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Abstract. We prove lower bounds for the entropy of limit measures associated to non-
degenerate sequences of eigenfunctions on locally symmetric spaces of non-positive cur-
vature. In the case of certain compact quotients of the space of positive definite n × n
matrices (any quotient for n = 3, quotients associated to inner forms in general), measure
classification results then show that the limit measures must have a Haar component.
This is consistent with the conjecture that the limit measures are absolutely continuous.
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1. Introduction

1.1. Background and motivations. The study of high-energy Laplacian eigenfunctions
on negatively curved manifolds has progressed considerably in recent years. In the so-
called “arithmetic” case, Elon Lindenstrauss has proved the Quantum Unique Ergodicity
conjecture for Hecke eigenfunctions on congruence quotients of the hyperbolic plane [16]
(for non-compact congruence quotients his methods left open the possibility of “escape of
mass”, and the matter was finally resolved by Soundararajan in [25]). In greater generality
(variable negative curvature, no arithmetic structure), the first author has proved (partly
joint with Stéphane Nonnenmacher) that semiclassical limits of eigenfunctions have positive
Kolmogorov-Sinai entropy [1, 3, 4].

The two approaches are very different, but have in common the central role of the
notion of entropy. In Lindenstrauss’ work, an entropy bound is obtained from arithmetic
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considerations [5], and then combined with the measure rigidity phenomenon to prove
Quantum Unique Ergodicity.

It is very natural to ask about a possible generalization of these results to locally sym-
metric spaces of higher rank and non-positive curvature. In this case the Laplacian will be
replaced by the entire algebra of translation-invariant differential operators, as proposed
by Silberman and Venkatesh in [23]. A generalization of the entropic bound of [5] has
been worked out by these authors in the adelic case, and as a result they could prove a
form of Arithmetic Quantum Unique Ergodicity in the case of the locally symmetric space
Γ\SLn(R), when n is prime and Γ is a lattice derived from a division algebra over Q [24].
The goal of this paper is to generalize the “non-arithmetic” approach of [3, 4] in this context
– that is to say, prove an entropy bound without using the Hecke operators or other arith-
metic techniques. Doing so, we will not require all the assumptions used in [24]: we will
work with an arbitrary connected semisimple Lie group with finite center G, Γ will be any
cocompact lattice in G, and we will not use the Hecke operators. Combining the entropy
bound with the measure classification results of [8, 9, 17], in the case of G = SL3(R), Γ
arbitrary, or G = SLn(R), n arbitrary but Γ derived from a division algebra over Q, we
will prove a weakened form of Quantum Unique Ergodicity : any semiclassical measure
has the Haar measure as an ergodic component1.

In addition to the intrinsic interest of locally symmetric spaces, there is another moti-
vation to study these models. So far, the entropic bound of [3, 4] is not fully satisfactory
for manifolds of variable negative sectional curvature ([1] proves that the entropy is pos-
itive, but without giving an explicit bound). Gabriel Rivière has been able to treat the
case of surfaces [19, 20]; he is even able to work in non-positive curvature, but the case of
higher dimensions remains open. The problem comes from the existence of several distinct
Lyapunov exponents for the geodesic flow. Understanding the case of negatively curved
locally symmetric spaces constitutes a progress in this direction : we will deal with dy-
namical systems that have distinct Lyapunov exponents, some of which may even vanish.
Still, considerable simplifications arise from the fact that the space is homogeneous, and
that the stable and unstable foliations are smooth. It would be interesting but extremely
challenging to extend the techniques of [3, 4, 19, 20] to systems that are non-uniformly
hyperbolic (euclidean billiards would be the ultimate goal).

Let G be a connected semisimple Lie group with finite center, K < G be a maximal
compact subgroup, Γ < G a uniform lattice. We will work on the symmetric space S =
G/K, the compact quotient2 Y = Γ\G/K, and the homogeneous space X = Γ\G. We will
endow G with its Killing metric, yielding a G-invariant Riemannian metric on G/K, with
non-positive curvature.

Call D the algebra of G-invariant differential operators on S; it follows from the structure
of semisimple Lie algebras that this algebra is commutative and finitely generated [11, Ch.

1Unfortunately, we are not able to extend the method to the case of Γ = SLn(Z), which is not cocompact
– unless we input the extra assumption that there is no escape of mass to infinity, or that the mass escapes
very fast.

2We do not assume that Γ is torsion free. When speaking of smooth functions on Y, we have in mind
smooth functions on S that are Γ-invariant.
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II §4.1, §5.2]. The number of generators, to be denoted by r, coincides with the real rank
of S (that is the dimension of a maximal flat totally geodesic submanifold), and, in a more
algebraic fashion, with the dimension of a, a maximal abelian semisimple subalgebra3 of g
orthogonal to k. More background and notation concerning Lie groups are given in Section
2.

Remark 1.1. The algebra D always contains the Laplacian. If the symmetric space S has
rank r = 1, then D is generated by the Laplacian.

Example 1.2. The case G = SOo(d, 1) yields the d-dimensional hyperbolic space S = Hd

(of rank 1), already dealt with in [3, 4].
We will pay special attention to the example of G = SLn(R), K = SO(n,R). In that

case, g is the set of matrices with trace 0, k the antisymmetric matrices, and one can take
a to be the set of diagonal matrices with trace 0. The connected group generated by a is
denoted by A, in this example it is the set of diagonal matrices of determinant 1 and with
positive entries. The rank is r = n− 1.

We will be interested in Γ-invariant joint eigenfunctions of D; in other words, eigenfunc-
tions of D that go to the quotient Y = Γ\G/K. If we choose a set of generators of D, the
collection of eigenvalues can be represented as an element of Cr. We will recall in Sections
2.2 and 2.3 that it is more natural to parametrize the eigenvalue by an element ν ∈ a∗C,
the complexified dual of a. More precisely, ν ∈ a∗C/W where W is the Weyl group of G, a
finite group given by M ′/M where M ′ is the normalizer of A, and M the centralizer of A,
in K.

1.2. Semiclassical limit. Silberman and Venkatesh suggested to study the L2-normalized
eigenfunctions (ψ) in the limit ‖ν‖ −→ +∞, as a variant of the very popular question
of understanding high-energy eigenfunctions of the Laplacian. The question of “quantum
ergodicity” is to understand the asymptotic behaviour of the family of probability measures
dµ̄ψ(y) = |ψ(y)|2dy on Y = Γ\G/K. They considered the case where ν

‖ν‖ has a limit
ν∞ ∈ a∗C/W , with the sequence ν satisfying a certain number of additional properties that
will be stated in the next paragraphs. For the moment, we just note that the real parts
<e(ν) are uniformly bounded, so that <e(ν∞) = 0 [15, §16.5(7) & Thm. 16.6]. We will
denote Λ∞ = =m(ν∞) = −iν∞.

1.3. Symplectic lift vs. representation-theoretic lift. The locally symmetric space
Y should be thought of as the configuration space of our dynamical system. To introduce
tools from dynamical systems it is necessary to move to an appropriate phase space. Once
we lift the eigenfunctions there, the measures we study become approximately invariant
under some dynamics and we can apply the tools of ergodic theory. Two different kinds of
lifts have been considered thus far: the microlocal lift (we also call it the symplectic lift)
lifts the measure µ̄ψ to a distribution µ̃ψ on the cotangent bundle T ∗Y = Γ\T ∗(G/K),
taking advantage of its symplectic structure. This construction applies in great generality,
for example when Y is any compact Riemannian manifold. The representation-theoretic

3We shall denote by g the Lie algebra of G, by k the Lie algebra of K, and so on.
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lift used in [27, 16, 23, 24, 6], specific to locally symmetric spaces, lifts the measure µ̄ψ to
a measure µψ defined on X = Γ\G, taking advantage of the homogeneous space structure
of G/K.

The two lifts are very natural, and closely related. The symplectic lift will be defined
in §3.4; we shall not give the construction of the representation-theoretic lift since we do
not use it. Nevertheless, the representation theoretic vision will enter the picture when it
comes to applying some measure classification results from [8, 9].

In the symplectic point of view, the dynamics is defined as follows. On T ∗(G/K),
consider the algebra H of smooth G-invariant Hamiltonians (i.e. functions), that are poly-
nomial in the fibers of the projection T ∗(G/K) −→ G/K. This algebra is isomorphic to
the algebra of W -invariant polynomials on a∗ (consider the restriction on a∗ ⊂ T ∗o (G/K),
where o = eK serves as the “origin” in G/K). The structure theory of semisimple Lie
algebras shows that H is isomorphic to a polynomial ring in r generators. Moreover, the
elements of H commute under the canonical Poisson bracket on T ∗(G/K). Thus, we have a
family of r independent commuting Hamiltonians H1, ..., Hr, which generate r commuting
hamiltonian flows. The Killing metric, seen as a function on T ∗(G/K), is one of them, and
its symplectic gradient generates the geodesic flow. Since all these flows are G-equivariant,
they descend to the quotient T ∗Y.

Joint energy layers of H are naturally parametrized by elements Λ ∈ a∗/W . Here is
the geometric explanation : fix a point in G/K, say the origin o = eK. Consider the flat
totally geodesic submanifold A.o ⊂ G/K going through o. It is isometric to Rr, and the
cotangent space T ∗o (A.o) is naturally isomorphic to a∗. If E ⊂ T ∗(G/K) is a joint energy
layer of H (or equivalently a G-orbit in T ∗(G/K)), then there exists Λ ∈ a∗ such that
E ∩ T ∗o (A.o) = W ·Λ, the orbit of Λ under the Weyl group W . See [13] for details. We will
denote EΛ the energy layer of parameter Λ.

In Section 3 we will use a quantization procedure to associate to every Γ-invariant
eigenfunction ψ a distribution µ̃ψ on T ∗Y, called its microlocal lift. This distribution
projects down to µ̄ψ on Y. This is a standard construction, and the following theorem is
an avatar of propagation of singularities for solutions of partial differential equations :

Theorem 1.3. Assume that ‖ν‖ −→ +∞, and that ν
‖ν‖ has a limit ν∞. Let Λ∞ = −iν∞ ∈

a∗/W . Any limit (in the distribution sense) of the sequence µ̃ψ is a probability measure
on T ∗Y, carried by the energy layer EΛ∞, and invariant under the family of Hamiltonian
flows generated by H.

In order to transport this statement to get an A-invariant measure on Γ\G, we must
now make some assumptions on Λ∞. We follow Silberman and Venkatesh, who assume in
[23, 24] that ν∞ is a regular element of a∗C, in the sense that it is not fixed by any non-trivial
element of the Weyl group W . They show that it implies <e(νn) = 0 for all but a finite
number of νns in the sequence [23, Thm. 2.7 (3)]. The element ν∞ being regular is, of
course, equivalent to Λ∞ being regular; and this is also equivalent to the energy layer Λ∞
being regular, in the sense that the differentials dH1, ..., dHr are independent there [13].
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As above, we denote by M the centralizer of A in K. There is a surjective map

π : G/M × a∗ −→ T ∗(G/K)(1.1)
(gM, λ) 7→ (gK, g.λ)(1.2)

The image of G/M ×{λ} under π is the energy layer Eλ. The map πλ : G/M ×{λ} −→ Eλ
is a diffeomorphism if and only if λ is regular (otherwise πλ is not even injective). Under
π−1
λ , the action of the Hamiltonian flow Φt

H generated by H ∈ H on Eλ is conjugate to

gM 7→ g exp(t dH(λ))M.

The same statements hold after quotienting on the left by Γ. Since H is a function on a∗,
the differential dH(λ) is an element of a. Denoting by R(etX) the one–parameter flow on
G/M generated by X ∈ a (acting by multiplication on the right), we can rephrase this by
writing

π◦R(etdH(λ)) = Φt
H ◦ π on Eλ.

If λ is regular, the elements dH(λ) can be shown to span a asH varies overH. Otherwise,
we have [13]

(1.3) {dH(λ), H ∈ H} = {X ∈ a,∀α ∈ ∆, (〈α, λ〉 = 0 =⇒ α(X) = 0)},
where ∆ ⊂ a∗ is the set of roots.

Thus, Theorem 1.3 may be rephrased as follows:

Theorem 1.4. Assume Λ∞ is regular. Then any limit (in the distribution sense) of the
sequence µ̃ψ yields a probability measure on Γ\G/M , invariant under the right action of A
by multiplication.

This theorem was proved in [23, Thm. 1.6 (3)] using the representation-theoretic lift;
the equivariance of that lift shows that the construction is compatible with the Hecke
operators on Γ\G. It is also shown there that the symplectic lift µ̃ψ and the representation
theoretic lift µψ have the same asymptotic behaviour as ν tends to infinity, if we identify
EΛ∞ ⊂ Γ\T ∗(G/K) with Γ\G/M .

Definition 1.5. We will call any limit point of the sequence µ̃ψ (or µψ) a semiclassical
measure in the direction Λ∞.

Thus, we can equivalently see the semiclassical measures in a regular direction as positive
measures on T ∗(Γ\G/K) carried by a regular energy layer, positive measures on Γ\G/M ,
or M -invariant positive measures on Γ\G.

1.4. Entropy bounds. Our main result is a non-trivial lower bound on the entropy of
semiclassical measures. We fix H ∈ H, and we consider the corresponding Hamiltonian
flow Φt

H , which has Lyapunov exponents

−χJ(H) ≤ · · · ≤ −χ1(H) ≤ 0 ≤ χ1(H) ≤ · · · ≤ χJ(H).

In addition, the Lyapunov exponent 0 appears trivially with multiplicity r, as a consequence
of the existence of r integrals of motion. The dimension of a regular energy layer is r+ 2J .
The integer J , the rank r and the dimension d of G/K are related by d = J + r.
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In the following theorem we will denote by χmax(H) = χJ(H), the largest Lyapunov
exponent. We denote by hKS(µ,H) the Kolmogorov-Sinai entropy of a (Φt

H)-invariant
probability measure µ on T ∗Y. We recall the Ruelle-Pesin inequality,

hKS(µ,H) ≤
∫ ∑

j

χj(H)dµ,

which holds for any (Φt
H)-invariant probability measure µ. In general, the Lyapunov expo-

nents are measurable functions on the phase space, but here, because of the homogeneous
structure, the Lyapunov exponents are constant on each energy layer. Thus, if µ is carried
on a single energy layer, this reduced to

hKS(µ,H) ≤
∑
j

χj(H).

Theorem 1.6. (Symplectic version) Let µ be a semiclassical measure in the direction Λ∞.
Assume that Λ∞ is regular.

For H ∈ H, we consider the corresponding Hamiltonian flow Φt
H on EΛ∞. Then

(1.4) hKS(µ,H) ≥
∑

j:χj(H)≥χmax(H)
2

(
χj(H)− χmax(H)

2

)
.

Continuing with the assumption that Λ∞ is regular, we can transport the theorem to
Γ\G/M . If we fix a 1-parameter subgroup (etX) of A (with X ∈ a), it is well known that
the (non trivial) Lyapunov exponents of the flow (etX) acting on G/M are the real numbers
(α(X)), where α ∈ a∗ run over the set of roots ∆ (see Section 2 for background related
to Lie groups). If α is a root then so is −α (one of the two will be called positive, the
other negative, the notion of positivity is explained in detail later). We write αmax(X) for
maxα α(X), this is the largest Lyapunov exponent of the associated Hamiltonian flow. Each
root occurs with multiplicity mα, which must be taken into account in the statements below
(the corresponding Lyapunov exponent α(X) would be counted repeatedly, mα times).

Theorem 1.7. (Group-theoretic version) Let µ be a semiclassical measure in the direction
Λ∞. Assume that Λ∞ is regular.

For X ∈ a, let hKS(µ,X) be the entropy of µ with respect to the flow (etX) acting on
G/M . Then

(1.5) hKS(µ,X) ≥
∑

α:α(X)≥αmax(X)
2

mα

(
α(X)− αmax(X)

2

)
.

Our lower bound is positive for all non-zero X, in fact greater than αmax(X)
2

. In [1, 3],
the first author and S. Nonnenmacher had conjectured the following stronger bound

hKS(µ,H) ≥ 1

2

∑
j

χj(H)
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or equivalently

(1.6) hKS(µ,X) ≥ 1

2

∑
α,α(X)≥0

mα · α(X).

We are still unable to prove it, except in one case: when all the positive Lyapunov exponents
are equal to one another, so that formula (1.5) reduces to (1.6). An example is the case
of hyperbolic d-space (G = SO(d, 1)) alluded to above. Another, the main focus of the
present paper, is the case of the “extremely irregular” elements of the torus in G = SLn(R).
These are the elements conjugate under the Weyl group to

X = diag(n− 1,−1, ...,−1).

1.5. Application: towards Quantum Unique Ergodicity on locally symmetric
spaces. In Section 6 we combine our entropy bounds with measure classification results.
Let n ≥ 3, G = SLn(R), Γ < G a cocompact lattice. Let µ be a semiclassical measure on
Γ\G in the regular direction Λ∞.

The measure µ can be written uniquely as a sum of an absolutely continuous measure
and a singular measure (with respect to Haar measure). Since µ is invariant under the
action of A, the same holds for both components. Because the Haar measure is known to
be ergodic for the action of A, the absolutely continuous part of µ is, in fact, proportional
to Haar measure. We call this the Haar component of µ. Its total mass is the weight of
this component.

Theorem 1.8. Let n = 3. Then µ has a Haar component of weight ≥ 1
4
.

Theorem 1.9. Let n = 4. Then either µ has a Haar component, or each ergodic component

is the Haar measure on a closed orbit of the group


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 (or one of its 4 images

under the Weyl group), and the components invariant by each of these 4 subgroups have
total weight 1

4
.

In fact, the proof of Theorem 1.9 shows the following : if some “extremely irregular”
element acts on µ with entropy strictly larger than half of its entropy w.r.t. Haar measure,
then there is a Haar component.

It does not seem to be possible to push this technique beyond SL4. The problem is that
there are large subgroups (in the style of those occuring in Theorem 1.9) whose closed orbits
support measures of large entropy. For particular lattices, however, these large subgroups
do not have closed orbits, so the only possible non-Haar components have small entropy
and cannot account for all the entropy. For co-compact lattices this occurs, for example,
when Γ is the set of elements of reduced norm 1 of an order in a central division algebra
over Q, or more generally for any lattice commensurable with one obtained this way (we
say that Γ is associated to the division algebra). Such lattices are said to be of “inner type”
since they correspond to inner forms of SLn over Q (there also exist non-uniform lattices
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of inner type, corresponding to central simple Q-algebras which are not division algebras).
For a brief description of the construction and references see Section 6.

Theorem 1.10. For n ≥ 3 let Γ < SLn(R) be a lattice associated to a division algebra
over Q, and let µ be a semiclassical measure on Γ\SLn(R) in a regular direction. Then µ
has a Haar component of weight ≥

n+1
2
−t

n−t > 0 where t is the largest proper divisor of n.

It is not surprising that the strongest implication is for n prime (so that there are few
intermediate algebraic measures). Indeed, setting t = 1 we find that the weight of the Haar
component is greater than 1

2
in that case. However for n prime Silberman-Venkatesh [24]

show that the semiclassical measures associated to Hecke eigenfunctions are equal to Haar
measure. The main impact of Theorem 1.10 is thus when the n is composite, where
previous methods only showed that semiclassical measures are convex combinations of
algebraic measures but could not establish that Haar measure occurs in the combination.

Remark 1.11. We compare here our result with that of [24]. That paper studies the
case of lattices in G = PGLn(R) associated to division algebras of prime degree n and
joint eigenfunctions of D and of the Hecke operators. It is then shown that any ergodic
component of a semiclassical measure µ has positive entropy; it follows that µ must be the
Haar measure. While we cannot get that far, in some respects our result is stronger:

• We do not assume that our eigenfunctions are also eigenfunctions of the Hecke
operators: this means that multiplicity of eigenvalues is not an issue in this work.
• Our lower bound on the total entropy (1/2 of the maximal entropy) is explicit and
quite strong. This allows us to detect the presence of a Haar component in a variety
of cases.
• In particular, for n = 3 we do not need any assumption on the cocompact lattice

Γ; and for Γ associated to a division algebra, our result holds for all n.
• The Hecke-operator method applies more naturally to adelic quotientsG(Q)\G(A)/K∞Kf.
When G is a form of SLn there is no distinction, but when G = PGLn the adelic
quotients are typically disjoint unions of quotients Γ\G. Even when the quotient is
compact, G-invariance of the limit measure does not show that all components have
the same proportion of the mass. Our result applies to each connected component
separately.

Conversely, there are features of the other approach we cannot reach.

• We cannot control the entropy of individual ergodic components. In particular, we
cannot exclude components of zero entropy.
• The methods of Silberman-Venkatesh apply to non-cocompact lattices as well.

1.6. Hyperbolic dispersive estimate. The proof of Theorem 1.6 (and 1.7) follows the
main ideas of [3], with a major difference which lies in an improvement of the “hyperbolic
dispersive estimate” : by this we mean [1, Thm. 1.3.3] and [3, Thm. 2.7]. If we applied



QUANTUM LIMITS ON LOCALLY SYMMETRIC SPACES 9

directly the result of [3], we would get

hKS(µ,H) ≥
J∑
j=0

(
χj(H)− χmax(H)

2

)
.

This inequality is often trivial (when the right-hand term is negative) whereas in (1.4) we
managed to get rid of the negative terms

(
χj(H)− χmax(H)

2

)
.

Since the “hyperbolic dispersive estimate” has an intrinsic interest, and is the core of
this paper, we state it here as one of our main results. We fix a quantization procedure,
set at scale ~ = ‖ν‖−1, that associates to any reasonable function a on T ∗Y an operator
Op~(a) on L2(Y). An explicit construction is given in Section 3. In particular, it is useful
to know that Op~ can be defined so that, if H ∈ H is real valued, Op~(H) is a self-adjoint
operator belonging to D. More explicitly, Op~(H) is defined so that Op~(H)ψ = H(−i~ν)ψ
for any D-eigenfunction ψ of spectral parameter ν (hence the choice of the normalisation
~ = ‖ν‖−1).

In order to state the hyperbolic dispersive estimate, we introduce (Pk)k=1,...,κ a finite
family of smooth real functions on Y, such that

(1.7) ∀x ∈ Y,
κ∑

m=1

P 2
k (x) = 1 .

We assume that the diameter of the supports of the functions Pk is smaller than the
injectivity radius of Y. We will denote by P̂k the operator of multiplication by Pk(x) on
the Hilbert space L2(Y).

We denote by U t = exp(i~−1tOp~(H)) the propagator of the “Schrödinger equation”
generated by the Hamiltonian H. This is a unitary Fourier Integral Operator associated
with the classical Hamiltonian flow Φ−tH . The ~-dependence of U t will be implicit in our
notation. We fix a small time step η.

Throughout the paper we will use the notation Â(t) = U−tηÂU tη for the quantum
evolution at time tη of an operator Â. For each integer T ∈ N and any sequence of
labels ω = (ω−T , · · · , ω−1, ω0, · · ·ωT−1), ωi ∈ [1, κ] (we say that the sequence ω is of length
|ω| = 2T ), we define the operators

P̂ω = P̂ωT−1
(T − 1)P̂ωT−2

(T − 2) . . . P̂ω0P̂ω−1(−1) . . . P̂ω−T (−T ) .(1.8)

We use a smooth, compactly supported function φ on a∗, supported in a tubular neigh-
bourhood of size ε of Λ∞. The function φ is assimilated to the function φ ◦ π−1 on T ∗Y
using the map π (1.1). We define

P̂ φ
ω = P̂ωT−1

(T − 1)P̂ωT−2
(T − 2) . . . P̂ 1/2

ω0
Op~(φ)P̂ 1/2

ω0
P̂ω−1(−1) . . . P̂ω−T (−T ) .(1.9)

The operator P̂ φ
ω should be thought of as P̂ω restricted to a spectral window around Λ∞.

Theorem 1.12. (Hyperbolic dispersive estimate) Let Λ∞ be a regular element of a∗. Fix
H ∈ H, and a time step η, small enough. Let 2− be an arbitrary number < 2.
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Then, for any K > 0, there exists ε > 0, such that : if φ ∈ C∞(T ∗Y) is supported in a
tubular neighbourhood of size ≤ ε of the regular energy layer EΛ∞, the following statement
holds.

For ~ small enough, for T = bK| log ~|
η
c, and for every sequence ω of length 2T ,

(1.10) ‖P̂ φ
ω ‖L2(Y)−→L2(Y) ≤

∏
j, χj(H)≥ 1

2K

e−Tη infsuppφ χj(H)

~1/2−

where we take the infimum of each Lyapunov exponent χj(H) over the support of φ.

The method used in [3] only yields the upper bound:

(1.11) ‖P̂ φ
ω ‖ ≤

J∏
j=1

e−Tη infsuppφ χj(H)

~1/2−

in other words it involved all the Lyapunov exponents. This is clearly not optimal when
Φt
H has some neutral, or slowly expanding directions. For instance, if H = 0 then Φt

H = I
has only neutral directions. In this case, (1.11) reads

(1.12) ‖P̂ φ
ω ‖ ≤ ~−d/2− ,

where d is the dimension of Y, which is obviously much worse (for any T ) than the trivial
bound

(1.13) ‖P̂ φ
ω ‖ ≤ 1.

On the other hand, if some of the χj(H) are (strictly) positive, then (1.11) is much
better than the trivial bound (1.13), for very large Tη. The bound given by Theorem 1.12
takes, in some sense, the best of the two bounds in each Lyapunov direction.

The proof of the hyperbolic dispersion estimates occupies Sections 3, 4, 5. The techniques
are completely disjoint from the measure rigidity arguments used in §6, which explains
that §3, 4, 5 have a completely different flavor from §6. The tools are those of semiclassical
analysis. We use a version of the pseudodifferential calculus adapted to the geometry of
locally symmetric spaces, based on Helgason’s version of the Fourier transform for these
spaces, and inspired by the work of Zelditch in the case of G = SL(2,R) [28]. We point out
the fact that an alternative proof of Theorem 1.12 is given in [2], based on more conventional
Fourier analysis and the exclusive use of the symplectic language. Sections 3, 4, 5 were
written long before the paper [2], as it seemed at first to be the most natural idea to use the
Helgason calculus. The high technicality of these sections served as a motivation to look
for an alternative presentation, and the comparison of the two approaches is a posteriori
in favor of the symplectic language. Thus, the reader might prefer to read [2] instead of
Sections 3, 4, 5. However, we feel that the two approaches have an interest of their own.

We will not repeat here the argument that leads from Theorem 1.12 to the entropy
bound Theorem 1.6; it would be an exact repetition of the argument given in [3, §2].
Let us just make one comment : in this argument, we are limited to K = 1

χmax(H)
(the

time TE = | log ~|
χmax(H)

is sometimes called the Ehrenfest time for the Hamiltonian H, and
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corresponds to the time where the approximation of the quantum flow U t by the classical
flow Φ−tH breaks down). This means that we eventually keep the Lyapunov exponents such
that χj(H) ≥ χmax(H)

2
, and explains why this restriction appears in (1.4).

2. Background regarding semisimple Lie groups

Our terminology follows Knapp [15].

2.1. Structure. Let G denote a non-compact connected simple Lie group with finite cen-
ter4. The neutral element in G will be denoted by e. We choose a Cartan involution Θ for
G, and let K < G be the Θ-fixed maximal compact subgroup. Let g = Lie(G), and let ϑ
denote the differential of Θ, giving the Cartan decomposition g = k⊕ p with k = Lie(K).
Let S = G/K be the symmetric space, with o = eK ∈ S the point with stabilizer K. We
fix a G-invariant metric on G/K: observe that the tangent space at the point o is natu-
rally identified with p, and endow it with the Killing form. For a lattice Γ < G we write
X = Γ\G and Y = Γ\G/K, the latter being a locally symmetric space of non-positive
curvature. In this paper, we shall always assume that X and Y are compact.

Fix now a maximal abelian subalgebra a ⊂ p.
We denote by aC the complexification a⊗C and by a∗ (resp. a∗C) the real dual (resp. the

complex dual) of a. For ν ∈ a∗C, we define <e(ν),=m(ν) ∈ a∗ to be the real and imaginary
parts of ν, respectively. For α ∈ a∗, set gα = {X ∈ g,∀H ∈ a : ad(H)X = α(H)X},
∆ = ∆(a : g) = {α ∈ a∗ \ {0}, gα 6= {0}} and call the latter the (restricted) roots of g with
respect to a. The subalgebra g0 is ϑ-invariant, and hence g0 = (g0 ∩ p)⊕ (g0 ∩ k). By the
maximality of a in p, we must then have g0 = a⊕m where m = Zk(a), the centralizer of a
in k.

The Killing form of g induces a standard inner product 〈., .〉 on p, and by duality on
p∗. By restriction we get an inner product on a∗ with respect to which ∆(a : g) ⊂ a∗ is
a root system. The associated Weyl group, generated by the root reflections sα, will be
denoted by W = W (a : g). This group is canonically isomorphic to NK(a)/ZK(a). In
what follows we will represent any element w of the Weyl group by a representative in
NK(a) ⊂ K (taking care to only make statements that do not depend on the choice of a
representative), and the action of w ∈ W (a : g) on a or a∗ will be given by the adjoint
representation Ad(w). The fixed-point set of any sα is a hyperplane in a∗, called a wall.
The connected components of the complement of the union of the walls are cones, called
the (open) Weyl chambers. A subset Π ⊂ ∆(a : g) will be called a system of simple roots
(or a simple system) if every root can be uniquely expressed as an integral combination of
elements of Π with either all coefficients non-negative or all coefficients non-positive. For
a simple system Π, the open cone CΠ = {ν ∈ a∗,∀α ∈ Π : 〈ν, α〉 > 0} is an (open) Weyl

4If G is semisimple our discussion remains valid, but one can even do something finer, as remarked
in [23, §5.1]. After decomposing g into simple factors ⊕g(j), and assuming that the Cartan involution, the
subalgebra a, etc. are compatible with this decomposition, one can decompose the spectral parameter ν
into its components ν(j) ∈ a(j)∗. Instead of assuming that ‖ν‖ −→ +∞ and ν

‖ν‖ has a regular limit ν∞,
one can assume the same independently for each component ν(j). This means that we do not have to
assume that all the norms ‖ν(j)‖ go to infinity at the same speed.
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chamber. The closure of an open chamber will be called a closed chamber; we will denote
in particular CΠ = {ν ∈ a∗,∀α ∈ Π : 〈ν, α〉 ≥ 0}. The Weyl group acts simply transitively
on the chambers and simple systems. The action ofW (a : g) on a∗ extends in the complex-
linear way to an action on a∗C preserving ia∗ ⊂ a∗C, and we call an element ν ∈ a∗C regular
if it is fixed by no non-trivial element of W (a : g). Since −CΠ ⊂ a∗ is a chamber, there is
a unique wl ∈ W (a : g), called the “long element”, such that Ad(wl).CΠ = −CΠ. Note that
w2

l CΠ = CΠ and hence w2
l = e. Also, wl depends on the choice of Π but we suppress this

from the notation.
Fixing a simple system Π we get a notion of positivity. We will denote by ∆+ the set of

positive roots, by ∆− = −∆+ the set of negative roots. We use ρ = 1
2

∑
α>0(dim gα)α ∈ a∗

to denote half the sum of the positive roots. For n = ⊕α>0gα and n̄ = Θn = ⊕α<0gα we
have g = n⊕ a⊕m⊕ n̄. Note that n̄ = Ad(wl).n. We also have (“Iwasawa decomposition”)
g = n⊕a⊕ k. We can therefore uniquely write every X ∈ g in the form X = Xn +Xa +Xk.
We also write H0(X) for Xa.

Let N,A,N < G be the connected subgroups corresponding to the subalgebras n, a, n̄ ⊂
g respectively, and let M = ZK(a). Then m = Lie(M), though M is not necessarily
connected. Moreover P0 = NAM is a minimal parabolic subgroup of G, with the map
N×A×M −→ P0 being a diffeomorphism. The map N×A×K −→ G is a diffeomorphism
(Iwasawa decomposition), so for g ∈ G there exists a unique H0(g) ∈ a such that g =
n exp(H0(g))k for some n ∈ N , k ∈ K. The map H0 : G −→ a is continuous; restricted to
A, it is the inverse of the exponential map.

We will use the G-equivariant identification between G/M and G/K × G/P0, given by
gM 7→ (gK, gP0) (we denote by gM ∈ G/M the class of g in G/M , and so on). The
quotient G/P0 can also be identified with K/M .

Starting from H0 we define a “Busemann function” B on G/K ×G/P0 ∼ G/M :

(2.1) B(gK, g1P0) = H0(k−1g),

where k is the K-part in the KAN decomposition of g1 (if g1 is defined modulo P0, then
k is defined modulo M). Equivalently, if gM ∈ G/M , we have

(2.2) B(gM) = a,

where g = kna is the KNA decomposition of g (if g is defined modulo M , then a is
uniquely defined and k is defined modulo M).

In G/K, a “flat” is a maximal flat totally geodesic submanifold. Every flat is of the form
{gaK, a ∈ A} for some g ∈ G. The space of flats can be naturally identified with G/MA,
or with an open dense subset of G/P0 ×G/P 0, via the G-equivariant map

gMA 7→ (gP0, gP 0)

where P 0 = MAN = wlP0w
−1
l . We will also use the following injective map from G/MA

into G/P0 ×G/P0,

(2.3) gMA 7→ (gP0, gwlP0).



QUANTUM LIMITS ON LOCALLY SYMMETRIC SPACES 13

Its image is an open dense subset of G/P0×G/P0, namely {(g1P0, g2P0), g−1
2 g1 ∈ P0wlP0}.

We recall the Bruhat decomposition G = tw∈W (a:g)P0wP0, with P0wlP0 being an open
dense subset (the “big cell”).

2.2. The universal enveloping algebra; Harish-Chandra isomorphisms. Recall
that D is the algebra of G-invariant differential operators on S. We analyze its struc-
ture by comparing it with other algebras of differential operators.

For a Lie algebra s we write sC for its complexification s ⊗R C. In particular, gC is
a complex semisimple Lie algebra. We fix a maximal abelian subalgebra b ⊂ m and let
h = a⊕b. Then hC is a Cartan subalgebra of gC, with an associated root system ∆(hC : gC)
satisfying ∆(a : g) = {α|a}α∈∆(hC:gC) \ {0}.

If sC is a complex Lie algebra, we denote by U(sC) its universal enveloping algebra; U(gC)
is isomorphic to the algebra of left-G-invariant differential operators on G with complex
coefficients [10].

There is an algebra isomorphism, called the Harish-Chandra isomorphism and described
below, between D and the algebra DW (A) of A- and W -invariant differential operators
on A. The latter is canonically isomorphic to U(aC)W , the subalgebra of U(aC) formed
of W -invariant elements. Since aC is abelian, U(aC) can be identified with the space of
polynomial functions on a∗ with complex coefficients.

The Harish-Chandra isomorphism ΓHC : D −→ DW (A) can be realized in a geometric
way as follows [11, Cor. II.5.19]. Consider the flat subspace A.o ⊂ G/K, naturally identified
with A. Fixing D ∈ D, let ∆N(D) be the translation-invariant differential operator on A
(that is, an element of U(a)) given by

(∆N(D)f) (a) = Df̃(a.o),

for a ∈ A, f ∈ C∞(A.o), and where f̃ stands for the unique N -invariant function on G/K
that coincides with f on A.o. Then, we define

ΓHC : D 7→ e−ρ◦∆N(D)◦ eρ,

remembering that ρ is half the sum of positive roots and thus can be seen as a function on
A. Note that

e−ρ◦∆N(D)◦ eρ = τρ∆N(D),

where τρ is the automorphism of U(a) defined by letting τρ(X) = X + ρ(X) for every
X ∈ a.

In what follows, we denote by Z(gC) the center of U(gC). Thus, Z(gC) is the algebra
of G-bi-invariant operators. Differentiating the action of G on S gives a map Z(gC)→ D.
The next lemma allows to compare the isomorphism ΓHC with the isomorphism γHC :
Z(gC) −→ U(hC)W (hC:gC) that is used in [23] and also bears the name of Harish-Chandra. It
is defined by γHC(z) = τρhpr(z), where pr(z) ∈ U(hC) is such that z−pr(z) ∈ U(nC)U(aC)+
U(gC)kC.

Lemma 2.1. Assume that the restriction from hC to a induces a surjection from U(hC)W (hC:gC)

to U(aC)W (thought of as functions on the respective linear spaces).
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Let D ∈ D be of degree d̄. Then there exists Z ∈ Z(gC) such that Z and D coincide on
(right-)K-invariant functions, and such that

Z − τ−ρΓHC(D) ∈ U(nC)U(aC)d̄−2 + U(gC)kC.

Remark 2.2. The assumption is automatically satisfied when G is split. It is also satisfied
when G/K is a classical symmetric space, that is when G is a classical group [11, p. 341].
In fact the lemma itself is Proposition II.5.32 of [11], with the difference of degree between
Z and τ−ρΓHC(D) made precise.

Proof. Let D ∈ D be of degree d̄, so that ΓHC(D) ∈ U(aC)W is a polynomial of degree
≤ d̄. By assumption, we can extend ΓHC(D) to an element of U(hC)W (hC:gC). Consider
Z1 = γ−1

HCΓHC(D). It is shown in [23, Cor. 4.4] that

Z1 − τ−ρΓHC(D) ∈ U(nC)U(aC)d̄−2 + U(gC)kC.

It is not completely clear that Z1 and D coincide on K-invariant functions, but the above
formula shows that ΓHC(Z1) − ΓHC(D) is of degree ≤ d̄ − 2, and hence that Z1 − D has
degree at most d̄− 2.

By descending induction on the degree of ΓHC(Z) − ΓHC(D), we see that we can thus
construct Z ∈ Z(gC) such that

Z − τ−ρΓHC(D) ∈ U(nC)U(aC)d̄−2 + U(gC)kC

and such that ΓHC(Z) − ΓHC(D) = 0 (which precisely means that Z and D coincide on
right-K-invariant functions). �

2.3. The Helgason-Fourier transform. In (2.1) we introduced the “Busemann function”
B. For any θ ∈ G/P0, ν ∈ a∗C, the function

(2.4) eθ,ν : x ∈ G/K 7→ e(ρ+ν)B(x,θ)

is a joint eigenfunction of D, satisfying
Deθ,ν = ΓHC(D)(ν)eθ,ν ,

for every D ∈ D. Here we have seen ΓHC(D) as a W -invariant polynomial on a∗C.
In fact for any joint eigenfunction ψ of D there exists ν ∈ a∗C such that

Dψ = ΓHC(D)(ν)ψ

for every D ∈ D [11, Ch. II Thm. 5.18, Ch. III Lem. 3.11]. The parameter ν is called the
“spectral parameter” of ψ; it is uniquely determined up to the action of W .

The Helgason–Fourier transform gives the spectral decomposition of a function u ∈
C∞c (S) on the “basis” (eθ,ν) of eigenfunctions of D. It is defined as

(2.5) Fu(θ, λ) =

∫
S

u(x)eθ,−iλ(x)dx,

(λ ∈ a∗, θ ∈ G/P0). It has an inversion formula:

u(x) =

∫
θ∈G/P0,λ∈CΠ

Fu(θ, λ)eθ,iλ(x)dθ|c(λ)|−2dλ.
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Here dθ denotes the normalized K-invariant measure on G/P0 ∼ K/M . The function c
is the so-called Harish-Chandra function, given by the Gindikin-Karpelevic formula [11,
Thm. 6.14, p. 447]. The Plancherel formula reads

‖u‖2
L2(S) =

∫
θ∈G/P0,λ∈CΠ

|Fu(θ, λ)|2dθ|c(λ)|−2dλ.

Remark 2.3. For D ∈ D, D acts on u by

Du(x) =

∫
θ∈G/P0,λ∈CΠ

ΓHC(D)(iλ)Fu(θ, λ)eθ,iλ(x)dθ|c(λ)|−2dλ

3. Quantization and pseudodifferential operators

In this section we develop a pseudodifferential calculus for the symmetric space S, in-
spired by the work of Zelditch [28] and based on the Helgason-Fourier transform, in other
words, on the spectral decomposition of the algebra D. We do not push the analysis as far
as possible, but just state the facts we need for our purposes; for a more detailed analysis
we refer to Michael Schröder’s thesis [22].

3.1. Semiclassical Helgason transform. We now introduce a parameter ~. In the se-
quel it will tend to 0 at the same speed as ‖ν‖−1; the reader may identify the two. The
parameter will be assumed to go to infinity in the conditions of §1.2, the limit ν∞ assumed
to be regular.

From now on we rescale the parameter space a∗ of the Helgason–Fourier transform by
~. We define the semiclassical Fourier transform, F~u(θ, λ) = Fu(θ, ~−1λ). Thus, for
u ∈ C∞c (S), we rewrite equation (2.5) as:

F~u(θ, λ) =

∫
S

u(x)eθ,−i~−1λ(x)dx

(λ ∈ a∗, θ ∈ G/P0). The inversion formula now reads

u(x) =

∫
θ∈G/P0,λ∈CΠ

F~u(θ, λ)eθ,i~−1λ(x)dθ|c~(λ)|−2dλ,

with the “semiclassical Harish-Chandra c-function”,

|c~(λ)|−2 = ~−r|c(~−1λ)|−2.

Remark 3.1. By the Gindikin-Karpelevic formula [11, Thm. 6.14, p. 447], we have

|c(~−1λ)|−2 � ~− dim n

uniformly for λ in a compact subset of CΠ, and thus

|c~(λ)|−2 � ~−d

where d = dim a + dim n = dim(G/K).
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We also adjust the Plancherel formula to

(3.1) ‖u‖2
L2(S) =

∫
|F~u(θ, λ)|2dθ|c~(λ)|−2dλ.

From now on, we write for θ ∈ G/P0 and λ ∈ a∗,

e(θ, λ) = eθ,i~−1λ

and for x ∈ G/K, θ ∈ G/P0 and λ ∈ a∗

(3.2) e(x, θ, λ) = eθ,i~−1λ(x).

Note that the ~-scaling of λ is implicit in this notation. For gM ∈ G/M and λ ∈ a∗, we
write

(3.3) E(gM, λ) = e(gK, gP0, λ)

where gK ∈ G/K and gP0 ∈ G/P0 are the classes of g respectively in G/K and G/P0. This
means that we use the identification G/M ∼ G/K × G/P0 to see the couple of variables
(x, θ) in (3.2) as one variable in G/M .

In the calculations of Section 5, we will sometimes write e(g, g′, λ) (g, g′ ∈ G, λ ∈ a∗)
instead of e(gK, g′P0, λ); and similarly, E(g, λ) (g ∈ G, λ ∈ a∗) instead of E(gM, λ).

3.2. Pseudodifferential calculus on Y. The analogue of left-quantization on Rn in
our setting associates to a function a on G/K × G/P0 × CΠ the operator which acts on
u ∈ C∞c (G/K) by

(3.4) OpL~ (a) u(x) =

∫
θ∈G/P0,λ∈CΠ

a(x, θ, λ)F~u(θ, λ)e(x, θ, λ)dθ|c~(λ)|−2dλ .

A similar formula was introduced by Zelditch in [28] (with ~ = 1) in the case G = SL(2,R);
it is shown there that a 7→ OpL~ (a) is G-equivariant. The operator OpL~ (a) can be defined
if a belongs to a nice class of functions, and Zelditch showed that one thus gets a nice
pseudodifferential calculus. We give our regularity assumptions on a below. In any case,
we shall always require a to be of the form b ◦ π, where b is a function on T ∗(G/K) and
π is the map defined in (1.1); besides, we will assume that b is supported away from the
singular G-orbits in T ∗(G/K) (which means that a is supported away from the walls in
CΠ). This allows to identify a in a natural way with a function defined on (a subset of)
T ∗(G/K).

We define symbols of order m on T ∗(G/K) (independent of ~) in the usual fashion :

Sm(G/K) :=
{
b ∈ C∞(T ∗(G/K))

∣∣
for every compact F ⊂ G/K, for every α, β, there exists C such that

|Dα
zD

β
ξ b(x, ξ))| ≤ C(1 + |ξ|)m−|β| for all x ∈ F, ξ ∈ T ∗x (G/K)

}
.
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We also define semiclassical symbols of order m and degree l — thus called because they
depend on the parameter ~ :

(3.5) Sm,l(G/K) = {b~(x, ξ) = ~l
∞∑
j=0

~jbj(x, ξ), bj ∈ Sm−j}.

This means that b~(x, ξ) has an asymptotic expansion in powers of ~, in the sense that

a− ~l
N−1∑
j=0

~jaj ∈ ~l+NSm−N

for all N , uniformly in ~. In this context, we denote S−∞,+∞ = ∩m≥0S
−m,m.

Remark 3.2. As indicated above, we define symbols on G/K×G/P0×CΠ by transporting
the standard definition on T ∗(G/K) through the map π (1.1). We will exclusively consider
the case when b vanishes in a fixed neighbourhood of the singular G-orbits in T ∗(G/K). In
other words, b can be identified (through (1.1)) with a function on G/K×G/P0×CΠ, that
vanishes in a neighbourhood of G/K × G/P0 × ∂CΠ. While this restriction was harmless
in the original case G = SL(2,R) treated by Zelditch, here it constitutes a restriction on
the scope of our result. In particular we need to assume that Λ∞ is regular in our main
theorem 1.6. There would be serious technical difficulties if one wanted to use the formula
(3.4) to study the semiclassical limit in a singular direction. In particular one would need
to cope with the singularity of the c-function on the walls. Our aim is not to make an
exhaustive study of the pseudodifferential calculus defined by (3.4), but only to introduce
a class of symbols that works for our purposes.

We now project this construction down to functions on Y. Here we do not follow
Zelditch, who defined the action of Op~(a) on Γ-invariant functions in a global manner,
using the Helgason-Fourier decomposition of such functions. We continue to work locally,
which is less elegant but sufficient for our purposes.

We identify the functions on the quotient Y = Γ\G/K (respectively T ∗Y) with the Γ–
invariant functions on S = G/K (resp. T ∗(G/K)). If Γ has torsion, we shall use “smooth
function on Y” to mean a Γ-invariant smooth function on S. For a compactly supported
function χ on S, we denote ΠΓχ(x) =

∑
γ χ(γ.x). This sum is finite for any x ∈ S, and

hence defines a function on Y.
On S, we fix once and for all a positive, smooth and compactly supported function χ

such that
∑

γ∈Γ χ(γ.x) ≡ 1. We call such a function a “smooth fundamental cutoff” or
a “smooth fundamental domain”. Here we have used the assumption that Y is compact.
We also introduce χ̃ ∈ C∞c (S) which is identically 1 on the support of χ. We define the
quantization of a ∈ Sm,k ∩ C∞(T ∗Y) (supported away from singular G-orbits) to act on
u ∈ C∞(Y) by:

(3.6) Op~(a)u = ΠΓχ̃OpL~ (a)χu ∈ C∞(Y).

We note that for any D ∈ D and for any smooth Γ-invariant u on S we have

(3.7) ΠΓ (χ̃D (χu)) = ΠΓD (χu) = DΠΓχu = Du.
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Thus, (3.7) and Remark 2.3 imply that the formula Op~(H) = Γ−1
HC [H(−i~•)] still holds

on the quotient (for H ∈ H).
Although we will only need it in a marginal way, one can note that our operators belong

to the usual classes of pseudodifferential operators, defined using the euclidean Fourier
transform in local coordinates. This can be checked by testing the action of Op~(a) on
a local plane wave of the form χ(x)e

iξ.x
~ in local euclidean coordinates and applying the

stationary phase method.

3.3. Action of Op~(H) on WKB states. Fix a Hamiltonian H ∈ H. The letter H will
stand for several different objects which are canonically related: a function H on T ∗(G/K),
a W -invariant polynomial function on a∗, and an element of U(a)W .

In the following lemma, all functions on G/K and G/M are lifted to functions on G,
and in that sense we can apply to them any differential operator on G. If b is a function
defined on G/M = G/K ×G/P0, and θ is an element of G/P0, we denote bθ the function
defined on G/K by bθ(x) = b(x, θ).

Lemma 3.3. Let H ∈ H be of degree d̄, and let b be a smooth function on G/M . Fix
λ ∈ a∗. Then, there exist Dm ∈ U(nC)U(aC) of degree ≤ m (depending on λ and on H)
such that for any θ ∈ G/P0, for any x ∈ G/K,

Op~(H)·(bθe(θ, λ)) (x) =

(
H(λ)b(x, θ)− i~ (dH(λ) · b) (x, θ) +

d̄∑
m=2

~mDmb(x, θ)

)
e(x, θ, λ).

On the right H is seen as a function on a∗, so its differential dH(λ) is an element of a, and
it acts as a differential operator of order 1 on G/M . Each operator Dm actually defines a
differential operator on G/M .

Proof. By linearity, it is enough to treat the case where H ∈ U(a)W is homogeneous of
degree d̄. In this case, we have

Op~(H) = ~d̄ Op1(H) = ~d̄Γ−1
HC [H(−i•)].

Consider the operator Z related to D = Op1(H) by Lemma 2.1. We have
Op1(H) · (bθe(θ, λ)) (x) = Z · (bθ.e(θ, λ)) (x).

In what follows we consider the point (x, θ) ∈ G/K ×G/P0. We choose a representative
of θ in K (θ is then defined moduloM , but the calculations do not depend on the choice of
this representative). We write x = θnaK. This means that the pair (x, θ) ∈ G/K ×G/P0

corresponds to the point θnaM ∈ G/M . All functions on G/K and G/M are lifted to
functions on G, and in that sense we can apply to them any differential operator on G.

By Lemma 2.1, we have

Z·(bθe(θ, λ)) (x) = Z·(bθe(θ, λ)) (θna) = τ−ρH(−i•)·(bθ.e(θ, λ)) (θna)+D·(bθ.e(θ, λ)) (θna)

where D ∈ U(nC)U(aC)d̄−2 and τ−ρH(−i•) is used as an element of U(aC) ⊂ U(gC).
We use the identity

e(θnag, θ, λ) = e(ρ+i~−1λ)B(θna)e(ρ+i~−1λ)H0(g),
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(valid for any g ∈ NA) where H0 is defined in §2.1 and B is defined in (2.1). It shows that,
for any D ∈ U(nC)U(aC), the term D[e(θ, λ)](θna) is of the form Ce(θna, θ, λ), where the
prefactor C depends on D and ~−1λ but not on θ. This prefactor C is in fact polynomial
in ~−1λ.

This results in an expression :

Z · (bθe(θ, λ)) (x) = Z · (bθe(θ, λ)) (θna) = τ−ρH(−i•) · (bθe(θ, λ)) (θna)

+

[
d̄−2∑
m=0

~−mDd̄−mb(θna)

]
e(θna, θ, λ)

where Dd̄−m ∈ U(nC)U(aC) depends only on λ and H.
A term in ~−m can only arise if e(θ, λ) is differentiated m times; but Z being of degree d̄,

we see then that Dd̄−m can be of order d̄−m at most. The last term, when multiplied by
~d̄, becomes

∑d̄
m=2 ~mDmb. We do not know a priori if the function Dd̄−mb (defined on G)

isM -invariant, but the sum
∑d̄−2

m=0 ~−mDd̄−mb necessarily is anM -invariant function on G,
since all the other terms are. Since ~ is arbitrary, we see that each Dm must necessarily
send an M -invariant function to an M -invariant function.

Finally, we write
τ−ρH(−i•) · (bθe(θ, λ)) (θna) =

(
H(−i•) ·

(
bθe(θ, i~−1λ− ρ)

))
e(θna, θ, 0)

= (τi~−1λH(−i•) · bθ) e(θna, θ, λ).

When multiplying by ~d̄, and using the Taylor expansion of H at λ, we have

~d̄τi~−1λH(−i•) = H(λ)− i~dH(λ) +
d̄∑

m=2

(−i~)m

m!
d(m)H(λ).

�

Definition 3.4. We will refer to a function of the form x 7→ bθ(x)e(x, θ, λ) as a WKB
state, using the language of semiclassical analysis.
3.4. Definition of the symplectic lift. Let ψ be a D-eigenfunction, of spectral param-
eter ν. With the notation of Section 2.2, the state ψ satisfies
(3.8) Op~(H)ψ = H(−i~ν)ψ

for all H ∈ H.
To ψ we attach a distribution µ̃ψ on T ∗Y: for a ∈ C∞c (T ∗Y) set

µ̃ψ(a) = 〈ψ,Op~(a)ψ〉L2(Y)

As described in Section 1 we are trying to classify the weak-* limit points of the sequence
of distributions (µ̃ψ) as ν →∞. We fix such a limit (“semiclassical measure”) µ and a
sequence (ψj)j∈N of eigenfunctions such that the corresponding sequence (µ̃ψj) converges
weakly-∗ to µ. We assume that the spectral parameters νj go to infinity in the conditions
of paragraph 1.2, the limit ν∞ assumed to be regular. We let ~ = ~j = ‖νj‖−1. Writing
Λj = ~j=m(νj) we have Λj −→ Λ∞ = =m(ν∞) = −iν∞ ∈ a∗.
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3.5. Other miscellaneous notations. From now on, we fix a Hamiltonian H ∈ H. The
letterH will stand for several different objects that are canonically related: a functionH on
T ∗(G/K) (G-invariant and polynomial in the fibers of the projection T ∗(G/K) −→ G/K),
a W -invariant polynomial function on a∗, an element of U(a)W .

For any Λ ∈ a∗/W , we denote XΛ = dH(Λ) ∈ a. Since Λ is only defined up to an
element of W , so is XΛ. One can assume that α(XΛ∞) ≥ 0 for all α ∈ ∆+. For simplicity
(and without loss of generality), we will also assume that Λ∞ belongs to the Weyl chamber
CΠ defined in §2.1.

We denote by d the dimension of G/K, r the rank, and J the dimension of N (so that
d = r + J). Let J̃ be the number of roots. We index the positive roots α1, . . . , αJ̃ in such
a way that α1(XΛ∞) ≤ α2(XΛ∞) ≤ . . . ≤ αJ̃(XΛ∞). With our previous notation, we have
αJ̃(XΛ∞) = χmax(H).

We wish to prove Theorem 1.12 and thus fix some K > 0. We denote by j0 = j0(XΛ∞)
the largest index j such that αj(XΛ∞) < 1

2K .
With wl ∈ W the long element, we set: nfast = ⊕j>j0gαj , nslow = ⊕j≤j0gαj , n̄fast =
⊕j>j0gwl·αj , n̄slow = ⊕j≤j0gwl·αj J0 = dim nslow =

∑
j≤j0 mαj . The spaces nfast and n̄fast

are subalgebras, in fact ideals, in n, n̄ respectively; they generate subgroups Nfast, N fast
that are normal in N,N respectively. We note that the definition of Nfast, N fast depends
on XΛ∞ and on K. The action of e−tXΛ∞ by conjugacy on the group N is expanding for
t > 0. The group Nfast corresponds to the directions for which the expansion is stronger
than ~−1/2 for t = K| log ~|. In the same way, the action of etXwl.Λ∞ by conjugacy on the
group N is contracting for t > 0. The group N fast corresponds to the directions for which
the contraction is stronger than ~−1/2 for t = K| log ~| (this property is used in §5.5).

4. The WKB Ansatz

We now start the proof of Theorem 1.12. We first describe how the operator P̂ φ
ω (1.9)

acts on the WKB states introduced in Definition 3.4. In Section 5, we will use the fact
that these states form a (generalized) basis to estimate the norm of the operator.

4.1. Goal of this section. Fix a sequence ω = (ω−T , · · · , ω−1, ω0, · · ·ωT−1), of length 2T
such that Tη ≤ K| log ~|. Theorem 1.12 requires us to estimate the norm of the operator
P̂ φ
ω acting on L2(Y). This operator is the same as U−(T−1)ηP where

(4.1) P = P̂ωT−1
Uη . . . UηP̂ 1/2

ω0
Op~(φ)P̂ 1/2

ω0
Uη . . . P̂ω−T+1

UηP̂ω−T ,

Recall that
U t = exp(i~−1tOp~(H))

is the propagator of the “Schrödinger equation” generated by Op~(H), and that η > 0 is a
fixed time step. In particular, U t is unitary.

In what follows we estimate the norm of P . To do so, we first describe how P acts on
our Fourier basis e(θ, λ), using the technique of WKB expansion (§4.2). Then, we use the
Cotlar-Stein lemma (§5) to estimate as precisely as possible the norm of P .
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The sequence ω−T , . . . , ωT−1 is fixed throughout this section. Instead of working with
functions on Y we work with functions on G/K that are Γ-invariant. For instance, the
operator P̂ω appearing in (4.1) is the multiplication by the Γ–invariant function Pω. We
assume that each connected component of the support of Pω has diameter smaller than ρ

4
where ρ is the injectivity radius of Y. Let Qω be a function in C∞c (S) such that ΠΓQω = Pω
and such that the support of Qω has diameter ≤ ρ

4
. We denote by Q̂ω the corresponding

multiplication operator. Finally we introduce Q′ω in C∞c (S) which is identically 1 on the
support of Qω and supported in a set of diameter ρ

2
.

We decompose

(4.2) P = S∗Uφ

where

(4.3) Uφ = Op~(φ)P̂ 1/2
ω0
UηP̂ω−1 . . . U

ηP̂ω−T+1
UηP̂ω−T

and

(4.4) S = P̂ 1/2
ω0

. . . U−ηP̂ωT−2
U−ηP̂ωT−1

.

4.2. The WKB Ansatz for the Schrödinger propagator . We recall some standard
calculations, essentially done in [3]. Here the formulae take a special form, due to the fact
that the functions e(θ, λ) are eigenfunctions of Op~(H).

On S, let us try to solve

−i~∂ũ
∂t

= Op~(H)ũ,

in other words
ũ(t) = U tũ(0),

with initial condition the WKB state ũ(0, x) = a~(0, x)e(x, θ, λ). We only consider t ≥ 0.
We assume that a~ is compactly supported and has an asymptotic expansion in all the C l

norms as a~ ∼
∑

m≥0 ~mam. We look for approximate solution up to order ~M̃ , in the form
of an Ansatz

u(t, x) = e
itH(λ)

~ e(x, θ, λ)a~(t, x) = e
itH(λ)

~ e(x, θ, λ)
M̃−1∑
m=0

~mam(t, x).

Let us rather write

(4.5) u(t, x) = e
itH(λ)

~ e(x, θ, λ)a~(t, x, θ, λ) = e
itH(λ)

~ e(x, θ, λ)
M̃−1∑
m=0

~mam(t, x, θ, λ)

to keep track of the dependence on θ and λ; the pair (x, θ) then represents an element of
G/K × G/P0 = G/M , and am can be seen as a function on R+ × G/M × a∗. Identifying
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powers of ~, and using Lemma 3.3, we find the conditions:
(4.6)

∂a0

∂t
(t, (x, θ), λ) = (dH(λ) · a0) (t, (x, θ), λ) (0-th transport equation)

∂am
∂t

(t, (x, θ), λ) = (dH(λ) · am) (t, (x, θ), λ) + i
∑d̄

l=2

∑
l+k=m+1 Dlak(t, (x, θ), λ)

(m-th transport equation) .

The equations (4.6) can be solved explicitly by

a0(t, (x, θ), λ) = a0(0, (x, θ)etXλ , λ),

in other words
a0(t) = R(etXλ)a0(0),

where R here denotes the action of A on functions on G/M by right translation, and
Xλ = dH(λ). For m ≥ 1,

am(t) = R(etXλ)am(0) +

∫ t

0

R(e(t−s)Xλ)

(
i

d̄∑
l=2

∑
l+k=m+1

Dlak(s)

)
ds.

If we now define u by (4.5), u solves

−i~∂u
∂t

= Op~(H)u− e
itH(λ)

~ e(θ, λ)

 d̄∑
l=2

M̃−1∑
m=M̃+1−l

~m+lDlam(t, ·, θ, λ)


and thus

‖u(t)− U tu(0)‖L2(S) ≤
∫ t

0

 d̄∑
l=2

M̃−1∑
m=M̃+1−l

~m+l−1‖Dlam(s)‖L2(S)

 ds
≤ te(2M̃+d̄−2)tmaxα∈∆+ α(Xλ)−

 d̄∑
l=2

M̃−1∑
m=M̃+1−l

~m+l−1

m∑
j=0

‖am−j(0)‖C2j+l


≤ Ct~M̃e(2M̃+d̄−2)tmaxα∈∆+ α(Xλ)−

M̃−1∑
m=0

‖am(0)‖C2(M̃−m)+d̄−2

 .
Since Dm belongs to U(nC)U(aC), in the co-ordinates (x, θ) it only involves differentiation
with respect to x. We also recall that Dm is of order m. To write the last inequalities we
have used the following estimate on the flow R(etXλ) (for t ≥ 0) :∥∥∥∥ dNdxN a((x, θ)etXλ)

∥∥∥∥ ≤ e−tN minα∈∆+ α(Xλ)

∥∥∥∥ dNdxN a(x, θ)

∥∥∥∥
and we have denoted y− = max(−y, 0) for y ∈ R.
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Remark 4.1. This calculation will later on be used only for λ ∈ supp(φ), where φ is the
cut-off function in Theorem 1.12. By assumption φ is supported on a neighbourhood of
size ε of Λ∞, and by the conventions chosen in §3.5, we have α(Λ∞) ≥ 0 for α ∈ ∆+. We
thus have α(Xλ) ≥ −ε for all α ∈ ∆+ and λ ∈ supp(φ). We see that our approximation
method makes sense if

(4.7) ~M̃e(2M̃+d̄−2)tε � 1.

The integer M̃ can be taken arbitrarily large, it will be fixed at the end of this Section
4 (depending on the K for which we want to prove Theorem 1.12) and t will be of order
K| log ~|. We can choose ε (depending on K) such that condition (4.7) holds : take ε such
that 1− d̄Kε > 0.

Remark 4.2. On the quotient Y = Γ\S, the same method allows to find an approximate
solution of U tΠΓu(0) in the form ΠΓu(t) (where ΠΓ is the periodization operator used in
Section 3.2). The same bound

(4.8) ‖ΠΓu(t)− U tΠΓu(0)‖L2(Y) ≤ Ct~M̃eεt(2M̃+d̄−2)

M̃−1∑
m=0

‖am(0)‖C2(M̃−m)+d̄−2


holds, provided that the projection S −→ Y is injective when restricted to the support
of a~(t). If the support of a~(0) has diameter strictly smaller than the injectivity radius
of Y, this condition will be satisfied in a time interval t ∈ [0, T0] with T0 > 0. The time
T0 depend only on λ (and is uniform for λ in the support of φ) and, of course, on the
Hamiltonian H. In the statement of Theorem 1.12, η being “small enough” means that we
must take η < T0.

We can iterate the previous WKB construction T times to get the following description
of the action of Uφ on ΠΓQ

′
ω−T

e(θ, λ) (the induction argument to control the remainders
at each step is the same as in [3] and we will not repeat it here):

Proposition 4.3.
(4.9)
UφΠΓQ

′
ω−T

e(θ, λ) = ΠΓ

[
e
iTηH(λ)

~ e(θ, λ)A(T )(•, θ, λ)
]

+OL2(Y)(~M̃)‖Q′ω−T e(θ, λ)‖L2(S)

where

(4.10) A(T )(x, θ, λ) =
M̃−1∑
m=0

~ma(T )
m (x, θ, λ).

The function a(T )
0 (x, θ, λ) is equal to

(4.11) a
(T )
0 (x, θ, λ) = φ(λ)P 1/2

ω0
(x)Pω−1((x, θ)eηXλ)Pω−2((x, θ)e2ηXλ) . . . Qω−T ((x, θ)eTηXλ),

where we have lifted the functions Pω (originally defined on G/K) to G/M = G/K×G/P0.
The functions a(T )

m have the same support as a(T )
0 . Moreover, if we consider a(T )

m as a
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function of (x, θ), that is, as a function on G/M , we have the following bound

‖Z`
αa

(T )
m ‖ ≤ Cm,`,Zα(T ) sup

j=0,...T
{e−(`+2m)jη α(Xλ)}

if Zα belongs to gα. The prefactor Cm,`,Zα(T ) is a polynomial in T .

From (4.11), we see that we only need to take into account the energy parameters λ in
the support of φ, hence ε-close to Λ∞. In particular, with the conventions of §3.5, we have
α(XΛ∞) ≥ 0 for α ∈ ∆+, and α(Xλ) ≥ −ε. Thus, the last bound of the proposition reads

‖Z`
αa

(T )
m ‖ ≤ Cm,`,Zα(T )e(`+2m)Tη ε

for α ∈ ∆+.
We chose η (the time step) small enough to ensure the following: there exists γ =

γω−T ,...,ω0 ∈ Γ (independent of θ or λ) such that
(4.12)
a

(T )
0 (x, θ, λ) = φ(λ)Q1/2

ω0
◦γ −1(x)Pω−1((x, θ)eηXλ)Pω−2((x, θ)e2ηXλ) . . . Qω−T ((x, θ)eTηXλ).

This means that the function a(T )
0 (•, θ, λ) is supported in a single connected component of

the support of P 1/2
ω0 .

We will also use the following variant:

Proposition 4.4. Let γ = γω−T ,...,ω0.

Uφ(Q
′

ω−T
◦γ e(θ, λ)) = e

iTηH(λ)
~ e(θ, λ)(x)A(T )◦γ (x, θ, λ) +O(~M̃)‖Q′ω−T◦γ e(θ, λ)‖L2(S)

where

A(T )(x, θ, λ) =
M̃−1∑
m=0

~ma(T )
m (x, θ, λ).

Remark 4.5. For the operator S (4.4), analogous results can be obtained if we replace
everywhere λ by wl · λ, η by −η, and the label ω−j by ω+j.

Remark 4.6. Let u, v ∈ L2(Y). We explain how the previous Ansatz can be used to
estimate the scalar product 〈v,Uφu〉L2(Y) (up to a small error). This is done by decomposing
u and v, locally, into a combination of the functions e(θ, λ) (using the Helgason-Fourier
transform), and inputting our Ansatz into this decomposition.

In more detail, we note that Pω−T = Pω−TΠΓQ
′2
ω−T

, so that Uφu = UφΠΓQ
′2
ω−T

u. We use
the Helgason-Fourier decomposition to write

Q
′2
ω−T

u(x) = Q′ω−T (x)

∫
θ∈G/P0,λ∈CΠ

F~

(
Q′ω−Tu

)
(θ, λ)e(θ, λ)(x)dθ|c~(λ)|−2dλ.

Applying Cauchy-Schwarz, the Plancherel formula (3.1), and the asymptotics of the c-
function (Remark 3.1), we note that∫

φ(λ)6=0

∣∣∣F~

(
Q′ω−Tu

)
(θ, λ)

∣∣∣ dθ|c~(λ)|−2dλ = O(~−d/2)‖u‖L2(Y).
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We write

(4.13) 〈v,Uφu〉L2(Y) =
〈
v,UφΠΓQ

′2
ω−T

u
〉
L2(Y)

=

∫
φ(λ)6=0

F~

(
Q′ω−Tu

)
(θ, λ)

〈
v,UφΠΓQ

′
ω−T

e(θ, λ)
〉
dθ|c~(λ)|−2dλ+O(~∞)‖u‖L2(Y)‖v‖L2(Y).

We now use Proposition 4.3 to replace Uφ by the Ansatz,〈
v,UφΠΓQ

′
ω−T

e(θ, λ)
〉
L2(Y)

=
〈
v, e

iTηH(λ)
~ e(θ, λ) A(T )(•, θ, λ)

〉
L2(S)

+O(~M̃)‖v‖L2(Y)

=
〈
Q′ω0
◦γ −1 . v, e

iTηH(λ)
~ e(θ, λ) A(T )(•, θ, λ)

〉
L2(S)

+O(~M̃)‖v‖L2(Y)

=
〈
Q′ω0

v, e
iTηH(λ)

~ e(θ, λ) ◦γ A(T )(γ•, θ, λ)
〉
L2(S)

+O(~M̃)‖v‖L2(Y)

where γ = γω−T ,...,ω0 is the element of Γ appearing in (4.12). Thus,

(4.14)

〈v,Uφu〉L2(Y) =

∫
φ(λ)6=0

F~

(
Q′ω−Tu

)
(θ, λ)

〈
Q′ω0

v, e
iTηH(λ)

~ e(θ, λ) ◦γ A(T )(γ•, θ, λ)
〉
L2(S)

dθ|c~(λ)|−2dλ

+O(~M̃−d/2)‖v‖L2(Y)‖u‖L2(Y).

In this last line we see that replacing the exact expression of Uφ by the Ansatz induces
an error of O(~M̃−d/2)‖v‖L2(Y)‖u‖L2(Y). We will take M̃ very large, depending on the
constant K in Theorem 1.12, so that the error O(~M̃−d/2) is negligible compared to the
bound announced in the theorem.

5. The Cotlar–Stein argument.

We now use the previous approximations of Uφ (4.3) and S (4.4) to estimate the norm of
P (4.1). This is done in a much subtler manner than in [1, 3], because we want to eliminate
the slowly expanding/contracting directions.

5.1. The Cotlar-Stein lemma.

Lemma 5.1. Let E,F be two Hilbert spaces. Let (An) ∈ L(E,F ) be a countable family of
bounded linear operators from E to F . Assume that for some R > 0 we have

sup
n

∑
`

‖A∗nA`‖
1
2 ≤ R

and
sup
n

∑
`

‖AnA∗`‖
1
2 ≤ R

Then A =
∑

nAn converges strongly and A is a bounded operator with ‖A‖ ≤ R.

We refer for instance to [7] for the proof.
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5.2. A non-stationary phase lemma. Let Ω be an open set in a smooth manifold,
and consider a vector field Z, a smooth function J and a measure M, all three defined
on Ω, with the property that for every smooth compactly supported function f one has∫

Ω
(Zf)dM =

∫
Ω
fJdM.

We require asymptotics for integrals of the form

(5.1) I~ =

∫
Ω

e
iS(x)

~ a(x)dM(x) ,

where S, a are smooth functions on Ω, with a compactly supported.
The following lemma is a variant of integration by parts.

Lemma 5.2. Let S ∈ C∞(Ω,R) and a ∈ C∞c (Ω). Assume that ZS does not vanish, and
let DZ be the operator

DZa = Z
( a

ZS

)
− aJ

ZS
.

Then, with I~ as in (5.1) above, we have

I~ = i~
∫
e
iS(x)

~ DZa(x)dM(x) ,

and hence (iterating n times),

I~ = (i~)n
∫
e
iS(x)

~ Dn
Za(x)dM(x),

where Dn
Z has the form

Dn
Za =

∑
m≥n,k+m≤2n,

∑
lj≤n

Jk,(lj),m
ZkaZ l1S . . . Z lrS

(ZS)m

for some smooth functions Jk,(lj),m(x) which only depend on Z, J,M but not on a or S.

5.3. Study of several phase functions. In this paragraph we study the critical points
of several functions; this will be useful when applying the stationary phase method.

5.3.1. Sum of two Helgason phase functions. We refer to §2.1 for the notation pertaining
to the structure of the group G, and in particular for the definition of the function H0.

Proposition 5.3. (i) Let g1P0, g2P0 ∈ G/P0. Let λ, ν ∈ CΠ be two elements of the closed
nonnegative Weyl chamber. Consider the function on G/K,

(5.2) gK 7→ λ.H0(g−1
1 gK) + ν.H0(g−1

2 gK).

Then, this map has critical points if and only if ν = −Ad(wl).λ.
(ii) Let λ, ν ∈ CΠ be two (regular) elements of the positive Weyl chamber. Let g1P0, g2P0 ∈

G/P0, and assume that g−1
1 g2 ∈ P0wlP0 (we don’t assume here that the conclusion of (i) is

satisfied). Write g−1
1 g2 = b1wlb2 with b1, b2 ∈ P0.

Then, the set of critical points for variations of the form

t 7→ λ.H0(etXg−1
1 gK) + ν.H0(etXg−1

2 gK),
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with X ∈ n is precisely {gK, g ∈ g1b1A}. Moreover, these critical points are non-degenerate.

Remark 5.4. The set of critical points in (ii) is {gK, g ∈ g1P0, gwl ∈ g2P0}, that is, the
flat in G/K determined by the two points g1P0, g2P0 by (2.3).

Proof. (i) It is enough to consider the case g1 = e. By the Bruhat decomposition, we know
that there exists a unique w ∈ W such that g2 ∈ P0wP0, that is, g2 = b1wb2 for some
b1, b2 ∈ P0. The map (5.2) has the same critical points as the map

(5.3) gK 7→ λ.H0(gK) + ν.H0(w−1b−1
1 gK),

and they are the images under gK 7→ b1gK of the critical points of

(5.4) gK 7→ λ.H0(gK) + ν.H0(w−1gK).

For X ∈ a the derivative at t = 0 of

(5.5) t 7→ λ.H0(etXgK) + ν.H0(w−1etXgK)

is λ(X) + ν(Ad(w−1)X). Thus, for the map (5.4) to have critical points, we must have

λ(X) + ν(Ad(w−1)X) = 0

for every X ∈ a. Letting X vary over the dual basis to a positive basis of a∗, we see
that ν = −Ad(w).λ is in the nonnegative Weyl chamber, and this is only possible if
ν = −Ad(wl).λ where wl is the long element of the Weyl group (this does not necessarily
mean that w = wl if λ is not regular).

(ii) Here we assume that ν and λ are regular, and that we are in the “generic” case where
g−1

1 g2 ∈ P0wlP0. Starting from (5.4), we now consider variations of the form

(5.6) t 7→ λ.H0(etXgK) + ν.H0(w−1
l etXgK)

forX ∈ n. The term λ.H0(etXgK) is constant, and it remains to deal with ν.H0(w−1
l etXgK).

Write g = wlanK, n ∈ N, a ∈ A, and denote Y = Ad(wl).X ∈ n̄, Y ′ = Ad(a−1)Y . We
have

ν.H0(w−1
l etXgK) = ν.H0(etY anK) = ν(a) + ν.H0(etY

′
nK) = ν(a) + ν.H0(n−1etY

′
nK).

Hence
d

dt
ν.H0(etY anK) = ν.H0(Ad(n−1)Y ′).

We see that the set of critical points of (5.6) is the set of those points gK, with g = wlanK
such that n satisfies ν.H0(Ad(n−1)Y ′) = 0 for all Y ′ ∈ n̄. Since ν is regular, one can check
that this implies n = e. This proves the first assertion of (ii).

Finally, assume that we are at a critical point, that is, gK = aK in (5.6). We calculate
the second derivative at t = 0 of t 7→ ν.H0(w−1

l etXaK) when X ∈ n. We keep the same
notation as above for Y and Y ′.

Let U = Y ′ − θ(Y ′) ∈ k. By the Baker-Campbell-Hausdorff formula, we have

(5.7) etY
′
= etθ(Y

′)+ t2

2
[Y ′,θ(Y ′)]+O(t3)etU = etθ(Y

′)e
t2

2
[Y ′,θ(Y ′)]+O(t3)etU .
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Remember that θ(Y ′) ∈ n, and that the function H0 is left-N -invariant. This calculation
shows that the second derivative of t 7→ ν.H0(w−1

l etXaK) is the quadratic form

X 7→ ν ([Y ′, θ(Y ′)]) ,

where Y ′ = Ad(a−1) Ad(wl).X. This is a non-degenerate quadratic form if ν is regular. �

5.3.2. Variations with respect to N . In this section we need the decomposition g = n⊕a⊕
m ⊕ n̄. We will denote πn, πa, πn̄ the corresponding projections. We note that πa = H0,
since n̄ ⊂ n + k.

We also recall from §3.5 our two decompositions n̄ =
∑

j≤j0 gwl·αj ⊕
∑

j>j0
gwl·αj =

n̄slow ⊕ n̄fast and n =
∑

j≤j0 gαj ⊕
∑

j>j0
gαj = nslow ⊕ nfast. The space nfast is an ideal of n,

and we denote the associated (normal) Lie subgroup by Nfast.

Lemma 5.5. Fix n ∈ N and a ∈ A. Then there exist two neighbourhoods V1, V2 of 0 in n̄,
and a diffeomorphism Ψ = Ψna : V1 −→ V2 such that

e−Y1naeY2 ∈ NA, Y1 ∈ V1, Y2 ∈ V2 ⇐⇒ Y2 = Ψ(Y1).

Moreover, the differential at 0 of Ψ (denoted Ψ′0) preserves the subalgebra n̄slow defined in
§3.5. Finally, if we write e−Y naeΨ(Y ) = n(Y )a(Y ) and a′0 for the differential of a(Y ) at
Y = 0, we have

a′0.Y = πa[Ad(na)Ψ′0(Y )].

Proof. We apply the implicit function theorem. For Y1 = 0, the differential of Y2 7→
naeY2(na)−1 at 0 is Y2 7→ Ad(na).Y2. What we need to check is the equivalence of
πn̄[Ad(na).Y2] = 0 and Y2 = 0, which is the case since Ad(na) preserves n ⊕ a ⊕ m.
So the existence of Ψ is proved, in addition the differential Ψ′0 is defined by

Y = πn̄[Ad(na).Ψ′0.Y ]

for Y ∈ n̄. Since Ad(na) preserves the space n ⊕ a ⊕ m ⊕ n̄slow (without preserving the
decomposition, of course), Ψ′0.Y must belong to n̄slow if Y does.

The last formula is simply obtained by differentiating e−Y naeΨ(Y ) = n(Y )a(Y ). �

In the next lemma, recall that ϑ is the Cartan involution.

Lemma 5.6. (i) The set

{n ∈ N,H0(Ad(n)Y ) = 0 ∀Y ∈ ϑnslow}

is, near the identity, a submanifold of N tangent to nfast.
(ii) Let ν ∈ a∗. For T =

∑
α∈∆+ Tα ∈ n (with Tα ∈ gα), for β ∈ ∆+ and Zβ ∈ gβ we

have
ν.H0 (Ad(exp(T ))ϑ(Zβ)) = −〈ν, β〉〈Tβ, Zβ〉+ o(‖T‖)T−→0‖Zβ‖.
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Proof. The differential of T 7→ H0(Ad(exp(T ))Y ) is T 7→ H0([T, Y ]) (T ∈ n). Take
Y = ϑ(Zβ) for some β ∈ ∆+ and Zβ ∈ gβ. We have H0([T, Y ]) = −〈Tβ, Zβ〉Hβ where
Hβ ∈ a is the coroot [14, Ch. VI §5, Prop. 6.52].

In particular, having H0([T, Y ]) = 0 for all Y ∈ ϑnslow is equivalent to T ∈ nfast. The
first claim follows from the implicit function theorem.

For the second claim, note that ν(Hβ) = 〈ν, β〉. The remainder is uniform over β since
there are finitely many roots.

�

5.4. First decomposition of P. We want to use the Cotlar-Stein lemma to estimate
the norm of the operator P , defined in (4.2). To do so, we will decompose P into pieces.
Our first decomposition of P is obtained by covering G/P0 by a finite number of sets Ωi

described below. We use the fact that there is a neighbourhood Ω of eP0 in G/P0 that is
diffeomorphic to a neighbourhood of e in N , via the map

N −→ G/P0

n̄ 7→ n̄P0.

Using compactness, we can find an open cover of G/P0 by a finite number of open sets Ωi

such that, for every i, there exists gi ∈ G with Ωi ⊂ giΩ. Introduce a family of smooth
functions χΩi on G/P0 such that χΩi is supported inside Ωi and

∑
i χΩi ≡ 1. We then

define the pseudodifferential operators

Qiu(x) =

∫
k∈G/P0,ν∈CΠ

F~u(k, wl · ν)Q′ω0
(x)χΩi(k)e(x, k, wl · ν) dk |c~(ν)|−2dν,

and

(5.8) Piu = ΠΓS∗Q∗iUφu

where S and Uφ were defined in (4.4), (4.3), ΠΓ is the periodization operator and Q′ω0
is

the cut-off function introduced in §3.2.
Obviously, P =

∑
iPi. The sum over i is finite, and we now fix i. The variable k stays

in Ωi.
The reason for using wl · ν in the definition of Qi – in other words, for working in the

negative Weyl chamber – becomes apparent in the following remark, which is only valid
for ν ∈ CΠ.

Remark 5.7. Let γ = γωT−1,...,ω0 defined as in (4.12).
Proposition (4.4) (and Remark 4.5) can be generalized by writing

(5.9) QiS
(
Q′ωT−1

◦ γ e(k, wl · ν)
)

= e
−iTηH(ν)

~ e(k, wl · ν)B(T )◦ γ (x, k, wl · ν)

+OL2(S)(~M̃)‖Q′ωT ◦ γ e(k, wl · ν)‖L2(S),
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where now

(5.10) B(T )(x, k, wl · ν) =
M̃−1∑
m=0

~mb(T )
m (x, k, wl · ν),

(5.11)
b

(T )
0 (x, k, wl·ν) = χΩi(k)P 1/2

ω0
(x)Pω1((x, k)e−ηXwl·ν )Pω2((x, k)e−2ηXwl·ν ) . . . QωT−1

((x, k)e−(T−1)ηXwl·ν )

= χΩi(k)Q1/2
ω0
◦γ−1(x)Pω1((x, θ)e−ηXwl·ν )Pω2((x, k)e−2ηXwl·ν ) . . . QωT−1

((x, k)e−(T−1)ηXwl·ν )

and the next terms have the same support as the leading one (their derivatives are bounded
the same way as in Proposition 4.3).

In the next paragraphs we will concentrate our attention on brackets of the form:

(5.12)
〈
Q′ωT−1

◦γ2 e(k, wl · ν) , S∗Q∗iUφQ′ω−T◦γ1 e(θ, λ)
〉
L2(S)

,

for λ, ν ∈ CΠ, θ, k ∈ G/P0. We take γ1 = γω−T ,...,ω0 and γ2 = γωT−1,...,ω0 as defined in (4.12).
These are none other than the matrix elements of the operator Pi (5.8) in the Fourier basis
e(θ, λ).

5.5. Second decomposition of P. The index i being fixed, we will apply the Cotlar-
Stein lemma to bound the norm of Pi (5.8). We decompose Pi as a sum of countably many
operators, and this decomposition is technically more involved.

We have assumed that we have a diffeomorphism from a relatively compact subset of
N onto Ωi: n̄1 7→ gin̄1P0. We can write the Haar measure on Ωi as dk = Jac(n̄1)dn̄1,
where Jac is a smooth function on N (we suppress from the notation its dependence on
gi). Accordingly, for k = gin̄1P0 ∈ Ωi, we now write e(gin̄1, wl · ν) for e(k, wl · ν).

Let us look at the scalar product (5.12), that can also be written as

(5.13)
〈
QiSQ′ωT−1

◦γ2 e(gin̄1, wl · ν), UφQ
′

ω−T
◦ γ1 e(θ, λ)

〉
.

We only need to consider the generic case where θ ∈ gin̄1P0wlP0, that is, θ is of the
form gin̄1n1wlP0 (with n1 ∈ N). In addition, we may always assume that λ and ν are
regular, since in the end they will have to belong to the support of the cut-off function φ.
Proposition 5.3 (ii) tells us that the stationary points of the phase function

gK 7→ λ.H0(θ−1gK) + ν.H0(k−1gK), k = gin̄1P0

with respect to variations

(gin̄1n1)etX(gin̄1n1)−1gK, X ∈ n,
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are the points of the form gK = gin̄1n1a1K with a1 ∈ A. Thus the set of critical points is
of codimension J . The stationary phase method then gives:

(5.14)
〈
QiSQ′ωT−1

◦γ2 e(gin̄1, wl · ν), UφQ
′

ω−T
◦ γ1 e(θ, λ)

〉
= ~J/2

∫
a1∈A

d(λ, a1)C~ (gin̄1n1a1M,λ,wl · ν) e(gin̄1n1a1, gin̄1, wl · ν)

e(gin̄1n1a1, gin̄1n1wl, λ) da1

with an asymptotic expansion valid up to any order,

C~ (gin̄1n1a1M,λ,wl · ν) ∼
∑

~mcm (gin̄1n1a1M,λ,wl · ν)

and

(5.15)
c0 (gin̄1n1a1M,λ,wl · ν) =

(
A(T ) ◦ γ1(gin̄1n1a1wlM,λ)

) (
B̄(T ) ◦ γ2(gin̄1n1a1M,wl · ν)

)
(and the next terms have the same support as the leading one). The functions A(T ) and
B(T ) are the ones appearing in (4.10) and (5.10). They are functions on G/M × a∗; to
simplify the notation we will see them as (M -invariant) functions on G× a∗.

The term d(λ, a1) is the prefactor involving the hessian of the phase function in the
application of the method of stationary phase, it is a smooth function.

Using the notation (3.3), the expression (5.14) can also be written as

(5.16)
〈
QiSQ′ωT−1

◦γ2 e(gin̄1, wl · ν), UφQ
′

ω−T
◦ γ1 e(θ, λ)

〉
= ~J/2

∫
a1∈A

d(λ, a1)C~ (gin̄1n1a1, λ, wl · ν)E(gin̄1n1a1, wl · ν)

E(gin̄1n1a1wl, λ) da1.

We see from (5.15) that the asymptotics of our scalar product only takes into account
the elements gin̄1n1a1 with

A(T ) ◦ γ1(gin̄1n1a1wl, λ)B̄(T ) ◦ γ2(gin̄1n1a1, wl · ν) 6= 0.

From (4.10) we see that we must have φ(λ) 6= 0.
In the next lemma, we recall that Ωi ⊂ giΩ, an open subset of G/P0 defined at the

beginning of §5.4. We fix ε0 > 0 such that the exponential map is a diffeomorphism from
B(0, 10ε0) in g onto its image in G.

Lemma 5.8. Assume that the diameters of Ω and of suppQω0 are smaller than ε0. Then
there exist n0 ∈ N and a0 ∈ A such that

B(T ) ◦ γ2(gin̄1n1a1, wl · ν) 6= 0

implies n1a1 = n0a0g, where g ∈ NA is ε0-close to identity.
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Proof. Note from the expression of B(T ) ◦ γ2 that, if it is not 0, we must have

gin̄1n1a1 ∈ suppQω0 .

The element gi varies in a finite set and n̄1 varies over Ω which is of diameter ≤ ε0. We
also assume that suppQω0 is of diameter ≤ ε0, so that n1 and a1 must both vary in sets of
diameter ≤ ε0. In other words, n1a1 stays in some ball of diameter ≤ ε0 in NA. �

Since n̄1 stays in Ω, it follows that n̄1n1a1M itself is ε0-close to n0a0M in G/M . From
now on we write gin̄1n1a1M = gin0a0gM , where g ∈ G varies in a neighbourhood of e of
diameter≤ ε0. We will always choose a representative g ∈ exp(n⊕a⊕n̄). ByG-equivariance
we may assume gin0a0 = 1, which we do from now on.

In the next proposition, we show that the support of the function c0 (5.15) is rather
small; and especially small in the “fast” expanded or contracted directions.

Proposition 5.9. (Contracting and expanding foliations)
(1) Let ν be such that αj(Xν) > 0 for all αj ∈ ∆+ with j > j0 (this is of course

the case if ν is close enough to Λ∞). Suppose we have gM and g′M both ε0-
close to eM such that B(T )◦γ2 (g, wl · ν) 6= 0 and B(T )◦γ2 (g′, wl · ν) 6= 0, then
g′−1g = exp(X +

∑
α∈∆+ Yα +

∑
α∈∆+ Ywl.α) with X ∈ a, Yα ∈ gα, ‖X‖, ‖Yα‖ ≤ ε0,

and ‖Ywl.αj‖ ≤ ε0e
−Tη(wl.αj)(Xwl·ν) = ε0e

−Tηαj(Xν) for j > j0.
(2) Similarly, assume that αj(Xλ) > 0 for all αj ∈ ∆+ with j > j0. Suppose we have g

and g′ both ε0-close to eM such that A(T ) ◦γ1(gwl, λ) 6= 0 and A(T ) ◦γ1(g′wl, λ) 6= 0.
Then g′−1g = exp(X +

∑
α Yα) with X ∈ a, Yα ∈ gα, ‖X‖, ‖Yα‖ ≤ ε0, ‖Yαj‖ ≤

ε0e
−Tηαj(Xλ) for j > j0.

Actually, the claim holds for all j, but we will only use it for j > j0. The other directions
will receive a different treatment in §5.6.

Proof. Assume that the term B(T )◦γ2 (g, wl · ν) does not vanish. The evolution equation
(5.11) shows that we must have5

• ge−(T−1)ηXwl·νM ∈ γ−1
2 . suppQωT−1

;
• gM ∈ suppQω0 .

If gM and g′M both satisfy the two conditions above, then we see that g′−1g must be
ε0-close to identity. Also, e(T−1)ηXwl·νg′−1ge−(T−1)ηXwl·ν must stay in the fixed compact set

M [suppQωT−1
]−1 suppQωT−1

M ⊂ G.

Let us write g′−1g = exp(X+
∑

α∈∆+ Yα+
∑

α∈∆+ Ywl.α) as in part (1) of the claim. Writing
the action of A in the co-ordinate system gives the claim. The proof of the second part is
similar. �

Finally we write gM = n̄naM with n̄ ∈ N, n ∈ N, a ∈ A all ε0-close to identity. We
decompose n = eY nfast, and n = eY nfast, Y ∈ nslow ' RJ0 , Y ∈ n̄slow ' RJ0 both ε0-close to
0 (we fix a vector space isomorphism that sends the root spaces to the coordinate axes of

5Here the Qω are treated as functions on G/M that factor through G/K.
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RJ0); and nfast ∈ Nfast, n̄fast ∈ N fast both ε0-close to 1. The quantity ε0 is fixed, but can be
chosen as small as we wish. Note that the previous Proposition restricts nfast and n̄fast to
sets of measure

∏
j>j0

ε0e
−Tηmαjαj(Xλ) and

∏
j>j0

ε0e
−Tηmαjαj(Xν), respectively.

On the other hand, in the “slowly” expanded or contracted directions, the support of
the function c0 (5.15) is still of size > ~1/2 (this is how we chose to define the “slow”
directions). This leaves room for breaking the support of c0 into pieces of diameter ~1/2 in
these directions. The size ~1/2 is critical in the application of the stationary phase method.

In what follows we break Pi into countably many pieces along the “slow” directions,

Pi =
∑

(ȳ,y,t,λ0)∈ZJ0×ZJ0×Zr×Zr
P(ȳ,y,t,λ0)

to which we shall apply the Cotlar-Stein lemma. The dependence on the index i is now
suppressed from the notation.

On R` (` = J0 or ` = r) we choose a smooth nonnegative compactly supported function
χ` such that

(5.17)
∑
y∈Z`

χ`(Y − y) ≡ 1

and such that χ`(Y ).χ`(Y + y) = 0 for all Y ∈ R` and y ∈ Z` with ‖y‖ > 2.
Let (ȳ, y) ∈ ZJ0 × ZJ0 and let (t, λ0) ∈ Zr × Zr. Denote 2+ a fixed real number > 2.

Define χ~
(ȳ,y)(Y , Y ) = χJ0(~−1/2+

Y − ȳ)χJ0(~−1/2+
Y − y); and χ~

λ0
(λ) = χr(~−1/2+

λ − λ0)

and χ~
t (a) = χr(~−1/2+

a − t). Also define χ~
(ȳ,y,t)(gM) = χ~

(ȳ,y,t)(Y , Y )χ~
t (a) if gM is an

element of G/M that is decomposed as gM = eY n̄faste
Y nfastaM , as described above.

We define an operator S(ȳ,y,t,λ0) : L2(G/K) −→ L2(G/K) by

S(ȳ,y,t,λ0) (e(k, wl · ν)) (x)
def
= e

−iTηH(ν)
~ e(x, k, wl · ν) χ~

(ȳ,y,t)(x, k)χ~
λ0

(ν)B(T )◦γ2 (x, k, wl · ν)

for all k ∈ G/P0, ν ∈ CΠ. We then define

P(ȳ,y,t,λ0)
def
= ΠΓQ

′
ωT−1
◦ γ2 S∗(ȳ,y,t,λ0)UφQ

′2
ω−T
◦ γ1.

We have
‖Pi −

∑
(ȳ,y,t,λ0)∈Z2Jo+2r

P(ȳ,y,t,λ0)‖L2(Y)−→L2(Y) = O(~M̃−d/2),

which can be checked by noting that the sum
∑

(ȳ,y,t,λ0)∈Z2Jo+2r S(ȳ,y,t,λ0) gives back our
Ansatz (5.9) for QiS, and by arguing as in (4.13) that the difference between QiS and
the Ansatz is of order O(~M̃−d/2). Again we choose M̃ large enough so that the error
O(~M̃−d/2) is negligible compared to the bound announced in Theorem 1.12.

The scalar product (5.13) now appears as a sum of the terms〈
S(ȳ,y,t,λ0)e(n̄P0, wl · ν), UφQ

′

ω−T
◦ γ1 e(θ, λ)

〉
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over all (ȳ, y, t, λ0) ∈ Z2Jo+2r. We need only consider the generic case where θ ∈ n̄P0wlP0,
that is, θ is of the form θ = n̄nwlP0 (with n ∈ N); the non-generic case has zero measure.
It follows from the previous discussions that this scalar product is non-negligible only if n̄
and n stay in some sets of diameters ≤ ε0; and, without loss of generality, we have assumed
they are both ε0-close to identity. As in (5.16), we have by the stationary phase method

(5.18)
〈
S(ȳ,y,t,λ0)e(n̄P0, wl · ν), UφQ

′

ω−T
◦ γ1 e(θ, λ)

〉
= ~J/2

∫
a∈A

d(λ, a)C
(ȳ,y,t,λ0)
~ (n̄naM, λ, wl · ν)E(n̄na, wl · ν)E(n̄nawl, λ)da

where

(5.19) C
(ȳ,y,t,λ0)
~ (n̄na, λ, wl · ν) =

∑
~mcm (n̄na, λ, wl · ν)

and

(5.20) c0 (n̄na, λ, wl · ν) = A(T ) ◦ γ1(n̄nawl, λ)B̄(T ) ◦ γ2(n̄na, wl.ν)χ~
(ȳ,y,t)(n̄na)χ~

λ0
(ν)

The expansion (5.19) holds in all C` norms over compact sets. The function cm (n̄na, λ, wl · ν)
can be expressed in terms of 2m derivatives of

A(T ) ◦ γ1(n̄nawl, λ)B̄(T ) ◦ γ2(n̄n′a′, wl.ν)χ~
(ȳ,y,t)(n̄n

′a′)χ~
λ0

(ν)

at n′ = n, a′ = a.
Remember the notation n̄ = eY n̄fast, n = eY nfast. By Proposition 5.9, and by definition

of the cut-off functions χJ0 , χr, our scalar product is non-negligible only if Y , Y stay in
a set of measure ~J0/2+ , and nfast, n̄fast stay in a set of measure

∏
j>j0

e−Tηmαjαj(Xλ) and∏
j>j0

e−Tηmαjαj(Xν), respectively.

5.6. Norm of P∗(x̄,x,s,ν0)P(ȳ,y,t,λ0). We are now ready to check the first assumption of the
Cotlar-Stein lemma, that is, to bound from above the norm of P∗(x̄,x,s,ν0)P(ȳ,y,t,λ0).

Let u, v ∈ L2(Γ\G/K). We write

〈
P(x̄,x,s,ν0)v, P(ȳ,y,t,λ0)u

〉
Γ\G/K

=
〈
Q′ωT−1

◦ γ2S∗(x̄,x,s,ν0)UφQ
′2
ω−T
◦ γ1 v, Q

′
ωT−1
◦ γ2S∗(ȳ,y,t,λ0)UφQ

′2
ω−T
◦ γ1 u

〉
G/K

=
〈
S∗(x̄,x,s,ν0)UφQ

′2
ω−T
◦ γ1 v, S∗(ȳ,y,t,λ0)UφQ

′2
ω−T
◦ γ1 u

〉
G/K

+O(~∞)‖u‖‖v‖.
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We develop fully this scalar product using the Fourier transform.

(5.21)
〈
S∗(x̄,x,s,ν0)UφQ

′2
ω−T
◦ γ1 v,S∗(ȳ,y,t,λ0)UφQ

′2
ω−T
◦ γ1 u

〉
G/K

=

∫
dθdθ′|c~(λ)|−2dλ|c~(λ′)|−2dλ′F~

(
Q
′

ω−T
◦ γ1 u

)
(θ, λ)F~

(
Q′ω−T ◦ γ1 v

)
(θ′, λ′)〈

S∗(x̄,x,s,ν0)UφQ
′

ω−T
◦ γ1e(θ

′, λ′),S∗(ȳ,y,t,λ0)UφQ
′

ω−T
◦ γ1e(θ, λ)

〉
G/K

=

∫
dθdθ′dk|c~(λ)|−2dλ|c~(λ′)|−2dλ′|c~(ν)|−2dνF~

(
Q
′

ω−T
◦ γ1 u

)
(θ, λ)F~

(
Q′ω−T ◦ γ1 v

)
(θ′, λ′)〈

UφQ
′

ω−T
◦ γ1e(θ

′, λ′),S(x̄,x,s,ν0)e(k, wl · ν)
〉〈
S(ȳ,y,t,λ0)e(k, wl · ν)UφQ

′

ω−T
◦ γ1e(θ, λ)

〉
G/K

=

∫
dθdθ′ Jac(n̄)dn̄|c~(λ)|−2dλ|c~(λ′)|−2dλ′|c~(ν)|−2dνF~

(
Q
′

ω−T
◦ γ1 u

)
(θ, λ)F~

(
Q′ω−T ◦ γ1 v

)
(θ′, λ′)〈

UφQ
′

ω−T
◦ γ1e(θ

′, λ′),S(x̄,x,s,ν0)e(n̄P0, wl · ν)
〉〈
S(ȳ,y,t,λ0)e(n̄P0, wl · ν), UφQ

′

ω−T
◦ γ1e(θ, λ)

〉
G/K

Finally, in equation (5.21), we write θ = n̄nwlP0 and θ′ = n̄n′wlP0 (we can do so on a
set of full measure). We have shown in (5.18) that

(5.22)〈
UφQ

′

ω−T
◦ γ1e(θ

′, λ′),S(x̄,x,s,ν0)e(n̄P0, wl · ν)
〉〈
S(ȳ,y,t,λ0)e(n̄P0, wl · ν), UφQ

′

ω−T
◦ γ1e(θ, λ)

〉
G/K

= ~J
∫
a∈A

d(λ, a)C
(ȳ,y,t,λ0)
~ (n̄naM, λ, wl · ν)E(n̄na, wl · ν)E(n̄nawl, λ)da∫

a′∈A
d(λ′, a′) C̄

(x̄,x,s,ν0)
~ (n̄n′a′M,λ′, wl · ν)E(n̄n′a′, wl · ν)E(n̄n′a′wl, λ′)da

′.

Already we can note that C(ȳ,y,t,λ0)
~ (n̄naM, λ, wl · ν) C̄

(x̄,x,s,ν0)
~ (n̄n′a′M,λ′, wl · ν) can only

be non zero if χ~
(ȳ,y,t)(n̄naM)χ~

(x̄,x,s)(n̄n
′a′M) 6= 0, and from the properties of χJ0 this can

happen only for ‖x̄− ȳ‖ ≤ 2. For the same reason, it can only be non zero if ‖ν0−λ0‖ ≤ 2.
Now we try to show that (5.21) decays fast when ‖x − y‖ gets large. Using (5.22), the

last integral in (5.21) appears as a function of the pair (n̄na, n̄n′a′). We have an oscillatory
integral of the form (5.1), with a phase

(5.23) S(n̄na, n̄n′a′) = λ.B(n̄nawlM) + (wl · ν)[B(n̄n′a′)− B(n̄na)]− λ′.B(n̄n′a′wlM)

= λ.B(n̄nawlM) + (wl · ν)[a′ − a]− λ′.B(n̄n′a′wlM),

where B is the function on G/M defined in (2.1) or (2.2). We want to do “integration by
parts with respect to n̄” and use Lemma 5.2. However, because the derivatives of S with
respect to n̄ are tricky to compute, it is preferable to use a vector field Z with the property
that Z.B(n̄nawlM) = 0 and Z.B(n̄n′a′wlM) = 0.

Consider a variation of the form

Ψτ : (n̄na, n̄n′a′) 7→ (n̄neτY a, n̄n′a′a−1eΨ(τY )a) = n̄n(eτY a, n−1n′a′a−1eΨ(τY )a),
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for Y ∈ n̄, Ψ = Ψn−1n′a′a−1 defined in Lemma 5.5, and τ ∈ R. By definition of Ψ, the two
elements n̄neτY a and n̄n′a′a−1eΨ(τY )a are in the same NA orbit, for all τ . Such a variation
preserves the terms B(n̄n′a′wlM) and B(n̄nawlM). We call Z the vector field dΨτ

dτ |τ=0
. We

note that each term of the product

F~

(
Q
′

ω−T
◦ γ1 u

)
(n̄nwlP0, λ)F~

(
Q′ω−T ◦ γ1 v

)
(n̄n′wlP0, λ′)E(n̄nawl, λ)E(n̄n′a′wl, λ′)

is invariant under Ψτ . The function C(ȳ,y,t,λ0)
~ (n̄naM) C̄

(x̄,x,s,ν0)
~ (n̄n′aM) satisfies

(5.24) ‖ZmC
(ȳ,y,t,λ0)
~ (n̄naM) C̄

(x̄,x,s,ν0)
~ (n̄n′a′M)‖ ≤ C(m)~−m/2+

,

by the expression (5.19) and (5.20) of C(ȳ,y,t,λ0)
~ and C(x̄,x,s,ν0)

~ : the growth of the derivatives
comes from the cut-off χ~.

Now we want to apply the integration by parts lemma 5.2, so we need to understand
ZS = Z ((wl · ν)(B(n̄n′a′)− B(n̄na))) .

Lemmas 5.5 and 5.6 tell us that if we write n−1n′ = exp(T ) with T =
∑

α≥0 Tα, and if
Y is chosen such that then ϑΨ′0(Y ) ∈ gβ for some β ∈ ∆+, we have

(5.25) ZS(n̄na, n̄n′a′) = −〈wl · ν, β〉〈Ad(a−1a′)Tβ, ϑΨ′0(Y )〉+ o(‖T‖)‖Ψ′0(Y )‖.

We are interested in those n, n′, a, a′ such that C(ȳ,y,t,λ0)
~ (n̄naM) C̄

(x̄,x,s,ν0)
~ (n̄n′aM) 6= 0.

This implies ‖log(n−1n′)−~1/2+
(x−y)‖ ≤ 8~1/2+ . We also have ‖log(a−1a′)‖ ≤ ε0. We thus

choose β such that ‖Tβ‖ ≥ 1
2

(
~1/2+‖x− y‖ − 8~1/2+

)
, and Y such that ϑΨ′0(Y ) =

Tβ
‖Tβ‖

.

We now apply Lemma 5.2 to the last expression of integral (5.21), integrating by parts Ñ -

times using the vector field Z. If ‖x−y‖ ≥ 16 we gain a factor ~Ñ
(
~1/2+‖x− y‖ − 8~1/2+

)−Ñ
which comes from the non-stationarity of the phase, but we lose a factor ~−Ñ/2+ which
comes from (5.24). This yields that

〈
P(x̄,x,s,ν0)v,P(ȳ,y,t,λ0)u

〉
Y

is bounded from above by

C(Ñ)~Ñ(1−2/2+)

max(16, ‖x− y‖)Ñ
~J∫

Jac(n)dn Jac(n′)dn′ Jac(n̄)dn̄da da′χ~
(ȳ,y,t)(n̄naM)χ~

(x̄,x,s)(n̄n
′a′M)|c~(λ)|−2dλ|c~(λ′)|−2dλ′|c~(ν)|−2dν

χ~
λ0

(ν)χ~
ν0

(ν)
∣∣∣F~

(
Q
′

ω−T
◦ γ1 u

)
(n̄nwlP0, λ)F~

(
Q
′

ω−T
◦ γ1 v

)
(n̄n′wlP0, λ

′)
∣∣∣

for an arbitrarily large integer Ñ . For any n̄, n, n′, just by looking at the size of the support
of the function, we have∫

da da′χ~
(ȳ,y,t)(n̄naM)χ~

(x̄,x,s)(n̄n
′a′M) = O(~2r/2+

),
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so the previous bound becomes

~Ñ(1−2/2+)

max(16, ‖x− y‖)Ñ
~J~2r/2+

∫
Jac(n)dn Jac(n′)dn′ Jac(n̄)dn̄|c~(λ)|−2dλ|c~(λ′)|−2dλ′|c~(ν)|−2dν

χ~
λ0

(ν)χ~
ν0

(ν)
∣∣∣F~

(
Q
′

ω−T
◦ γ1 u

)
(n̄nwlP0, λ)F~

(
Q
′

ω−T
◦ γ1 v

)
(n̄n′wlP0, λ

′)
∣∣∣

We also apply integration by parts with respect to ν, a and a′. Here we do not have to
use Lemma 5.2 but just apply integration by parts in its “usual” form : we can note that
the phase S (5.23) has the form S(n̄na, n̄n′a′) = (wl · λ)a + (wl · ν)[a′ − a] − (wl · λ′)a′ +
s(n̄n, λ, λ′) for a function s that does not depend on a, a′, ν. We see that Ñ integrations
by parts in (5.21) with respect to the variable ν allows to gain a factor ~Ñ

‖a−a′‖ which comes
from the non-stationarity of the phase, but we lose a factor ~−Ñ/2+ from (5.24). This
yields a gain of ~Ñ(1−1/2+)

‖a−a′‖Ñ
, which is less than~Ñ(1−2/2+)

‖t−s‖Ñ
if ‖t − s‖ is large enough and if

C
(ȳ,y,t,λ0)
~ (n̄naM) C̄

(x̄,x,s,ν0)
~ (n̄n′aM) 6= 0.

Similarly, integrations by parts with respect to a allow to gain a factor ~Ñ(1−1/2+)

‖λ−ν‖Ñ
; and

integrations by parts with respect to a′ allow to gain a factor ~Ñ(1−1/2+)

‖λ′−ν‖Ñ
. In particular, the

contribution to (5.21) of those λ, λ′, ν with ‖λ′ − ν‖ ≥ ~1/2 or ‖λ− ν‖ ≥ h1/2 is O(~∞).
We find that

〈
P(x̄,x,s,ν0)v,P(ȳ,y,t,λ0)u

〉
Y

is bounded from above by

(5.26)
1

max(16, ‖x− y‖)Ñ
1

max(16, ‖t− s‖)Ñ
~J~2r/2+

∫
Jac(n)dn Jac(n′)dn′ Jac(n̄)dn̄|c~(λ)|−2dλ|c~(λ′)|−2dλ′|c~(ν)|−2dν

χ~
λ0

(ν)χ~
ν0

(ν)
∣∣∣F~

(
Q
′

ω−T
◦ γ1 u

)
(n̄nwlP0, λ)F~

(
Q
′

ω−T
◦ γ1 v

)
(n̄n′wlP0, λ

′)
∣∣∣ .

In this integral, λ′, λ, ν are all ε-close to Λ∞ (they are all in the support of φ), and each of
them runs over a set of volume ~r/2+ ; n̄ runs over a set of measure ~J0/2+ ∏

j>j0
e−Tηmαjαj(Xν),

n runs over a set of measure ~J0/2+ ∏
j>j0

e−Tηmαjαj(Xλ), and n′ runs over a set of measure
~J0/2+ ∏

j>j0
e−Tηmαjαj(Xλ′ ).

Using Cauchy-Schwarz and the Plancherel formula we find that the integral∫
Jac(n)dn Jac(n′)dn′|c~(λ)|−2dλ|c~(λ′)|−2dλ′∣∣∣F~

(
Q
′

ω−T
◦ γ1 u

)
(λ, n̄nwlP0)F~

(
Q
′

ω−T
◦ γ1 v

)
(n̄n′wlP0, λ

′)
∣∣∣

is bounded by ~−d~J0/2+~r/2+ ∏
j>j0

e−Tηmαj infν∈supp(φ) αj(Xν)‖u‖L2(Y)‖v‖L2(Y).
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The integral
∫

Jac(n̄)dn̄|c~(ν)|−2dν adds another factor ~−d~J0/2+~r/2+ ∏
j>j0

e−Tηmαj infν∈supp(φ) αj(Xν).
Overall we find that

‖P∗(x̄,x,s,ν0)P(ȳ,y,t,λ0)‖

≤ 1

max(16, ‖x− y‖)Ñ
1

max(16, ‖t− s‖)Ñ
~J+4r/2+−2d+2J0/2+

∏
j>j0

e−Tηmαj infν∈supp(φ) αj(Xν)

and it vanishes for ‖x̄− ȳ‖ > 2 or ‖ν0 − λ0‖ > 2.
Choosing Ñ large enough, we can sum over all (ȳ, y, t, λ0), and we find∑
(ȳ,y,t,λ0)∈Z2J0+2r

‖P∗(x̄,x,s,ν0)P(ȳ,y,t,λ0)‖1/2 ≤ ~J/2+2r/2+−d+J0/2+
∏
j>j0

e−Tηmαj infν∈supp(φ) αj(Xν).

Remembering that J = d− r and that 2+ could be chosen arbitrarily close to 2, we get∑
(ȳ,y,t,λ0)∈Z2J0+2r

‖P∗(x̄,x,s,ν0)P(ȳ,y,t,λ0)‖1/2 ≤ ~
J0−J

2−
∏
j>j0

e−Tηmαj infν∈supp(φ) αj(Xν)

where 2− is smaller than, but arbitrarily close to 2.

5.7. Norm of P(x̄,x,s,ν0)P∗(ȳ,y,t,λ0). Using a similar calculation reversing the roles of N and
N , we get the same bound,∑

(ȳ,y,t,λ0)∈Z2J0+2r

‖P(x̄,x,s,ν0)P∗(ȳ,y,t,λ0)‖1/2 ≤ ~
J0−J

2−
∏
j>j0

e−Tηmαj infν∈supp(φ) αj(Xν)

Using the Cotlar-Stein lemma and the fact that the α(Xν) coincide with the Lyapunov
exponents χj(H) on the energy layer Eν , we get Theorem 1.12.

6. Measure Rigidity

In this section we prove Theorems 1.8, 1.9 and 1.10. The proofs combine our entropy
bounds with the measure classification results of [8, 9] and the orbit classification results
of [17, 26] which give information about A-invariant and ergodic measures that have a large
entropy.

Proposition 6.1. (Measure rigidity theory) Let G be a split group, and let µ be an ergodic
A-invariant measure on X = Γ\G.

(1) [8, Lem. 6.2] there exist constants sα(µ) ∈ [0, 1] associated to the roots α ∈ ∆, such
that for any a ∈ A,

hKS(µ, a) =
∑
α∈∆

sα(µ) (logα(a))+ .

Here t+ = max{0, t} for t ∈ R. Furthermore, sα(µ) = 1 if and only if µ is invariant by the
root subgroup Uα.
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(2) [8, Prop. 7.1] Assume that sα(µ), sβ(µ) > 0 for two roots α, β ∈ ∆ such that α+β ∈
∆. Then sα+β(µ) = 1.

(3) [8, Thm. 4.1(iv)] If G is locally isomorphic to SLn and sα(µ) > 0 for all α, then µ
is G-invariant.

(4) [9, Cor. 3.4] In the case G = SLn, we have sα(µ) = s−α(µ) for all roots α.

We do not know if (4) holds in general.
Now let µ be an A-invariant probability measure with ergodic decomposition µ =∫

X
µxdµ(x). For each subset R ⊂ ∆ let XR be the set of x such that the ergodic com-

ponent µx satisfies {α, sα(µx) > 0} = R. Write wR = µ(XR) and if wR > 0, let
µR = 1

wR

∫
XR

µxdµ(x), so that µ =
∑

R⊂∆wRµR. Fixing a ∈ A, from Proposition 6.1(1) we
have for each R separately that

hKS(µR, a) ≤
∑
α∈R

(logα(a))+ ,

(this is in fact an avatar of the Ruelle-Pesin inequality). Averaging with respect to R we
get

hKS(µ, a) ≤
∑
R⊂∆

wR
∑
α∈R

(logα(a))+ .

By Proposition 6.1(2), wR = 0 unless R is closed under the addition of roots, so we may
assume that only such R are included in the sum. In the case G = SLn, parts (4) and
(3) show, respectively, that it is enough to consider those R which are symmetric and that
µ∆ = µHaar.

Proposition 6.2. Let G = SL3(R), Γ a lattice in G, and µ an A-invariant probability
measure on Γ\G, such that hKS(µ, a) ≥ 1

2
hKS(µHaar, a) for a = eX , X = diag(2,−1,−1),

diag(−1, 2,−1), and diag(−1,−1, 2). Then w∆ ≥ 1
4
, that is, the Haar component has

weight at least 1
4
.

Proof. The possible sets R are ∆, ∅, {α,−α}. In the case of SLn the roots are indexed by
{ij, 1 ≤ i, j ≤ n, i 6= j}: αij is defined by αij(X) = Xii−Xjj. Consider a = diag(e1, e1, e−2).
Then hKS(µHaar, a) = 6 (since sα = 1 for all α), hKS(µ∅, a) = 0, hKS(µ12, a) = 0,
hKS(µ13, a) ≤ 3, hKS(µ23, a) ≤ 3. Thus,

(6.1) 3 ≤ hKS(µ, a) ≤ 3w13 + 3w23 + 6w∆.

This implies
w∆ − w12 ≥ 1− (w∆ + w12 + w13 + w23) ≥ 0.

By symmetry it follows that w∆ ≥ w13 and w∆ ≥ w23. Returning to (6.1), it follows that
3 ≤ 12w∆.

In fact, if hKS(µ, a) ≥
(

1
3

+ ε
)
hKS(µHaar, a) for a = eX ,X = diag(2,−1,−1), diag(−1, 2−

1), or diag(−1,−1, 2), then w∆ ≥ 3
2
ε. �

Putting together Theorem 1.7 and Proposition 6.2 gives Theorem 1.8.
For SL4 the analogue of Proposition 6.2 is given below. Theorem 1.9 is an immediate

corollary.
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Proposition 6.3. Let G = SL4(R), µ an A-invariant probability measure on Γ\G, such
that hKS(µ, a) ≥

(
1
2

+ ε
)
hKS(µHaar, a) for a = eX , X in the Weyl orbit of diag(3,−1,−1,−1).

Then w∆ ≥ 2ε. If ε = 0 and there is no Haar component, then each ergodic component is

the Haar measure on a closed orbit of the group


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 (or one of its 4 images

under the Weyl group), and the components invariant by any of these 4 subgroups have
total weight 1

4
.

Theorem 1.8 and its analogue for G = SL4 apply to any lattice Γ. On the other hand
for G = SLn with n large some quotients Γ\G support ergodic invariant measures of large
entropy other than Haar measure, so our entropy bound is not strong enough to obtain a
Haar component. However, for some lattices Γ there are further restrictions on the set of
ergodic components, so that non-Haar measures have much smaller entropy. This is the
case where Γ is a lattice associated to a division algebra.

We give here a quick outline of the construction, refering the reader to [26] and its
references (or [18]) for a detailed discussion. Let F be a central simple algebra of degree n
over Q and assume that F splits over R, that is that F ⊗Q R ' Mn(R). Next, let O ⊂ F
be an order, that is a subring whose additive group is generated by a basis for F over
Q. Finally, let O1 ⊂ SLn(R) denote the subgroup of elements of O with determinant 1
(“reduced norm 1”). Such O1 are in fact lattices; any lattice Γ < SLn(R) commensurable
with some O1 is said to be of inner type. We simply say that they are associated to the
algebra F . Our Theorem 1.7 applies when the lattice is co-compact, which is the case if
and only if F is a division algebra.

We shall need the fact that those measure rigidity results of [9] which are stated specif-
ically for SLn(Z) apply, in fact, to any lattice of inner type, since the proof of Lemma 5.2
of that paper carries over to the more general situation. We give the argument here:
Lemma 6.4. Let Γ < SLn(R) be a lattice of inner type. Then there is no γ ∈ Γ, diag-
onalizable in SLn(R), such that ±1 are not eigenvalues of γ and all eigenvalues of γ are
simple except for precisely one which occurs with multiplicity two.
Proof. Say that Γ is associated to the central simple algebra F , and let O be an order in
F such that Γ ∩ O1 has finite index in Γ.

Assume by contradiction that there exists γ as in the statement, and choose r so that
γr ∈ O. Since O is a ring with a finitely generated additive group, the Cayley-Hamilton
Theorem shows that γr is integral over Z. It follows that every eigenvalue of γr, hence of γ,
is an algebraic integer. The fact that det(γ) = 1 now shows that the rational eigenvalues
of γ must be integral divisors of 1, so by assumption all eigenvalues of γ are irrational. Let
f(x) ∈ R[x] be the characteristic polynomial of γ, when γ is thought of as an element of
SLn(R). We will show f(x) ∈ Q[x]. Then the multiplicity the eigenvalues of f would be
Galois invariant giving the desired contradiction. For the last claim extend scalars to C
and note that the usual proof that the reduced trace and norm belong to Q applies to the
entire characteristic polynomial. �
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Proposition 6.5. Let n ≥ 3 and let t be the largest proper divisor of n. Let G = SLn(R)
and let Γ < G be a lattice of inner type. Let µ be an A-invariant probability measure on
Γ\G such that hKS(µ, a) ≥ 1

2
hKS(µHaar, a) for a = eX , X a Weyl conjugate of diag(n −

1,−1, · · · ,−1). Then w∆ ≥
(n+1)

2
−t

n−t > 0. In other words, µ must contain an ergodic
component proprtional to Haar measure.

Theorem 1.10 follows.

Proof. As above, let µx be an ergodic component of µ that has positive entropy with respect
to eX . By [9, Thm. 1.3] (replacing Lemma 5.2 of that paper with Lemma 6.4 above) µx
must be algebraic: there exists a closed subgroup H containing A, and a closed orbit zH in
Γ\G, such that µx is the H-invariant measure on zH. By [17] (the arguments are contained
in the proof of Lemma 4.1 and Lemma 6.2) and [26] (see Thm 1.2 and §4.2), H must be
reductive, and conjugate to the connected component of identity in GLk(R)l ∩ SLn(R);
where n = kl and GLk(R)l denotes the block-diagonal embedding of l copies of GLk(R)
into GLn(R).

By the discussion following Proposition 6.1 we see that for such lattices Γ the possible
sets R are obtained by partitioning n into l subsets B1, B2, . . . , Bl of equal size k, and
letting

R = {αij, 1 ≤ i, j ≤ n,∃u such that i ∈ Bu and j ∈ Bu}.
Consider a = diag(en−1, e−1, . . . , e−1). Then hKS(µHaar, a) = n(n − 1), and for every

subset R defined as above by a non-trivial partition, we have hKS(µR) ≤ n(t − 1). The
inequality hKS(µ, a) ≥ 1

2
hKS(µHaar, a) now shows that

w∆(n− 1) +
∑
R 6=∆

wR(t− 1) ≥ n− 1

2
.

In other words we have

w∆(n− 1) + (1− w∆)(t− 1) ≥ n− 1

2
,

which is equivalent to the statement of the theorem. �
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