” at the infinitesimal level : Question 3 asks whether =m(τn) −→

n−→+∞
iā implies that a is
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constant, but quantum unique ergodicity says that we should have τ ′n(0) −→
n−→+∞

iā in any
case. This remark shows that a positive answer to Question 3 will be easier to prove for
a large than for a small – and we experienced this phenomenon in Theorems 1.9 and 1.12
(the role of a beging played by ω).

Acknowledgements : This work was partially supported by the grant ANR-05-JCJC-
0107-01. I am grateful to the Miller Institute for Basic Research in Science, University of
California Berkeley, for supporting my work in the spring 2009. I thank Dima Jakobson
for suggesting that some of the ideas contained in Hejhal’s book [8] could be used to find
lower bounds on the density of eigenvalues in arithmetic situations. In fact, at the same
time as this paper was written, Jakobson and Naud managed to apply these ideas to study
the resonances of certain arithmetic convex cocompact surfaces [10].

2. Note on the definition of the spectrum and its multiplicity.

By the term “spectrum”, we mean the set Σ of z ∈ Ω such that P(z)− z is not bijective
H2(M) −→ H0(M). If it is bijective, then the inverse must be continuous, by the closed
graph theorem.

If z is restricted to a compact subset of Ω, it is easy to see that G(z) = I+λ−1(P(z)−z)
is invertible for λ > 0 large enough. The inverse G(z)−1 is then a compact operator
on H0(M). Besides, one sees that P(z) − z is not bijective H2(M) −→ H0(M) if and
only if 1 is in the spectrum of G(z)−1, if and only if there exists u ∈ H2(M) such that
(P(z)−z)u = 0. This shows, in particular, that the “spectrum” is discrete and corresponds
to the existence of “eigenfunctions”.

To define the multiplicity of z0 ∈ Σ, we proceed the same way as in [29]. By the
density of finite rank operators in the space of compact operators [24], one shows that in a
neighbourhood of z0 there exists a finite rank operator K(z), depending holomorphically
on z, such that P(z0) − z0 + K(z0) is invertible. The multiplicity of z0 is then defined as
the order of z0 as a zero of the holomorphic function

z 7→ det[(P(z)− z +K(z))−1(P(z)− z)] = det[I − (P(z)− z +K(z))−1K(z)].

It is shown in [29] that this definition does not depend on the choice of K(z) – provided it
is trace class – and coincides with other usual definitions of the multiplicity.

3. A few facts on the geodesic flow on a negatively curved manifold

3.1. Anosov property. If M has negative sectional curvature, then the geodesic flow
on S∗M has the Anosov property [3]. This means there are C, λ > 0 such that for each
ρ ∈ S∗M , the tangent space Tρ(S∗M) splits into

Tρ(S
∗M) = Eu(ρ)⊕ Es(ρ)⊕ RX(ρ)

where
– the vector field X generates the geodesic flow Gt;
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– Es is the stable subspace : for all v ∈ Es(ρ), and for t ≥ 0, ‖DGt
ρ.v‖ ≤ Ce−λt‖v‖;

– Eu is the unstable subspace : for all v ∈ Eu(ρ), and for t ≤ 0, ‖DGt
ρ.v‖ ≤ Ceλt‖v‖.

If M has constant negative curvature −1, any λ < 1 will do. We take λ = 1− ε, with ε
arbitrarily small. One also has an upper bound ‖DGt

ρ.v‖ ≤ Ce(1+ε)|t|‖v‖ for any ε > 0 and
any t ∈ R.

3.2. Pressure, entropy, and large deviation. The pressure is defined on C0(S∗M), as
the Legendre transform of the entropy :

Pr(f) = sup

{
hKS(µ) +

∫
f dµ, µ ∈M 1

2

}
.

If f is Hölder, then the supremum is attained for a unique µ, called the equilibrium measure
of f . The functional Pr is analytic on any Banach space of sufficiently regular functions
– for instance, a space of Hölder functions [5, 26]. Besides, the restriction of Pr to any
line {f + tg, t ∈ R} is strictly convex, unless g is cohomologous to a constant [23]. If g
is sufficiently smooth, we recall that this means that g = {po, h} + c for some smooth
function h and a constant c. If g if Hölder, it is better to use the integral version of the
notion. If γ(t) is a periodic trajectory of the geodesic flow on S∗M (equivalently, a closed
geodesic), we denote `γ its period (equivalently, the length of the closed geodesic). We
denote dγ the measure

∫
g dγ =

∫ `γ
0
g(γ(t))dt on S∗M , and dµγ the probability measure∫

g dµγ = `−1
γ

∫
g dγ. One says that g is cohomologous to the constant function c if∫

g dγ = c `γ for all periodic trajectories of the geodesic flow (the Livschitz theorem says
that both notions are equivalent for smooth functions).

Let us now fix a smooth function q on S∗M , not cohomologous to a constant. For α ∈ R,
define

H(α) = sup

{
hKS(µ), µ ∈M 1

2
,

∫
q dµ = α

}
,

P (β) = Pr(βq) = sup

{
hKS(µ) + β

∫
q dµ, µ ∈M 1

2

}
= sup

α
αβ +H(α).

The function H is concave, continuous on the interval [q−, q+] defined earlier :

q− = lim
T−→+∞

inf
p−1
o { 1

2}
〈q〉T ,

q+ = lim
T−→+∞

sup
p−1
o { 1

2}
〈q〉T .

In the case of a negatively curved manifold, this definition coincides with

q− = inf

{∫
q dµ, µ ∈M 1

2

}
,

q+ = sup

{∫
q dµ, µ ∈M 1

2

}
.

The function H is real analytic and strictly concave in ]q−, q+[. The function P is real
analytic, strictly convex on R. Clearly, P (β) ≥ βq+ for β ≥ 0, and it is not very difficult to
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show that the limit limβ−→+∞ P (β)−βq+ exists and is nonnegative3. Similarly, P (β) ≥ βq−
for β ≤ 0, the limit limβ−→−∞ P (β)− βq− exists and is nonnegative.

The pressure and the entropy appear naturally when studying large deviations for the
Birkhoff averages of the function q. Denote Jt(ρ) the Jacobian of DGt going from Eu(ρ)
from Eu(Gtρ). Define ϕ (the infinitesimal unstable Jacobian) by

ϕ(ρ) =
dJt
dt |t=0

(ρ).

On a manifold of dimension d and constant negative curvature −1, the function ϕ is
constant, equal to d − 1. In general one can only say that it is a Hölder function. The
function ϕ is not necessarily positive, but it is cohomologous to a positive function, for
instance 〈ϕ〉T for T large enough. In what follows, we will assume without loss of generality
that ϕ > 0.

The two following large deviation results are due to Kifer [13].

Theorem 3.1. [13], Prop 3.2. Let M be a compact manifold of negative sectional cur-
vature. Let q be a smooth function on S∗M . For T > 0, define the function 〈q〉T =
1
T

∫ T/2
−T/2 q ◦G

sds on S∗M . Denote L 1
2
the Liouville measure on S∗M .

Then

lim
T−→+∞

log
∫
S∗M

eT 〈q〉T (ρ)dL 1
2
(ρ)

T
= Pr(q − ϕ).

As a consequence, one also has :

Theorem 3.2. [13], Thm 3.4 (i) Let M be a compact manifold of negative sectional cur-
vature. Let q be a smooth function on S∗M . For T > 0, define the function 〈q〉T =
1
T

∫ T/2
−T/2 q ◦G

sds on S∗M . Denote L 1
2
the Liouville measure on S∗M .

Then, for any closed interval I ⊂ R, we have

lim sup
T−→+∞

log L 1
2
{ρ ∈ S∗M, 〈q〉T (ρ) ∈ I}

T
≤ sup

{
hKS(µ)−

∫
ϕdµ, µ ∈M 1

2
,

∫
q dµ ∈ I

}
.

For any open interval I ⊂ R, we have

lim inf
T−→+∞

log L 1
2
{ρ ∈ S∗M, 〈q〉T (ρ) ∈ I}

T
≥ sup

{
hKS(µ)−

∫
ϕdµ, µ ∈M 1

2
,

∫
q dµ ∈ I

}
.

(ii) Let M be a compact manifold of dimension d, with constant sectional curvature −1.
Then (i) can be rephrased as follows. Let q be a smooth function on S∗M . For T > 0,
define the function 〈q〉T = 1

T

∫ T/2
−T/2 q ◦G

sds on S∗M . Denote L 1
2
the Liouville measure on

S∗M . Then, for any closed interval I ⊂ R, we have

lim sup
T−→+∞

log L 1
2
{ρ ∈ S∗M, 〈q〉T (ρ) ∈ I}

T
≤ sup {H(α), α ∈ I} − (d− 1)

3This limit is equal to H(q+).
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where H is the function H(α) = sup
{
hKS(µ), µ ∈M 1

2
,
∫
q dµ = α

}
. For any open interval

I ⊂ R, we have

lim inf
T−→+∞

log L 1
2
{ρ ∈ S∗M, 〈q〉T (ρ) ∈ I}

T
≥ sup {H(α), α ∈ I} − (d− 1).

The pressure and entropy functions also appear when counting closed geodesics γ with
a given q-average :

Pr(q) = lim
t−→+∞

1

t
log

∑
γ, `γ≤t

e
R
q dγ,

and as consequence

lim sup
t−→+∞

1

t
log ]

{
γ, `γ ≤ t,

∫
q dµγ ∈ I

}
≤ sup {H(α), α ∈ I} ,

(for a closed interval I),

lim inf
t−→+∞

1

t
log ]

{
γ, `γ ≤ t,

∫
q dµγ ∈ I

}
≥ sup {H(α), α ∈ I} ,

(for an open interval I). See [14].
In negative variable curvature, we will also need the following variant of Theorem 3.2 :

Theorem 3.3. Let M be a compact manifold of negative sectional curvature. Let q be a
smooth function on S∗M . Let φ be a smooth positive function. Denote L 1

2
the Liouville

measure on S∗M . For ρ ∈ S∗M and t ∈ R, define Tρ(t) by
∫ Tρ(t)

0
φ(Gsρ)ds = (d− 1)t. For

t > 0, define the function

〈q〉T (−t/2),T (t/2) =
1

Tρ(t/2)− Tρ(−t/2)

∫ Tρ(t/2)

Tρ(−t/2)

q ◦Gs(ρ)ds

on S∗M .
Then, for any closed interval I ⊂ R, we have

lim sup
t−→+∞

log L 1
2

{
ρ ∈ S∗M, 〈q〉T (−t/2),T (t/2)(ρ) ∈ I

}
t

≤ (d− 1) sup

{
hKS(µ)∫
φ dµ

−
∫
ϕdµ∫
φ dµ

, µ ∈M 1
2
,

∫
q dµ ∈ I

}
.

For any open interval I ⊂ R, we have

lim inf
t−→+∞

log L 1
2

{
ρ ∈ S∗M, 〈q〉T (−t/2),T (t/2)(ρ) ∈ I

}
t

≥ (d− 1) sup

{
hKS(µ)∫
φ dµ

−
∫
ϕdµ∫
φ dµ

, µ ∈M 1
2
,

∫
q dµ ∈ I

}
.
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Proof. Define a flow Ḡ on S∗M that has the same trajectories as G but different speed :
Ḡt(ρ) = GTρ(t)(ρ). For the new flow, the infinitesimal unstable Jacobian is equal to (d −
1)

R
ϕdµR
φ dµ

. If µ is an invariant probability measure of G, then dµ̄ = φ dµR
φ dµ

is an invariant
probability measure of Ḡ. Besides, their entropies are related by the Abramov formula :

hKS(µ̄) = (d− 1)
hKS(µ)∫
φ dµ

,

where the entropies of µ̄ and µ are computed with respect to Ḡ and G respectively.
The theorem is then again an application of Theorem 3.4 in [13] for the Anosov flow

Ḡ. �

4. Averaging

We are now ready to start the proof of Theorem 1.4. We will work in dimension d and
constant negative −1. The changes to make in order to get Theorem 1.7 are indicated in
Remarks 4.3 and 6.1.

The following proposition is proved in [29], §2. It is based on the fact that conjugating
P+i~Q(z) by a pseudodifferential operator does not change the spectrum, nor the principal
symbol of P . But the “subprincipal symbol” qz is modified by a coboundary (a function
that is cohomologous to zero).

Proposition 4.1. Let T > 0, there exists an invertible selfadjoint pseudodifferential oper-
ator AT ∈ ΨDO0 such that

A−1
T (P + i~Q(z))AT = P + i~ Op~(qT (z)) + ~2RT (z)

for z ∈ Ω; with RT ∈ ΨDO0 depending holomorphically on z ∈ Ω, and with qT (z) ∈ S1

depending holomorphically on z ∈ Ω, equal to 〈q〉T − q + qz in a neighbourhood of p−1
o

(
1
2

)
.

The definition of our symbol classes Sm and operator classes ΨDOm is given in Section
9.

We recall that the operator AT constructed by Sjöstrand is A = Op~(egT ), where

gT =
1

2

∫ T/2

0

(
2s

T
− 1

)
q ◦Gsds+

1

2

∫ 0

−T/2

(
2s

T
+ 1

)
q ◦Gsds

on p−1
o

(
1
2

)
. The function gT solves {po, gT} = q − 〈q〉T . Exactly the same proof yields :

Proposition 4.2. AssumeM has constant curvature −1. Let ε > 0 and T = (1−4ε)| log ~|.
Define δ = 1−ε

2
. There exists an invertible selfadjoint pseudodifferential operator AT ∈

ΨDO0
δ such that

A−1
T (P + i~Q(z))AT = P + i~ Op~(qT (z)) + ~2RT (z)

for z ∈ Ω; with RT ∈ ~−2δΨDO0
δ depending holomorphically on z, and with qT (z) ∈ S1

δ

depending holomorphically on z, equal to 〈q〉T − q + qz in a neighbourhood of p−1
o

(
1
2

)
.
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In what follows, we will restrict our attention to a region where |z − 1
2
| = O(~). As a

consequence, we can write

(4.1) P + i~ Op~(qT (z)) + ~2RT (z) = P + i~ Op~(qT ) + ~R̃T (z)

with qT = qT
(

1
2

)
= 〈q〉T in a neighbourhood of p−1

o

(
1
2

)
, and R̃T (z) is a pseudodifferential

operator depending holomorphically on z ∈ Ω, tending to zero when ~ −→ 0 and |z− 1
2
| =

O(~). More precisely,

R̃T (z) =

(
z − 1

2

)
Q′(z) + ~RT (z),

RT ∈ ~−2δΨDO0
δ depending holomorphically on z, and Q′(z) ∈ ΨDO1

δ depending holomor-
phically on z.

Remark 4.3. To treat the case of variable curvature, we should modify Proposition 4.2
as follows. Fix φ a smooth function such that φ ≥ ϕ. Define Tρ(T2 ), Tρ(−T

2
) as in Theorem

3.3, in a neighbourhood of p−1
o

(
1
2

)
. We have to choose φ smooth because we want Tρ to

depend smoothly on ρ. In dimension d = 2, we have Tρ(T2 ) ∈ S0
δ with δ = 1−ε

2
(which may

not be true for d > 2 since the unstable Jacobian no longer controls the derivatives of the
geodesic flow). In Proposition 4.2, we now define AT = Op~(egT ) where

gT (ρ) =
1

2

∫ Tρ(T/2)

0

(
s

Tρ(T/2)
− 1

)
q ◦Gsds+

1

2

∫ 0

−Tρ(T/2)

(
s

Tρ(T/2)
+ 1

)
q ◦Gsds

on p−1
o

(
1
2

)
. In the last sentence of Proposition 4.2, we replace 〈q〉T by 〈q〉T (−T

2
),T (T

2
) + rT

where rT = q−{po, gT}−〈q〉T (−T
2

),T (T
2

) satisfies rT ∈ | log ~|−1S0
δ and {po, rT} ∈ | log ~|−1S0

δ .
For d = 2, all the operators AT , RT etc stay in the same class as stated in Proposition 4.2.

In the following sections, we let z vary in a disc of radius O(~) around 1
2
. We will write

2z = 1 + ζ, ζ = O(~). We consider the operator (4.1), that we write

(4.2) PT = PT (z) = P + i~QT + ~R̃T (z), QT = Op~(qT ).

Note that we have {
po, q

T
}

= O
(

1

T

)
in a neighbourhood of p−1

o

(
1
2

)
. By Proposition 9.2, this implies

(4.3) ‖[P,QT ]u‖ ≤ C

(
~
T

+O(~2−2δ)

)
‖u‖+O(~)‖(P − 1

2
)u‖.

5. Perturbations with controlled trace norm.

We now want to make a small perturbation P̃ of P with a good control over the resolvent
(P̃(z)−z)−1, and over the trace class norm ‖.‖1 of P̃−P . The general idea is the following :
we want to count the eigenvalues of P in a given open set Ω. Suppose that, by perturbing
P into P̃ , we can make sure that P̃ has no eigenvalue in Ω̃ ⊃ Ω; and suppose that we
control the trace class norm of the perturbation P̃ − P . Then this information should
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suffice to give an upper bound on the number of eigenvalues of the original operator P ,
inside Ω. The full argument will be given in Section 6.

We construct a pseudodifferential operator Q̃T = Op~(q̃T ) ∈ ΨDO1
δ such that q̃T ≤ qT on

p−1
o

(
1
2

)
and

{
po, q̃

T
}

= O
(

1
T

)
. In addition, we fix some ε > 0 and introduce an arbitrarily

small θ > 0, and we want qT = q̃T on p−1
o (]1

2
− ε, 1

2
+ ε[)∩

{
qT ≤ α− 3θ

}
, and q̃T ≤ α− 2θ

everywhere on p−1
o (]1

2
− ε, 1

2
+ ε[). For instance we can take q̃T = a(qT ) on p−1

o (]1
2
− ε, 1

2
+ ε[)

where a is real and smooth, a(E) ≤ E, |a′| ≤ 1; a(E) = E if E ≤ α− 3θ, and a ≤ α− 2θ
everywhere.

Remark 5.1. At this stage it is convenient to choose a positive quantization scheme Op~,
in order to have Op~(qT ) ≥ Op~(q̃T ).

Let 0 ≤ f ∈ S(R), with f̂ ∈ C∞0 , where f̂(t) =
∫
eitEf(E)dE is the Fourier transform.

Put

P̃ = P + i~Q̂T + ~R̃T (z),

with

Q̂T = QT + f

(
2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

)
.

The following proposition is proved in [29] for fixed T (and δ = 0, that is, with standard
symbol classes). One can follow the proof of [29] line by line and check that it is still valid
for T = (1− 4ε)| log ~|, ε > 0 very small :

Proposition 5.2. Let P = −~24
2
. Let Q = Q(z) ∈ ΨDO1 have principal symbol q(z)

depending holomorphically on z ∈ Ω, and be formally self-adjoint when z is real. Let

PT = P + i~QT + ~R̃T (z), QT = QT

(
1

2

)
, z =

1 + ζ

2
, ζ = O(~),

be the operator defined in (4.2), with QT = Op~(qT ) ∈ ΨDO1
δ , and R̃T (z) ∈ ~1−2δΨDO0

δ +

(z − 1
2
)ΨDO1

δ . Let Q̃T = Op~(q̃T ) ∈ ΨDO1
δ , with q̃T = a(qT ) on p−1

o (]1
2
− ε, 1

2
+ ε[), where

a is real and smooth, a(E) ≤ E, |a′| ≤ 1; a(E) = E if E ≤ α− 3θ, and a ≤ α− 2θ.
Put

P̃T = P + i~Q̂T + ~R̃T (z),

with

Q̂T = QT + f

(
2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

)
.

Then

‖P̃T − PT‖ ≤ ~

‖f‖2
∞ sup
p−1
o ( 1

2)
(qT − q̃T ) +O(~1−2δ)


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and for any integer N ,

(5.1) ‖P̃T − PT‖1 ≤ Cd~2−d
[
f̂ 2(0)

∫
p−1
o ( 1

2)
(qT − q̃T )L 1

2
(dρ)

+
N−1∑
k=1

~k|D2k
t f̂

2(0)|
∫
p−1
o ( 1

2)
|D2k

ρ (qT − q̃T )|L 1
2
(dρ) +O(~N(1−2δ))

]
,

where D2k
t and D2k

ρ are differential operators of degree ≤ 2k, respectively on R and T ∗M .
If we restrict z by assuming that for some continuous function F (E) > 0, defined on

some bounded interval J containing 0, we have

=m(ζ)

2~
− qT + f

(
<e(ζ)

~

)2

(qT − q̃T ) ≥ F

(
<e(ζ)

~

)
,

on p−1
o

(
1
2

)
, <e(ζ)~ ∈ J ,

then for ~ small enough, (z − P̃T )−1 exists, and we have

‖
(

1

~
(z − P̃T )

)−1

‖ ≤
2 + 12 supp−1

o ( 1
2)(qT − q̃T )‖f ′‖∞‖f‖∞

F
(
<e(ζ)

~

) .

The proof is identical to the proof in [29]. In Appendix 10 we will give some details, for
the reader’s convenience. Taking F (E) = min{ θ

2
, 3θ

2
.f 2(E)}, we find :

Corollary 2. Define

Ω̃~ =

{
1

2
− 2c~ ≤ <e(z) ≤ 1

2
+ 2c~

}
∩ {(α− θ)~ ≤ =m(z) ≤ 4‖q‖∞~} ⊂ C.

For z ∈ Ω̃~, the operator z − P̃T is invertible, and

‖(P̃T − z)−1‖ ≤ Cf,q
θ~

.

As a direct consequence of (5.1), we obtain :

Corollary 3. For ~ small enough, we have

‖P̃T − PT‖1 ≤ Cd,f,q~2−dL 1
2

({
q̃T 6= qT

}
∩
{
p−1
o

(
1

2

)})
≤ Cd,f,q~2−dL 1

2

({
qT ≥ α− 3θ

}
∩
{
p−1
o

(
1

2

)})
≤ Cd,f,q~2−deT [H(α−3θ)−(d−1)+ε]

≤ Cd,f,q~2−d~[(d−1)−H(α−3θ)−ε](1−4ε)

for ~ small enough.

We recall that θ > 0 and ε > 0 can be chosen aribitrarily small.
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6. Jensen’s inequality

We can now implement the strategy outlined in the previous section. The spectrum of
P will be expressed as the set of zeroes of a certain determinant, which is a holomorphic
function. We will use the Jensen inequality to count these zeroes.

We already defined

Ω̃~ =

{
1

2
− 2c~ ≤ <e(z) ≤ 1

2
+ 2c~

}
∩ {(α− θ)~ ≤ =m(z) ≤ 4‖q‖∞~} ⊂ C.

To finish the proof of Theorem 1.4, we also introduce the set

Ω~ =

{
1

2
− c~ ≤ <e(z) ≤ 1

2
+ c~

}
∩ {α~ ≤ =m(z) ≤ 3‖q‖∞~} ⊂ Ω̃~.

For z ∈ Ω̃~, we can write
PT − z = (P̃T − z)(1 +K(z))

where K(z) is the trace class operator (P̃T − z)−1(PT − P̃T ).
We can bound the number of eigenvalues of PT in Ω~ by the number of zeros of the

holomorphic function g(z) = det(1 + K(z)) in Ω~. Let us call N(g,Ω~) this number of
zeros. Introduce z0 = 1

2
+ 2i~‖q‖∞. By the Jensen inequality [25],

(6.1) N(g,Ω~) ≤ C
(
log‖g‖∞,Ω̃~

− log |g(z0)|
)
,

where the constant C does not depend on ~ (because the rectangles Ω̃~ and Ω~ can be
transported, by translations and homotheties, to the fixed rectangles Ω̃1 and Ω1).

On the one hand, for all z ∈ Ω̃~,

| det(1 +K(z))| ≤ exp‖K(z)‖1

≤ exp
(
‖P̃T − z)−1‖‖PT − P̃T‖1

)
≤ exp

(
Cd,f,q
θ~

~2−d~[(d−1)−H(α−3θ)−ε](1−4ε)

)
≤ exp

(
Cf,q,θ,d~1−d~[(d−1)−H(α−3θ)−ε](1−4ε)

)
.

On the other hand, we also know that ‖(1 + K(z0))−1‖ ≤ C~−1 : since z0 has ‘large’
imaginary part, PT −z0 is invertible, and it is easy to get a bound ‖(PT −z0)−1‖ = O(~−1).
We use the same calculation as in [29] and get

| det(1 +K(z0))−1| = | det(1−K(z0)(1 +K(z0))−1)|
≤ exp‖K(z0)(1 +K(z0))−1‖1

≤ exp‖K(z0)‖1‖(1 +K(z0))−1‖

≤ exp
(
C̃f,q,θ,d~1−d~[(d−1)−H(α−3θ)−ε](1−4ε)

)
so that

| det(1 +K(z0)| ≥ exp
(
−C̃f,q,θ,d~1−d~[(d−1)−H(α−3θ)−ε](1−4ε)

)
.
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This, combined to (6.1), yields

|N(g,Ω~)| ≤ C~1−d~[(d−1)−H(α−2θ)−ε](1−4ε)

Since θ and ε > 0 are arbitrary, we have proved Theorem 1.4.

Remark 6.1. Starting from Remark 4.3, the proof of Theorem 1.7 goes exactly along the
same lines. We find

lim sup
~−→0

log ]
{
z ∈ Σ 1

2
, =m(z)

~ ≥ α
}

|log ~|
≤ H̃(α),

where H̃(α) = (d−1) sup
{
hKS(µ)R
φ dµ
−

R
ϕdµR
φ dµ

+ 1, µ ∈M 1
2
,
∫
q dµ = α

}
and φ is as in Remark

4.3. Letting φ converge to ϕ uniformly, we obtain Theorem 1.7.

7. About Question 3

In this section, we consider a particular case of the spectral problem (1.5) in which the
trace formula is exact. We then try to investigate Question 3 on this example.

Let M be a compact hyperbolic surface : M can be written as M = Γ\H, where H is
the hyperbolic disc and Γ is a discrete subgroup of the group of hyperbolic isometries. Let
[ω] ∈ H1(M,C) be represented by the harmonic complex valued 1–form ω. Introduce the
twisted laplacian

4ωf = 4f − 2〈ω, df〉+ ‖ω‖2
xf.

Studying the large eigenvalues of 4ω amounts to studying a fixed spectral window for the
semiclassical twisted laplacian

−~24ω

2
= −~24

2
+ ~2〈ω, d.〉 − ~2‖ω‖2

x

2
, ~ −→ 0.

The “usual” selfadjoint case is when ω has coefficient in iR. We shall instead be interested
in the case when ω has coefficients in R. The operator falls exactly into the case studied
in §1.2, with q(x, ξ) = 〈ωx, ξ〉. The geodesic flow is ergodic, and Sjöstrand’s result tells us
that “most” eigenvalues of −~24ω

2
such that <e(z) ∈ [1

2
−C~, 1

2
+C~] have imaginary part

=m(z) = o(~). Equivalently, “most” eigenvalues of −4ω such that <e(z) ∈ [λ−C
√
λ, λ+

C
√
λ] have imaginary part =m(z) = o(

√
λ).

We rephrase Question 3 as
(Q3’) If ω 6= 0, is it possible to have =m(z)

~ −→ 0 as ~ −→ 0 and <e(z) ∈ [1
2
−C~, 1

2
+C~],

z ∈ Sp(−~24ω
2

) ?

Conjecture : I conjecture the opposite : if ω 6= 0, then there is a sequence ~n −→ 0,
zn ∈ Sp(−~2

n
4ω
2

) with <e(zn) ∈ [1
2
− C~n, 1

2
+ C~n] and =m(zn)

~n 6−→ 0.

As is usual in hyperbolic spectral theory, we introduce the spectral parameter r : if λj
is an eigenvalue of −4ω, we denote λj = 1

4
+ r2

j . Yet another way to phrase Question 3
is to ask whether =m(rj) −→ 0 as <e(rj) −→ ∞. Sjöstrand’s results say that =m(rj) is
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bounded and that =m(rj) −→ 0 for a subsequence of density one. But I naturally believe
that it is impossible to have =m(rj) −→ 0 for the whole sequence, unless ω = 0.

Recall the Selberg trace formula [28], valid for ω ∈ H1(M, iR) :

(7.1)
∑
λj

f̂(rj) =
Area(M)

4π

∫ +∞

−∞
f̂(r)r tanh(πr)dr +

∑
γ

e
R
γ ω`γo

sinh `γ
2

f(`γ),

for any function f on R, even, smooth enough, and decaying faster than any exponential.
On the right hand side, the sum runs over the set of closed geodesics (equivalently, the
set of conjugacy classes in Γ). If γ is a periodic geodesic, we denote `γ > 0 its length, or
period; and `γo is its shortest period.

Proposition 7.1. The trace formula holds, under the same assumptions on f , if ω ∈
H1(M,R).

Recall that the Fourier transform is defined by f̂(r) =
∫
eiruf(u)du.

Proof. Take ω ∈ H1(M,R). We consider the operator 4zω for z ∈ C. The argument of
Section 2 shows that this operator has discrete spectrum (eigenvalues).

The right hand side of the trace formula reads

(7.2)
Area(M)

4π

∫ +∞

−∞
f̂(r)r tanh(πr)dr +

∑
γ

ez
R
γ ω`γo

sinh `γ
2

f(`γ)

and clearly is an entire function of z.
The left hand side is

∑
j f̂(rj(z)). To check that it is an entire function of z, we first

note that f̂(r), being an even entire function, can be written as g(1
4

+ r2) where g is entire.
Thus f̂(rj(z)) = g(λj(z)), where the λj(z) are the eigenvalues of −4zω.

If z is restricted to a bounded subset Ω of C, we note that the =m(rj(z)) are uniformly
bounded. To that end, we write −λj = 1

4
+ r2

j with rn = x+ iy. The eigenvalue equation

−4zω f = λjf

with f normalized in L2 implies both equations
1

4
+ x2 − y2 =

∫
|∇f |2 + 2βi

∫
〈ω, df〉f̄ + (β2 − α2)

∫
‖ω‖2

x|f |2

and
2xy = −2αi

∫
〈ω, df〉f̄ − 2αβ

∫
‖ω‖2

x|f |2

if we decompose z = α+ iβ ∈ R + iR and rj = x+ iy ∈ R + iR. If α and β stay bounded,
it also follows that y must stay bounded.

Besides
λ−2] {n, 0 ≤ <e(rn(z)) < λ}

is bounded uniformly for λ > 1 and z staying in a compact set of C (the arguments of
[29], §4, or of our Sections 4, 5, 6 are locally uniform in z). Since f̂ is rapidly decreasing
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in each horizontal strip, it follows that the sum
∑

j f̂(rj(z)) is the uniform limit of the
partial sums

∑
|<e(rj(z))|<λ f̂(rj(z)). But for a given λ, this is a holomorphic function of z

(in the open set {z,<e(rj(z)) 6= λ for all j}), since 4zω depends holomorphically on z and∑
|<e(rj(z))|<λ f̂(rj(z)) can be defined by holomorphic functional calculus.
This shows that

∑
j f̂(rj(z)) is also an entire function. Both sides of (7.2) coincide for

z ∈ iR (by the usual trace formula), thus they must coincide for all z ∈ C. �

Introduce some parameters σ,R, T > 0, and take

f(u) =
1√
2πσ

[
e−

(u−T )2

2σ2 eiuR + e−
(u+T )2

2σ2 e−iuR
]

so that

f̂(r) = e−
σ2

2
(r−R)2e−iT r + e−

σ2

2
(r+R)2eiT r.

This yields :

(7.3)
∑
j

e−
σ2

2
(rj−R)2e−iT rj + e−

σ2

2
(rj+R)2eiT rj

=
Area(M)

4π

∫ +∞

−∞
r tanhπr

[
e−

σ2

2
(r−R)2e−iT r + e−

σ2

2
(r+R)2eiT r

]
dr

+
∑
γ

e
R
γ ω`γo

sinh `γ
2

1√
2πσ

[
e−

(`γ−T )2

2σ2 ei`γR + e−
(`γ+T )2

2σ2 e−i`γR
]

We want to bound from below the right hand side. We hope that this bound will tell us
that exp(±iT rj) cannot be too small on the left hand side, giving some information on the
imaginary part of rj, for <e(rj) ∼ R. On the right, the idea is that the main contribution
should come from the geodesics with `γ ∼ T . We want to choose R so as not to be bothered
by the oscillatory terms e±i`γR. For that purpose, R and T will be related in the following
manner :

Lemma 7.2. [21], Lemma 3.3, [11].
For any M > 1, there exists R ∈ [M,M exp(exp(5T ))] such that cos(R`γ) ≥ 1

2
for every

closed geodesic γ with `γ ≤ 5T .

In the sequel we take M = exp(exp(cT )), (c > 0 arbitrary) to ensure that T is of order
log logR. We note that this relation between R and T is independent of ω. This will allow
us to modify slightly our initial problem by extending it to the case where ω can depend
on R (or T ). More precisely, we want to consider the case when ω = Θ(R)ωo, where ωo is
fixed and Θ(R) ≥ 1 is allowed to go to infinity with R at a reasonable rate.

This means that we consider a slight generalization of (1.5) (the motivation should
become clearer in §7.2):
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7.1. A more general problem. We consider a spectral problem of the form

(7.4) (P − z)u = 0

where

P = P(z) = P + i~θ(~)Q(z), P = −~24
2

where z ∈ Ω = ei]−s0,s0[]Emin, Emax[, with 0 < Emin <
1
2
< Emax < +∞, 0 < s0 <

π
4
. We

will assume that Q(z) ∈ ΨDO1 depends holomorphically on z ∈ Ω, and that θ(~) is some
real valued function such that θ(~) ≥ 1 and ~θ(~) −→

~−→0
0. We have in mind θ(~) = | log(~)|.

Finally, we assume thatQ is formally self-adjoint for z real. Again, we call Σ the “spectrum”
the set of z for which the equation (P(z)− z)u = 0 has a solution.

The results of §1.2 can be generalized as follows : for any Emin < E1 ≤ E2 < Emax,

(7.5) ] {z ∈ Σ, E1 ≤ <e(z) ≤ E2} =
1

(2π~)d

[∫
p−1
o [E1,E2]

dxdξ +O(~θ(~))

]
.

One can show that =m(z)
~θ(~)

has to stay bounded for z ∈ Σ. Taking θ(~) = | log(~)|, E1 =

E − c~θ(~) and E2 = E + c~θ(~), one has

q−E + o(1) ≤ =m(z)

~θ(~)
≤ q+

E + o(1)

for z ∈ Σ such that E1 ≤ <e(z) ≤ E2. Assuming that the geodesic flow is ergodic on
p−1
o {E}, and taking θ(~) = | log(~)|, we have for any ε > 0, any c > 0,

(7.6)

]

{
z ∈ Σ, E − c~θ(~) ≤ <e(z) ≤ E + c~θ(~),

=m(z)

~θ(~)
6∈ [q̄E − ε, q̄E + ε]

}
= θ(~)o(~1−d).

Remark 7.3. The paper [29] only treats the case θ(~) = 1. But the method of [29], §5 can
be adapted in a straighforward way to show the following : consider the spectral problem

(7.7) (P − z)u = 0

where

P = P(z) = P + i~θQ(z), P = −~24
2

where z ∈ Ω = ei]−s0,s0[]Emin, Emax[, with 0 < Emin <
1
2
< Emax < +∞, 0 < s0 <

π
4
. Fix

some ε > 0. Then

(7.8) ] {z ∈ Σ, E1 ≤ <e(z) ≤ E2} =
1

(2π~)d

[∫
p−1
o [E1,E2]

dxdξ +O(~θ)
]
.

uniformly in all θ ≥ 1 such that θ~ ≤ ε and E1, E2 such that Emin < E1−2ε, E2+2ε < Emax,
|E2 − E1| ≥ ~θ. .

For (7.6), and if we take θ(~) = | log ~|, the generalization of the proof in [29] is without
surprise, but requires some rather technical changes : we will not prove it here, but still
feel allowed to ask about Question 3 in this generalized setting. We note that to extend
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(7.6) to more general θ(~), some analyticity assumptions would be required, exactly like
in [9].

We will focus our attention on the operator

−~24θ(~)ω

2
= −~24

2
+ ~2θ(~)〈ω, d.〉 − ~2θ(~)2‖ω‖2

x

2
, ~ −→ 0,

when ω has coefficients in R.
We generalize Question 3 as

(Q3”) If ω 6= 0, prove that there exists a sequence ~n −→ 0, and zn ∈ Sp(−~2
n
4θ(~n)ω

2
) with

<e(zn) ∈ [1
2
− C~nθ(~n), 1

2
+ C~nθ(~n)], such that =m(zn)

~nθ(~n)
6−→ 0.

7.2. Heuristic discussion of the parameters σ,R, T . We start again from the trace
formula (7.3), considering the case where ω = Θ(R)ωo, Θ(R) = θ(R−1) ≥ 1. Here R−1 is
going to play the role of the small parameter ~. The form ωo is fixed, and we normalize it
to have stable norm ‖ωo‖s = 1.

‖ω‖s = sup

{∫
S∗M

ω dµ, µ ∈M 1
2

}
(7.9)

= sup
γ

∫
γ
ω

`γ
.(7.10)

The first line can be considered as a definition of the stable norm (valid for a general
compact riemannian manifold M), whereas the second line holds on negatively curved
manifolds because of the density of the closed geodesics. Using the definition Pr(ω) =

sup
{
hKS(µ) +

∫
S∗M

ω dµ, µ ∈M 1
2

}
, it is not difficult to show that

lim
t−→∞

Pr(tω)− |t|‖ω‖s = sup

{
hKS(µ), µ ∈M 1

2
,

∫
S∗M

ω dµ = ‖ω‖s
}
.

On a surface, the right-hand side vanishes [2]. Besides, for any T one can find a closed
geodesic γ with `γ ∈ [T − 1, T ], and such that

(7.11)

∫
γ
ωo

`γ
≥ ‖ωo‖s(1 + oT (1)) = (1 + oT (1)),

where oT (1) goes to 0 as T approaches +∞. Simply recall that for any 0 < δ < 1,

(7.12) lim
log ]

{
γ, `γ ∈ [T − 1, T ],

R
γ ωo

`γo
≥ (1− δ)

}
T

= H(1− δ) > 0,

where

H(α) = sup

{
hKS(µ), µ ∈M 1

2
,

∫
S∗M

ωo dµ = α

}
.

The function H is continuous, concave on [−1, 1], real-analytic on ]− 1, 1[ [4]. And again,
H(−1) = H(1) = 0 on a compact surface [2].
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In (7.3), we have not said yet how σ will depend on R and T . For the moment, let us
decide a priori that σ should be such that the term

Area(M)

4π

∫ +∞

−∞
r tanhπr

[
e−

σ2

2
(r−R)2e−iT r + e−

σ2

2
(r+R)2eiT r

]
dr

is negligible compared to the sum
∑

γ. Remember that R and T are chosen so as to satisfy
Lemma 7.2. Then, fixing 1 > δ > 0, the right hand side of (7.3) should be bounded from
below by

(7.13) σ−1eTH(1−δ)−T/2eΘ(R)(1−δ)T e−
1

2σ2 .

We want to use the fact that this grows quite fast with T . On the other hand, looking at
the left hand side of (7.3), we cannot hope to do better than to bound it from above by

(7.14) ]
{
j, |<e(rj)−R| ≤ σ−1

}
e
σ2

2
supj =m(rj)

2

eT supj |=m(rj)|,

where each time the supj should be restricted to the indices j such that |<e(rj)−R| ≤ σ−1.
This heuristic argument would give an inequality

(7.15)
]
{
j, |<e(rj)−R| ≤ σ−1

}
e
σ2

2
supj =m(rj)

2

eT supj |=m(rj)| ≥ σ−1eTH(1−δ)−T/2eΘ(R)(1−δ)T e−
1

2σ2 ,

obtained by comparing the lower bound (7.13) and the upper bound (7.14). Again, the
hope is to compare the powers of eT on both sides to prove that supj |=m(rj)| cannot be
arbitrarily small.

Consider the case Θ(R) = 1, which is the case we were originally interested in. If we
take σ to be a constant, then by Weyl’s law we have ] {j, |<e(rj)−R| ≤ σ−1} ∼ R ≥
exp(exp(cT )). In this case (7.15) cannot bring any useful information. On the other
hand, if we want to choose σ such that ] {j, |<e(rj)−R| ≤ σ−1} is bounded, we are led to
take σ ∼ R; in this case the term e

σ2

2
supj =m(rj)

2 will be too large to yield any interesting
information.

We see that the method only has a chance to work if TΘ(R)� logR. From now on we
take Θ(R) ≥ logR, and always such that R−1Θ(R) −→ 0. We also take σ−2 = CΘ(R) with
C large. We must note that the parameters rj correspond to the eigenvalues of −4Θ(R)ω,
and thus they also depend on R.

7.3. Proof of Theorem 1.12. The right hand side of (7.3) is easy to understand. The
term

(7.16)
∫ +∞

−∞
r tanhπr

[
e−

σ2

2
(r−R)2e−iT r + e−

σ2

2
(r+R)2eiT r

]
dr
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is O(σ−1R), whereas the
∑

γ has modulus greater than

(7.17)
1

2

∑
`γ≤5T

e
R
γ ω`γo

sinh `γ
2

1√
2πσ

[
e−

(`γ−T )2

2σ2 + e−
(`γ+T )2

2σ2

]
+
∑
`γ≥5T

e
R
γ ω`γo

sinh `γ
2

1√
2πσ

[
e−

(`γ−T )2

2σ2 + e−
(`γ+T )2

2σ2

]
cos(`γR)

≥ 1

2

∑
T−1≤`γ≤T

e
R
γ ω`γo

sinh `γ
2

1√
2πσ

[
e−

(`γ−T )2

2σ2 + e−
(`γ+T )2

2σ2

]
+
∑
`γ≥5T

e
R
γ ω`γo

sinh `γ
2

1√
2πσ

[
e−

(`γ−T )2

2σ2 + e−
(`γ+T )2

2σ2

]
cos(`γR)

≥ 1√
8πσ

[
eTH(1−δ)−T/2eΘ(R)(1−δ)T e−

1
2σ2 +O(1)

]
,

(using (7.12)), and thus is much greater than the integral (7.16). To get the last O(1) we
have used the exponential growth of the number of closed geodesics. The left hand side of
(7.3) is more complicated to bound from above, since the rj now depend on R.

Proposition 7.4. Take Θ(R) ≥ logR, and such that R−1Θ(R) −→ 0. Take σ−2 = CΘ(R).
Let f(R) be such that σ2f(R)2 � TΘ(R). Then

|
∑
j

e−
σ2

2
(rj−R)2e−iT rj | ≤ ] {j, |<e(rj)−R| ≤ f(R)} e

σ2

2
supj =m(rj)

2

eT supj |=m(rj)| +O(1),

where the supj are taken over the set of indices j such that |<e(rj)−R| ≤ f(R).

Proof.

Lemma 7.5. We have an a priori bound |=m(rj)| ≤ cΘ(R), where c depends only on ωo.

Indeed, let rj = x+ iy and f ∈ L2(M) be such that ‖f‖L2 = 1 and

−4 f + 2Θ(R)〈ωo, df〉 −Θ(R)2‖ωo‖2
xf =

(
1

4
+ r2

j

)
f.

Taking the scalar product with f , we get

(7.18)
1

4
+ x2 − y2 =

∫
|∇f |2 −Θ(R)2

∫
‖ωo‖2

x|f |2

and

(7.19) 2xy = −2Θ(R)i

∫
〈ωo, df〉f̄ .

Equation (7.19) yields |xy| ≤ cΘ(R)
√∫
|∇f |2. Equation (7.18) implies that x2 ≥

∫
|∇f |2−

c2Θ(R)2. If |x| ≥ 1
2

√∫
|∇f |2 then we are done, by (7.19). If |x| ≤ 1

2

√∫
|∇f |2, then (7.18)

implies that
∫
|∇f |2 ≤ 2c2Θ(R)2 and that y2 ≤ 1

4
+ 5c2Θ(R)2. The lemma follows.

We now break the sum
∑

j e
−σ

2

2
(rj−R)2e−iT rj into three parts : I =

∑
j,<e(rj)≤R−f(R),

II =
∑

j,|<e(rj)−R|≤f(R) and III =
∑

j,<e(rj)≥R+f(R).
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The last sum III is bounded by

e
σ2

2
c2Θ(R)2ecTΘ(R)

∑
j,<e(rj)≥R+f(R)

e−
σ2

2
(<e(rj)−R)2 .

We decompose this sum into
∑

n≥0

∑
R+f(R)+n≤<e(rj)≤R+f(R)+n+1, and by Weyl’s law in the

form (7.8), this is dominated by

ecTΘ(R)
∑
n≥0

(R + n+ f(R))Θ(R)e−
σ2

2
(n+f(R))2 ≤ ecTΘ(R)Θ(R)

∫ +∞

f(R)−1

(R + x)e−
σ2x2

2 dx

and with our relations between T,R, f(R) and σ, this last quantity is O(1).
Concerning the first sum I, we bound it by

(7.20) e
σ2

2
c2Θ(R)2ecTΘ(R)

∑
j,<e(rj)≤R−f(R)

e−
σ2

2
(<e(rj)−R)2 .

The subsum
∑

j,<e(rj)≤−R+f(R) can be treated as above and shown to be O(1) (using Weyl’s
law in the form (7.8)), and we only need to concentrate on

∑
j,|<e(rj)|≤R−f(R). To bound

this sum, we first need a control the number of terms.

Lemma 7.6. ] {j, |<e(rj)| ≤ R} = O(R2Θ(R)).

To that end, we use again the trace formula and write :∑
j

e−
r2j

2R2 =
Area(M)

4π

∫ +∞

−∞
r tanh(πr).e−

r2

2R2 dr +
∑
γ

eΘ(R)
R
γ ωo`γo

sinh `γ
2

R√
2π
e−R

2`2γ/2.

On the right, the term
∑

γ is clearly o(1) whereas the
∫

term is of order R2. On the left,
we break the sum into

∑
j,|<e(rj)|≤R and

∑
j,|<e(rj)|≥R. As above, we can use Weyl’s law in

the form (7.8) to show that the
∑

j,|<e(rj)|≥R e
−

r2j

2R2 is O
∑

n≥0(R + n + 1)Θ(R)e−
(R+n)2

2R2 =

O(R2Θ(R)). Thus we have∑
j,|<e(rj)|≤R

e−
<e(rj)

2−=m(rj)
2

2R2 e−
i<e(rj)=m(rj)

R2 = O(R2Θ(R)).

Remember that |=m(rj)| ≤ cΘ(R) and that R−1Θ(R) −→ 0. Thus, for |<e(rj)| ≤ R we

can write e−
i<e(rj)=m(rj)

R2 = 1 +O(R−1Θ(R)). This yields

e−1/2] {j, |<e(rj)| ≤ R}
(
1 +O(R−1Θ(R))

)
≤

∑
j,|<erj |≤R

e−
<e(rj)

2−=m(rj)
2

2R2
(
1 +O(R−1Θ(R))

)
= O(R2Θ(R))

and finishes the proof of Lemma 7.6.
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Now, we go back to the sum
∑

j,|<e(rj)|≤R−f(R) in (7.20), and we see that it is bounded
by

R2Θ(R)e
σ2

2
c2Θ(R)2ecTΘ(R)e−σ

2f(R)2/2 = O(1).

This ends the proof of Proposition 7.4 �

We can now come back to (7.3). Noting that σ2 supj =m(rj)
2 = O(1), Proposition 7.4

shows that the left-hand side of the trace formula (7.3) is bounded from above by

C] {j, |<e(rj)−R| ≤ f(R)} eT supj |=m(rj)| +O(1) ≤ CRf(R)Θ(R)eT supj |=m(rj)|

where the sup is taken over all j such that |<e(rj)− R| ≤ f(R), and where we have used
again (7.8). We can of course assume, without loss of generality, that f(R) = O(R).

On the right hand side of (7.3), the
∫

is O(RΘ(R)1/2), and the
∑

γ is bounded from
below by

1√
8πσ

eTH(1−δ)−T/2eΘ(R)(1−δ)T e−
1

2σ2 ,

as was proved in (7.17). Writing

CRf(R)Θ(R)eT supj |=m(rj)| ≥ σ−1eTH(1−δ)−T/2eΘ(R)(1−δ)T e−
1

2σ2 ,

remembering that Θ(R) ≥ log(R), Θ(R) = o(R), σ−2 = cΘ(R) and T � log logR, we see
that necessarily

sup
j
|=m(rj)| ≥ (1− 2δ)Θ(R),

where the sup is taken over all j such that |<e(rj)−R| ≤ f(R). This finishes the proof of
Theorem 1.12.

8. The arithmetic case.

We now prove Theorem 1.9, and first we need to define the special class of hyperbolic
surfaces we are considering. Let p ≥ 3 be a prime, p ≡ 1 (mod 4), and A ≥ 1 be a quadratic
non-residue modulo p. We set

Γ = Γ(A, p) =

{(
y0 + y1

√
A y2

√
p+ y3

√
Ap

y2
√
p− y3

√
Ap y0 − y1

√
A

)
, y0, y1, y2, y3 ∈ Z

}
.

It is a discrete cocompact subgroup of SL(2,R) which contains only hyperbolic transfor-
mations [8]. We consider the hyperbolic surfaceM = Γ\H. InM , the lengths of the closed
geodesics are the log xm, where

xm = 2m2 − 1 + 2m
√
m2 − 1, m ∈ N.

We define
µ(m) =

∑
γ, `γ=log xm

e
R
γ ω`γo .
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We now follow very closely the approach of [8], pp. 304–314. We introduce an even function
k on R, whose Fourier transform is nonnegative and compactly supported in [−1, 1]; we
also assume that k̂ ≥ 1 on [−1

2
, 1

2
]. We define

Kα(r) = k(r)[eiαr + e−iαr].

We write again the trace formula : for all t > 0,

(8.1)
∑
j

Kα(rj − t) +Kα(rj + t) =
Area(M)

4π

∫
r tanh(πr)[Kα(r − t) +Kα(r + t)]dr

+ 2
∑
γ

e
R
γ ω`γo

sinh `γ
2

K̂α(`γ) cos(t`γ).

We will bound from below the right-hand side (averaged in t) to obtain information on the
left-hand side. Denote

Sα(t) =
∑
γ

e
R
γ ω`γo

sinh `γ
2

K̂α(`γ) cos(t`γ) = 2
∑

eα−1≤xm≤eα+1

µ(m)

x
1/2
m − x−1/2

m

K̂α(log xm) cos(t log xm).

Proposition 8.1. Let α = 2β log T − C, 0 < β ≤ 1 and C large enough. Then,∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
|Sα(t)|2dt ≥ C̃T β(4Pr(ω)−1).

Although we are actually interested in the quantity
∫ 2T+Tβ

2T−Tβ |Sα(t)|2dt, the reason for

introducing the regularizing factor
(

1− |t−2T |
Tβ

)
is exactly the same as in [8], p. 315 : we

want a sufficiently regular function, for Lemma 8.2 to hold.

Proof. Introduce the notations

η(m) =
µ(m)

x
1/2
m − x−1/2

m

K̂α(log xm),

ν(m) = µ(m)K̂α(log xm).

Divide the integral I =
∫ 2T+Tβ

2T−Tβ

(
1− |t−2T |

Tβ

)
|Sα(t)|2dt into I = I1 + I2, where

I1 =
∑

eα−1≤xm≤eα+1

η(m)2

∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
cos2(t log xm)dt

and

I2 = 2
∑

eα−1≤xk<xm≤eα+1

η(m)η(k)

∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
cos(t log xm) cos(t log xk)dt.

The idea is that the xm, xk, with xm 6= xk, are well-spaced, implying that the oscillatory
integral I2 is small compared to I1.
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Lemma 8.2. For T ≥ 1 and λ ∈ R,∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
eiλtdt = O

[
min

(
T β,

1

λ2T β

)]
.

Let us first consider I1.∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
cos2(t log xm)dt =

∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
1 + cos(2t log xm)

2
dt

=
T β

2
+O(T−β log x−2

m ).

Hence,

I1 ≥
(
T β

2
+ o(1)

) ∑
eα−1≤xm≤eα+1

η(m)2(8.2)

≥
(
T β

2
+ o(1)

) ∑
eα−1≤xm≤eα+1

ν(m)2

(x
1/2
m − x−1/2

m )2
(8.3)

≥ c1T
βe−α

∑
eα−1≤xm≤eα+1

ν(m)2.(8.4)

The right-hand side of (8.4) will be estimated later. We now turn to I2, and want to show
that it is much smaller than I1. The integral∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
cos(t log xm) cos(t log xk)dt

is smaller than 1
Tβ(log xm−log xk)2

. We can ensure that

1

|log xm − log xk|
≤ cT β

for eα−1 < xk < xm < eα+1, by choosing α in an appropriate range : writing

log xm − log xm−1 ∼
xm − xm−1

xm
∼ 2

m
∼ 4
√
xm

,

we see we have to take α ≤ 2β log T − C (C large). More generally, we have by the
intermediate value theorem

| log xm − log xk| ≥ C̃e−α/2|m− k|.

The analysis done by [8], pp. 310–311, can be applied verbatim to show that

(8.5) |I2| ≤
C̃

T β

∑
eα−1≤xm≤eα+1

ν(m)2.
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Comparing (8.4) and (8.5), we see that

|I2| ≤
I1

100

provided α ≤ 2β log T − C with C sufficiently large. Thus,

I ≥ 99

100
I1.

To complete our estimate for I, we must return to equation (8.4). Clearly,∑
eα−1≤xm≤eα+1

ν(m)2 ≥
∑

eα−1/2≤xm≤eα+1/2

µ(m)2.

We write the Cauchy-Schwarz inequality, ∑
eα−1/2≤xm≤eα+1/2

µ(m)

2

≤

 ∑
eα−1/2≤xm≤eα+1/2

1

 ∑
eα−1/2≤xm≤eα+1/2

µ(m)2

 .

But ∑
eα−1/2≤xm≤eα+1/2

µ(m) =
∑

γ,α−1/2≤`γ≤α+1/2

e
R
γ ω`γo ≥ C̃ eαPr(ω),

see [20], p. 117. On the other hand, ∑
eα−1/2≤xm≤eα+1/2

1 = O(eα/2).

We obtain this way ∑
eα−1/2≤xm≤eα+1/2

µ(m)2 ≥ Ce2αPr(ω)−α/2.

We have proved ∫ 2T+Tβ

2T−Tβ

(
1− |t− 2T |

T β

)
|Sα(t)|2dt ≥ C̃T β(4Pr(ω)−2).

�

This implies
|Sα(t)| ≥ Ctβ(2Pr(ω)− 3

2
)

for some t ∈ [2T − T β, 2T + T β].
Now consider the integral

∫
r tanh(πr)Kα(r − t)dr or

∫
r tanh(πr)Kα(r + t)dr in (8.1).

We write ∫
r tanh(πr)Kα(r − t)dr =

∫
r tanh(πr)k(r − t)[eiα(r−t) + e−iα(r−t)]dr.

To evaluate
∫

(r + t) tanh(π(r + t))k(r)eiαrdr, we shift the integral over R to an integral
over (1

2
− ε)i+ R, and we find that the integral is O(te−|α|(

1
2
−ε)) for any ε > 0.
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Lemma 8.3.
∫
r tanh(πr)Kα(r − t)dr or

∫
r tanh(πr)Kα(r + t)dr = O(te−|α|(

1
2
−ε)) =

O(t1+ε−β) for any ε > 0.

We finally turn to
∑

jKα(rj − t) + Kα(rj + t). Fixing a small ε > 0, one sees using
Weyl’s law, the fact that k is rapidly decreasing in any horizontal strip – and the fact that
the =m(rj) are bounded (by c‖ω‖) – that∑

j

Kα(rj − t) =
∑

j,|<e(rj)−t|≤tε
Kα(rj − t) +O(t−∞).

Similarly, ∑
j

Kα(rj + t) =
∑

j,|<e(rj)+t|≤tε
Kα(rj + t) +O(t−∞).

We see that

|
∑
j

Kα(rj − t) +Kα(rj + t)| ≤ Ceα supj |=m(rj)|t1+ε ≤ Ct2β supj |=m(rj)|t1+ε

where the supj is taken over the j such that |<e(rj)±t| ≤ tε. Here the factor C is essentially
sup{|k(z)|, |=m(z)| ≤ c‖ω‖}, it does not depend on t.

We have proved that there exists t ∈ [T − T β, T + T β], and rj with |<e(rj) − t| ≤ tε,
such that

t2β supj |=m(rj)|t1+ε ≥ C̃tβ(2Pr(ω)− 3
2

).

In particular, if T is large enough, this implies

sup
{
|=m(rj)|, |<e(rj)± T | ≤ T β

}
≥ Pr(ω)− 3

4
− 1 + ε

2β
,

and this proves Theorem 1.9.

9. Appendix : Symbol classes

Following [6], for any 0 ≤ δ < 1/2 we introduce the symbol class

(9.1) Smδ
def
=
{
a ∈ C∞(T ∗M), |∂αx∂

β
ξ a| ≤ Cα,β ~−δ|α+β| 〈ξ〉m−|β|

}
.

If δ = 0 we will just denote Sm. We will denote Op~(a(x, ξ)) = Op(a(x, ~ξ)), where Op
is a quantization procedure on M . The quantization of any a ∈ S0

δ leads to a bounded
operator on L2(M) (the norm being bounded uniformly in ~), see [6]. We will denote
ΨDOm

δ = Op~(Smδ ).
We use :

Proposition 9.1. Let a ∈ Smδ , b ∈ Snδ′ with 0 ≤ δ′ ≤ δ < 1/2. Then
(i) Op~(a) Op~(b)−Op~(ab) ∈ ~1−δ−δ′ Op~(Sm+n−1

δ ).
(ii) [Op~(a),Op~(b)]− ~

i
Op~({a, b}) ∈ ~2(1−δ−δ′) Op~(Sm+n−2

δ ).

We also use a local form of the Calderon-Vaillancourt estimate [6] :



32 N. ANANTHARAMAN

Proposition 9.2. There exists K ∈ N depending only on the dimension of M , such that
the following holds. Take A = Op~(a) where a ∈ S2

δ . Let I be an open interval of R+ and
let λ belong to I. Then, there exists C > 0, and C(a, λ) depending on a finite number of
seminorms of a (uniform in λ if it stays inside a compact subset of I), such that, for all
u ∈ L2(M),

‖Au‖L2 ≤ C

(
sup
p−1
o (I)

|a|+
K∑
k=1

~k sup
p−1
o (I)

|D2ka|

)
‖u‖L2 + C(a, λ)‖(P − λ)u‖L2 .

In fact C(a, λ) is controlled by the supremum norm of a
po−λ and a finite number of its

derivatives outside p−1
o (I). Similarly we have

|〈u,Au〉| ≤ C

(
sup
p−1
o (I)

|a|+
K∑
k=1

~k sup
p−1
o (I)

|D2ka|

)
‖u‖L2 + C(a, λ)‖(P − λ)u‖2

L2 .

10. Appendix : Sjöstrand’s proof of Proposition 5.2

In order to prove Proposition 5.2, we first want to bound the norm and trace norm of

f

(
2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

)
.

We write a Calderon-Vaillancourt type estimate,

‖(Q̃T −QT )u‖ ≤

(
sup

p−1
o ] 1

2
−ε, 1

2
+ε[

(q̃T − q̃T ) +O(~1−2δ)

)
‖u‖+O(1)‖(2P − 1)u‖,

where δ is as in Proposition 4.2. Besides, ‖(2P − 1)f
(

2P−1
~

)
‖ = O(~). It follows that∥∥∥∥f (2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

)∥∥∥∥ ≤ ‖f‖2
∞

(
sup

p−1
o ] 1

2
−ε, 1

2
+ε[

(q̃T − q̃T ) +O(~1−2δ)

)
.

For the trace class norm, we need to be even more careful than in [29]. Instead of using the
Gårding inequality, we use the existence of a positive quantization – meaning that Op~(a) ≥
0 if a ≥ 0. If we choose such, we have directly that f

(
2P−1

~

)
(Q̃T −QT )f

(
2P−1

~

)
≥ 0 in the

operator sense. Thus,∥∥∥∥f (2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

)∥∥∥∥
1

= Tr f

(
2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

)
= Tr f

(
2P − 1

~

)2

(Q̃T −QT )

= Tr
1

2π

∫
f̂ 2(t)eit

2P−1
~ (Q̃T −QT )dt.
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Writing the expansion of eit
2P−1

~ as a Fourier Integral Operator, writing the trace as the in-
tegral of the kernel, and applying the stationary phase method in the time-energy variables,
we obtain an asymptotic expansion

Tr
1

2π

∫
f̂ 2(t)eit

2P−1
~ (Q̃T −QT )dt

= Cd~2−d

[
f̂ 2(0)

∫
p−1
o ( 1

2)
(qT − q̃T )L 1

2
(dρ) +

N−1∑
k=1

~kD2k
t f̂

2(0)

∫
p−1
o ( 1

2)
D2k
ρ (qT − q̃T )L 1

2
(dρ) +O(~N(1−2δ))

]
,

where D2k
t and D2k

ρ are differential operators of degree ≤ 2k, respectively on R and T ∗M .
Note that the term ~kD2k

t f̂
2(0)

∫
p−1
o ( 1

2)D
2k
ρ (qT − q̃T )L 1

2
(dρ) is a O(~k(1−2δ))L 1

2
(q̃T 6= qT ) =

o(1)L 1
2
(q̃T 6= qT ). This proves, in particular, Corollary 3.

To finish the proof of Proposition 5.2, there remains to study the invertibility of z−P̃T .
Recall the identity

‖(A+ iB)u‖2 = ‖Au‖2 + ‖Bu‖2 + i〈u, [A,B]u〉,

if A,B are bounded self-adjoint operators. Thus,

2‖(P̃T − z)u‖2 ≥ ‖(P + i~Q̂T − z)u‖2 −O(~4(1−δ))(‖(2P − 1)u‖2 + ‖u‖2)

≥ ‖(P −<e(z))u‖2 + ~2‖
(
=m(z)

~
− Q̂T

)
u‖2 + i~〈u, [P, Q̂T ]u〉

− O(~4(1−δ))(‖(2P − 1)u‖2 + ‖u‖2)

= ‖(P −<e(z))u‖2 + ~2‖
(
=m(z)

~
− Q̂T

)
u‖2

+

(
O(1)

~2

T
(1 + ‖f‖2

∞) +O(~3−2δ)

)
‖u‖2 +O(~2)‖(P −<e(z))u‖2

We have used (4.3) (or Proposition 9.2), and the same for Q̃T . We find that

(10.1)
√

3‖(P̃T − z)u‖ ≥ ‖(P −<e(z))u‖ − (O(
~√
T

) +O(~
3
2
−δ))‖u‖.
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On the other hand, we have

(10.2) =m
〈

1

~
(z − P̃T )u, u

〉
=

〈(
=m(z)

~
− Q̂T

)
u, u

〉
+O(~1−2δ)(‖u‖+ ‖(<e(z)− P )u‖)‖u‖〈(

=m(z)

~
−QT + f

(
2P − 1

~

)
(Q̃T −QT )f

(
2P − 1

~

))
u, u

〉
+O(~1−2δ)(‖u‖+ ‖(<e(z)− P )u‖)‖u‖

=

〈(
=m(z)

~
−QT + f

(
2<e(z)− 1

~

)2

(Q̃T −QT )

)
u, u

〉
+O(~1−2δ)(‖u‖+ ‖(<e(z)− P )u‖)‖u‖

−

(
2 sup
p−1
o ] 1

2
−ε, 1

2
+ε[

(qT − q̃T )‖f‖∞‖f ′‖∞ +O(~1−2δ)

)
‖u‖

∥∥∥∥P −<e(z)

~
u

∥∥∥∥
by the same trick as in [29], (3.19). Recall that we are interested in a region where
z − 1

2
= O(~).

Let F (E) > 0 be a continuous function defined on a bounded interval J containing 0,
and restrict z by assuming that

=m(ζ)

2~
− qT + f

(
<e(ζ)

~

)2

(qT − q̃T ) ≥ F

(
<e(ζ)

~

)
,

near p−1
o

(
1
2

)
, <e(ζ)~ ∈ J (where ζ = 2z− 1). It follows from the Gårding inequality that for

such z〈(
=m(z)

~
−QT + f

(
2<e(z)− 1

~

)2

(Q̃T −QT )

)
u, u

〉

≥
(
F

(
<e(ζ)

~

)
−O(~1−2δ)

)
‖u‖2 −O(1)‖u‖‖(P −<e(z))u‖.

Using this in (10.2), we get

(10.3) =m
〈

1

~
(z − P̃T )u, u

〉
≥
(
F

(
<e(ζ)

~

)
−O(~1−2δ)

)
‖u‖2

−

(
2 sup
p−1
o ] 1

2
−ε, 1

2
+ε[

(qT − q̃T )‖f‖∞‖f ′‖∞ +O(~1−2δ)

)
‖u‖

∥∥∥∥P −<e(z)

~
u

∥∥∥∥ .
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Reasoning as in [29], (3.25) and (3.26), we find finally

=m
〈

1

~
(z − P̃T )u, u

〉
≥
(
F

(
<e(ζ)

~

)
−O(~1−2δ)

)
‖u‖2

−
√

3

(
2 sup
p−1
o ] 1

2
−ε, 1

2
+ε[

(qT − q̃T )‖f‖∞‖f ′‖∞ +O(~1−2δ)

)
‖u‖

∥∥∥∥∥P̃T − z~
u

∥∥∥∥∥
− (O(

1√
T

) +O(~
1
2
−δ))‖u‖2.

and(
F

(
<e(ζ)

~

)
+O(

1√
T

) +O(~
1
2
−δ)

)
‖u‖

≤

[
1 + 2

√
3 sup
p−1
o ] 1

2
−ε, 1

2
+ε[

(qT − q̃T )‖f‖∞‖f ′‖∞ +O(~1−2δ)

]∥∥∥∥∥P̃T − z~
u

∥∥∥∥∥
which finishes the proof of Proposition 5.2.
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