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ABSTRACT : We study the problem of counting closed geodesics according to their
lengths and under homological constraints on a compact surface of negative curvature.
We show how to use Dolgopyat’s recent results to obtain a full asymptotic expansion, in
addition to the leading term given by Lalley.

We first state the properties of the stable and unstable leaves used by Chernov and
Dolgopyat; then we introduce the usual transfer operators and we prove the result with
the help of a dynamical ζ-function.

RESUME : Nous étudions un problème de dénombrement de géodésiques fermées,
classées selon leur longueur et leur classe d’homologie, sur une surface compacte de cour-
bure négative. Nous expliquons comment les travaux récents de Dolgopyat permettent de
donner un développement asymptotique complet, en plus du terme principal déjà obtenu
par Lalley.

Nous commençons par énoncer les propriétés des feuilletages stable et instable utilisées

par Chernov et Dolgopyat, puis nous introduisons des opérateurs de transfert dont l’étude

nous permettra de conclure, par l’intermédiaire de fonctions ζ dynamiques.

1 Introduction and statement of results

The first counting results for closed orbits of a hyperbolic flow date back
to 1961, when Huber introduced techniques from analytic number theory to
count closed geodesics on a compact manifold of constant negative curvature
([10]) . He used Selberg’s trace formula, which gives a relation between a
certain ζ-function and a Fredholm determinant associated to the Laplace
operator, and he obtained a result analogous to the famous “prime number
theorem” :

Theorem 1.1 (Prime number theorem) When x > 0, define π(T ) to be the
number of primes in [0, T ]. Then π(T ) ∼ T

log(T ) as T −→ +∞.

Huber’s theorem reads as follows :
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Theorem 1.2 Let V be a compact n-dimensional manifold of constant cur-
vature −1. When T > 0, define π(T ) to be the number of closed geodesics γ
with length l(γ) in [0, T ]. Then π(T ) ∼ e(n−1)T

(n−1)T as T −→ +∞.

(Huber actually proved it for surfaces only).
In 1969 Margulis proved a similar result for manifolds of variable negative

curvature ([18]); he used mostly the hyperbolic structure of the geodesic flow.
The definition of “hyperbolicity” was stated the same year by Anosov in [2]
and it is now called the “Anosov property” :

Definition 1.3 A smooth flow (φt) on a compact manifold M is said to be
“Anosov” if the tangent bundle TM can be decomposed into the direct sum
of three subbundles : TM = Es⊕E0⊕Eu, with the following properties : if
we choose an arbitrary Riemannian metric ‖ . ‖ on M , there exists C, γ > 0
such that for all x ∈M ,

- For all v ∈ Es(x), for all t > 0, || dφt(v) ||< C || v || e−γt
- For all v ∈ Eu(x), for all t > 0, || dφ−t(v) ||< C || v || e−γt
- dimE0(x) = 1 and E0 is tangent to the flow

(This property does not depend on the choice of the norm ‖ . ‖)
The distributions Es and Eu are respectively called the stable and unstable

distributions of the flow.

In the same paper ([2]) Anosov showed that the geodesic flow on the tan-
gent bundle of a manifold of negative curvature has this property. Geodesic
flows still remain the most studied Anosov flows (for other examples see [2]).

In 1973 Bowen and Ratner constructed “Markov sections” for Anosov
flows ([5],[24]). This allows these flows to be coded by suspensions over
subshifts of finite type, so that Ruelle’s theory on symbolic dynamics applies
: one can define “dynamical ζ-functions” whose poles are now related to the
spectrum of “transfer operators”. This gives the same kind of estimates as
Theorem 1.2 for general Anosov flows; the dimension n−1 has to be replaced
by the topological entropy of the flow.

It is possible to introduce additional conditions on the closed orbits we
want to count. Here are some examples of counting results that were ob-
tained for closed geodesics in a given homology class, using either harmonic
analysis and the Laplace operator in the case of constant negative curva-
ture, or symbolic dynamics and transfer operators in the case of variable
curvature :

Theorem 1.4 (Katsuda-Sunada, [12]) Let (φt) be a smooth, transitive, weak-
mixing Anosov flow on a compact manifold M . Let A be an abelian group
and [.] : H1(M,Z) −→ A a surjective homomorphism. When γ is a closed
curve on M we denote [γ] the image of its homology class under [.]. Let m be

2



the measure of maximal entropy with respect to (φt). One assumes that the
asymptotic winding cycle of m vanishes, i.e :

∫
M < ω, dφt

dt (x) > dm(x) = 0,
for any closed 1-form ω.

Fix α ∈ A. When T > 0, define π(α, T ) to be the number of closed orbits
γ with period l(γ) ≤ T and such that [γ] = α. Then

π(α, T ) ∼ 1
l(2π)d/2V ol(A∗)

ehT

hT d/2+1

Here d is the rank of A, l its order of torsion, A∗ is the set of characters of
A, and h is the topological entropy of the flow. The precise definition of the
volume V ol(A∗) is given in [12].

(In [29] Sharp proved a more general version of this theorem, assuming
that there is a certain Gibbs measure whose winding cycle vanishes - and
not necessarily the measure of maximal entropy)

Theorem 1.5 (Phillips-Sarnak, [20]). The notation are the same as in
Theorem 1.4. Now M = T 1V is the tangent bundle of a n-dimensional
manifold V of constant negative curvature, and (φt) is the geodesic flow on
M . Then there exists a sequence of real numbers c0, c1, · · · such that

π(α, T ) =
e(n−1)T

l(2π)d/2V ol(A∗)(n− 1)T d/2+1
(1 +

c1
T

+ · · · )

In this last example, a full asymptotic expansion can be given because
the spectrum of the Laplace operator is well known; it was not the case for
transfer operators until Dolgopyat proved a new upper bound on their norms
in 1997 (in the case of 3-dimensional Anosov flows). This allowed Pollicott
and Sharp to give a full asymptotic expansion in the case of surfaces of
variable negative curvature, with or without homological constraints ([22],
[23]).

In this paper we study a more general type of homological constraints,
first introduced by Lalley in 1989 ([16]). We will first state the result in the
case of geodesic flows on manifolds, with the same notations as in Theorem
1.5, except that we will now consider only torsion free integral homology
classes on M : we take for A the torsion free component of the homology
group H1(M,Z), and we still denote it H1(M,Z). This restriction is only
intended to simplify our calculations and it is possible to drop it. In fact,
in the case of compact oriented surfaces of negative curvature, H1(M,Z) =
H1(V,Z) and it has no torsion. From now on, we will denote by [γ] the
torsion free homology class of a closed geodesic γ.

Let us fix ξ ∈ H1(M,R), α ∈ H1(M,Z), and δ > 0. Since H1(M,Z) is a
lattice inH1(M,R), we can choose an “integral part” map [.] : H1(M,R) −→
H1(M,Z) (we use the same brackets to denote two different things but we
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hope it will not cause too much confusion). We define Γ to be the set of
closed geodesics and we want to study the asymptotic behaviour in T of the
quantity

π(ξ, α, δ;T ) = Card{γ ∈ Γ, T ≤ l(γ) ≤ T + δ, [γ] = α+ [Tξ]}

It is necessary to consider the integral part [Tξ], and not Tξ, simply to
ensure that π(ξ, α, δ;T ) does not equal zero for the trivial reason that [γ] ∈
H1(M,Z) whereas Tξ ∈ H1(M,R) \H1(M,Z).

Our main interest is the dependence on ξ and T of these quantities. We
have introduced the quantity α mainly in order to obtain Sharp-Pollicott’s
result ([23]) as a special case (ξ = 0); but it should be interesting also to
study the dependence on α of the coefficients (see Remark 3 at the end of
this section). The number δ is arbitrary and has not much incidence on the
result.

We need to introduce the following functions H and P :

P : H1(M,R) −→ R
[ω] 7−→ sup

m∈M
h(m)+ < [ω], [m] >

where M is the set of φ-invariant probability measures on M , h(m) is the
metric entropy of m ∈ M, and [m] ∈ H1(M,R) is the winding cycle of m
(see [27]), defined by duality by the equality :

< [ω], [m] >=
∫

M
< ω,

dφt
dt

(x) > dm(x)

when ω is a closed 1-form and [ω] is its cohomology class.

H : H1(M,R) −→ R
ξ 7−→ sup

m∈M,[m]=ξ
h(m)

The function H is supported by the compact convex C = {[m],m ∈
M} ⊂ H1(M,R). It is explained in [4] that P is analytic and stricly convex

in H1(M,R) and that H is analytic and strictly concave on the interior
◦
C.

Also, they are related by Legendre duality : P = (−H)∗.
Lalley’s theorem reads :

Theorem 1.6 ([16]) For all ξ ∈
◦
C,

π(ξ, α, δ;T ) ∼ c0(ξT , δ)
eTH(ξT )−<uT |α>

T d/2+1
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where we have defined

c0(ξT , δ) =
1

(2π)d/2V ol(A∗)
√
| detP ′′(uT ) |

(
eδP (uT ) − 1
P (uT )

)

and ξT := [Tξ]
T and uT := −∇H(ξT ).

Notice that ξT =−→ ξ and uT =−→ uξ := −∇H(ξ). as T −→ +∞.

(Lalley proved it for ξ in a neighbourhood of 0, and Babillot and Ledrap-

pier showed in [4] that this neighbourhood is precisely
◦
C)

We shall now apply Dolgopyat’s new estimates to give the full asymptotic
expansion :

Theorem 1.7 In the case of the geodesic flow on a surface of negative cur-

vature, there are analytic functions c1, c2, c3, · · · on
◦
C ×H1(M,R)×R such

that, for all N ∈ N,

π(ξ, α, δ;T ) =
eTH(ξT )−<uT |α>

T d/2+1

(
c0(ξT , δ) +

N∑

k=1

ck(ξT , α, δ)
T k

+O(T−(N+1))
)

Moreover, the ck’s are polynomial with respect to α.

Remarks :
(1) Our method gives, in theory, explicit expressions of the ck’s in terms of
the functions P and H and their derivatives; however, it seems very difficult
to give the meaning or even a simple expression of these coefficients. We can
at least say that there are no fractional powers of 1

T in the expansion, which
the tauberian theorem used by Pollicott and Sharp in [22] did not show.
(2) Since δ is fixed once and for all, and since we are not going to discuss
the dependence on δ, we may as well drop all the δ’s in the argument of the
ck’s.
(3) It is not clear to the author whether or not the theorem is valid for
higher dimensional manifolds. Almost all the references mentioned in this
article include proofs for surfaces only. The author does not know if Dolgo-
pyat’s estimates are true in higher dimensions; even so, the curvature of the
manifold should be 1

4 -pinched for the horocyclic foliations to be C1.

We will actually work in the more general setting of Anosov flows :
Let M be a compact manifold on which a transitive, topologically mixing

Anosov flow (φt) is given. Let us denote by Γ the set of its closed orbits.
When γ ∈ Γ, let l(γ) denote its period. Let F = (F1, · · · , Fd) be an Rd-
valued Hlder continuous function on M . We shall assume that the closed
subgroup G of Rd+1 generated by the vectors (l(γ),

∫
γ F ), (γ ∈ Γ), is of the

form G = R × A, where A is a lattice in Rd. The choice of a fundamental
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domain of A allows us to define the “integral part” of a vector [.] : Rd −→ A.
We fix δ an arbitrary positive number. For α ∈ A and ξ ∈ Rd, we study the
quantity

π(ξ, α, δ;T ) = Card{γ ∈ Γ, T ≤ l(γ) ≤ T + δ,

∫

γ
F = α+ [Tξ]}

Let us denote by M the set of φ-invariant probability measures on M and
C the compact convex set C = {∫ Fdm,m ∈ M} ⊂ Rd. For ξ ∈ Rd, define
as previously H(ξ) = sup{h(m),m ∈ M,

∫
Fdm = ξ}. For u ∈ Rd, define

P (u) = supm∈M h(m) +
∫

(
∑
uiFi)dm; it is the pressure of the function

u1F1 + · · · + udFd. As before, P and H are related by Legendre duality.
Moreover P is analytic and strictly convex on Rd, and H is continuous on

C, analytic and strictly concave on
◦
C.

In this context, Lalley’s result remains true; so does our theorem, but
under some restrictions on the flow :

Theorem 1.8 Suppose dimM = 3, the characteristic foliations of the flow
are of class C1 and uniformly jointly non-integrable (see section 2 for defi-

nitions). Then there are analytic functions c1, c2, c3, · · · on
◦
C×Rd×R such

that, for all N ∈ N,

π(ξ, α, δ;T ) =
eTH(ξT )−<uT |α>

T d/2+1

(
c0(ξT , δ) +

N∑

k=1

ck(ξT , α, δ)
T k

+O(T−(N+1))
)

Moreover, the ck’s are polynomial with respect to α.

Remark : The author does not know if it is still true when dimM > 3.

We would like to stress the fact that it can be interesting to see the
condition

∫
γ F = α+[Tξ] as a condition on 1

l(γ)

∫
γ F rather than a condition

on
∫
γ F : this condition implies that 1

l(γ)

∫
γ F should be near ξ. In this

perspective, it is interesting to relate our result to Kifer’s large deviations
result for the probability measures

1
l(γ)

∫

γ
δtdt

Kifer’s theorem implies that lim sup 1
T log π(ξ, α, δ;T ) ≤ H(ξ) for all ξ. Our

result can be seen as a “precise large deviations” result. We refer the reader
to [14] and [4] for more details.

In particular, we can use Theorem 1.8 to count closed orbits under homo-
logical constraints : let d be the first Betti number of M and let (ω1, · · · , ωd)
be a family of closed harmonic 1-forms whose cohomology classes form an
integral basis of H1(M,R). Set Fi(x) =< ωi|dφt

dt (x) >. Then A is the torsion
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free component of H1(M,Z) and
∫
γ F represents the (torsion free) homol-

ogy class of γ. Since the geodesic flow on a surface satisfies the hypotheses
of Theorem 1.8 ([6], Theorem 18.1), we obtain Theorem 1.7 as a special case.

Remarks :
(1) In the case of the geodesic flow on a manifold of constant negative
curvature and when ξ = 0, it was already known (Theorem 1.5) that there
were no terms in 1

Tn+1
2
. This is a consequence of the invariance of the

geodesic flow under the map TV → TV , v 7→ −v. Now for a general Anosov
flow, this property is replaced by our assumption that G decomposes as a
product G = R×A.
(2) In fact we shall prove a stronger theorem : for each compact subset K

of
◦
C, there exists a positive constant c such that, for all ξ ∈ K,

| π(ξ, α, T )−e
TH(ξT )−<uT |α>

T d/2+1

(
c0(ξT ) +

N∑

k=1

ck(ξT , α)
T k

)
|≤ c

eTH(ξT )−<uT |α>

T d/2+1+N+1

(That is to say, the O of Theorem 1.8 is locally uniform in ξ)
(3) The presence of the term e−<uT |α> shows that if uξ 6= 0 the closed
geodesics homologically in the direction ξ are not uniformly distributed with
respect to α. For the geodesic flow, uξ 6= 0 is equivalent to ξ 6= 0.
(4) When ξ 6∈ C, the quantity π(ξ, α, δ;T ) vanishes for all T ’s sufficiently
large, since in that case there exists an η > 0 such that | ∫γ F−l(γ)ξ |> ηl(γ),
for all γ. When ξ ∈ ∂C, little is known about the asymptotics of π(ξ, α, δ;T ).
In the case of the geodesic flow on a manifold V , the convex set C is
the unit ball for the stable norm defined by Federer, and elements of the
boundary of C have a very interesting interpretation in terms of “geodesic
laminations”([3]). We hope to be able to use the properties of laminations in
order to find a polynomial upper bound on π(ξ, α, δ;T ) when V is a surface.

Acknowledgements : I would like to thank my advisor F. Ledrappier
for his continued help and guidance throughout the preparation of this ar-
ticle. M. Babillot helped me to write the final version of the paper. I am
also indebted to M. Pollicott for the series of talks about Dolgopyat’s work
he gave in January 1997 in Jerusalem.

2 The differential structure of Anosov flows

We will use Dolgopyat’s theorem on transfer operators in order to prove
our main theorem. Therefore we will first explain the definition of “Markov
rectangles” he used in his proof. These rectangles are slightly different from
Bowen’s, since Dolgopyat needed to keep track of the smoothness (or lack
of smoothness) of the stable and unstable distributions. In fact, Dolgopyat
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did not use the usual coding of Anosov flows by suspensions over subshifts
of finite type; instead, following Chernov ([6]), he worked directly on the
Markov sections and made use of their differentiable properties. Finally,we
formulate the Uniform Non-Integrability hypothesis introduced by Chernov
([6]) and which is the key of Dolgopyat’s proof.

2.1 Regularity and local product structure

The stable and unstable distributions Es and Eu defined in section 1 are
continuous, and their dimensions are constant : dimEs = k, dimEu = l
(under the assumptions of Theorem 1.8, k = l = 1) . Furthermore, they are
always integrable and the integral leaves can be defined as :

Wss(x) = {y ∈ V/d(φtx, φty) −→
t→+∞ 0}

Wsu(x) = {y ∈ V/d(φ−tx, φ−ty) −→
t→+∞ 0}

They are usually called “strong stable” and “strong unstable” manifolds. We
shall also need the following “weak stable” and “weak unstable” foliations :

Ws(x) = ∪t∈RφtWss(x)

Wu(x) = ∪t∈RφtWsu(x)

which are the orbits of the former under the flow and which also are the
integral leaves of the distributions Es⊕E0 and E0⊕Eu. It is also useful to
introduce the local version of these leaves :

W∗s(x, ε) = {y ∈W∗s(x), d(φtx, φty) ≤ ε ∀t > 0}

W∗u(x, ε) = {y ∈W∗u(x), d(φ−tx, φ−ty) ≤ ε∀t > 0}
(For further details, see [2], [5]).

Lemma 2.1 (Local product structure, [5]) If we fix a δ > 0, there exists
η > 0 such that : if x and y satisfy d(x, y) < η, then there is a unique
| t |≤ δ such that Wss(x, ε) ∩Wu(φty, ε) 6= ∅. Moreover this intersection
consists of a single point, denoted by [x, y].

In general, the stable and unstable distributions are not C1 but only
Hlder-continuous. Additional regularity is an exceptional phenomenon ([9]).
However Anosov proved the following result about the dependence of the
leaves on the base point :

Theorem 2.2 ([2]) The integral leaves Ws(x) and Wu(x) depend continu-
ously on the point x.
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2.2 Markov rectangles

Definition 2.3 A subset R of M will be called a rectangle if it is of the
form R = [U(R), S(R)], where U(R) (respectively S(R) is a closed subset
of a strong unstable (resp. stable) such that U(R) = Cl(IntU(R)), (resp.
S(R) = Cl(IntS(R))) (closure and interior are taken with respect to the
induced topology on the leaves).

The reader should be aware that it is not exactly Bowen’s definition of a
rectangle : Bowen’s rectangles were subsets of differentiable balls but they
did not a priori contain strong stable or unstable leaves. Instead, Dolgopyat’s
rectangles contain strong stable leaves and a strong unstable leaf, so that
they are not differentiable a priori. Bowen’s rectangles are the projections
of Dolgopyat’s on small diffentiable discs, along the direction of the flow.

The set R is partitioned into (strong) stable leaves Ws ∩ R, denoted
by WR

s , and into “unstable” leaves Wu ∩ R = WR
u . Only one of these

“unstable” leaves, namely U(R), is actually a strong unstable leaf of the
flow; the others are unstable leaves deformed along the trajectories of the
flow, but they will be unstable leaves for the first return time. The following
result is a consequence of the work of Ratner and Bowen ([24], [5]) :

Theorem 2.4 There exists a finite collection (Ri)i=1,··· ,k of rectangles which
are transverse to the flow and such that :
- There exists α > 0 (that can be chosen arbitrarily small), such that M =
∪φ[−α,0]Ri
- diamRi < α
- The first return map T̄ : R = ∪Ri −→ R satisfies T̄ (WR

s (x)) ⊂WR
s (T̄ x),

T̄−1(WR
u (x)) ⊂WR

u (T̄−1x)

For x ∈ R, let τ(x) designate its first return time into R : T̄ (x) =
φτ(x)(x). The manifold M can thus be modelled by Rτ = {(x, s) ∈ R ×
R, 0 ≤ s ≤ τ(x), (x, τ(x)) ∼ (T̄ (x), 0)}, and the flow is vertical translation
with constant speed. We do not want to use subshifts of finite type because
the smoothness of τ is crucial in Dolgopyat’s proof. Thanks to our choice of
rectangles, τ is constant along the stable leaves of the rectangles, and τ has
the same regularity as the distribution Es. Furthermore we will see that the
mixing properties of the flow are related to some properties of τ .

2.3 Non joint integrability of Eu and Es :

Anosov’s alternative ([2]) gives the relationship between the integrability of
Es ⊕ Eu and the mixing rate of the flow.

Theorem 2.5 If Es and Eu are jointly integrable, and if one of the integral
leaves of the distribution Es ⊕ Eu is compact, then the flow is a suspension
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Figure 1: Non joint integrability.

Figure 2: Markov sections.

of a diffeomorphism of this leaf by a constant roof function. In particular
the flow is not topologically mixing.

From now on we shall assume that the flow is topologically mixing. In
other terms, the distribution Es ⊕ Eu is not integrable, or τ cannot be
expressed as τ = c+ g − g ◦ T̄ (c a constant, g a function on R).

In [6] (paragraph 13), Chernov introduced a quantitative aspect for the
non-integrability of Es ⊕ Eu : consider a point y in M . If we take a point
y′ ∈Wsu(y) and a point y′′ ∈Wss(y), both close enough to y, then the leaves
Wss(y′) and Wsu(y′′) will not intersect. Instead, there will be a “temporal
distance” t(y, y′, y′′) 6= 0 between the two leaves, such that φt(y,y′,y′′)Wsu(y′′)
intersects Wss(y′) in exactly one point (see Fig. 1) . The Uniform Non-
Integrability hypothesis reads as follows :

(UNI) There exists c > 0 and a small open ball B ⊂ M such that, for
all y ∈ B, for all y′ ∈Wsu(y) ∩B, y′′ ∈Wss(y) ∩B,

c−1du(y, y′)ds(y, y′′) ≤ | t(y, y′, y′′) |≤ c du(y, y′)ds(y, y′′)

where ds and du are the Riemannian distances on the characteristic folia-
tions.

Since the stable and unstable foliations are invariant under the flow,
(UNI) can also be expressed as follows in terms of the roof function τ (see
Fig. 2) :

- There exists a rectangle Ri0 and an integer n such that T̄−nRi0 meets
at least two rectangles Rj0 and Rk0 ;

- There exists an open ball in U(Ri0) such that, if y, y′ belong to this
ball and if y1, y

′
1 (resp. y2, y

′
2) are the intersections of T̄−nWR

s (y) and
T̄−nWR

s (y′) with U(Rj0) (resp. U(Rk0)), then

c−1du(y, y′) ≤ | (τn(y2)− τn(y1))− (τn(y′2)− τn(y′1)) |≤ c du(y, y′)

for a certain constant c > 0.
Remark : This assumption is satisfied when dim M = 3, the flow is

mixing and the characteristic distributions are of class C1 (Chernov, [6],
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Theorem 18.1), in particular in the case of the geodesic flow on a surface of
variable negative curvature.

Next we wish to make use of these phenomena to study the closed orbit
distribution for an Anosov flow.

3 Fourier transforms and zeta-functions

3.1 Fourier analysis and the functions Z and Z ′.

Suppose we are given a function F = (F1, · · · , Fd) on M taking values in Rd
(d ≥ 0). We shall work under the following assumption :
(Assumption A) The closed subgroup G of Rd+1 generated by the vectors

(l(γ),
∫
γ F ) = (

∫
γ 1,

∫
γ F ), (γ ranging over the set of closed orbits), has rank

d+ 1.

The mixing assumption implies that the projection of G on the first
coordinate axis is the whole R. In fact, we will assume more :
(Assumption A’) G can be written in the form G = R×A in the canonical
coordinates, A being a discrete subgroup of rank d in Rd.

The set of characters A∗ is compact; this will be crucial in sections 4 and
5 to obtain uniform estimates.

Since we will use the Fourier transform, we need to introduce the Haar
measure on G. The space Rd+1 is endowed with the usual euclidean struc-
ture, for which the canonical basis (e0, · · · , ed) is orthonormal. There exists a
basis (ε1, · · · , εd) of Rd in which A is defined by A = {w1ε1+· · ·+wdεd / ∀i =
1, · · · , d, wi ∈ Z}. For elements of G we shall try to stick to the letters wi
for coordinates on (ε1, · · · , εd) and t for the coordinate on e0. Let E be the
parallelogram built on (ε1, · · · , εd). G is endowed with the Haar measure

dµ =
1

(2π)d+1
V ol(E)dt× ]

where ] is the counting measure on the discrete component of G and V ol(E)
is the euclidean volume of E .

The dual G∗ = R × A∗ of G is a quotient of Rd+1 by a discrete sub-
group of rank d : {v /;∀x ∈ G/ < v|x >∈ 2πZ}. It comes with the quo-
tient metric and the Lebesgue measure dm(y, v) = V ol(E)dydm(v) where
dm(v) = dv1 · · · dvd. Here we identify G∗ with a fundamental domain in
Rd+1 and we let (y, v1, · · · , vd) denote the coordinates on (e0, ε1, · · · , εd) of
an element of G∗. We have m(A∗) = (2π)d

V ol(E) and V ol(A∗) = 1
V ol(E) .

For ξ ∈ Rd we will denote by [ξ] its “integral part”, that is to say, the
unique element of A such that ξ ∈ [ξ] + E .
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We want to study the asymptotic behaviour in T of the expressions

π(ξ, α, δ;T ) = Card{γ ∈ Γ, T ≤ l(γ) ≤ T + δ,

∫

γ
F = α+ [Tξ]}

and

π′(ξ, α, δ;T ) = Card{γ ∈ Γ′, T ≤ l(γ) ≤ T + δ,

∫

γ
F = α+ [Tξ]}

for α ∈ A, ξ ∈ Rd and an arbitrary positive δ. Γ′ is the set of “prime” closed
orbits, whereas when we write Γ we mean “non necessarily prime” orbits,
i.e more exactly Γ = N∗ × Γ′ with l(n, γ) = nl(γ).

We shall first consider

π(ξ, ψ;T ) :=
∑

γ∈Γ

ψ(l(γ)− T,

∫

γ
F − [Tξ])

and
π′(ξ, ψ;T ) :=

∑

γ∈Γ′
ψ(l(γ)− T,

∫

γ
F − [Tξ])

when ψ is a function on G with compact support and with C3-regularity in
the first variable. Then we will be able to deal with step functions and even
with Riemann integrable functions (with compact support).

Recall the formal definition of the Fourier-Laplace transform :

ψ̂ : C× (Rd ⊕ iA∗) −→ C

((x+ iy), (u+ iv)) 7−→
∫

G
ψ(t, w)e−(x+iy)t−<u+iv|w>dµ(t, w)

Fourier’s inversion formula yields, at least formally, for all u ∈ Rd and
x ∈ R,

π(ξ, ψ;T ) =
∑

γ∈Γ

∫

G∗
e(x+iy)(l(γ)−T )+<u+iv| Rγ F−[Tξ]>ψ̂(x+ iy, u+ iv)dm(y, v)

= exT−<u|[Tξ]>
∫

G∗
Z(x+ iy, u+ iv)eiyT−i<v|[Tξ]>ψ̂(−(x+ iy), u+ iv)dm(y, v)

where we have defined

Z(s, z) =
∑

γ∈Γ

e<z|
R

γ F>−sl(γ)

for (s, z) ∈ C× (Rd ⊕ iA∗). This transformation makes sense when :
(1) ψ satisfies the Fourier inversion theorem. In particular, ψ̂ should be

12



integrable with respect to (y, v).
(2) The sum defining Z is absolutely convergent. This happens when

x = <s > P (u) = P (<z) = sup
m∈M

hm+ < u|
∫
Fdm >

(see Proposition 4.2 below).
Similarly, π′(ξ, ψ;T ) can be studied with a formula involving

Z ′(s, z) =
∑

γ∈Γ′
e<z|

R
γ F>−sl(γ)

instead of Z. For the rest of this paper, u varies in K0, a compact neigh-
borhood of a point uξ ∈ Rd which will be set at the beginning of paragraph
5.2.

4 Transfer operators

If we define τn(ω) = τ(ω) + τ ◦ T̄ (ω) + · · ·+ τ ◦ T̄n(ω) and f̄n(ω) = f̄(ω) +
f̄ ◦ T̄ (ω) + · · ·+ f̄ ◦ T̄n(ω) we can now express the function Z as

Z(s, z) =
∞∑

n=1

∑

ω∈R,T̄nω=ω

1
N (ω)

e<z|f̄n(ω)>−sτn(ω)

and

Z ′(s, z) =
∞∑

n=1

1
n

∑

ω∈R,N (ω)=n

e<z|f̄n(ω)>−sτn(ω)

where N (ω) is the smallest period of ω under the map T̄ .
These quantities are classically interpreted as generalized determinants

of transfer operators.
In order to introduce transfer operators, we need to consider only the

expansive part of T̄ ; that is, ”restrict” the maps T̄ , τ , f̄ to the unstable
leaves, in a way such that the previous expressions remain unchanged. That
is possible, but one has to be careful about the regularity of the functions
involved :

4.1 Restriction to the unstable leaves

Amongst the functions defined on R, we are interested in those constant
on each stable leaf WR

s , for they can be seen as functions on U = ∪Ui
(Ui = U(Ri)). Under the assumptions of Theorem 1.8, recall that the Ui’s
can be chosen to be diffeomorphic to (connected) segments of dimension 1
([6], Thm 9.1, [17]).

13



Let p : R −→ U be the projection along stable leaves. Now T = p ◦ T̄ is
an expansive map from U into itself.

Because of our construction of rectangles, τ is constant on each stable
leaf, so that we can consider it a function on U .

It is possible to replace the function f̄ by a function f = f̄ + g ◦ T̄ − g
constant on each stable leaf of R, so that the previous expression of Z
remains true with f instead of f̄ ([19], Proposition 1.2). But, in doing so,
one usually loses some regularity. The function f̄ (as well as τ), has the
same regularity as the stable foliation : it is, in general, piecewise Hlder.
But the function f will have a lot of points of discontinuity (the points in
∪T−n∂U). Anyway, since the integrals of f along closed orbits are always in
A, we can use Proposition 5.2 of [19] and assume that f is A-valued; then
f is locally constant.

Owing to the expansiveness and to the Markov property, there is a nat-
ural one-to-one correspondence between the periodic orbits of T̄ and those
of T , given by the projection along stable leaves. We can now write :

Z(s, z) =
∞∑

n=1

∑

ω∈U ,Tnω=ω

1
N (ω)

e<z|fn(ω)>−sτn(ω)

and there is a similar expression for Z ′.

4.2 Definition of L and relation with Z

We will determine the domain of Z by studying the norm of the operators

L(s, z) : C1(U) −→ C1(U)

L(s, z)g(ω) =
∑

ω′∈U ,Tω′=ω
e<z|f(ω′)>−sτ(ω′)g(ω′)

The following lemma, due to Ruelle ([26], p187), gives a relation between
the spectral properties of L and the domain of Z. As above u varies in a
compact subset K0 ⊂ Rd.

Lemma 4.1 Define Zn(s, z) =
∑

ω∈U,Tnω=ω e
<z|fn(ω)>−sτn(ω). For all i ∈

{1, · · · , k}, choose a point xi ∈ Int(Ui). Denote by χUi the characteristic
function of Ui. Then for all compact subset K ⊂ R, there exists a θ < 1
such that, for all s = x+ iy (x ∈ K), for all z = u+ iv (u ∈ K0), for all n
large enough :

| Zn(s, z)−
k∑

i=1

L(s, z)nχUi(xi) |≤ (θρ(L(x, u)))n

where ρ(L(x, u)) is the spectral radius of L(x, u)
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4.3 Spectral properties of L and consequences

The function P defined in paragraph 1 describes the spectral properties of
L.

Proposition 4.2 ([19]) The function P is analytic and it has the property
that, if x = P (u), the operator L(x, u) has 1 as a simple eigenvalue, and all
other eigenvalues are < 1 in modulus. If x > P (u) then the spectral radius
of L(s, z) (<s = x,<z = u) is strictly less than 1.

As a result, the function

Z(s, z) :=
∞∑

n=1

1
n

∑

ω∈U,Tnω=ω

e<z|fn(ω)>−sτn(ω)

= log
∏

γ∈Γ′
(1− e−sl(γ)+<z|

R
γ F>)−1

which is the logarithm of the generalized determinant of 1− L(s, z), is ab-
solutely convergent when x > P (u) and has a singularity for x = P (u),
y = 0, v = 0.

This is also true for the functions Z and Z ′ because of the following
lemma :

Lemma 4.3 There exists ε > 0 such that the functions Z − Z and Z − Z ′

extend to a bounded analytic function on {u ∈ K0, x ≥ P (u)− ε}.
Proof : Write

Z(s, z) =
∑

k≥1

1
k
Z ′(ks, kz)

and
Z(s, z) =

∑

k≥1

Z ′(ks, kz)

Then use the computation made in [19], pp 115− 116, and the compactness
of K0 ×A∗ to get the result.

The definition of the group G and of the dual G∗ has the following
consequence : suppose that the function y + v1f1 + · · · + vdfd on M is
cohomologous to a 2πZ-valued function. Then (y, v) = (0, 0) in G∗. As a
consequence ([19], Chapter 4) :

Proposition 4.4 The operator L(P (u) + iy, u+ iv) does not have 1 as an
eigenvalue unless (y, v) = (0, 0) ∈ G∗. Moreover P is strictly convex.

As a result, Z, Z and Z ′ have an analytic continuation on the boundary
{x = P (u)} except for singularities on the set {x = P (u), (y, v) = (0, 0)}.

In what follows we assume that the condition (UNI) is satisfied and that
the stable and unstable foliations are C1. Dolgopyat proved the following
estimate on the norm of the operator L :
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Theorem 4.5 ([8]) Let K0 be a compact subset of Rd. There exist B > 0,
ε > 0, α ∈ (0, 1) and some constants B1, B2 such that : for every function
q ∈ C1(U), for every z = u + iv ∈ K0 × A∗, for all s = x + iy such that
| y |> B and | x− P (u) |≤ ε, we have

‖ L[B1 log|y|](s, z)q ‖∞≤ B2 ‖ q ‖C1
1

| y |α

Let us recall the general idea of the proof :
Remember the expression of L given at the beginning of paragraph 4.2.

For all n, we have :

Ln(x+ iy, u+ iv)g(ω) =
∑

ω′∈U ,Tnω′=ω

e<u+iv|fn(ω′)>−(x+iy)τn(ω′)g(ω′)

This quantity may be large if all the terms in the sum have similar argu-
ments, otherwise it will be ”small”. Notice that the presence of v is harmless
since it varies in a compact set. But we need to have a closer look at the
argument yτn(ω′).

The second expression of (UNI) (paragraph 2.3) tells us that we can
choose, for many ω’s, two particular pre-images ω1, ω2 of ω, such that
the quantities τn(ω2) and τn(ω1) are different enough. Hence, if y is large
enough, the arguments yτn(ω2) and yτn(ω1) will be very different and Lng(ω)
will not be too large. Since it happens for many ω’s, the function Ln(x +
iy, u + iv)g will be bounded in L1-norm, with respect to the equilibrium
measure of < u|f > −P (u)τ (and the bigger y, the smaller || Ln(x+ iy, u+
iv)g ||L1).

Then it is still necessary to show that L1-contraction implies C1-contraction.
It can be done using the facts that | LN (x+iy, u+iv)g |≤ CLN−n(P (u), u) |

Ln(x+ iy, u+ iv)g | and that LN−n(x, u) | Ln(x+ iy, u+ iv)g | is very near
|| Ln(x + iy, u + iv)g ||L1 for large N (it is a property of equilibrium mea-
sures).

Remark : We use the compactness of K0 × A∗ to state this version of
Dolgopyat’s theorem. The complete proof is exactly the same as in [8];
notice that we don’t have to resort to any approximation since f is locally
constant.

We can now deduce the following extension of the domain of Z. Using
the preceding results and the compactness of A∗ and K0, we get :

Proposition 4.6 There exist B > 0, ε > 0 and an open neighborhood V0

of 0 in A∗ such that :
(1) Z(s, z) is analytic in {u ∈ K0, x > P (u)− 2ε, | y |> B}
(2) The function u 7→ P (u) can be continued analytically in a complex neigh-
borhood of K0, yielding a function z 7→ P (z) such that Z(s, z)+log(s−P (z))
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has an analytic continuation in the region {u ∈ K0, v ∈ V0, x > P (u)− 2ε, |
y |< B} (we use the usual branch of the logarithm). Moreover we can choose
V0 such that <P (z) > P (u)− ε/2 and | =P (z) |< B when v ∈ V0.
(3) There exists ε ≥ ε′ > 0 such that Z(s, z) is analytic in {u ∈ K0, v 6∈
V̄0, x > P (u)− 2ε′}
These results are also valid for Z ′.

Proof : It is sufficient to prove the same for the function Z. Singularities
of Z(s, z) appear when L(s, z) has 1 as an eigenvalue.

(a) Dolgopyat’s spectral theorem implies that there exists ε > 0 and
B such that L(x + iy, u + iv) has spectral radius strictly less than 1 when
u ∈ K0 and x > P (u)− 2ε, | y |> B. Thus Z is analytic in this region.

(b) Consider the function

P(x, u) := sup
ν T -invariant

hν +
∫

(< u|f > −xτ)dν

which is defined on a neighborhood of (P (uξ), uξ). P can be continued
analytically in a complex neighborhood of (P (uξ), uξ). Usual properties of
pressure functions ([19], Chapter 6) show that P(P (uξ), uξ) = 0. Remember
that L(s, z) is quasi-compact and that its essential spectrum consists of the
whole disc {| w |≤ λeP(x,u)}, with λ < 1 ([19], Chapter 10). For (s, z) in
a neighbourhood of (P (uξ), uξ), L(s, z) has a simple isolated eigenvalue of
maximum modulus : eP(s,z). Babillot and Ledrappier showed in [4] that the
function Z(s, z) + log(1− eP(s,z)), defined a priori when x > P (u), extends
analytically to a neighborhood of (P (uξ), uξ). Finally,

∂P
∂s

(P (uξ), uξ) = −
∫
τdν<uξ|f>−P (uξ)τ 6= 0

where ν<uξ|f>−P (uξ)τ is the Gibbs state of the potential < uξ|f > −P (uξ)τ .
Weierstrass’ theorem ([11], Th. 7.5.1) allows us to write

1− eP(s,z) = c(s, z)(s− P (z))

where c is an analytic function such that c(P (uξ), uξ) 6= 0 and P is an
analytic continuation of the real P function to a neighborhood of uξ. This
yields (2).

(c) Finally, (3) can be derived from (1) combined to Proposition 4.4.

We conclude this section by showing an upper bound on the function Z.
As usual, we consider s = x+ iy and z = u+ iv. If x is close to P (u) then
ρ(L(x, u)) is close to 1 so that θρ(L(x, u)) < θ′ < 1 in Lemma 4.1.
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| Z(s, z) | ≤
+∞∑

n=1

1
n
| Zn(s, z) |

≤
∑
n

1
n

(∑

i

| Ln(s, z)χUi(xi) |
)

+
∑
n

θ′n

≤
∑

k

1
kB1 log | y |

(k+1)[B1 log|y|]−1∑

n=k[B1 log|y|]
‖ Ln−k[B1 log|y|] ‖‖ Lk[B1 log|y|]χUi ‖ +C

≤ C

log | y |
+∞∑

k=0

1
k | y |kα




[B1 log|y|]−1∑

l=0

elP(x,u)


 + C

≤ Cmax
(
log | y |, | y |B1P(x,u)

)
+ C

The second inequality comes from Lemma 4.1 and the fourth one from The-
orem 4.5.

The same upper bound is valid for Z and Z ′.

5 Asymptotic expansion

5.1 Integration with respect to s : the Cauchy formula.

We want an asymptotic expansion of e−TP (u)+<u|[Tξ]>π(ξ, ψ;T ) into powers
of T−1/2. In what follows, the letters Ci, i = 1, 2, · · · will denote constants
which are not only uniform in z but also independent of ψ. They can
depend on N (the order of the expansion). They can be chosen to depend
continuously on ξ; this motivates Remark (2) following Theorem 1.8.

We take ψ of class C3 in the first variable, with compact support, and
x > P (u), so that we may write :

π(ξ, ψ;T ) =
∫

R×A∗
Z(x+ iy, u+ iv)e(x+iy)T−<u+iv|[Tξ]>ψ̂(−(x+ iy), u+ iv)dydm(v)

Then, using Fubini’s theorem,

π(ξ, ψ;T ) =
∫

V0

dm(v)e−<u+iv|[Tξ]>
(∫

R
Z(x+ iy, u+ iv)e(x+iy)T ψ̂(−(x+ iy), u+ iv)dy

)

+
∫

A∗−V0

dm(v)e−<u+iv|[Tξ]>
(∫

R
Z(x+ iy, u+ iv)e(x+iy)T ψ̂(−(x+ iy), u+ iv)dy

)
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When v 6∈ V0, Cauchy’s theorem and our upper bounds of (4.2.2) yield

|
∫

R
Z(x+ iy, u+ iv)e(x+iy)T ψ̂(−(x+ iy), u+ iv)dy |

=|
∫

R
Z(P (u)− ε+ iy, u+ iv)e(P (u)−ε′+iy)T ψ̂(−(P (u)− ε′ + iy), u+ iv)dy |

≤ C1 || ∂3
t ψ ||L1 eT (P (u)−ε′)

Here we choose ε such that B1P(P (u)− ε′, u) < 1 and we use the fact that
| ψ̂(−(P (u)− ε′ + iy), u+ iv) |≤ C2

||∂3
t ψ||L1

|y|3 for u ∈ K0, v ∈ A∗.
When v ∈ V0, one has, using Cauchy’s formula and Proposition 4.6 (2),

(and always denoting z = u+ iv)
∫

R
Z(x+ iy, u+ iv)e(x+iy)T ψ̂(−(x+ iy), u+ iv)dy

= i

∫

C(x)
log(s− P (z))ψ̂(−s, z)esTds

−i
∫

{<s=P (u)−ε,|=s|>2B}
Z(s, z)esT ψ̂(−s, z)ds

−i
∫

{<s=P (u)−ε,|=s|<2B}
(Z(s, z) + log(s− P (z))) esT ψ̂(−s, z)ds

In the right hand side term we use as the path of integration

C(x) = {=s = −2B,P (u)− ε ≤ <s ≤ x}
∪ {<s = x,−2B ≤ =s ≤ 2B}
∪ {=s = 2B, x ≥ <s ≥ P (u)− ε}

oriented counterclockwise. We obtain the following inequality :

|
∫

R
Z(x+ iy, u+ iv)e(x+iy)T ψ̂(−(x+ iy), u+ iv)dy − i

∫

C(x)
log(s− P (z))ψ̂(−s, z)esTds |

≤ C3 || ∂3
t ψ ||L1 eT (P (u)−ε)

After integration by parts with respect to y, we get

| i
∫

C(x)
log(s− P (z))ψ̂(s, z)esTds +

i

T

∫

C(x)

ψ̂(−s, z)
s− P (z)

esTds

− i

T

∫

C(x)
log(s− P (z))

∂ψ̂

∂s
(−s, z)esTds |

≤ C4 || ψ ||L1 eT (P (u)−ε)
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The residue formula implies that

|
∫

C(x)

ψ̂(s, z)
s− P (z)

esTds− 2iπψ̂(−P (z), z)eP (z)T |≤ C5 ‖ ψ ‖L1 eT (P (u)−ε)

Let M be an integer which we will fix in Section 5.2. We iterate the
same operation M + 1 times :

|
∫

C(x)
log(s− P (z))ψ̂(s, z)esTds− 2π

M∑

k=0

1
T k+1

∂kψ̂

∂sk
(−P (z), z)eP (z)T

− i

TM+1

∫

C(x)
log(s− P (z))

∂M+1ψ̂

∂sM+1
(s, Z)esTds |

≤ C6

(|| ψ ||L1 + · · ·+ || tMψ ||L1

)
eT (P (u)−ε)

Finally, we obtain that, when ψ is a function with compact support and
of class C3 in the first variable, one has for all u ∈ K0 and for all x > P (u),

| π(ξ, ψ;T ) − 2π
M∑

k=0

1
T k+1

∫

V0

dm(v)e−<u+iv|[Tξ]>
∂kψ̂

∂sk
(−P (z), z)eP (z)T

− i

TM+1

∫

V0

∫

C(x)
log(s− P (z))

∂M+1Ĥ

∂sM+1
(s, z)esT−<z|[Tξ]>dsdm(v) |

≤ C7

(|| ∂3
t ψ ||L1 + || ψ ||L1 + · · ·+ || tMψ ||L1

)
eT (P (u)−ε)

Then, by the dominated convergence theorem, one sees that, uniformly in
u ∈ K0,

lim
x→P (u)

∫

V0

∫

C(x)
log(s− P (z))

∂M+1ψ̂

∂sM+1
(s, z)esT−<z|[Tξ]>dsdm(v)

=
∫

V0

∫

C(P (u))
log(s− P (z))

∂M+1ψ̂

∂sM+1
(s, z)esT−<z|[Tξ]>dsdm(v)

so that we ultimately proved the following lemma :

Lemma 5.1 When ψ is of the class C3 in the first variable t, with compact
support,

| π(ξ, ψ;T ) −2π
M∑

k=0

1
T k+1

∫

<z=u,v==z∈V0

dm(v)e−<z|[Tξ]>
∂kψ̂

∂sk
(−P (z), z)eP (z)T |

≤ C8
|| tM+1ψ ||L1

TM+1
eTP (u)−<u|[Tξ]>

+C9

(|| ∂3
t ψ ||L1 + || ψ ||L1 + · · ·+ || tMψ ||L1

)
eT (P (u)−ε)−<u|[Tξ]>
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5.2 Integration with respect to z : the saddle-point method.

In this last section we want to use the saddle-point method to expand the
term ∫

V0

∂kψ̂

∂sk
(−P (u+ iv), u+ iv)eTP (u+iv)−<u+iv|[Tξ]>dm(v)

The saddle-point method ([7]) tells us to choose u such that ∇P (u) =
[Tξ]/T .

Proposition 5.2 ∇P is a homeomorphism from Rd onto the interior of the
convex compact set C = {∫ Fdµ, µ ∈M}.

Proof : As explained in [4], it is a consequence of Th. 26.5 of [25], since
P is analytic and a has positive definite Hessian matrix.

Consequently we take ξ ∈
◦
C.

In that case, when T is large enough, we can define ξT = [Tξ]
T ∈

◦
C and

u = uT = (∇P )−1(ξT ). We now choose for K0 a compact neighborhood of
uξ = (∇P )−1(ξ).

Define H(ξ) = inf
u∈Rd P (u)− < u|ξ >, for ξ ∈ Rd. One also has H(ξ) =

sup{h(m),m ∈M,
∫
Fdm = ξ}.

Theorem 5.3 Assume the characteristic foliations are of class C1 and uni-
formly jointly non-integrable. Then, when ψ is a Riemann-integrable func-
tion with compact support on G, π(ξ, ψ;T ) has the following asymptotic
expansion up to any order N :

π(ξ, ψ;T ) =
eTH(ξT )

T d/2+1

(
(2π)1+d/2

√
| detP ′′(uT ) | ψ̂(−P (uT ), uT ) +

N∑

k=1

ck(uT , α)
T k

+O(T−(N+1))

)

The ck’s are analytic functions on Rd×A, polynomial with respect to α;
their expressions involve the functions P,H and ψ as well as their derivatives
and their Fourier transforms.

Notice that ξT −→ ξ and uT −→ uξ as T −→ +∞.

Proof : (a) Let us first consider the case when ψ is of class C3 in the
first variable. Denoting by ψ̄j(u+ iv) the function ∂jψ̂(−P (u+ iv), u+ iv),
one can write, for M > N and 1 ≤ j ≤M ,

∫

||v||≤ρ
ψ̄j(uT + iv)eTP (uT +iv)−<uT +iv|[Tξ]>dm(v)

=
e−<uT |[Tξ]>

T d/2

∫

||v||≤√Tρ
ψ̄j(uT + i

v√
T

)eTP (uT +i v√
T

)−<uT +i v√
T
|[Tξ]>

dm(v)

=
eTP (uT )−<uT |[Tξ]>

T d/2

∫

||v||≤√Tρ
e
− 1

2
P ′′(uT )(v,v)+TR2N+3(u

T , iv√
T

)
ψ̄j(uT + i

v√
T

)dm(v)
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with

P (uT+i
v√
T

) = P (uT )+i < ∇P (uT )| v√
T
> − 1

2T
P ′′(uT )(v, v)+R2N+3(uT ,

iv√
T

)

Here R2N+3(uT , iv√
T

) is given by the Taylor formula :

Rn(u, v) =
1
3!
P (3)(u).v3 + · · ·+ 1

n!
P (n)(u).vn +

∫ 1

0

(1− t)n

n!
P (n+1)(u+ tv).vn+1dt

so that

TR2N+3(uT ,
iv√
T

) =
i3

6T 1/2
P (3)(uT ).v3 + · · ·+ i2N+3

(2N + 3)!TN+1/2
P (2N+3)(uT ).v2N+3

+
i2N+4

TN+1

∫ 1

0

(1− t)2N+3

(2N + 3)!
P (2N+4)(uT + it

v√
T

).v2N+4dt

Next we introduce the polynomials

Q2N+3(uT ).(iv, T−1/2) =
i3

6T 1/2
P (3)(uT ).v3+· · ·+ i2N+3

(2N + 3)!TN+1/2
P (2N+3)(uT ).v2N+3

Taylor’s formula shows the existence of a constant K, dependent of N
but independent of ρ, such that :
(1)| TR2N+3(uT , iv√

T
) |≤ KT−1/2 || v ||3

(2)| TR2N+3(uT , iv√
T

) |≤ Kρ || v ||2

(3)|| TR2N+3(uT , iv√
T

)−Q2N+3(uT ).(iv, T−1/2) ||≤ K ||v||2N+4

TN+1

(4)|| TR2N+3(uT , iv√
T

)−Q2N+3(uT ).(iv, T−1/2) ||≤ Kρ2N+2 || v ||2.
if || v ||≤ √

Tρ

Then

| eTR2N+3(u
T , iv√

T
) −

2N+1∑

k=0

(TR2N+3(uT , iv√
T

))k

k!
| ≤ e

|TR2N+3(u
T , iv√

T
)| | TR2N+3(uT , iv√

T
) |2N+2

(2N + 2)!

≤ eKρ||v||
2
T−(N+1) || v ||6N+6 K2N+2

(2N + 2)!
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so that

|
∫

‖v‖≤√Tρ
e−

1
2
P ′′(uT )(v,v)

(
e
TR2N+3(u

T , iv√
T

) −
2N+1∑

k=0

(TR2N+3(uT , iv√
T

))k

k!

)
ψ̄j(uT + i

v√
T

)dm(v) |

≤‖ tjψ ‖L1
K2N+2

(2N + 2)!
T−(N+1)

∫

||v||≤√Tρ
e−

1
2
P ′′(uT )(v,v)eKρ‖v‖

2 ‖ v ‖6N+6 dm(v)

≤ C10 || tjψ ||L1 T−(N+1)

provided ρ is small enough for the integral
∫

Rd
e−

1
2
P ′′(uT )(v,v)eKρ||v||

2 || v ||6N+6 dm(v)

to be finite.
Developing the expression

∑2N+1
k=0

(TR2N+3(u
T , iv√

T
))k

k! yields

2N+1∑

k=0

(TR2N+3(uT , iv√
T

))k

k!
=

2N+1∑

k=0

T−k/2Wk(uT ).iv + YN (uT , v, T−1/2)

where Wk(uT ).iv is a polynomial function of iv depending analytically on
uT , and || YN (uT , v, T−1/2) ||≤ ||v||q

TN+1 for some integer q (depending on N).
One has TP (uT )− < uT |[Tξ] >= TH(ξT ), since P = (−H)∗. Thus we

get

|
∫

||v||≤ρ
ψ̄j(uT + iv)eTP (uT +iv)−<uT +iv|[Tξ]>dm(v)

−eTH(ξT )

∫

||v||≤√Tρ
e−

1
2
P ′′(uT )(v,v)(

2N+1∑

k=0

T−k/2Wk(uT ).iv)ψ̄j(uT + i
v√
T

)dm(v) |

≤ C11e
TH(ξT ) || tjψ ||L1 T−(N+1)

and if we expand ψ̄j in a neighborhood of uT ,

|
∫

||v||≤ρ
ψ̄j(uT + iv)eTP (uT +iv)−<uT +iv|[Tξ]>dm(v)

−eTH(ξT )

∫

||v||≤√Tρ
e−

1
2
P ′′(uT )(v,v)(

2N+1∑

k=0

T−k/2Wk(uT ).iv)(
2N+1∑

l=0

ilT−l/2
ψ̄j

(l)(uT ).vl

l!
)dm(v) |

≤ C12 e
TH(ξT ) sup

n1+|n2|≤2N+2
|| tj+n1wn2ψ ||L1 T−(N+1)
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To obtain (1), all we have to do is notice that
∫

‖v‖≥√Tρ
e−

1
2
P ′′(uT )(v,v)|Wk(uT ).iv|.|ψ̄j(l)(uT ).vl|dm(v)

≤ C13 sup
n1+|n2|≤l+1

‖ tj+n1wn2ψ ‖L1

∫

‖v‖≥√Tρ
e−

1
2
P ′′(uT )(v,v) ‖ v ‖αk,l dm(v)

≤ C14 sup
n1+|n2|≤2N+2

‖ tj+n1wn2ψ ‖L1 e−C15T

Finally,

|
∫

||v||≤ρ
ψ̄j(uT + iv)eTP (uT +iv)−<uT +iv|[Tξ]>dm(v)

−e
TH(ξT )

T d/2

∫

v∈Rd
e−

1
2
P ′′(uT )(v,v)(

2N+1∑

k=0

T−k/2Wk(uT ).iv)(
2N+1∑

l=0

ilT−l/2
ψ̄(l)(uT ).vl

l!
)dm(v) |

≤ C16 e
TH(ξT ) sup

n1+|n2|≤2N+2
|| tj+n1wn2ψ ||L1 T−(N+1)

If we compare to lemma 4.4, it turns out that the remaining terms are
negligible in front of the latter expression. Gather all terms of same order; a
more careful computation shows that the coefficients of odd powers of T−1/2

vanish, because they are expressed as the integrals of odd functions over Rd.
(1) is now proved. More precisely, the term O(T−(N+1)) can be bounded by

C17


 ∑

n1+|n2|≤4N

|| tn1wn2ψ ||L1


T−(N+1) + C18 || ∂3

t ψ ||L1 e−εT

We will need this now to resort to an approximation argument in the next
paragraph.

Notation : We will write θN (ψ) for
∑

n1+n2≤4N || tn1wn2ψ ||L1 .
(b) We now come to the case of a function ψ which is piecewise constant.

For all T take ψ−T and ψ+
T of class C3, with compact supports, such that :

(1)ψ−T ≤ Q ≤ ψ+
T

(2)θN (ψ+
T − ψ−T ) ≤ e−βT θN (ψ)

(3)|| ∂3
t ψ

∗
T ||L1≤ e3βT || ψ ||L1

(4)|| ψ∗T ||∞≤ 2 || ψ ||∞ This can be done by a convolution argument with
respect to t.

Then write
π(ξ, ψ;T ) ≤ π(ξ, ψ+

T , T )
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so that

π(ξ, ψ;T ) − 2π
N∑

k=0

1
T k+1

∫

V0

dm(v)e−<u+iv|[Tξ]>
∂kψ̂+

T

∂sk
(−P (z), z)eP (z)T

≤ C8
|| tN+1ψ+

T ||L1

TN+1
eTH(ξT )

+C9

(|| ∂3
t ψ

+
T ||L1 + || ψ+

T ||L1 + · · ·+ || tNψ+
T ||L1

)
eTH(ξT )

The same technique as in (a) can be used to show that

|
∫

V0

dm(v)e−<u+iv|[Tξ]>
(
∂kψ̂+

T

∂sk
− ∂kψ̂

∂sk

)
(−P (z), z)eP (z)T |

∼ C19
eTH(ξT )

T d/2+1
|
(
∂kψ̂+

T

∂sk
− ∂kψ̂

∂sk

)
(−P (uT ), uT ) |

≤ C20θN (ψ)
eTH(ξT )−βT

T d/2+1

Thus

π(ξ, ψ;T ) − 2π
N∑

k=0

1
T k+1

∫

V0

dm(v)e−<u+iv|[Tξ]>
∂kψ̂

∂sk
(−P (z), z)eP (z)T

≤ C20θN (ψ)
eTH(ξT )−βT

T d/2+1

+C8
θN (ψ)
TN+1

eTP (u)−<u|Tξ>

+C9 || ψ ||L1 eT (P (u)−ε+3β)−<u|[Tξ]>

Doing the same with ψ−T , we obtain that

| π(ξ, ψ;T ) − 2π
N∑

k=0

1
T k+1

∫

V0

dm(v)e−<u+iv|[Tξ]>
∂kψ̂

∂sk
(−P (z), z)eP (z)T |

≤ C20θN (ψ)
eTH(ξT )−βT

T d/2+1

+C8
θN (ψ)
TN+1

eTP (u)−<u|[Tξ>

+C9 || ψ ||L1 eT (P (u)−ε+3β)−<u|[Tξ]>

Then choose β < ε/3 and obtain the same expansion as in (a).
(c) The result for Riemann-integrable functions is obtained the same

way.
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