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Each physical object possesses specific frequencies of vibrations, called its “eigenfrequencies”, at
which it enters in resonance under an external stimulus. In mathematical terms these frequencies
are the “eigenvalues” of a linear operator; they form the “spectrum” of the object. Spectral geometry
is concerned with understanding how the spectrum of an object, as well as the modes of vibration
(eigenfunctions) associated to each eigenfrequency, are related to its geometric shape. This is a wide
area of research, with applied and interdisciplinary aspects (electromagnetic waves, vibrating solids,
seismic waves, wave functions in quantum mechanics... ), but also involving very theoretical mathe-
matics, with many natural questions still open: What can we learn about the topology or geometry
of an object by observing its spectrum? Can we predict if the vibrations will be localized in a small
part of the object or on the contrary, if they will take place everywhere ? Can we construct an object
and be sure that certain frequencies are in the spectrum, or, on the opposite, be sure to avoid certain
sets of frequencies ? Can there be objects of arbitrarily large size, with no small eigenfrequencies ?
Project InSpeGMos deals with a specific mathematical model : hyperbolic surfaces. The Moduli Space
is a space of parameters of these surfaces that we can tune, and observe how the geometry and the
spectrum vary. In the semiclassical regime (when the wavelength is small compared to the size of the
object), it is expected that certain spectral features are universal. We will adopt a probabilistic point
of view: try to exhibit spectral and geometric phenomena that happen in 99% of cases. The project is
focussed on developing new integration techniques on Moduli Space. We shall look for new coordinates,
generalize Mirzakhani’s study of volume functions, and seek inspiration in Random Graph Theory to
develop new probabilistic methods in the spectral theory of Random Surfaces.
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Section a. Extended synopsis of the scientific proposal

Genesis : 3 conjectures in Quantum Chaos. To this day, the main geometric tool to understand
the propagation of waves remains the semiclassical approximation : it tells us that wave fronts move
in straight lines (or in a curved space, geodesics). For instance, the propagation of light, which is an
electromagnetic wave, is often treated by geometric optics, where the trajectory of light is described
by light rays. It is seen in experiments that the semiclassical approximation is pertinent, in many
respects, to explain the geometric patterns observed in waves. In particular, when the dynamics of
the geodesic flow is chaotic, this classically chaotic behaviour seems to persist in wave propagation :
this is called “Quantum Chaos”. Unfortunately the ideas of Quantum Chaos are mostly expressed as
conjectures, which remain to be proven mathematically. Today it seems necessary to find new patterns
of thinking to make progress. A typical geometric situation where the following conjectures should
apply, are hyperbolic manifolds and the spectrum of the laplacian, the main object of study of project
InSpeGMos.

Random Matrix Conjecture (Bohigas-Giannoni-Schmit) [12]: the spectrum of vibration resembles
statistically the eigenvalues of a large random gaussian symmetric matrix (Wigner statistics). There is
absolutely no mathematical progress to prove this conjecture; but one paper in the physics literature
(Sieber-Richter [47]) gives a hint for an analytical approach on hyperbolic surfaces. The analytic
tools that this project InSpeGMos aims at developing, should be useful to give ultimately a rigourous
mathematical interpretation to the approach of [47, 46].

Quantum ergodicity conjecture [45]. This conjecture is concerned with the eigenfunctions, more
precisely, the probability density defined by their square. This probability should, conjecturally, ap-
proach in the semiclassical limit the uniform probability on phase space (also called microcanonical
measure). The PI’s former work has been largely focussed on the Quantum Ergodicity phenomenon,
however this theme is marginal in the current application.

Berry conjecture [11]. This conjecture is again concerned with the eigenfunctions. It appears that
they should “look like” a monochromatic Gaussian random process. A more precise (but debated)
formulation is first to apply a magnifying zoom to make the wavelength 1, and to focus on a randomly
chosen ball [24]. This interpretation stems from a result of Backhausz-Szegedy [6], which I interprete
as establishing the Berry conjecture on random graphs.

The paper [6], together with [2, 29], play an important role in the genesis of this project, as
they suggest possible cross-fertilization of ideas between the domains of spectral theory of
graphs (random or not) and spectral geometry on manifolds (with a need to define what
is a random manifold).

Random geometries. The progress regarding the 3 conjectures above is stalled : one must try new
point of views, even if it means departing from the original setting. It is an appealing idea to study
these conjectures for a randomly chosen dynamical system : maybe we can prove results that are valid
in 99 % of cases. It could, in fact, help avoid certain pathological situations that are difficult to name
explicitly. The issue is not to define models of random systems, but to find ones where computations
are actually possible. Here we will focus on models of random hyperbolic surfaces. The goal of this
project is not to solve any of the 3 conjectures within 5 years, but to develop new tools of calculations
that will be useful for a whole community of mathematicians who want to explore these questions.

We also want to winkle out the semiclassical approximation from its traditional setting (the regime
of small wavelengths), and take it to a new setting where we study the spectrum of families of large
geometric objects. This has been suggested before in the physics literature concerning quantum chaos
on graphs [27, 28, 48, 49]. In mathematics the idea to study Quantum Ergodicity of eigenfunctions
in the large volume limit has been initiated by Anantharaman-LeMasson [2] for large graphs and
LeMasson-Sahlsten for large hyperbolic surfaces (equivalently, surfaces of large genus g) [29]. See also
Anantharaman-Sabri-Ingremeau-Winn [5, 4, 1] for recent developments.

A couple of models of random hyperbolic surfaces have been introduced. In this project we pri-
marily focus on the Weil-Petersson probability measure on Moduli Space, for which we can rely on
Mirzakhani’s fundamental work [37]. This is a continuous probabilistic model, where we can tune cer-
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tain lengths and angles to vary the geometry of the surface. We will also, when relevant, study other
models such as the Brooks-Makover model [15] or the random cover models [33, 32, 34]. Our project
is made timely by recent advances such as [37] or [40]; but in spite of those, an obstacle towards the
ambitious goals proposed above, is the lack of techniques to compute expectations and probability of
geometric events. This project mainly aims at developing such techniques : both for surfaces of fixed
topology, and in the large genus asymptotics g −→ +∞.

Beyond Quantum Chaos, here is a sample of questions of fundamental interest about random
surfaces; they are of two natures, geometric and spectral. The Selberg trace formula naturally relates
the two aspects.

(1) Spectral statistics, in particular spacings between eigenvalues. Given an interval I ⊂ R, can
we obtain information on the k-point correlation function of eigenvalues of the Laplacian lying in I ?
In particular, do they obey the statistics of the Wigner ensemble ?

(2) Low eigenvalues. It is a central goal of spectral geometry to be able to provide information
about the absence or presence of spectrum in a given region. For hyperbolic surfaces, the interval
(0, 1/4) at the bottom of the spectrum plays a special rôle in many respects. By work of Mirzakhani
[39], there is c > 0 such that, with probability going to 1, the interval (0, c) is free of eigenvalues.
Recent results show that one can take c = 3/16 − ε for any ε > 0 ([30, 52] for the Weil-Petersson
model, [34] for the random cover model). Can we push this to c = 1/4 − ε ? The value 1/4 − ε has
been obtained for random-covers of a non-compact surface of finite volume [32].

(3) Cheeger constant. The Cheeger constant h(X) of a Riemannian manifold X is an effective
measure of the connectedness of a manifold. In [39], it shown that with probability going to 1 as
g −→ +∞, h(X) > log 2

2π+log 2 , but the optimal constant is unknown.
(4) L∞ norms of eigenfunctions, delocalization, Quantum Unique Ergodicity. “Delocalization” of a

wave function ϕ roughly means that the probability density |ϕ(x)|2 does not concentrate in a small
part of the manifold. Ideally, the goal is to show that |ϕk(x)|2 is “close” to being constant if ϕk is an
eigenfunction, in the semiclassical regime λk −→ +∞. A first approach in this direction is to bound
from above the L∞ norm. For a compact Riemannian surface X (without any geometric assumption),
it is known that ‖ϕk‖∞ = OX(λ1/2k ). Can we substantially improve this bound for a typical hyperbolic
surface X ?

Another approach to delocalization is via Quantum (Unique) Ergodicity : a test function a(x) is
chosen and one tries to show that

∫
X a(x)|ϕk(x)|

2dx is close to
∫
X a(x)dx. For any hyperbolic surface,

this has been proven for a majority of eigenfunctions, both for large frequency λk [50] and for large
volume [29]. However, for a random surface one expects much more : instead of having a statement for
“almost all” eigenfunctions, one would expect a result for all eigenfunctions, similar to recent advances
on random graphs and random matrices models [14, 20, 21, 19, 10, 8, 9, 23].

(5) Topology of long closed geodesics for high-genus surfaces. Numerous results have been obtained
concerning the relation between length and topology (e.g. number of self-intersections) of closed
geodesics, in deterministic as well as probabilistic contexts [16, 38, 36, 26, 25, 7, 40, 42]. Having in
mind the Selberg trace formula which converts the length spectrum to the spectrum of the laplacian,
one needs to examine the transitions between the different regimes when the length L, the number of
self-intersections k and the genus g all grow to +∞ in an inter-related way.

(6) Bers constant. Every hyperbolic surface has a decomposition into pairs of pants, whose bound-
ary geodesics all have lengths ≤ Lg ≤ 26(g−1) (see [16]). A quantity Lg having this property is called
a “Bers constant”, but the optimal value is not known. Any probabilistic improvement of the known
deterministic linear upper bound Lg ≤ 26(g − 1) would be essential in understanding the spectral
geometry of random surfaces.

(7) Gaussian value distribution for eigenfunctions For a typical hyperbolic surface and an eigen-
function ϕk, can we show that the value distribution of ϕk is close to a Gaussian ? The question can
be asked in different regimes : fixed g and λk −→ +∞ (as in the Berry conjecture); bounded λk and
g −→ +∞; or both g, λk −→ +∞.

Some of these questions have been recently solved for random regular graphs [10, 8, 9, 23, 22, 13,
23, 6]. Results for graphs always rely on the fact that we have discrete probability spaces, with so-
phisticated techniques to estimate the cardinalities and probabilities, and concentration inequalities on
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large product spaces. For the Weil-Petersson model, we must admit that the techniques of integration
and estimation of probabilities are exceedingly few. One of the main reasons is that the Moduli Space
is defined as a quotient space : the quotient of Teichmüller space by the Mapping Class Group. This
difficulty is partially overcome by formulas of McShane, Mirzakhani, Luo-Tan [35, 37, 31], which yield
for instance explicit recursive formulas for the total volume of Moduli Space [37]. These results, as well
as those of Wolpert [51], according to which the Fenchel-Nielsen coordinates are canonical coordinates,
are the two main techniques of integration. The existing techniques do not allow to compute expec-
tations of many basic indicator functions. : just to name one example, we do not have a satisfactory
estimate of the probability for the surface to have a decomposition into pairs of pants of boundary
lengths ≤ L. This is why we are convinced of the necessity to diversify the existing tech-
niques to integrate “geometrically defined” random variables on Moduli Space. For this
project we have identified the following specific goals.

Goal 1. Develop a theory of volume functions. Let S be a fixed compact orientable surface;
fix a closed curve γ. If X is a hyperbolic structure on S, we denote by LX(γ) the length of the unique
closed geodesic in the homotopy class of γ, when S has the hyperbolic structure X. One of the most
basic functions on Teichmüller space is the function Lγ : X 7→ LX(γ) (as well as the periodization
of this function by the Mapping Class Group, which defines a function on Moduli Space). Let us
call µγ the pushforward of the Weil-Petersson measure under Lγ : it has a density µγ(d`) = Vγ(`)d`.
Being able to integrate functions of Lγ is equivalent to knowing the density Vγ explicitly. Mirzakhani
showed how to determine this density if γ is a multi-curve, that is, a non-intersecting union of simple
curves. Our first goal is to describe the density Vγ , when γ is a curve with self-intersections (or a
union of curves that may intersect). More generally, instead of periodic geodesics, we would like to
formulate and study similar questions concerning closed piecewise geodesics. Not being able to deal
with piecewise geodesics is a major obstacle to the adaptation of certain results about random graphs.

Goal 2. Study the bottom of the spectrum of random hyperbolic surfaces. A second
objective of the project is to study the low eigenvalues of the laplacian on a random hyperbolic manifold.
Our main focus will be on the limit g −→ +∞, for which we would like to prove that for any ε > 0,
there are no eigenvalues in the interval (0, 1/4−ε), with probability going to 1. During L. Monk’s PhD
thesis, we envisioned a plan of attack and can now divide the progress towards this goal into several
tasks explained later.

Goal 1 and 2 are the first goals of this project, reachable within 5 years. The next goals 3, 4 are
more distant goals, sought for by a whole community of mathematicians and mathematical physicists,
we mention them here as part of the general landscape. They will be a source of inspiration, and we
believe that the integration techniques we will develop will help make partial progress, profitable to
several communities working on random geometries, Teichmüller theory, spectral theory and quantum
chaos. Goal 5 is a more concrete extraction from Goal 4.

Goal 3. Understand the spectral statistics of random hyperbolic surfaces in the “bulk”
of the spectrum. L. Monk [42, 43], in her thesis supervised by the PI, proved that the density of
eigenvalues of a random surface of genus g converges (as g grows to infinity) to the spectral density of
the hyperbolic plane, using the notion of Benjamini-Schramm convergence. The number of eigenvalues
in an fixed interval is typically of order g. Monk could give effective rates of convergence, using
quantitative knowledge of the geometry of random surfaces, and go to scales slightly smaller than the
unit scale. The natural next step is to try to diminish this scale as close as possible to the mean spacing,
ideally by counting the eigenvalues in intervals of size 1/g1−ε. The other direction to explore is to study
spectral 2-point correlations, which appear as the square of the error estimated in [43], or the square
of the geometric term of the Selberg trace formula. It is expected that the behaviour is universal and
corresponds to that of Wigner’s Gaussian Orthogonal Ensemble (GOE). Many heuristic arguments in
mathematics and physics, always using the square of some trace formula, have been suggested [47, 46],
but have so far failed to give a rigorous proof. One reason is that the heuristics were claimed to hold
for a “generic” surface, without a precise mathematical formulation. The Weil-Petersson probabilistic
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setting can be a solution to this issue, by allowing to average over the set of surfaces. We can use the
powerful tool-set developed by Mirzakhani, but will also need to enrich it with new techniques : for
instance, we need to evaluate moments of random variables involving lengths of non-simple geodesics,
cf. Goal 1.

Goal 4 : prospective. Explore techniques available for random graphs models, not avail-
able for Weil-Petersson model. Today the main tool used to study the spectral statistics of
hyperbolic surfaces remains the Selberg trace formula, giving a relation between the spectrum of the
laplacian and the lengths of periodic geodesics. One always starts by estimating the probability of
geometric events (involving lengths of periodic geodesics) and then translates into spectral results.
Because of the uncertainly principle, going to smaller spectral intervals means studying longer peri-
odic geodesics, and having to deal with their exponential proliferation. This approach is limited by
the mere fact that Mirzakhani’s techniques are limited to simple geodesics or multicurves. Longer
geodesics will have more and more self-intersections, and completely escape the domain of application
of Mirzakhani’s formulas.

In spectral graph theory and random matrix theory, there are many other tools that don’t exist yet
for random surfaces, in fact it is not even clear what the adaptation of these techniques to continuous
geometries could be. To name a few of these :

– the fixed point equation satisfied by the semi-circle law; the Schur complement formula for
matrices;

– the use of “geometric” measure preserving transformations, such as “switching” of edges, to obtain
fixed point equations or concentration of measure phenomena [6, 9, 10];

– the Dyson Brownian motion to show convergence of spectral statistics to GOE [17, 18]
– counting techniques, use of entropy to quantify the probability of typical or atypical events (large

deviations) [6]
Currently there are few ideas to implement these ideas in the case of random manifolds, but we

will be in constant prospective to do so. The following goals seems achievable :

Goal 5. Study of the Moduli Space as a large-dimensional probability space. Concen-
tration of measure phenomena. Large deviations. On product spaces of growing dimensions,
concentration of measure phenomena tell us that random variables that are not very sensitive to the
variation of a few coordinates, are sharply concentrated around their means. The Moduli Space of
compact hyperbolic surfaces of genus g is not a product space, but can be identified with one by
choosing local coordinates. We will seek to formulate concentration of measure phenomena. We also
hope to develop a theory of “typicality” for functions defined on a random hyperbolic surfaces of large
genus, similar to what was done in [6] : use a notion of entropy to describe the probability distribution
of “typical” functions (after defining them).

The project is at the same time high risk and high gain, for a common reason : few of these questions
have been explored before, in particular, the distribution of lengths of non-simple geodesics, which is
the core of the project. Each of the goals is ambitious, but the work can be divided into intermediate
steps which are sure to bring novel information. We divide the progress towards Goals 1, 2, 5 into the
following list of concrete tasks to be achieved within 5 years. Meanwhile we will constantly keep in
mind potential advances towards Goals 3, 4 or any of the open questions listed above.

Task 1. Explore new coordinates systems on Teichmüller space. In order to find new ways
of integrating over Moduli Space, we first need to find new ways of integrating on Teichmüller space
itself. So far, one can only integrate functions that admit a nice expression in at least one system of
Fenchel-Nielsen coordinates. We will seek to find new nice coordinate systems on Teichmüller space
(involving lengths of curves, distances, angles,...).

Task 2. Study of generalized volume functions. Theory of generalized convolution. Our
Goal 1 is to study the generalized volume functions Vγ , when γ is a curve with self-intersections. Since
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the curve γ with self-intersections may be seen as a geometric “concatenations” of simple closed curves
γ1, . . . , γk (in a sense to be made precise), and the length of this “ concatenation” of curves is close to
being the sum of the lengths of the original curves, the functions Vγ should be obtained from the Vγj a
certain type of algebraic operation resembling a convolution. We will develop a theory of generalized
convolutions : pushforward of Lebesgue measure under operations resembling a sum.

The densities Vγj corresponding to simple curves are polynomials [37]. Polynomials are stable
under convolutions, so we would expect Vγ to resemble a polynomial. We need to determine a class
of functions, containing polynomials, and stable under the operation of generalized convolution that
we will have defined. This will be done for fixed g in the limit ` −→ +∞, and we have in mind
that the functions Vγ could belong to one of Hörmander’s classical symbol spaces (functions that have
an expansion in powers of `, as well as their derivatives). To develop this technique, having good
coordinates on Moduli Space will be absolutely necessary, so developing Task 2 should be a follow-up
of Task 1.

Task 3. Asymptotics of volume functions in large genus. Ramanujan functions. We want
to study the structure of the volume functions Vγ(`) for γ a curve of fixed topological type. After
having described them as general convolutions of polynomial functions of `, and in parallel to studying
their behaviour for fixed g in the limit ` −→ +∞ (Task 2), the next task is to study their behaviour
in the limit g −→ +∞. A first goal would be to prove the existence of an asymptotic expansion in
inverse powers of g (like the one obtained in [41, 3]) : (1) Vγ(`) ∼

∑+∞
j=0 g

−jV
(j)
γ (`), valid to any given

order. Thereafter our main goal will be to understand the structure of the coefficients V (j)
γ (`) in this

expansion. We will seek inspiration in the work of J. Friedman to prove the Alon conjecture about the
optimal spectral gap for random regular graphs [22]. In the context of regular graphs he introduced
“Ramanujan functions” and proved that the V (j)

γ (`) belong to this class of functions. This is one of the
main technical innovations we want to develop to achieve Goal 2.

Task 3’. Explore the possibility to extend the questions and methods of Task 3 to other random
models, such as the Random Cover model [40].

Task 4. Describe the average of the trace formula over Moduli Space : sum over infinitely
many topological types of closed geodesics. Once we have proven (1) for any given topology
of γ, we need to sum over all γ, if we want to study the average of the geometric term in the Selberg
Trace Formula and deduce results about the spectrum (e.g. Goals 2, 3). While it seems plausible
that an asymptotic expansion like (1) still exists after summing over all γs, it is unlikely that the sum∑

γ V
(j)
γ (`) still has the Ramanujan property. The lesson taught in [22] or [13] is that it is necessary

to discard a set of bad surfaces, before averaging on Moduli Space. The work of Monk-Thomas [44]
should be useful to define precisely those bad surfaces (the ones which contain geodesic “tangles”).

Task 5. Extend further our study of generalized volume functions (to include n-tuples
of closed curves, or broken geodesics). In order to study higher order correlations of laplacian
eigenvalues, a common idea is to take powers of both sides of the Selberg trace formula. For instance, if
we take the square of the trace formula, we obtain a relation between pairs of eigenvalues and pairs of
(lengths of) periodic geodesics. It is thus relevant to extend all the questions above to find a description,
as accurate as possible, of the densities Vγ(`) when γ is an n-tuple of periodic geodesics. We would also
like to explore similar questions when γ is a broken geodesic (piecewise geodesic path). This would be
essential, for instance, to obtain probabilistic local Weyl laws, using the pre-trace formula

Task 6. Formulate and prove concentration of measure results on Moduli Space. Describe
the probability of rare events via entropy / large deviations. The difficulty towards Goal 5
is that the Moduli Space is not a product space : we need to work in local coordinates. We will use
random local coordinates, for instance by choosing at random a decomposition into ‘pairs of pants”
and the associated Fenchel-Nielsen coordinates.
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ORCID: 0000-0002-8496-9382

Date of birth: February 26, 1976

Nationality: French

URL for web site: https://irma.math.unistra.fr/~anantharaman

Degrees.

2006 Habilitation (defended Dec 2006) Université Claude-Bernard / E.N.S. Lyon, France
2000 PhD in Mathematics (defendedSep 2000) Université Pierre-et-Marie-Curie, Paris, France

Thesis advisor: François Ledrappier (Laboratoire de Probabilités)

Positions.
2022–present Professor, Collège de France (Paris),

Member of USIAS (University of Strasbourg Institute for Advanced Study).
2014–2022 Professor, Institut de Recherche Mathématique Avancée (IRMA),

Université de Strasbourg, France
Member of USIAS (University of Strasbourg Institute for Advanced Study).

2009–2014 Professor, Université Paris-Sud, Orsay, France.
2006–2009 CNRS Researcher (CR1), Associate “Hadamard” Professor

Centre de Mathématiques Laurent Schwartz, École Polytechnique, Palaiseau
2001–2006 Maître de Conférences, UMPA, Ecole Normale Supérieure, Lyon, France

Honors and awards.
2020 Frederic Esser Nemmers Prize in Mathematics
2019 Infosys prize in Mathematics
2019 Elected to the French Académie des Sciences
2013 Silver medal of the Centre National de la Recherche Scientifique (CNRS)
2012 Henri Poincaré prize
2011 Grand prix Jacques Herbrand de l’Académie des Sciences
2010 Salem prize
2007 Prix Gabrielle Sand et Marie Guido Triossi de l’Académie des Sciences

Selection of invited lectures, named fellowships.

2018 ICM plenary speaker (Rio de Janeiro)
2018 Zygmund-Calderón lectures (University of Chicago)
2017 Nachdiplomvorlesungen (ETH Zürich)
2016 Aisenstadt lectures (CRM Montéal)
2015 Bellow lectures (Northwestern University)
2015 ICMP plenary speaker (Santiago de Chile)
2010 ICM invited speaker
2008 ECM invited speaker
2006 ICMP invited speaker (Rio de Janeiro)
Fall 2019 Eisenbud professor, MSRI, Berkeley, USA.
Spring 2015 Eisenbud professor, MSRI, Berkeley, USA.
Spring 2013 Fellow of the Institute of Advanced Study, Institute of Advanced Study, Princeton USA.
Spring 2009 Miller Visiting Professor, University of California, Berkeley, USA.

101096550 InSpeGMos Part B 7

https://irma.math.unistra.fr/~ananthaman/


Fellowships, grants.
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de Strasbourg : G. Rivière, Délocalisation des mesures semiclassiques pour des systèmes dynamiques
chaotiques (2009), É. Le Masson, Ergodicité et fonctions propres du laplacien sur les grands graphes
réguliers (2013), Y. Bonthonneau, Les résonances du Laplacien sur les variétés à pointes, co-supervised
with C. Guillarmou (2015), G. Klein, Stabilisation et Asymptotique spectrale de l’équation des ondes
amorties vectorielle (2018), A. Deleporte, The low-energy spectrum of Toeplitz operators (2019), L.
Monk, Le bas du spectre des surfaces hyperboliques aléatoires, (2021), D. Sanchez, The bottom of the
spectrum of random Schrödinger operators, (to be defended in 2022).

Supervisor of 3 post-doctoral fellowships, at Université Paris-Sud or Université de Strasbourg : M.
Ingremeau, Quantum Ergodicity on Quantum graphs, Labex IRMIA (2017-2018), M. Sabri, Quantum
Ergodicity for Schrödinger operators on large graphs,Labex IRMIA (2015-2017), M. Léautaud, Control
and stabilization for the Schrödinger equation on the torus, Paris-Sud Orsay (2011-2012).
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