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The profusion of recent papers investigating the properties of optimal orbits of
dynamical systems, generalizing or contradicting some results specific to Lagrangian
systems, leaves no doubt as to the interest of such a study in a general setting.
However, it seems that a unified motivation remains to be found.

Optimal orbits and optimal measures appear most naturally in the Aubry-
Mather theory for Lagrangian systems : they are orbits, or measures, minimizing
globally the integral of the lagrangian. In this context they are classically called
action-minimizing orbits (and measures). More generally, given a dynamical system
and a potential f on the phase space, one may ask for a description of the orbits,
or of the invariant measures, minimizing the integral of f . Such a question appears
for instance in [YH] (from where we took the expression “optimal orbits”) where
it is linked to the question of “controlling chaos”; in [CLT], as a variant of Mañe’s
work on Lagrangian systems. In [J] and in [Bo] specific examples are treated for
their intrinsic interests.

In the papers mentioned above, the dynamical systems under study are ex-
panding or hyperbolic. It is a situation where the behaviour of arbitrary orbits is
very well known : the system is expansive, satisfies specification – in fact, lots of
properties which allow to manipulate the orbits as if they were trajectories of a
random walk. A good measure theoretical approach of such systems is provided by
thermodynamical formalism, which gives a description of the distribution of arbi-
trary orbits in terms of Gibbs measures. An interesting observation is that optimal
measures can be obtained as limits of Gibbs measures when a certain parameter
(playing the role of the inverse of the temperature) tends to infinity. Therefore
one can ask for analogs to some results about arbitrary orbits : counting results
for closed optimal orbits, spatial distribution ? The paper [YH] deals for instance
with the existence of closed orbits sufficiently close to optimal. However, it seems
very difficult to obtain more refined results in this direction. As will appear later,
properties of optimal orbits depend a lot on the geometric features of the system;
optimal orbits can behave chaotically for some systems and in an almost-periodic
way for other systems (as is most often the case).

Here we study the situation of the geodesic flow on a surface of negative curva-
ture. We are interested in closed geodesics which are optimal, or close to optimal,
in homology : that is to say, they minimize the length in their homology classes.
The aim is to obtain some counting results as well as to raise some questions about
the transition from the “chaotic behaviour” of arbitrary orbits (described by Gibbs
measures) to the almost-periodic behaviour of optimal orbits.

The starting point of this work was a paper by Lalley ([Lal2]) in which he
describes closed orbits of Anosov flows, with prescribed Birkhoff average of a given
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potential f . For non-optimal orbits (for f) he can prove some results which stand
in the continuity of the famous result of Margulis ([M]) : exponential multiplicative
asymptotic for the number of orbits, and equidistribution with respect to a Gibbs
measure. His result applies in particular when we want, as in the present paper,
to count closed geodesics of a negatively curved surface with a prescribed average
winding cycle. The proof relies on coding the flow, then on the spectral analysis
of a Markovian transition operator. However, this technique fails if we want to
count optimal orbits – here this means that the winding cycles of the geodesics
have stable norms close to 1. As mentioned before there is no solution to such
questions in a general abstract setting ; results seem to depend on the specific
topological properties of the manifold as well as of the flow. Here we will use very
strongly the topological properties of optimal geodesics of surfaces, in particular
their almost-periodic behaviour. We will show that in certain optimal homological
directions (the rational ones), the growth of the number of closed geodesics is at
most polynomial (Theorem 1.1.3); we will also show that in other directions the
growth is still subexponential, but possibly no longer polynomial (Theorem 1.1.5).

Our counting technique is very different from that used in the non-optimal case.
However in the course of our investigation we will observe some interesting sim-
ilarities. The Lagrangian variational principle can be obtained as a limit of the
thermodynamic variational principle, when temperature tends to zero. Instead of
characterizing equilibrium measures by the Gibbs property, one can characterize
minimizing measures by their support : the Mather set. We will also see the role
played by a semi-group, the Lax-Oleinik semi-group (Section 4). This semi-group is
not Markovian, in fact non-linear; it is the semi-group giving the viscosity solutions
of the Hamilton-Jacobi equation. The convergence in infinite time of the Lax-
Oleinik semi-group will be used to describe the topological distribution of optimal
orbits, exactly as the convergence of Markovian operators influences the measure-
theoretical distribution of arbitrary orbits. We will see that optimal orbits will
spend most time close to the so-called Aubry set; the latter is the set of accumu-
lation points of closed quasi-minimizing geodesics, and admits a nice description
in terms of the fixed points of the Lax-Oleinik semi-groups. On the coincidence,
or not, of Aubry set with Mather set will depend some features of the growth of
optimal orbits.

To conclude, we should note that in this particular setting, the question can by
raised one level higher if we remember that geodesics can be regarded as limits of
brownian trajectories when some normalisation parameters tend to infinity. For
such a system, one can consider three levels of optimization (or, on the contrary,
of randomness) : brownian motion is the case of completely free trajectories on
the surface; geodesics are trajectories which minimize the action locally; “optimal”
geodesics minimize the action globally. The relation between brownian motion
and globally minimizing trajectories will be partially dealt with in an independent
appendix; there we recall in particular how to obtain Lax-Oleinik semi-groups from
twisted heat semi-groups by the method of vanishing viscosity. This is striking
here, because twisted heat semi-groups are usually used to count closed geodesics
with homological constraints in constant negative curvature.
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1. Growth rates for quasi-minimizing closed geodesics

Let V be a compact orientable Riemannian manifold endowed with a metric of
negative sectional curvature. Let H1(V,R) denote its first homology space with real
coefficients, and H1(V,Z) its first homology group. The space H1(V,R) is a finite
dimensional real vector space, and H1(V,Z) can be seen as the lattice of integer
points in H1(V,R). We fix once and for all an “integral part” mapping [ . ] from
H1(V,R) to H1(V,Z). More explicitly, we choose an arbitrary fundamental domain
E of the lattice H1(V,Z) ⊂ H1(V,R), and we define [ξ] as the unique element of
H1(V,Z) such that ξ ∈ E + [ξ].

We will denote Γ the set of oriented closed geodesics γ of V – we recall that it is
in one-to-one correspondence with π1(V ), the set of free homotopy classes of loops
in V . There is a surjective map

Γ −→ H1(V,Z)
γ 7→ [γ]

which assigns to a closed geodesic γ its homology class [γ] (we use the same notation
[.] for different objects, hoping it will not cause too much confusion).

Given α ∈ H1(V,Z), ξ ∈ H1(V,R) and δ > 0, Lalley described the asymptotic
behaviour, for T −→∞, of the set

Γ(ξ, α, δ;T ) = {γ ∈ Γ, T − δ ≤ l(γ) ≤ T, [γ] = α + [Tξ]}
where l(γ) denotes the length of γ ∈ Γ. Under some assumptions on the vector ξ,
he found the asymptotic behaviour of the quantity

π(ξ, α, δ;T ) = Card Γ(ξ, α, δ; T )

as well as obtained an asymptotic equidistribution theorem for the geodesics in
Γ(ξ, α, δ;T ).

These geodesics have average winding cycle (or average homology cycle) [γ]
l(γ) fixed

and equal to ξ, up to a bounded error – it is necessary to allow this error because
[γ] belongs to H1(V,Z) whereas l(γ)ξ may not. The vector ξ can be thought of as
of a constraint exerted on the geodesics, which forces them to align themselves in
a certain direction in the homology space.

Such questions are usually treated by identifying the set Γ of oriented closed
geodesics with the set of closed orbits of the geodesic flow, thus bringing counting
problems into the field of dynamical systems. The geodesic flow (φt) acts on the
unit tangent bundle SV of the manifold, and it has the Anosov property when V
has negative curvature. Lalley used the thermodynamical formalism for such flows,
and introduced the functions H (contracted entropy) and P (contracted pressure)
on the first homology and cohomology spaces. Let us denote M1(SV ) the set of
(φt)-invariant probability measures on SV , endowed with the weak topology. The
function P is defined by :

P : H1(V,R) −→ R
[ω] 7−→ sup

ν∈M1(SV )

h(ν) + 〈[ω], [ν]〉

In this definition, h(ν) is the metric entropy of ν ∈M1(SV ), and [ν] ∈ H1(V,R) is
the asymptotic cycle of ν (Schwartzman [Sc]), defined by duality by the equality :

〈[ω], [ν]〉 =
∫

SV

〈ω,X〉dν(X)



4 NALINI ANANTHARAMAN

when ω is a closed 1-form and [ω] is its cohomology class (the same definition would
make sense for any positive (φt)-invariant measure with compact support on the
tangent bundle TV ).

The entropy on H1(V,R), defined as follows, is the Legendre transform of P :

H : H1(V,R) −→ R
ξ 7−→ sup

ν∈M1(SV ),[ν]=ξ

h(ν)

The function H is supported on the compact convex set C = {[ν], ν ∈M1(SV )} ⊂
H1(V,R); notice that C is symmetric with respect to the origin. One can prove
that the function P is analytic and strictly convex on H1(V,R), and that H is

continuous on C, analytic and strictly concave on the interior
◦
C. We refer the

reader to [BL] for proofs, and to [Mas] and [Mas1] for some geometrical properties
of C. A nice description of a similar set C was obtained by Bousch ([Bo]) for a
different dynamical system.

The first part of the following theorem says that, if the constraint ξ has a suf-
ficiently small norm, the quantity π(ξ, α, δ; T ) will grow exponentially in T . How-
ever, for ξ 6= 0, the growth exponent H(ξ) will be strictly less than the topological
entropy, which was the growth rate obtained by Margulis for geodesics without
constraints ([M]). The second part of the theorem deals with the question of the
asymptotic distribution, in measure theoretic sense, of closed geodesics. For all
γ ∈ Γ, we will denote by mγ the Lebesgue measure carried by γ (seen as a curve in
SV ), parametrized by arc-length.

Theorem 1.0.1. (Lalley [Lal1], [Lal2], Babillot-Ledrappier [BL])

If ξ ∈
◦
C, then :

(1) One has the following asymptotics, when T goes to infinity :

π(ξ, α, δ; T ) ∼ c0(ξT , δ)
eTH(ξT )+〈∇H(ξT ),α〉

T d/2+1

where
• ξT = [Tξ]

T −→
T−→∞

ξ

• ∇H(ξT ) is the differential of H, seen as an element of the dual H1(V,R).
• d = dim H1(V,R)
•

c0(ξT , δ) =

√
| detH ′′(ξT ) |

(2π)d/2V ol(H∗
1 )

(
1− e−δP (−∇H(ξT ))

P (−∇H(ξT ))

)

where H∗
1 is the set of characters of the lattice H1(V,Z).

(2) (Equidistribution) One has the following convergence in M1(SV ) endowed
with the weak topology :

1
π(ξ, α, δ;T )

∑

γ∈Γ(ξ,α,δ;T )

mγ

l(γ)
−→

T−→∞
mξ

where mξ is the unique element of M1(SV ) satisfying [mξ] = ξ and H(ξ) = h(mξ).
It is a Gibbs measure, and supp mξ = SV . In particular, ∪T Γ(ξ, α, δ; T ) is dense
in SV .
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Remark 1.0.2. The usual proof of this result involves the study of dynamical zeta-
functions; their domain of convergence is related to the spectrum of Markovian
transition operators :
– in constant curvature, the “twisted” Laplace operators (see the Appendix).
– in variable curvature, a twisted transfer operator Lω : there exists a subshift of
finite type (Σ, σ), and a positive function τ on Σ, such that the special flow on the
suspension over X by the function τ is semi-conjugate to the geodesic flow. The
action of Lω acts on the space of functions on Σ looks like :

Lωf(x) =
∑

σy=x

e
R τ(y)
0 ω(y,s)ds−P ([ω])τ(y)f(y)

The measure mξ appearing in Theorem 1.0.1(2) is also the unique equilibrium mea-
sure achieving the supremum supν∈M1(SV ) h(ν) + 〈[ω], [ν]〉, where [ω] = −∇H(ξ);
it can be considered a function of ω, and denoted mω. Transversally to the flow,
the measure mξ seen as a measure on Σ, is the product of the fixed points of the
operator Lω and of its dual L∗ω.

In general, not much is known when ξ ∈ ∂C (of course, it is easy to see that
π(ξ, α, δ;T ) = 0 for large enough T , when ξ 6∈ C). We will observe in paragraph 2.2
that measures with asymptotic cycle on ∂C are minimizing in the sense of Mather :
they minimize the length, as well as the energy, in their homology class. Problems
of two kinds arise for ξ ∈ ∂C. From the analytic point of view, the behaviour at
infinity of the function P is not known, which prevents us from trying to adapt
the classical technique of zeta-functions. From a more dynamical point of view, the
restriction of the geodesic flow to the set ∪[ν]=ξsupp ν has, generally speaking, no
Markovian structure when ξ ∈ ∂C, and there is no meaningful definition of a Gibbs
measure mξ. As a consequence, usual counting techniques fail.

This paper is devoted to describing the asymptotic behaviour of the set Γ(ξ, α, δ; T )
when ξ ∈ ∂C. Results analogous to Theorem 1.0.1 would be to find the asymptotic
behaviour of π(ξ, α, δ;T ), as well as to find a measure which plays the role of the
measure mξ. These questions remain open, but we give here some partial answers
to the former question. We restrict ourselves to the case of a surface, where much
information can be derived from topological considerations.

In the case when ξ ∈ ∂C we will see that it is equivalent, and slightly simpler as
far as notations are concerned, to drop the δ’s and to study the sets Γ(ξ, α; T ) =
{γ ∈ Γ, l(γ) ≤ T, [γ] = [Tξ] + α} and their cardinality π(ξ, α; T ).

It will sometimes be more convenient, as well as interesting, to look at closed
geodesics whose average homology cycle is not necessarily prescribed to be near a
single vector ξ, but rather, near a whole face of ∂C. In other words, one can count
elements of the form (l(γ), [γ]) lying near some hyperplane of R×H1(V,R), instead
of counting elements in a neighbourhood of a line.

A face of ∂C (or of C) is defined as the intersection of ∂C with one of its
supporting hyperplanes. All faces are of the form {ξ ∈ C, 〈[ω], ξ〉 = 1} where ω
is a closed 1-form on V whose cohomology class [ω] satisfies 〈[ω], ξ′〉 ≤ 1, for all
ξ′ ∈ C. We will always use this representation of faces, and we will denote Fω the
face associated to ω. For such an ω and for ε, δ, A > 0, we introduce the sets

Γ(ω, ε, A, δ; T ) = {γ ∈ Γ, T − δ ≤ l(γ) ≤ T, 〈[ω], [γ]〉 ≥ (1− ε)T −A}
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as well as their cardinality

π(ω, ε, A, δ;T ) = Card Γ(ω, ε, A, δ; T )

Sometimes it will be possible to drop the dependence on δ :

Γ(ω, ε, A; T ) = {γ ∈ Γ, l(γ) ≤ T, 〈[ω], [γ]〉 ≥ (1− ε)T −A}
and

π(ω, ε, A;T ) = Card Γ(ω, ε, A; T )

When we take ε = 0 we will simply write Γ(ω,A;T ) and π(ω,A;T ).
In this context Lalley’s results also yield :

Proposition 1.0.3. If ε ∈ (0, 1), then there exist a constant c(ω, ε,A, δ) (which
can be computed explicitly) such that

π(ω, ε,A, δ; T ) ∼ c(ω, ε,A, δ)
eTH(ω,ε)

T 3/2

with H(ω, ε) = sup{h(ν), 〈[ω], [ν]〉 = 1− ε} > 0.

Studying geodesics whose average homology cycle belongs to Fω amounts to
taking ε = 0 and to studying the set Γ(ω, A, δ; T ).

Definition 1.0.4. A closed geodesic γ ∈ Γ is said to be (ω, A)-quasi-minimizing
if it has the following property : if c is a family of closed curves on V , such that
〈[ω], [c]〉 = 〈[ω], [γ]〉, then l(c) ≥ l(γ) − A. The geodesic γ is said to be A-quasi-
minimizing, if l(c) ≥ l(γ) − A for all multi-curves c with [c] = [γ]. For A = 0 we
simply talk about ω-minimizing and minimizing geodesics.

We remark that geodesics in Γ(ω, A, δ; T ) are (ω, A)-minimizing.
When studying Γ(ξ, α, δ;T ) and Γ(ω, ε, A, δ; T ), profitable information can be

derived from a Large Deviation result of Kifer ([Kif]), which has the following
consequence :

Lemma 1.0.5. (1) For all ξ ∈ H1(V,R),

lim sup
1
T

log π(ξ, α, δ;T ) ≤ H(ξ)

and for all ω as above and ε ∈ [0, 1),

lim sup
1
T

log π(ω, ε, A, δ;T ) ≤ H(ω, ε)

(2) If there exists a unique measure mξ (resp. mω,ε) such that [mξ] = ξ and
H(ξ) = h(mξ) (resp. 〈[ω], [mω,ε]〉 = 1− ε and H(ω, ε) = h(mω,ε)) then

1
π(ξ, α, δ;T )

∑

γ∈Γ(ξ,α,δ;T )

mγ

l(γ)
−→

T−→∞
mξ

(resp. 1
π(ω,ε,A,δ;T )

∑
γ∈Γ(ω,ε,A,δ;T )

mγ

l(γ) −→
T−→∞

mω,ε)

As we will see later, the quantities H(ξ) and H(ω, ε) vanish in the boundary cases
ξ ∈ ∂C and ε = 0, so that π(ξ, α, δ; T ) and π(ω,A, δ;T ) grow sub-exponentially. In
these cases, the assumptions of (2) are not satisfied, and it is not known whether
there exist measures playing the role of mξ and mω,ε.
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1.1. Rational constraints. The description of the sets Γ(ω, A, δ; T ) will depend
on the “rationality” of the face Fω.

Definition 1.1.1. A point ξ ∈ H1(V,R) is called rational if there exists r ∈ R \ 0
such that rξ ∈ H1(V,Z).

Definition 1.1.2. A face of C is called rational if it contains a rational point in
its relative interior.

We first prove the following :

Theorem 1.1.3. (1) If ξ belongs to a rational face, then for all α ∈ H1(V,Z),
there exists a polynomial Qξ,α such that, for all T ,

π(ξ, α; T ) ≤ Qξ,α(T )

(2) The projection on V of the set ∪T Γ(ξ, α; T ) is nowhere dense in V ; its closure
has Lebesgue measure 0. Its Hausdorff dimension is 1, if it is not empty.

Let Fω be a rational face containing ξ. The proof relies on a description of the
Mather set M̃ω, defined as M̃ω = ∪[m]∈Fω

supp m. In the rational case it is a union
of disjoint closed simple geodesics. Such geodesics are isolated, for the Hausdorff
distance, from other complete geodesics (in particular, small neighbourhoods of the
set M̃ω have zero entropy with respect to the geodesic flow).

Let Int be the algebraic intersection form on H1(V,R). Proving Theorem 1.1.3,
we will in fact prove :

Proposition 1.1.4. If Fω is a rational face, then, for all A,K ≥ 0, there exists a
polynomial Qω,A,K such that, for all T ,

Card {γ ∈ Γ(ω, A; T ), | Int([γ], ξ) |≤ K for all ξ ∈ Fω} ≤ Qω,A,K(T )

In general this is not true if we drop the condition on the intersection number, as
we prove in Theorem 1.1.5. We use Fathi’s remark that the phrase commonly used
“Aubry-Mather set” represents two different objects, the Mather set M̃ω defined
above, and another set which we call the Aubry set Ãω. It contains the Mather
set, but can also contain orbits which are heteroclinic to the Mather set. We show
that the existence of such orbits has strong implications on the growth rate for the
number of (ω,A)-quasi-minimizing geodesics :

Theorem 1.1.5. (1) If Ãω = M̃ω, and if Fω is a rational face, then, for all A ≥ 0,
π(ω, A; T ) grows polynomially in T .

(2) If the Aubry set Ãω and the Mather set M̃ω are distinct, then for all A >
0 there exists a sequence Tn −→ ∞ such that π(ω, A; Tn) grows faster than any
polynomial in Tn.

A priori, the Aubry set can be strictly larger than the Mather set. There are
explicit examples of Hamiltonian systems for which Aubry and Mather sets do not
coincide; however, it is not known what will the general picture look like for geodesic
flows in negative curvature.

1.2. Irrational constraints. The case of rational faces stands in sharp contrast
to the irrational case. In that case, many of the questions treated above remain
open.

In Section 4 we use Fathi’s weak KAM theorem to show that some steps leading
to Proposition 1.1.4 and Theorem 1.1.3 still hold. But this time, arbitrarily small
neighbourhoods of the Mather set have positive entropy :
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Theorem 1.2.1. Let Fω be a non rational face of ∂C. Then for every neighbour-
hood W̃ of the Mather set M̃ω, and for every ε ∈ (0, 1), there exists a number
h(W̃ , ε) > 0 such that, for all A > 0, for large enough T ,

Card
(
Γ(ω, ε,A; T ) ∩ {γ ∈ Γ, γ ⊂ W̃}) ≥ eh(W̃ ,ε)T

Thus, there exist exponentially many geodesics in Γ(ω, ε,A; T ) lying in an arbi-
trary neighbourhood of the Mather set. This prevents us to conclude as in Theorem
1.1.3, and the question of estimating π(ξ, α; T ) for arbitrary ξ remains open.

Remark 1.2.2. In the light of Theorem 1.2.1 it seems reasonable to conjecture that,
if we let ε tend to 0, the entropy H(ω, ε) will decay faster to 0 when ω defines a
rational face than when it defines a non-rational face. Also, Theorem 1.1.5 allows
us to think that H(ω, ε) will decay faster when Ãω = M̃ω than when Ãω 6= M̃ω.

Remark 1.2.3. The question of finding sharp estimates – that is, a satisfactory lower
bound in 1.1.3 and 1.1.4 and an upper bound in 1.1.5 – remains open. It seems that
topological considerations will not be sufficient, but that some analysis of the metric
properties of V should come into play. Moreover, if we remember Theorem 1.0.1,
it is obvious that the sharp growth rate as well as all the constants involved will
be related to the behaviour at infinity of the pressure and of the entropy (explicit
calculations can be carried out for reasonably simple Markov shifts).

In section 2 we collect all the necessary information on length and homology of
geodesics and Mather theory, and we clarify the statements made above. In section
3 we prove Theorem 1.1.3. Eventually in section 4 we prove Theorems 1.1.5 and
1.2.1; this section also presents an attempt to relate the issue to the study of fixed
points of the Lax-Oleinik operators.

2. Preliminaries on action minimizing laminations

2.1. Basic facts about length and angles of intersection. The following lem-
mas, which are very simple observations, are the key ingredient to the proof of the
main result in Mather’s description of minimizing measures (Theorem 2.2.5). They
also play a major part in the proof of Theorem 1.1.3.

Lemma 2.1.1. For small a > 0, there exists η > 0 such that, for every θ ∈ (0, π]
: if g1, g2 : [0, a] −→ V are geodesic arcs, parametrized by arc-length, with g1(a) =
g2(0) and the angle between the tangent vectors at g1(a) and at g2(0) is greater
than θ, then there exist a C1 curve γ1 : [0, 2a] −→ V such that g1(0) = γ1(0),
g2(a) = γ1(2a), and

l(g1) + l(g2)− l(γ1) ≥ ηθ2

Proof. : This is a simple consequence of the local geometric properties of the man-
ifold : in local charts the metric is equivalent to euclidean metric, for which the
estimate is simple to check.

We use the same notation dist for distance on V and distance on SV , measured
with respect to the Riemannian metric. We will also need the following variant of
the previous lemma (compare with the lemma on p186 of [Mat]) :

Lemma 2.1.2. There exist a, ρ, η > 0 such that, for every δ > 0 small enough
: if g1, g2 : [−a, a] −→ V are geodesic arcs, parametrized by arc length, with
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dist(g1(0), g2(0)) ≤ δ, and dist(ġ1(0), ġ2(0) ≥ ρδ, then there exist C1 curves γ1, γ2 :
[−a, a] −→ V such that g1(−a) = γ1(−a), g1(a) = γ2(a),g2(−a) = γ2(−a),
g2(a) = γ1(a), and

l(g1) + l(g2)− (l(γ1) + l(γ2)) ≥ ηδ2

2.2. Stable norm and Mather’s theorem. Some of the results of this section
are true in any dimension, but we restrict our attention to surfaces : Propositions
2.2.2(1) and 2.4.2 only hold on surfaces; Mather’s theorem holds in all dimension,
but only in dimension 2 do the Mather sets admit a topological description suitable
for counting orbits. Fathi’s theorem also holds in any dimension; so in fact dimen-
sion does not play any role in the variational (Lagrangian) aspect of the problem,
but it plays a crucial role in the counting technique, which relies on topology.

Definition 2.2.1. ([GLP]) The stable norm on H1(V,R) is defined by

‖ ξ ‖s= inf{
∑

| ri | l(γi), where ri ∈ R, γi are closed curves such that
∑

ri[γi] = ξ}

We denote M(TV ) and M(SV ) the set of positive measures invariant under
the geodesic flow, respectively on the tangent bundle TV and on the unit tangent
bundle SV . M1(TV ) and M1(SV ) are the corresponding subsets of probability
measures.

Proposition 2.2.2. (1) ([GLP]) If ξ ∈ H1(V,Z) then

‖ ξ ‖s= inf{
∑

| pi | l(γi), where pi ∈ Z, γi are closed curves such that
∑

pi[γi] = ξ}
(2) ([Mas]) For all ξ ∈ H1(V,Z) one has

‖ ξ ‖s= inf{m(SV ),m ∈M(SV ), [m] = ξ}
and

‖ ξ ‖2s= inf{
∫

TV

‖ v ‖2 dm(v),m ∈M1(TV ), [m] = ξ}

One can check that in all cases the inf is in actually a min; besides, the mea-
sures achieving the minimum in the last case are supported on ‖ ξ ‖s .SV . The
last expression does not seem a very natural expression for the stable norm; the
aim is to draw a relation with Mather theory for action minimizing measures of
Lagrangian systems ([Mat]). Here the Lagrangian is simply v 7→ ‖v‖2

2 , and the
action minimizing measures are the measures achieving the minimum in (2). By
an homothety we can carry them to probability measures supported on SV . They
are a generalization of the minimizing geodesics defined in 1.0.4 : a geodesic is
minimizing if the uniform probability measure it carries is minimizing.

As a consequence of Proposition 2.2.2, the convex set C defined in paragraph 1
is the unit ball for the stable norm ([Mas]). Also, supporting hyperplanes of C are
all of the form 〈[ω], ξ〉 = 1, where ω is a closed 1-form on V with dual stable norm
‖ [ω] ‖s= 1. As before, we denote Fω the corresponding face of C.

Definition 2.2.3. The set of ω-minimizing measures Mω is defined as the set of
measures m ∈ M1(SV ) such that [m] ∈ Fω. The Mather set M̃ω ⊂ SV is defined
as

M̃ω = ∪m∈Mωsupp m
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Remark 2.2.4. In thermodynamic formalism, the equilibrium measure mω which
achieves the supremum P ([ω]) = supν h(ν)+〈[ω], [ν]〉 is characterized by a Gibbsian
property. Here, ω-minimizing measures are characterized by their support, namely
the set M̃ω. Notice that any limit point of the family (mλω), as λ tends to infinity,
is an ω-minimizing measure. In fact,

P (λ[ω])
λ

−→
λ−→∞

‖ ω ‖s

because λ ‖ [ω] ‖s≤ P (λ[ω]) ≤ h + λ ‖ [ω] ‖s, where h is the topological entropy of
the geodesic flow.

Lemmas 2.1.1 and 2.1.2 show that geodesics with self-intersections are not min-
imizing. A major consequence is the following theorem, which holds in any dimen-
sion :

Theorem 2.2.5. (Mather [Mat]) For all ω, the projection p : SV −→ V , restricted
to M̃ω, is injective. Its inverse (considered as a mapping from Mω = p(M̃ω) to M̃ω)
is lipschitz. In particular, p is an homeomorphism from M̃ω to Mω.

2.3. The topology of geodesic laminations.

Definition 2.3.1. Let λ be a compact subset of V .
(1) The set λ is a geodesic lamination if it is a disjoint union of immersed geodesics.
In other words, there exists a compact subset λ̄ of the projective tangent bundle
P (TV ), invariant by the geodesic flow, such that the projection p̄ : P (TV ) −→ V
restricted to λ̄ is a homeomorphism onto λ.
(2) The set λ is a measured lamination if λ̄ carries a flow-invariant measure ν. The
projection of ν can be identified with a transverse measure for λ, and the projection
of the support of ν is called the support of the transverse measure.
(3) A lamination λ is orientable if there exists a closed subset λ̃ ⊂ SV lying over λ̄

such that the projection p : SV −→ V restricted to λ̃ is a homeomorphism onto λ.
(the choice of such a lift of λ is called an orientation of the lamination).

Remark 2.3.2. A geodesic lamination has empty interior : if it contained an open
subset of V , then it would be equal to V itself, because geodesics diverge exponen-
tially fast in the universal cover of V . But then V would carry a nowhere vanishing
vector field, a contradiction with the fact that V has negative Euler curvature. One
can also show that the intersection of V with any transversal is totally discontinu-
ous ([Ot]). So, the lift λ̄ is completely determined by λ, and one does not generally
make the distinction between λ and λ̄, or λ̃ if an orientation is given.

The two following propositions result from Theorem 2.2.5.

Proposition 2.3.3. For every ω ∈ H1(V,R) such that ‖ ω ‖s= 1, Mω is an
oriented geodesic lamination, and it is the support of a tranverse measure.

Proposition 2.3.4. ([Lev2], [Mas1]) The linear span of a face of C is a totally
isotropic subspace of H1(V,R) for the intersection form Int.

Recall that Int is a non-degenerate skew-symmetric form on H1(V,R). If h, h′ ∈
H1(V,Z) are two integral homology classes, Int(h, h′) is the algebraic intersection
number of any two closed (oriented) curves representing h and h′. Proposition 2.3.4
is a consequence of the fact that two geodesics in Mω do not intersect transversally.
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We now describe the topological properties of laminations, and check that mea-
sured laminations have zero entropy, so that H vanishes on ∂C as claimed in para-
graph 1.

An oriented geodesic lamination which is the support of a measure is the union of
a finite number of (compact) connected components. Some of these components are
closed geodesics. The other components are called minimal exceptional components,
they have the property that every half leaf of the component is dense in it. There
are at most 3g − 3 closed components and g minimal exceptional components (we
refer the reader to [Lev1] or [Lev2] for proofs).

We recall the transverse structure of minimal exceptional components. We won’t
use this description in its entirety, but we hope it will provide the reader with a
comfortable picture of laminations.

Let c be such a component and I a small embedded segment transverse to the
lamination (and such that I ∩ c′ = ∅ if c′ is another connected component). Then
I ∩ c is compact, has empty interior, and it is totally discontinuous : in other words
it is a Cantor set. Consequently we can even assume that the endpoints of I do
not belong to c. Recall that c is oriented, so that, if I is small enough, all leaves of
c intersect I in the same direction.

Notations : If two points x, y lie on I, we denote [x, y] the oriented subsegment
of I going from x to y. If x, y are two points lying on the same leaf of c, we denote
/x, y/ the corresponding oriented portion of leaf.

Let T : I ∩ c −→ I ∩ c be the first return map along leaves of c. The trans-
formation T has the structure of an “interval exchange”. More precisely, there
are two partitions of I into intervals of disjoint interiors, P = (I1, · · · , In) (resp.

P ′ = (I ′1, · · · , I ′n)) such that c ∩ Ij ⊂
◦
Ij and Tc(Ij) ⊂

◦
I ′j ; besides, two geodesic

arcs of c of the form /y, Tc(y)/ and /z, Tc(z)/, with y, z ∈ Ij , are homotopic with
endpoints varying respectively in Ij , I ′j , and Tc : Ij ∩ c −→ I ′j ∩ c preserves the
natural order on the intervals.

Because of this property, one has

Lemma 2.3.5. Every measured lamination has zero entropy with respect to the
geodesic flow.

Proof. In fact, the first return time T has zero topological entropy. This comes from
the remark that, for each N , at most N.Card P atoms of the partition ∨N

k=0T
−kP

are non-empty.
Consequently, T has null metric entropy with respect to any invariant measure

on I. Any transverse measure supported on c gives a T -invariant measure on I,
and Abramov’s formula ([Ab]) implies that it has zero entropy.

Starting from such a partition P , one can construct a good looking neighbour-
hood VI,P (c) of c in SV the following way : consider all (oriented) geodesic arcs

γ : [0, t] −→ V , such that there exists j ∈ [1, n] with γ(0) ∈
◦
Ij , γ(t) ∈

◦
I ′j , and

γ is homotopic, with endpoints varying in Ij , I ′j , to a geodesic arc in c of the
form /y, Tc(y)/. The neighbourhood VI,P (c) is then defined as the set of vectors
v ∈ SV of the form γ̇(s) for some γ : [0, t] −→ V as above, for some s ∈ [0, t).
Such a neighbourhood is called a “train-track” neighbourhhood : a curve in this
neighbourhood follows the “rails” of c defined by the partition P , until it intersects
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I. When it intersects I the track splits into several branches and the geodesic can
be switched in one of the different directions.

2.4. Rational asymptotic cycles.

Proposition 2.4.1. ([Lev1], [Mas1]) Let ν be a transverse measure of a geodesic
lamination. If [ν] is rational, then the support of ν is a union of closed geodesics.

Recall that a face Fω is called rational if it contains a rational point in its
relative interior. On surfaces, rational faces admit a nice description in terms of
the topology of the associated Mather set :

Proposition 2.4.2. ([Mas2])The face Fω is rational if and only if the Mather set
Mω is the union of a finite number of disjoint closed geodesics – or equivalently, the
extremal points of Fω are of the form [γ]

l(γ) , where γ is a closed minimizing geodesic.

3. Proof of Theorem 1.1.3

From now on, ξ, α are fixed; ω is a closed 1-form such that ‖ [ω] ‖s= 1 and
〈[ω], ξ〉 = 1, and such that Fω is rational.

Section 3.1 describes the elements of Γ(ξ, α; T ) when Mω contains only closed
geodesics. In Section 3.2 we finish the proof using combinatorial counting argu-
ments.

We initially defined geodesics as (parametrized) curves in SV . But since we
will be working only with geodesics and laminations, we will not always distinguish
between the curves in SV , their projections on V , and their geometric images
as subsets of V . Our geodesics will always be parametrized by arc-length. We
will sometimes use the word “multicurve”, meaning thereby a family of closed
parametrized curves.

3.1. Closed minimizing geodesics. Let c be a closed oriented geodesic; we fix a
point P ∈ c and a parametrization c : [0, l(c)] −→ V such that c(0) = c(l(c)) = P .
Let I be a small geodesic segment centered at P , orthogonal to c, of length 2r with
r small. As at the end of paragraph 2.3, we define a neighbourhood VI(c) ⊂ SV
of the oriented geodesic c. Consider all oriented geodesic arcs γ : [0, t] −→ V , with
endpoints on I, and homotopic (also with endpoints varying in I) to c : [0, l(c)] −→
V . Then VI(c) is the set of vectors of the form γ̇(s) for such an arc γ : [0, t] −→ V ,
and for some s ∈ [0, t). The set VI(c) is a neighbourhood (neither open nor closed)
of c in SV .

Remark that the distance from any point of I to c is less than r. If c̃ is a
lift of c to the universal covering Ṽ , the function “distance to c̃” is convex on Ṽ .
As a consequence, the points of p(VI(c)) are at distance from c less than r. In
particular, for any r′ > r, p(VI(c)) is contained in W = {x ∈ V, d(x, c) < r′}; if r′

is small enough, W is a collar neighbourhood of c in V , that is, homeomorphic to
an annulus. From now on, let W be fixed, while I will be chosen sufficiently small.

Proposition 3.1.1. Let c be a closed geodesic in Mω and let I be as before. Then
there exists K0 such that, for all T , for all γ ∈ Γ(ξ, α;T ), the number of connected
components of γ ∩ VI(c) (in SV ) is smaller than K0.

Proof. We begin with the two following observations :
Observation 1 : By definition, the stable norm of the vectors Tξ − [Tξ] are

bounded in H1(V,R), say by a constant C independent of T . As a consequence,
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there exists A =| 〈[ω], α〉 | +C ≥ 0 such that, for all T , for all γ ∈ Γ(ξ, α; T ),
〈[ω], [γ]〉 ≥ l(γ) − A (simply remember that 〈[ω], ξ〉 = 1 and write 〈[ω], [γ]〉 =
〈[ω], [Tξ]〉 ≥ 〈[ω], T ξ〉 −A = T −A ≥ l(γ)−A). In particular, if γ′ is a multicurve
such that [γ′] = [γ], then l(γ′) ≥‖ [γ′] ‖s≥ 〈[ω], [γ′]〉 ≥ l(γ)− A; this means that γ
is A-quasi-minimizing. Notice also that the length l(γ) itself has to be greater than
T −A, for a certain A.

Observation 2 : For all λ ≥ 0, for all γ ∈ Γ(ξ; T )

〈[ω], [γ] + λ[c]〉 ≥ l(γ) + λl(c)−A

This is just a consequence of the fact that 〈[ω], [c]〉 = l(c) and 〈[ω], ξ〉 = 1.

The rest of the proof will not depend much on α except for the constant A; in
the rest of paragraph 3, we will omit all the α’s in our notations.

We treat the case when γ is not homotopic to a multiple of c; if it is, then the
number of connected components of γ ∩ VI(c) is exactly 1.

If γ is a closed geodesic, all the connected components of γ ∩ VI(c) ⊂ SV are
contained in distinct components of γ ∩ (p−1W ). To see why, let γ1 and γ2 be two
connected components of γ ∩ VI(c). Because of the definition of VI(c), they are
of the form γj = [xj , yj) with xj , yj ∈ I. The closed curve γ decomposes as γ =
[x1, y1) ∪ [y1, x2) ∪ [x2, y2) ∪ [y2, x1). Suppose [y1, x2) ⊂ p−1W , then dist(z, c) ≤ r
for all z ∈ [y1, x2), always by convexity of the distance function in the universal
covering; this has the consequence that [y1, x2) ⊂ VI(c) which is not possible if
γ1 6= γ2. The same argument shows that [y2, x1) 6⊂ p−1W .

There are two types of components of γ ∩ p−1W : those which do not intersect
c (type 1), and those which intersect c (type 2). If I is chosen sufficiently small,
a component of type 1 which contains a component of VI(c) automatically has a
self-intersection in W ; a component of type 2 has no self-intersection.

To see this, consider a lift c̃ of c to the universal cover Ṽ , and denote W̃ the lift
of W containing c̃; that is to say, W̃ = {x ∈ Ṽ , d̃(x, c̃) < r′}. Consider a connected
component γ1 of γ∩p−1W , and a lift γ̃ of γ such that γ̃∩W̃ projects to γ1. If γ̃ does
not intersect c̃ in Ṽ , then γ1 does not intersect c in V . If in addition γ1 contains a
connected component of VI(c), then γ̃ is close to c̃ in the space of geodesics of Ṽ .
Let us consider the action of c on Ṽ ; then γ̃ intersects cγ̃ in W̃ , if the interval I is
chosen sufficiently small. This means that γ1 has a point of self-intersection in W .

If on the contrary γ̃ intersects c̃, then γ̃ is disjoint from all its translates under
the action of c on Ṽ ; this implies that γ1 has no self-intersection in W .

Lemma 3.1.2. There exists K1 such that, for all T , for all γ ∈ Γ(ξ; T ), the number
of components of γ ∩ VI(c) contained in a component of type 1, is less than K1.

Proof. Let γ1 be a component of γ∩p−1W which contains a component of γ∩VI(c).
We claim that there exists ε > 0, depending only on the choice of W , such that,
if we uncross all the self–intersections of this component, straighten the resulting
multicurve to get a multigeodesic, we get a multigeodesic γ′ such that [γ′] = [γ]
and l(γ′) < l(γ)− ε.

To see this, one can first uncross all but one self-intersection of γ1, straighten the
resulting union of curves without moving the two endpoints of γ to get geodesics in
W , in such a way that the result is a union of copies of c and of a geodesic arc with
endpoints on ∂W with exactly one self-intersection. Negative curvature implies as
previously that the geodesic arcs after modification are still contained in W . The
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Figure 1. In a neighbourhood of a closed geodesic.

procedure, which is shown in Figure 3.1(a), does not alter the homology class but
decreases the length.

Now the angle of the remaining intersection is bounded below by a certain θ > 0,
depending only on W . Indeed, the Closing Lemma implies that, for each neighbour-
hood Y of c in SV , there exists θ with the following property : if γ′ : [O, s] −→ V is
a geodesic such that γ′(0) = γ′(s), the angle between the tangent vectors at 0 and
s is less than θ, and γ′ is freely homotopic to c, then γ′ ⊂ Y . On the other hand,
if Y is chosen small enough and if γ′ ⊂ Y , if γ′ is not homotopic to a multiple of
c, then the complete geodesic containing γ′ will have a second point of transverse
self-intersection in W . This shows the existence of a lower bound for the angle of
self-intersection of geodesic arcs having exactly one self-intersection in W .

Noticing that the length of any closed curve freely homotopic to c is greater than
l(c) > 2a, we can now apply Lemma 2.1.1, uncross the last intersection, and obtain
a multicurve of same homology class than γ and of length less than l(γ)− ε, with
ε = ηθ2. Observation (1) now implies that this can happen at most K1 = A

ε times.

In what follows the letter i denotes the geometric intersection number.

Lemma 3.1.3. There exists K2 such that, for all T , for all γ ∈ Γ(ξ; T ), the inter-
section number i(γ, c) is less than K2.

Proof. For all θ ∈ (0, π), we can write

i(c, γ) = i≥θ(c, γ) + i<θ(c, γ)
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where i≥θ(c, γ) (respectively i<θ(c, γ)) is the number of points of intersection be-
tween c and γ where the angle of intersection is greater than θ (resp. smaller than
θ). The value of θ will be specified a bit later.

Notation : If c and γ intersect at a point Q, we will denote by ]Q(c, γ) the
oriented angle between c and γ at Q.

Each time γ intersects c with an angle greater than θ, we can apply Lemma 2.1.1
to the multicurve composed of γ and a copy of c. Hence,

〈 [ω], [γ] + i≥θ(c, γ)[c] 〉 ≤ l(γ) + i≥θ(c, γ)l(c)− i≥θ(c, γ)ηθ2

This, combined with Observation 2, gives i≥θ(c, γ) ≤ A
ηθ2 .

Now we choose θ > 0 small enough so that the following holds : if two oriented
geodesic arcs g1, g2 contained in W and with endpoints on ∂W , intersect c respec-
tively at points Q1, Q2, with ]Q1(c, g1) ∈ (0, θ] and ]Q2(c, g2) ∈ [−θ, 0), then g1

and g2 have at least two points of intersection inside W.
Suppose that γ ∈ Γ(ξ; T ) intersects c in two points Q1, Q2, with ]Q1(c, γ) ∈ (0, θ]

and ]Q2(c, γ) ∈ [−θ, 0). We are in the situation illustrated on Figure 3.1(b), and
we can uncross one self-intersection, as shown on the figure, to fall into the previous
case of Figure 3.1(a). As we explained before, this will allow us to find a multi-curve
γ′ with [γ′] = [γ] and l(γ′) ≤ l(γ) − ε. Because of Observation (1), this cannot
happen more than A

ε times.
What we have shown is that γ always intersects c with the same orientation,

except for at most i≥θ(c, γ) + 2A
ε points of intersection; and i≥θ(c, γ) ≤ A

ηθ2 . Thus,

| Int([c], [γ]) |≥ i(c, γ)− A

ηθ2
− 2

A

ε

As a consequence of Proposition 2.3.4, Int([c], ξ) = 0, and the quantity | Int([c], [γ]) |=|
Int([Tξ] + α, [c]) | is bounded independently of T . Lemma 3.1.3 follows.

We have shown that γ ∩ VI(c) has at most K1 components of type 1 and K2

components of type 2. Proposition 3.1.1 follows.

Proposition 3.1.4. Suppose that M̃ω is a union of closed geodesics (c1, · · · , cR).
For each k we chose a neighbourhood of ck of the form Vk = VIk

(ck), such that
Proposition 3.1.1 holds. Then there exists L0 such that, for all T , for all γ ∈
Γ(ξ; T ),

l(γ ∩ (∪R
k=1Vk)c) ≤ L0

Proof. Let us suppose, on the contrary, that there exist sequences Tn −→ +∞ and
γn ∈ Γ(ξ; Tn) such that

l(γn ∩ (∪R
k=1Vk)c) −→ +∞

We may furthermore assume that there exists a probability measure ν on SV such
that

mγn|(∪Vk)c

l(γn ∩ (∪Vk)c)
−→ ν

Proposition 3.1.1 implies that γn ∩ (∪Vk) has at most RK0 connected components,
so that, for all t,

‖ mγn|(∪Vk)c − φt ∗mγn|(∪Vk)c ‖≤ 2RK0t
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(here ‖ . ‖ denotes the total variation of measures). Consequently, ν is invariant
under the action of the geodesic flow. Moreover, ν(∪Vk) = 0, which implies that ν
does not belong to Mω, i.e 〈[ω], [ν]〉 < 1.

Thus, there exists ε > 0 such that, for large enough n,∫

γn∩(∪Vk)c

ω < (1− ε)l(γn ∩ (∪R
k=1Vk)c)

Notice that there exists a constant D such that, for any arc g : [0, t] −→ V (not
necessarily closed) : ∫ t

0

〈ω, ġv〉dv ≤ l(g) + D

This is a simple consequence of ‖ [ω] ‖s= 1 and of the compactness of V .
Lemma 3.1.5 ends the proof of Proposition 3.1.4 :

Lemma 3.1.5. For all n,∫

γn∩(∪Vk)c

ω ≥ l(γn ∩ (∪R
k=1Vk)c)−A−RK0D

Proof. We know that
∫

γn
ω ≥ l(γn)−A which can be rewritten

l(γn ∩ (∪Vk)) + l(γn ∩ (∪Vk)c)−A

≤
∫

γn∩(∪Vk)

ω +
∫

γn∩(∪Vk)c

ω

≤ l(γn ∩ (∪Vk)) + RK0D +
∫

γn∩(∪Vk)c

ω

The last inequality is an consequence of the fact that γn ∩ (∪Vk) has at most RK0

connected components in SV .

We can now prove polynomial growth, in the case when Mω contains only closed
geodesics.

3.2. Counting the geodesics. Let us finish the proof of Theorem 1.1.3.
As before, Mω is the union of a finite number of closed geodesics c1, c2, · · · , cR.

For each of them we construct as above a small transverse segment Ik and a neigh-
bourhhood VIk

(ck) ⊂ SV .
Proof of (1). We call Γ(K0, L0) the set of smooth curves on V , parametrized by

arc-length (but not necessarily geodesic nor closed), with endpoints on ∪R
k=1Ik, and

whose natural lifts to SV satisfy the same conclusion as the geodesics of Propo-
sitions 3.1.1 and 3.1.4 : the number of connected components of γ ∩ (∪Vk) is less
than K0 for all k, and the time spent outside ∪Vk is less than L0. Here we always
identify the curve γ ∈ Γ(K0, L0) in V to the curve (γ, γ̇) in SV .

Each curve γ in Γ(K0, L0) is a succession of segments that we label a1, b1, a2, b2, · · · , an(γ), bn(γ)

(bn(γ) may be reduced to a point) such that :
– the endpoints of the ai’s and bi’s lie on ∪R

k=1Ik.
– the ai’s are the connected components of γ ∩ ∪R

i=1Vk, the bi’s are the connected
components of γ ∩ (∪R

i=1Vk)c.
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We identify two elements γ and γ′ of Γ(K0, L0) if n(γ) = n(γ′) and if, for all i,
ai and a′i (resp. bi and b′i) are homotopic in V , with endpoints varying on ∪R

k=1Ik.
We call Γ̄(K0, L0) the set of such homotopy classes.

Let γ = (a1, b1, a2, b2, · · · , an(γ), bn(γ)) be a representative of an element γ̄ ∈
Γ̄(K0, L0). If ai ⊂ Vk, we denote | ai | the number of intersections of ai with Ik.
It does not depend on the choice of a representative of γ̄; the same holds for the
number | γ̄ |= ∑n(γ)

i=1 | ai |. Besides, there exists a constant a > 0 such that, for all
γ̄ ∈ Γ̄(K0, L0), for all γ ∈ γ̄,

a−1l(γ)− a ≤| γ̄ |≤ al(γ) + a

(Just note that

(inf l(ck)− l(Ik)). | γ̄ |≤ l(γ) ≤ (sup l(ck) + 2l(Ik)). | γ̄ | +L0

by the definition of Γ(K0, L0).)
Notice also that each element γ̄ ∈ Γ̄(K0, L0) corresponds to at most one closed

geodesic (and possibly none, for instance if the end-points of γ̄ do not lie on the
same transverse segment Ik). Thus, in order to prove the first part of Theorem
1.1.3, it is enough to show that Card {γ̄ ∈ Γ̄(K0, L0), | γ̄ |≤ n} grows at most
polynomially with n.

(i) Let γ = (a1, b1, a2, b2, · · · , an(γ), bn(γ)) be a representative of an element γ̄ ∈
Γ̄(K0, L0) with | γ̄ |≤ n. Each ai is determined up to homotopy by :
– the neighbourhood Vk in which it is contained. There are R choices.
– The number | ai |. It represents the number of times the component ai twists
around c. One must have

∑
i | ai |≤ n, so that there are at most RRK0nRK0

choices.
– the sign of the intersection of ai with c : there are 2 choices for each ai, hence
2RK0 choices.

(ii) By definition, n(γ) is smaller than RK0, and
∑

i l(bi) ≤ L0, so that there is
only a finite number of ways, say CK0,L0 , to choose the bi’s, up to homotopy with
endpoints varying in ∪R

i=1Ik.
Finally, (i) and (ii) show that

Card {γ̄ ∈ Γ(K0, L0), | γ̄ |≤ n} ≤ QK0,L0(n) := CK0,L02
RK0RRK0nRK0

Proof of (2). For fixed n ∈ N, denote Γ(K0, L0; n) = {γ ∈ Γ(K0, L0), | γ̄ |= n}
and Γ̄(K0, L0; n) the associated set of homotopy classes. Choose a representative
for each element of Γ̄(K0, L0;n) : γn

1 , · · · , γn
p(n) with p(n) = Card Γ̄(K0, L0; n) ≤

QK0,L0(n). Define L̃0 = max(L0, L
′
0), where L′0 is the largest possible length of

a geodesic segment in one of the Vk’s, and intersecting Ik only once. Finally set
t(n) = an + a2 + 2L̃0.

Consider T > t(n) + A (A is the constant of Observation 1), γ ∈ Γ(ξ, α;T ) and
x belonging to γ in V . We observed earlier that the length l(γ) has to be greater
than T −A > t(n). In the geodesic γ, consider the segment γ

[− t(n)
2 ,

t(n)
2 ]

(x) centered
at x and of length t(n). Since γ itself belongs to Γ(K0, L0), and with our choice
of t(n), this segment has to contain a smaller segment γ[−t−,t+](x) which belongs
to Γ(K0, L0; n). Thus there exists p ∈ {1, · · · , p(n)} such that γ̄[−t−,t+](x) = γ̄n

p .
Remember that the two segments γ[−t−,t+](x) and γn

p are homotopic, with end
points varying in ∪kIk. Negative curvature implies that the geometry is hyperbolic
: hence, there exists constants C, β > 0, depending only on the Riemannian metric,
such that the point x has to be at distance less than Ce−βn from γn

p .
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We showed that, for all n ∈ N,

{x ∈ V, ∃T > t(n), γ ∈ Γ(ξ, α;T ) and x ∈ γ} ⊂ ∪p(n)
p=1 B(γn

p , Ce−βn)

where B(γn
p , Ce−βn) stands for the Ce−βn-neighbourhood of γn

p .
Recall that the curves γn

p have length smaller than an+ a2, and that p(n) grows
at most polynomially with n. Morever, ∪T≤t(n)Γ(ξ, α; T ) consists of a finite number
of geodesics, for all n. This is enough to show that the closure of ∪T Γ(ξ, α;T ) has
Lebesgue measure 0 and Hausdorff dimension 1, if it is not empty.

4. The Aubry set; non-polynomial growths

When the Mather set has a minimal exceptional component, it is not so easy
to describe the elements of Γ(ξ, α; T ) and Γ(ω, A; T ) using only down-to-earth con-
siderations. In paragraphs 4.1 and 4.2 we derive from Fathi’s weak KAM theorem
some useful information, similar to Propositions 3.1.1–3.1.4. In paragraph 4.3 we
show, however, that it is not sufficient to prove the polynomial growth of Γ(ξ, α; T ).
We also prove that the presence of heteroclinic orbits in the Aubry set implies non-
polynomial growth for Γ(ω,A;T ).

4.1. More on lagrangian systems : Fathi’s weak KAM theorem.

Definition 4.1.1. One defines the Lax-Oleinik semi-groups (T−t )t≥0 and (T+
t )t≥0,

acting on C(V,R), by

T−t u(x) = inf
γ∈C1([−t,0],V ),γ(−t)=x

{u(γ(0)) +
∫ 0

−t

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

and

T+
t u(x) = sup

γ∈C1([0,t],V ),γ(0)=x

{u(γ(t))−
∫ t

0

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

Theorem 4.1.2. (Fathi, [Fa1], [Fa2])
(1) There exist fixed points u−, u+ for the action of the semi-groups (T−t ) and

(T+
t ) on C(V,R) quotiented by the subspace of constant functions. They necessar-

ily satisfy T−t u− = u− − ‖ω‖2s
2 t and T+

t u+ = u+ + ‖ω‖2s
2 t. Such fixed points are

characterized by the two following properties :
– for all C1 curve γ : [0, t] −→ V ,

u±(γ(t))− u±(γ(0)) ≤
∫ t

0

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv +
‖ ω ‖2s

2
t

– for all x ∈ V , there exist two curves γ− : (−∞, 0] −→ V and γ+ : [0, +∞) −→
V with γ−(0) = γ+(0) = x, such that, for all t ≥ 0,

u−(x)− u−(γ−(−t)) =
∫ 0

−t

(‖ ˙γ−(v) ‖2
2

− ω(γ̇−(v))
)

dv +
‖ ω ‖2s

2
t

and

u+(γ+(t))− u+(x) =
∫ t

0

(‖ ˙γ+(v) ‖2
2

− ω(γ̇+(v))
)

dv +
‖ ω ‖2s

2
t

(2) For every fixed point of u− of (T−t ), there exists a unique fixed point u+ of
(T+

t ) such that u− and u+ coincide on Mω. They satisfy u− ≥ u+. The fixed points
u− and u+ are then called conjugate.
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(3) The Aubry set, defined by

Aω = {x ∈ V, u−(x) = u+(x), ∀(u−, u+) a pair of conjugate fixed points}
is an oriented lamination containing Mω. There exists a pair of conjugate fixed
points that coincide exactly on Aω.

(4) One has the following uniform convergence : for all ε > 0, there exists T > 0
such that, for all x, y ∈ V , for all t ≥ T , for all curve γ : [0, t] −→ V , such that
γ(0) = x, γ(t) = y, for all pairs (u−, u+) of conjugate fixed points,

∫ t

0

(‖ γ̇(v) ‖2
2

− ω(γ̇(v))
)

dv +
‖ ω ‖2s

2
t ≥ u−(y)− u+(x)− ε

Point (3) implies that Aω can be lifted, in a unique way, to Ãω ⊂ SV . Obviously,
M̃ω ⊂ Ãω.

The Ω-limit set of a curve γ defined on (a,+∞) is the set Ω(γ) = ∩t>aγ((t,+∞));
the α limit set of γ, defined on (−∞, a), is α(γ) = ∩t<aγ((−∞, a)). Here one can
show ([Fa1]) that the α- and Ω-limit sets α(g) and Ω(g) of a complete geodesic
g ⊂ Ãω both contain components of M̃ω. On a surface of negative curvature, this
implies that the α- and Ω-limit sets actually are components of M̃ω; indeed, a simple
geodesic g which does not intersect the lamination Mω is either at positive distance
from Mω, or it is asymptotic to a leaf of Mω ([Ot], Appendix, “La géométrie du
complémentaire d’une lamination géodésique”).

Remark 4.1.3. We said earlier that the characterization of ω-minimizing measures
by their support can be considered a counterpart of the characterization of the
equilibrium measures mω by their Gibbsian property (Remark 2.2.4). We also
mentioned that mω could be expressed as the product of the left and right eigen-
vectors of a “Markovian” operator, the transfer operator (Remark 1.0.2). We see
here a similar characterization of the Aubry set, in terms of fixed points of the two
Lax-Oleinik semi-groups. We will meet a reason for this analogy in the Appendix :
we will explain there how to obtain the Lax-Oleinik semi-groups from the twisted
heat semi-group by the procedure of “vanishing viscosity”.

Note however that the Aubry set may be larger than the Mather set. The Aubry
set is in fact the set of accumulation points of closed, almost-minimizing geodesics,
as appears in the following proposition.

Proposition 4.1.4. ([Fa1], [Fa2]) The Aubry set Aω is the set of points x ∈ V
having the following property : there exists a sequence γn : [0, tn] −→ V of piecewise
C1 paths, such that :

(a) for all n, γn(0) = γn(tn) = x.
(b) tn −→

n−→∞
+∞.

(c)
∫ tn

0

(
‖γ̇n(v)‖2

2 − ω(γ̇n(v))
)

dv + ‖ω‖2s
2 tn −→

n−→∞
0.

The sequence γn can be chosen such that the vectors γ̇n(0) and γ̇n(tn) converge
to the unique vector v based at x such that (x, v) ∈ Ãω.

We first show that Fathi’s results impose some restrictions on the elements of
Γ(ω, A; T ). We give a sufficient condition for Proposition 3.1.1 to hold even when
Mω has an irrational component. However, the observations of the next paragraph
show that these restrictions are not strong enough to prove polynomial growth
for π(ξ, α;T ) and π(ω, A; T ), so that satisfactory upper bounds for these quantity
remain to be found. We notice two things :
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– arbitrary small neighbourhoods of the Mather set have positive entropy, if
there is an irrational component.

– if the Aubry set contains strictly the Mather set, Γ(ω, A; T ) does not grow
polynomially.

4.2. Topological restrictions on quasi-minimizing closed geodesics. We
show that (ω, A)-quasi-minimizing geodesics cannot spend too much time far from
the Aubry set.

The following result and its proof were suggested by Massart ([Mas2]). Theorem
4.1.2(4), which is equivalent to the convergence of the Lax-Oleinik semigroup, im-
plies that quasi-minimizing geodesics can spend only bounded time away from the
Aubry set. This is a distribution result for optimal orbits, that can be compared to
the measure-theoretic equidistribution for general orbits, especially if we remember
Remark 4.1.3.

Proposition 4.2.1. Let W be a neighbourhood of the Aubry set Aω in V , then
there exist constants K and C such that, for every geodesic arc parametrized by
arc-length γ : [0, t] −→ V , one has

t−
∫ t

0

〈ω, γ̇s〉ds ≥ Kl(γ ∩W c) + C

Proof. We may assume that W is open. Let u− and u+ be conjugate fixed points
of (T−t ), (T+

t ) that coincide exactly on Aω. We apply Theorem 4.1.2 (4) with
ε = 1

2 infW c(u− − u+), which gives us a T > 0.
Define a sequence (ti) in R ∪ {+∞} by t0 = inf{t ≥ 0, γ(t) ∈ W c and ti+1 =

sup{t ≥ ti + T such that l(γ|[ti,t] ∩ W c) ≤ T}. If ti < +∞ then γ(ti) ∈ W c.
Furthermore, l(γ|[ti,ti+1] ∩W c) ≤ T .

We have

t−
∫ t

0

〈ω, γ̇s〉ds =
∑

ti+1≤t

(ti+1 − ti)−
∫ ti+1

ti

〈ω, γ̇s〉ds

+t0 −
∫ t0

0

〈ω, γ̇s〉ds

+(t− tn)−
∫ t

tn

〈ω, γ̇s〉ds

≥
∑

i

(u−(γti+1)− u+(γti)− ε) + u+(γt0)− u+(γ0) + u+(γt)− u+(γtn)

≥ −4 ‖ u+ ‖∞ + nε

≥ −4 ‖ u+ ‖∞ +
ε

T

∑

i

l(γ|[ti,ti+1] ∩W c)

≥ −4 ‖ u+ ‖∞ +
ε

T
(l(γ ∩W c)− T )

In fact, the stronger proposition holds :

Proposition 4.2.2. Let W̃ be a neighbourhood of Ãω in SV , then there exist
constants K̃ and C̃ such that, for every geodesic arc parametrized by arclength
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γ : [0, t] −→ V , one has

t−
∫ t

0

〈ω, γ̇s〉ds ≥ K̃l(γ ∩ W̃ c) + C̃

Proof. We may suppose that W̃ is of the form ∪n
i=1{(x, v) ∈ SV, dist (x, xi) ≤

δ, dist (v, vi) ≤ 2ρδ} where (xi, vi) ∈ Ãω, δ can be chosen as small as needed
and ρ is the constant of Lemma 2.1.2. The set W̃ c is the disjoint union of A =
∩n

i=1{x, dist (x, xi) > δ} and of B = ∪n
i=1{x, dist (x, xi) ≤ δ, dist(v, vi) > 2ρδ}.

Proposition 4.2.1 shows the existence of K, C such that t − ∫ t

0
〈ω, γ̇s〉ds ≥ Kl(γ ∩

A) + C.
We now have to prove a similar estimate with B instead of A. We take a as in

Lemma 2.1.2, and we partition γ into a succession of intervals of disjoint interiors
and length 2a, and one interval of length less than 2a. Let N(γ) be the number
of such segments which contain a point in B; we are going to show the existence
of constants C ′, K ′ such that C ′ + K ′N(γ) ≤ t − ∫ t

0
〈ω, γ̇s〉ds, which is enough to

prove the proposition.
Since xi belongs to the Aubry set, we can use Proposition 4.1.4 and find Ti À a

and a geodesic gi : [0, Ti] −→ V such that
– gi(0) = xi, gi(Ti) = xi

– | 〈[ω], [gi]〉 − Ti |≤ ηδ2

2
– dist (ġi(0), vi) ≤ ρδ and dist (ġi(T ), vi) ≤ ρδ.
The definition of N(γ) shows that it is possible to find a sequence of times

0 ≤ t1 < · · · < tk ≤ t, with N(γ)
4 ≤ k ≤ N(γ), such that ti + a < ti+1 − a, and

(γti , γ̇ti) ∈ B.
For each (γti , γ̇ti) we can associate a j(i) such that dist (γti , xj(i)) ≤ δ and

dist (γ̇ti , vj(i)) ≥ 2ρδ. We have :

t−
∫

γ

ω + k
ηδ2

2
≥ t +

k∑

i=1

Tj(i) −
(∫

γ

ω +
k∑

i=1

〈[ω], [gi]〉
)
≥ kηδ2

The first inequality comes from our choice of the gi’s; the second, from Lemma 2.1.2
and the fact that dist (γti , xj(i)) ≤ δ, dist (γ̇ti , ġi(0)) ≥ ρδ and dist (γ̇ti , ġi(Ti)) ≥
ρδ. This ends the proof since k ≥ N(γ)

4 .

In particular, the (ω, A)-quasi minimizing geodesics, which satisfy 〈[ω], [γ]〉 ≥
l(γ)−A, spend a bounded time outside any neighbourhood of Ãω. This is a weaker
property than Proposition 3.1.4, which concerned the Mather set M̃ω. It is not
sufficient to prove polynomial growth, as we will see in paragraph 4.3. In fact, even
if we could prove a property similar to Propositions 3.1.1 and 3.1.4 it still would
not do.

4.3. Entropic richness of neighbourhoods of irrational laminations; non-
polynomial growth for (ω, A)-minimizing closed geodesics. We now proceed
to the proof of Theorem 1.2.1 :

Proof. If the face Fω is irrational then there exist a minimal exceptional component
c in the Mather set.

There exist two lifts c̃1 and c̃2 of leaves of c in Ṽ which have no common end,
and which can be chosen arbitrarily close from each other, say, at distance 3ε/2.
Let k̃ be the unique geodesic in Ṽ perpendicular to c̃1 and c̃2 : it intersects c̃1 at a
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point P̃1 and c̃2 at P̃2, with d(P̃1, P̃2) = 3ε/2. We consider the projections of these
objects on V and denote them c1, c2, k, P1, etc...

Let I1 and I2 be two small disjoint subsegments of k containing respectively P1

and P2; let also I = I1 ∪ I2. We denote T, T1, T2 respectively the first return maps
on I, I1, I2 along leaves of c. Since c is a minimal exceptional component, we note
that T (Ii) is not included in Ii for i = 1, 2. We use a notation similar to that of
paragraph 2.3 : [x, y] for subsegments of k, and /x, y/ for pieces of leaves of c.

We first take I1 and I2 small enough so that inf{dist(y1, y2), yj ∈ Ij} ≥ ε and
sup{dist(y1, y2), yj ∈ Ij} ≤ 2ε.

We also apply the following lemma, with θ and l to be chosen later. Lemma
4.3.1 is a consequence of the facts that c contains no closed leaf and that tangent
vectors to c vary continuously with the base point.

Lemma 4.3.1. Given θ > 0 and l > 0 we can choose the intervals I1 and I2 small
enough so that :

– for all y ∈ Ij ∩ c, l(/y, Tj(y)/) ≥ l.
– for all y ∈ Ij ∩ c, the oriented angle between the leaf of c at y and Ij is in

[π
2 − θ, π

2 + θ].

We will need to take θ and l such that the following lemma holds :

Lemma 4.3.2. Let ε be a positive constant. For θ > 0 small enough, there exists
l > 0 such that, if M, N, P,Q are four points in Ṽ satisfying :

(1) ε ≤ dist(N, P ) ≤ 2ε

(ii) The angle M̂NP between the geodesic segments MN (resp. PQ) and NP
is in [π

2 − 2θ, π
2 + 2θ]

(iii) dist(M, N) ≥ 2l and dist(P, Q) ≥ 2l
Then dist(M,Q) ≥ dist(M, N) + l and the angle between the geodesic segments

MQ and PQ is smaller than θ.

Proof. A proof is given in [Ot] (p 128) in the case of constant negative curvature.
We show how to adapt it to the case of variable curvature. The curvature of Ṽ is
bounded above by a certain negative constant, say −1. We recall the trigonometric
formula for a metric of constant curvature −1 : if ABC is a geodesic triangle
then cosh BC = cosh AB cosh AC − cos ĈAB sinhAB sinhAC. We also recall the
comparison principles : (1) on Ṽ a geodesic triangle has smaller angles than the
triangle with same side-lengths in the Poincaré disc (ii) for given side-lengths AB,
AC and angle ĈAB, the length of the side BC is greater on Ṽ than on the Poincaré
disc.

In Ṽ one can write the following trigonometric inequalities for triangle MPN
(we write in boldfaced letters the quantities which are given by the assumptions of
the lemma) :

cosh MP ≥ coshMN coshNP− cos M̂NP sinhMN sinhNP

cos N̂PM ≥ cosh MP coshNP− coshMN
sinhMP sinhNP

and
M̂PQ ≥ N̂PQ− N̂PM
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For triangle MQP :

coshMQ ≥ coshMP coshPQ− cos M̂PQ sinhMP sinhPQ

and
cos M̂QP ≥ cosh MQcoshPQ− cosh MP

sinhMQsinhPQ
So all the equalities used in [Ot] are replaced by convenient inequalities, and the

same estimates can be applied. Using the equivalence cosh(t) ∼ sinh(t) ∼ et

2 as t
goes to +∞, one gets that if MN ≥ 2l and PQ ≥ 2l with l large enough, and if θ

is small enough, then MQ ≥ MN + l and the angle M̂QP is small as announced.

Remark : Once I = I1 ∪ I2 has been fixed, there also exists l > 0 such that, for all
y ∈ Ij ∩ c, l(/y, Tj(y)/) ≤ l.

We now pick an arbitrary T -invariant ergodic probability measure m on I, and
x ∈ I1 a generic point for m.

Since c is a minimal exceptional component, necessarily m(Ij) > 0 (j = 1, 2);
Birkhoff’s ergodic theorem shows the existence of mj > 0 such that

mjN ≤ Card {0 ≤ k < N, T k(x) ∈ Ij} ≤ (mj + 1)N
For all N we consider the T -trajectory of length N , (x, Tx, · · · , TNx) and denote

cN = [TNx, x]./x, TNx/

the corresponding portion of leaf of c, closed with a piece of k (the dot denotes the
composition of paths, to be read as usual from right to left).

We fix an arbitrary origin O on k, lying between I1 and I2. For each y ∈ I ∩ c
we construct the loop gy = [Ty, O]./y, Ty/.[O, y] based at O. We denote l(gy) its
length. We also construct the loops gy

j = [Tjy, O]./y, Tjy/.[O, y], j = 1, 2.
The union of the two transverse segments I1 and I2 defines a train-track neigh-

bourhood of the lamination c, independently of the choice of the metric g or g0;
this neighbourhood can be made arbitrarily small. Notice that, for all N and for
all permutation σ of the set {0, · · · , N − 1}, one has, for either of the two metrics :

| l(gT σ(0)x.gT σ(2)x. · · · .gT σ(N−1)x − l(cN ) |≤ 4Nε ≤ 4
l(cN )

l
ε(4.3.1)

This means that permuting pieces of cN multiplies its length by a factor less than
(1 + 4ε

l ), which can be made arbitrarily close to 1. Of course these permutations
do not change the homology class. We have to be a little careful to see that these
permutations will give a lot of different homotopy classes.

Lemma 4.3.3. Let a > 0 be a number such that a < m1 and a(1+ l
l ) < m2. Then,

for large enough N , one has :

– {x, T1x, · · · , T aN
1 x} ⊂ {x, Tx, · · · , TNx}

– if we set x2 = T2(T aN
1 x), then {x2, T2x2, · · · , T aN

2 x2} ⊂ {x, Tx, · · · , TNx}
– the leaves /x, T aN

1 x/ and /x2, T
aN
2 x2/ do not intersect.

Proof. We know that the trajectory (x, Tx, · · · , TNx) hits I1 at least m1N times.
This implies that, for large enough N , one has {x, T1x, · · · , T aN

1 x} ⊂ {x, Tx, · · · , TNx}.
The leaf /x, T aN

1 x/ hits I2 at most l
laN times.
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We also know that the trajectory (x, Tx, · · · , TNx) hits I2 at least m2N times. If
we take x2 = T2T

aN
1 x, this implies that {x2, T2x2, · · · , T aN

2 x2} ⊂ {x, Tx, · · · , TNx}.

After doing this construction we denote

g = [TNx, T aN
1 x]./T aN

2 x2, T
Nx/.[x2, T

aN
2 x2]./T aN

1 x, x2/

Let ν = Ti1 ◦ · · · ◦ Ti2aN
be a word of length 2aN in the alphabet {T1, T2},

containing exactly aN times each letter. We associate to ν an element γν ∈ Γ; it is

obtained by combining the loops g
T k

j xj

j (k < aN , x1 = x, x2 as above) according to
the word ν, then by composing with g : for instance if aN = 2 and ν = T1T2T2T1

we set γν = ggT1x1
1 gT2x2

2 gx2
2 gx

1 .
This curve is obtained by permuting pieces of cN as described above, so it has

approximately the same length as cN . Moreover, all curves obtained this way have
different homotopy classes :

Lemma 4.3.4. If ν1, ν2 are two distinct words, then γν1 6= γν2

Proof. The proof is a classical tool in hyperbolic geometry; we extracted this proof
from [Ot], p 128. Since we are interested in homotopy classes we can choose to
work with the metric g0. Remember the constants θ and l of Lemmas 4.3.1 and
4.3.2.

Suppose that γν1 = γν2 , then γ−1
ν1

γν2 is a closed path on V which lifts to a closed
path in Ṽ . Besides, this closed path in Ṽ is a succession of geodesic segments :
every other segment is a lift of a piece of leaf of c, of length greater than l, and
every other segment if a lift of a piece of k, of length in [ε, 2ε]. The angles between
these segments are in [π

2 − θ, π
2 + θ].

Call P2i, P2i+1 the edges of this polygonal path, cyclically ordered. Applying
Lemma 4.3.2 to the points (P0, P1, P2, P3), we see that

dist(P0, P3) ≥ dist(P0, P1) + l

and the angle between P0P3 and P3P4 is in [π
2 − 2θ, π

2 + 2θ]. Applying inductively
the same argument to the points P0P2i−1P2iP2i+1 shows that dist(P0, P2i+1) is
strictly increasing. This is impossible if the sequence (Pn) is periodic.

This way we get CaN
2aN = (2aN)!

(aN)!2 ∼ 22aN√
πaN

distinct homotopy classes with same
homology class and represented by closed geodesics of same length, up to a mul-
tiplicative constant close to 1. It remains to show that the constructed curves
satisfy the condition of Theorem 1.2.1, that is to say, they belong to some set
Γ(ω, ε,A; T ). Lemma 4.3.5 below, as well as inequality (4.1), show that this is true
for T = l(cN )(1 + 4ε

l ) and 1− ε = 1
1+ 4ε

l

.

Proposition 4.3.5. There exists a constant A such that, for all N ,

〈[ω], [cN ]〉 − l(cN ) ≥ −A

Remember that cN is a piece of a leaf of c, closed with a small piece of the
transversal k. Proposition 4.3.5 is a consequence of the following result of Mañe :

Theorem 4.3.6. ([Mn1]) There exists a Lipschitz function u on V such that, if
v ∈ M̃ω and γ is the geodesic with initial velocity v, then for all t ∈ R,

u(γ(0))− u(γ(t)) =
∫ t

0

〈ω, γ̇s〉ds− t
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Proof. Fathi showed that one can actually take for u any fixed point of the Lax-
Oleinik semi-group (T−t ) : Theorem 4.2 says that such a function u satisfies

u(p(φt′v))− u(p(φtv)) ≤
∫ t′

t

(‖ φuv ‖2
2

− ω(φuv))
)

du +
‖ ω ‖2s

2
(t′ − t)

for all v ∈ SV , for t ≤ t′. Here in fact ‖ φuv ‖= 1 and ‖ [ω] ‖s= 1.
Now notice that the integrals of both sides of the previous inequality with respect

to any ω-minimizing measure µ vanish : for the left-hand side, this comes from
the (φt)-invariance of µ, and for the right-hand side one needs to remember that∫

SV
ωdµ = 1. Hence, the above inequality is in fact an equality on the support of

µ, for all ω-minimizing measure µ; so that it is an equality on the Mather set. This
proves Theorem 4.3.6.

In particular, there exists A such that | ∫ t

0
〈ω, γ̇s〉ds− t |≤ A.

This ends the proof of Theorem 1.2.1.

Eventually we prove Theorem 1.1.5 :

Proof. Let us prove (1). Assume that Fω is a rational face and that Aω = Mω.
We showed in paragraph 4.2 that (ω, A)-minimizing geodesics spend bounded time
outside any neigbourhood of Ãω = M̃ω; this means that Proposition 3.1.4 still holds
for geodesics γ ∈ Γ(ω, A; T ), and the argument of paragraph 3.2 remains the same.
(Besides, if A is small enough, Proposition 4.2.2 also shows that the elements of
Γ(ω, A; T ) have to stay in a union of collar neighbourhoods of the components of
Mω; so, each element of Γ(ω, A;T ) is a multiple of one of these components).

We now turn to the second statement. Let x ∈ Aω \Mω. By Proposition 4.1.4,
there exists a sequence tn −→ ∞ and curves (which can be taken to be geodesics
parametrized by arclength) γn : [0, tn] −→ V such that γn(0) = γn(tn) = x, and

〈[ω], [γn]〉 − l(γn) ≥ −A

n
Besides, the two tangent vectors to γn at x will converge to the tangent vector to
Aω at x. Remember that leaves of Aω \Mω spiral towards components of Mω, so
there exists a component c of Mω such that dist(γn, c) −→ 0.

Let I be a small segment transverse to c, and of length smaller than A. For
all n we divide I into 2n segments I

(n)
1 , · · · , I

(n)
2n of equal size, and we require the

following on the curve γn : if c ∩ I
(n)
j 6= ∅ then γn ∩ I

(n)
j 6= ∅.

Recall that tn is the length of γn and that tn −→
n−→∞

+∞.
Let l be the maximum of the first return time to I along c. There exists a portion

of a leaf of c of length less than tn.l and with endpoints distant at most from A
tn

.
Closing this leaf along I we get a closed curve cn; using Theorem 4.3.6, we have

| 〈[ω], [cn]〉 − l(cn) |≤ CA

tn

where C =| u |lip +supx | ωx | +1.
From our construction of γn, there exist two points Pn ∈ cn ∩ I and Qn ∈ γn ∩ I

such that dist(Pn, Qn) ≤ A
n . For n sufficiently large, the closed curves cn and

γ′n = [Pn, Qn].γn.[Qn, Pn], based at Pn, generate a free group in the fundamental
group : otherwise they would commute and since these two curves are almost closed
geodesics, they would come very close in Hausdorff distance as n −→ ∞. Hence it
would be possible to find points of Mω arbitrarily close to x, which is not the case.
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We now consider all the following closed curves, distinct in the fundamental
group :

ck0
n .γ′n.ck1

n · · · γ′n.ckn
n

with k0+· · ·+kn = tn. Their lengths are less than l.t2n+ntn+2A; they all belong to
Γ(ω, A(2C+1); l.t2n+ntn+2A). To conclude the proof of Theorem 1.1.5 it suffices to
check that the number of such distinct curves we have constructed, namely (tn+n)!

n!tn! ,
grows faster than any polynomial in ln; this results from an application of the
Stirling formula.

Appendix : on twisted Laplace operators and Lax-Oleinik
semi-groups

In this appendix, independent from the rest of the paper, we establish a relation
between Lax-Oleinik semi-groups and twisted heat semi-groups, by the method of
“vanishing viscosity”. We obtain a relation between the stable norm and the largest
eigenvalue of heat semi-groups twisted by a real valued 1-form. We also prove a
large deviation upper bound for the stationary measure of the twisted Brownian
motion; the rate function is the second Peierls barrier of Hamiltonian mechanics.

Let V be a smooth, connected, compact manifold, without boundary, endowed
with a Riemannian metric. This metric gives rise to a Laplace operator and to a
stochastic process, the Brownian motion on V .

We denote ∆ the usual Laplace operator on V , and ∆̃ the corresponding operator
on the universal covering Ṽ .

For every x ∈ V , we denote Px the Wiener measure on C(R, V ), started at x.
Under Px, the coordinate functions on C(R, V ), Xt : γ 7→ γ(t), are a realization of
the Brownian motion started at x. We will denote Ex the expectation with respect
to the measure Px. These objects can also be defined on Ṽ , where they will be
denoted similarly with a tilde.

Brownian motion and the operator ∆ are linked the following way : if f is a
smooth function on V ,

exp
t∆
2

.f(x) = Ex(f(Xt))

for all x ∈ V , t ∈ R. The semi-group of operators P t = exp t∆
2 is the heat semi-

group on V . We refer the reader to [C] for a very complete account of the spectral
properties of the heat semi-group on a Riemannian manifold.

We now define twisted Laplace operators and semi-groups. If ω = <ω +
√−1=ω

is a closed 1-form on V with complex values, and ω̃ its lift to the universal cover
Ṽ , the twisted Laplace operator ∆̃ω is defined as follows :

∆̃ω f̃(x̃) = e−
R x̃

õ
ω̃ ∆̃

(
e
R x̃

õ
ω̃ f̃(x̃)

)

where õ is a fixed origin on Ṽ .
This operator acts on smooth functions on Ṽ and preserves the set of π1(V )-

invariant functions. Thus we can define a twisted Laplace operator ∆ω acting on
smooth functions on V , by

∆ωf(z) = ∆̃ω f̃(z̃)
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where f̃ is the lift of f and z̃ lies over z. If ω is harmonic, ∆ω admits the expression
:

∆ωf = ∆f + 2〈ω, df〉+ ‖ ω ‖2 f(4.3.2)

where ‖ . ‖2= 〈., .〉 is the Riemannian metric.
Twisted Laplace operators have been classically studied for <ω = 0 (i.e ω taking

values in
√−1R), on a manifold with constant negative sectional curvatures ([KS1],

[PhS]). In these papers they are used to compute the asymptotics of the number
of closed geodesics in a fixed homology class, via Selberg’s trace formula; see also
[CV] for an investigation of the trace formula in variable curvature.

Here we are mainly interested in the case =ω = 0 (i.e ω taking values in R). The
twisted Laplace operators are of very different natures when <ω = 0 and =ω = 0.
We recall their spectral properties in both cases, as well as those of the twisted heat
semigroups

P t
ω = exp

t∆ω

2
which give the solutions of

∂u

∂t
=

∆ω

2
u(4.3.3)

These are kernel operators : the kernel of P t
ω is given by the expression

Kt
ω(x, y) =

∑

γ∈π1(V )

e
R γỹ

x̃
ω̃K̃t(x̃, γỹ)(4.3.4)

= e
R ỹ

x̃
ω̃

∑

γ∈π1(V )

e〈ω,[γ]〉K̃t(x̃, γỹ)(4.3.5)

where K̃ is the heat kernel on Ṽ .
For <ω = 0, ∆ω has negative, self-adjoint compact inverse on L2(V ); so its

spectrum is a sequence of negative real numbers which tends to −∞ (we have not
renormalized the Laplace operator to be positive, as is often the case).

For =ω = 0, our operators are no longer self-adjoint : the adjoint of P t
ω is

P t
ω
∗ = P t

−ω. On the other hand, heat semi-groups twisted by real 1-forms have
the property that f ≥ 0 ⇒ P t

ωf ≥ 0. They can be seen as transition operators
for a Markov process, except that they are not stochastic (P t

ω1 6= 1 if [ω] 6= 0 in
H1(V,R)). It is natural to consider the dual action of the semi-group on Borel
measures on V , given by ∫

V

fd(P t∗
ω µ) =

∫

V

P t
ωfdµ

Notice that it preserves the set of positive measures. Moreover, it extends the action
of the adjoint P t∗

ω = P t
−ω already defined on L2(V ), in the sense that P t∗

ω (fdx) =
(P t∗

ω f)dx if dx is the Lebesgue measure on V .
By a classical fixed point argument, there exists a real Λ(ω) and a probability

measure µω on V such that P t∗
ω µω = etΛ(ω)µω for all t ≥ 0. If we let

hω(x) =
∫

V

K1
−ω(y, x)dµ−ω(y)

we get a smooth positive function such that P t
ωhω = etΛ(−ω)hω for all t ≥ 0. It

follows that Λ(ω) = Λ(−ω), and that the measure dνω = hωh−ωdx is (up to a
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normalizing factor) the stationary probability measure for the “twisted Brownian
motion”, i.e the diffusion defined by the (stochastic) transition semi-group :

Qtf(x) = e−tΛ(ω)hω(x)−1P t
ω(hωf)(x)

For a continuous function f on V , one has the following convergence :

e−tΛ(ω)P t
ωf(x) −→

t−→+∞
hω(x)

∫

V

fh−ω(y)dy

uniformly in x. This implies that eΛ(ω) is the eigenvalue of largest modulus for the
twisted semi-group, and it is simple, isolated.

For general ω it is difficult to say something about the spectrum of (P t
ω). Clearly

the spectral radius of P t
ω on continuous functions is less than that of P t

<ω. Also,
(P t

ω)ω∈H1(V,C) is an analytic family of semi-groups, which have a simple isolated
eigenvalue of maximum modulus for ω real; by perturbation theory ([K]), one can
say that in a complex neighbourhood of {=ω = 0} the semi-group (P t

ω)t≥0 will have
a simple isolated eigenvalue of maximum modulus, which depends analytically on
ω.

We want to relate these semi-groups to the two Lax-Oleinik (or Hopf-Lax) semi-
groups, acting on the space of continuous functions C(V,R) the following way : if
u ∈ C(V,R),

T−t u(x) = inf
γ
{u(γ(0)) +

∫ 0

−t

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

where the inf is taken over all curves γ : [−t, 0] −→ V with square integrable
derivatives, and such that γ(−t) = x. Similarly,

T+
t u(x) = sup

γ:[0,t]−→V,γ(0)=x

{u(γ(t))−
∫ t

0

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

(These semi-groups depend on a real-valued 1-form ω, which will be fixed from now
on.)

In [Fa2] Fathi demonstrated the importance of the “fixed points” of Lax-Oleinik
semi-groups in the description of globally minimizing orbits for the lagrangian ‖v‖2

2 −
ω(v) – we mean fixed points for the action of T+ and T− on C(V,R) quotiented
by the subspace of constant functions. Fathi also showed that these fixed points
provide weak solutions to the KAM problem for this Hamiltonian system.

We give a proof of the following relation :

Theorem 4.3.7. For all t ≥ 0, for every continuous function u, for all x ∈ V ,

lim
λ−→+∞

1
λ

log
(
P

t/λ
λω .eλu

)
(x) = T+

t u(x)

and

lim
λ−→+∞

1
λ

log
(
P

t/λ
−λω.e−λu

)
(x) = −T−t u(x)

Theorem 4.3.7 is an application of the method of ”vanishing viscosity”, a tech-
nique originally studied by E. Hopf ([Ho]) for the Burgers equation and other PDE.
Here, the logarithm of the solution of the heat equation (4.3.3), P

t/λ
λω .eλu(x), sat-

isfies after correct scaling a Hamilton-Jacobi equation with a viscosity term, which
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tends to 0 as λ tends to +∞. At the limit, one gets a lispchitz viscosity solution
to the Hamilton-Jacobi equation :

∂u

∂t
+
‖ dxu + ωx ‖2

2
= 0

Given the initial condition u, it is known that the Lax-Oleinik semi-group gives
such a solution : (x, t) 7→ T+

t u(x). In various cases ([PLL], [Ba]), the uniqueness of
lipschitz solutions allows to conclude the proof of Theorem 4.3.7. However we do
not know if such a uniqueness theorem has been written down in the general case
of a Hamiltonian system on a manifold; one can expect that the ideas presented in
[PLL], [Ba], can be adapted. We give a probabilistic proof of 4.3.7 in the spirit of
the works of Schilder ([S]) and Varadhan ([Var]), which allows to overlook this gap.

Proof. We use the following estimates on the heat kernel on Ṽ :

Theorem 4.3.8. (see [Var] for results on Rn, [C], [LY] for much stronger esti-
mates)

(i) Let n = dim V , and let κ be a non-positive lower bound on the Ricci curvature
of Ṽ . Then, there exists a constant c = c(n) and, for all δ > 0, a constant C =
C(n, δ) such that, for all x̃, ỹ ∈ M̃ ,

K̃t(x̃, ỹ) ≤ C
(
V ol B(x̃,

√
t)V ol B(ỹ,

√
t)

)1/2
exp

{
− d2(x̃, ỹ)

(2 + δ)t
− cδκt

}

(ii)

lim
t−→0

t log K̃t(x̃, ỹ) = −1
2
d2(x̃, ỹ)

uniformly for all x̃, ỹ such that the distance d(x̃, ỹ) is bounded.

These estimates imply in particular Schilder’s large deviation theorem – but this
latter was proved earlier, for Brownian motion on Rn :

Theorem 4.3.9. ([S])
For ε > 0, define αε : C(R, Ṽ ) −→ C(R, Ṽ ) by αεγ(t) = γ(εt).
Let F be a positive, continuous function on C([0, T ], Ṽ ), endowed with the topol-

ogy of uniform convergence. Then, for all x̃ ∈ Ṽ ,

lim
ε−→0

ε log Ẽx̃((F ◦ αε)1/ε) = sup
γ

F (γ)− 1
2

∫ T

0

‖ γ̇s ‖2 ds

where the supremum is taken over the set of curves γ : [0, T ] −→ Ṽ with square
integrable derivative, and such that γ(0) = x̃.

We can now prove Theorem 4.3.7; we use Schilder’s theorem as well as the
relation between Brownian motion and the heat semi-group on Ṽ . Let t ≥ 0, u a
continuous function on V , and ũ its lift to Ṽ .
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lim
λ−→+∞

1
λ

log
(
P

t/λ
λω .eλu

)
(x) = lim

1
λ

log Ẽx̃

(
e
λũ(X̃t/λ)+λ

R X̃t/λ

X̃0
ω̃)

= sup
γ:[0,t]−→Ṽ ,γ(0)=x̃

{ũ(γ(t))−
∫ t

0

(‖ γ̇v ‖2
2

− ω̃(γ̇v)
)

dv}

= sup
γ:[0,t]−→V,γ(0)=x

{u(γ(t))−
∫ t

0

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

where we recognize the expression of the Lax-Oleinik semi-group (T+
t ). Similarly,

lim
λ−→+∞

1
λ

log
(
P

t/λ
−λω.e−λu

)
(x) = sup

γ(0)=x

{−u(γ(t))−
∫ t

0

(‖ γ̇v ‖2
2

+ ω(γ̇v)
)

dv}

= − inf
γ(−t)=x

{u(γ(0)) +
∫ 0

−t

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

where the second equality is obtained by reversing time.

We now establish the asymptotic behaviour of the eigenvalue Λ(ω). We denote
‖ . ‖s the stable norm on H1(V,R). For a real-valued 1-form ω, ‖[ω]‖2s

2 is the critical

value – introduced by Mañe ([Mn2]) – of the Lagrangian v 7→ ‖v‖2
2 − ω(v).

Theorem 4.3.10.

Λ(λω)
λ2

−→
λ−→∞

‖ [ω] ‖2s
2

Lemma 4.3.11. The family ( 1
λ log hλω)λ>0 is uniformly equicontinuous on V .

Proof. Up to a multiplicative constant, hλω is given by the expression

hλω(x) =
∫

V

Kt
−λω(y, x)dµ−λω(y)

for any t (remember that µ−λω is the invariant measure for the semi-group (P t
−λω),

and that its density is precisely hλω). Take t = 1/λ. The expression (4.3.4), and
Theorem 4.3.8, show that

lim
λ−→+∞

1
λ

log K
1/λ
−λω(y, x) = − inf

γ∈π1(V )

d2(ỹ, γx̃)
2

+
∫ γx̃

ỹ

ω̃

uniformly in x, y ∈ V . The function

I(y, x) := inf
γ∈π1(V )

d2(ỹ, γx̃)
2

+
∫ γx̃

ỹ

ω̃

= inf
γ∈C1([0,1],V ),γ(0)=y,γ(1)=x

∫ 1

0

(‖ γ̇s ‖2
2

+ ω(γ̇s)
)

ds
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is lipschitz. Write, for all x, y ∈ V

1
λ

log hλω(x)− 1
λ

log hλω(y) =
1
λ

log

(∫
V

K
1/λ
−λω(z, x)dµ−λω(z)

∫
V

K
1/λ
−λω(z, y)dµ−λω(z)

)

≤ 1
λ

log

(
sup

z

K
1/λ
−λω(z, x)

K
1/λ
−λω(z, y)

)

−→
λ−→+∞

sup
z

I(z, x)− I(z, y)

uniformly in x, y. This shows that the family ( 1
λ log hλω)λ>0 is uniformly equicon-

tinuous on V .
Thus, if we normalize hλω so that hλω(x0) = 1 for some fixed origin x0, we get

a relatively compact family in C(V,R).
Let Λ̄ be a limit (in R∪{−∞, +∞}) of Λ(λnω)

λ2
n

, for some sequence λn −→ +∞; we
may assume that 1

λn
log hλωn

converges to a continuous function u in the uniform
topology.

One has, for all x and t,

u(x) + Λ̄t = lim
1
λn

log
(
e

t
λn

Λ(λnω)hλnω(x)
)

= lim
1
λn

log
(
P

t/λn

λnω .hλnω

)
(x) = sup

γ(0)=x

{u(γ(t))−
∫ t

0

(‖ γ̇v ‖2
2

− ω(γ̇v)
)

dv}

= T+
t u(x)

where the last equality is once again a consequence of Schilder’s theorem and of
Varadhan’s lemma ([DZ], p 137).

Thus, u is a “fixed point” of T+
t . Fathi ([Fa1],[Fa2]) proved that this is only

possible for Λ̄ = ‖[ω]‖2s
2 , which proves Theorem 4.3.10 .

Remark 4.3.12. If V has negative sectional curvature, let P be the pressure function
defined on H1(V,R), and extended analytically to a neighbourhood of {=ω = 0}
(see [BL]). In constant negative curvature Theorem 4.3.10 could also be obtained
from the equality

Λ(λω) =
1
2
(P (λω)2 − P (λω))

proved for instance in [KS2] (p12) for λ ∈ √−1R. Since both sides of the equations
are analytic functions of λ in a complex neighbourhood of the real line, the equality
also holds for λ ∈ R.

Remark 4.3.13. I thank the referee for pointing out to me a paper by G. Paternain
([Pat]) where the following relation is proved, for real ω :

lim
ε−→0

Λ(
√−1εω)

ε2
= −l

for some non-negative l which is less (and, in general, strictly less) than ‖[ω]‖2s
2 . This

quantity l is called the harmonic value of the Lagrangian v 7→ ‖v‖2
2 − ω(v).

These two results have different interpretations. In one case one considers a
quantized perturbation of the classical Laplace operator, and studies its behaviour
when the perturbation tends to 0. Paternain’s result relates the spectrum of these
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Schödinger-type operators (more precisely, the second derivative at 0 of the first
eigenvalue) to some quantities coming from classical Hamiltonian dynamics.

In the present paper we do not work in the setting of perturbation theory, but,
on the contrary, of large deviation theory. We consider λω, where λ ∈ R tends to
+∞; this parameter plays the role of the inverse of the temperature in statistical
physics, or of the viscosity coefficient in fluid mechanics.

We conclude this paper by a large deviation upper bound for the family of
stationary measures (νλω)λ≥0. The second Peierls barrier is defined by

h∗(x, y) = inf u−(y)− u+(x)

where the inf is taken over all pairs of conjugate fixed points of T−t , T+
t (see [Fa2]).

It is a real valued, lipschitz function.

Theorem 4.3.14. Let νω denote the stationary probability measure for Brownian
motion twisted by the real valued 1-form ω. Then, for every closed subset F ⊂ V ,

lim sup
λ−→+∞

1
λ

log νλω(F ) ≤ − inf
x∈F

h∗(x, x)

Proof. We have seen that νλω = hλωh−λωdx up to a normalizing factor.
Let λn −→ +∞ be a sequence such that 1

λn
log νλnω(F ) converges in R∪{−∞}.

We may assume that ( 1
λn

log hλnω) and ( 1
λn

log h−λnω) converge uniformly on V ,
to continuous functions u+, −v− respectively. It follows easily that

lim sup
n−→+∞

1
λn

log νλnω(F ) ≤ sup
x∈F

u+(x)− v−(x)− J0

where J0 := supx∈V u+(x)−v−(x) comes from the normalization of νλnω. From the
considerations above, u+ is a fixed point of (T+

t ) and v− is a fixed point of (T−t ). Let
u− be the fixed point of T− conjugate to u+. Fathi proved that u+ ≤ v−+J0 implies
u− ≤ v− + J0. Thus we have u+(x)− v−(x)− J0 ≤ u+(x)− u−(x) ≤ −h∗(x, x) for
all x; and

lim
n−→+∞

1
λn

log νλnω(F ) ≤ − inf
x∈F

h∗(x, x)

as soon as 1
λn

log νλnω(F ) converges, which finishes the proof.

The set {x ∈ V, h∗(x, x) = 0} is called the Mañe set. It is the set of globally
minimizing orbits for the Lagrangian ‖v‖2

2 −ω(v). It contains the Aubry and Mather
sets associated to ω, but since it is chain transitive, it will be larger than the Aubry
(or Mather) set if the latter is not itself chain transitive.

We do not know if a full large deviation theorem holds – i.e, a lower estimate for
the measures of open subsets, with identical rate functions on both sides. This is
actually equivalent to the existence of the uniform limit of 1

λ log hλω. We conjecture
the following large deviations lower bound – at least for low dimensional systems
and when the Aubry set is chain transitive : for every open set G ⊂ F ,

lim inf
λ−→+∞

1
λ

log νλω(G) ≥ − inf
x∈G

h(x, x)

where h is the first Peierls barrier : h(x, y) = sup u−(y) − u+(x) (so that h(x, x)
vanishes precisely on the Aubry set).
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