ON THE ZERO-TEMPERATURE OR VANISHING VISCOSITY
LIMIT FOR CERTAIN MARKOV PROCESSES ARISING FROM
LAGRANGIAN DYNAMICS

NALINI ANANTHARAMAN

ABSTRACT. We study the zero-temperature limit for Gibbs measures associ-
ated to Frenkel-Kontorova models on (R%)%/Z%. We prove that equilibrium
states concentrate on configurations of minimal energy, and, in addition, must
satisfy a variational principle involving metric entropy and Lyapunov expo-
nents, a bit like in the Ruelle-Pesin inequality. Then we transpose the result
to certain continuous-time stationary stochastic processes associated to the
viscous Hamilton-Jacobi equation. As the viscosity vanishes, the invariant
measure of the process concentrates on the so-called “Mather set” of classi-
cal mechanics, and must, in addition, minimize the gap in the Ruelle-Pesin
inequality.

In statistical mechanics, Gibbs measures are probability measures on the config-
uration space, describing states of thermodynamical equilibrium. One of the major
problems is to study the dependence of equilibrium states on the temperature (or
other parameters): a lack of analyticity in this dependence is interpreted as the
occurrence of a phase transition, and the existence of several Gibbs measures at a
given temperature, as the coexistence of several phases.

In Part I of this paper, we are interested in the behaviour of Gibbs measures
as temperature goes to zero, in the model where the particles of the system lie
on the 1-dimensional lattice Z. This is not the favourite situation in statistical
mechanics: in this case, and if the energy of interaction between particles satisfies
reasonable assumptions, there is usually no phase transition. But even then, there
is, to my knowledge, no general result describing completely the behaviour of Gibbs
measures at zero temperature: for instance, the existence or not of a limit of the
equilibrium state. It is intuitive to think, and possible to prove, that such a limit
must minimize the mean energy, but there are examples where it is not enough to
conclude, as there may be several states of minimal mean energy ([Si82]).

This paper deals with the case where the state of each particle is represented by
an element of R%, so that a configuration of the system is described by a sequence
v = (Vr)rez € (R?)%. We work in the Markovian case: the potential of interaction is
of the form L(v) = L(7,71). Such models are sometimes called Frenkel-Kontorova
models. In the paper, the function L : R? x R — R will be of class C®, and satisfy
the following assumptions :

(Periodicity) L(x + s,y + s) = L(x,y), for all s € Z4.
L(z,y) +00

n —_—
=911 oyl — o0

(Superlinear growth)

(‘Twist property’) For all z € R, y + 0y L(x,y) is a diffeomorphism of R%.
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Given the periodicity property of L, the convenient configuration space to work
with is the quotient space W = (R%)%/Z<. We will denote o the shift transformation
on W, acting on sequences by shifting them to the left.

For each parameter 8 > 0 (representing the inverse of the temperature), we will
construct in Section 2 a o-invariant probability measure p1g on W, called “the Gibbs
measure associated to the potential L, at temperature 1/3”.

We will then prove the following theorem:

Theorem 0.0.1. Let ug be the Gibbs measure associated to the potential L, at
temperature 1/3. Let poo be a limit point of the family (ug)gso as B tends to
infinity. Then ps minimizes the mean energy fW Ldyu over the set of all o-invariant
probability measures on W.

Moreover, under suitable assumptions (A1), (A2), (A83), peo mazimizes the func-
tional

i o) — = tim [ Liogl,a”(9)]du(y)

n—oo [y N

over all energy-minimizing measures.

In the theorem, h,(p) stands for the metric entropy of the measure p under the
action of the shift o. This functional is one of the fundamental objects in ergodic
theory; its definition is given in Section 1.

We denote A”(7) the hessian matrix of the formal sum

A(y) =Y LOvks esr)-

kEZ

It is an infinite matrix, tridiagonal by blocks of size d. The notation ,, A” () stands
for the nd x nd submatrix corresponding to k € [1,n] and, in Theorem 0.0.1,
[»A” ()] stands for the determinant of that matrix.

The assumptions (Al), (A2), (A3) are technical assumptions concerning the
behaviour of the energy near its minima. They will be stated in Section 1.

We note that our result does not necessarily imply the existence of a limit for
the family (118)3—+o00, since the functional that po, must maximize is affine.

Part I is organized as follows:

— in Section 1, we introduce notations, and give a more precise statement of
Theorem 0.0.1 with its assumptions (A1), (A2), (A3).

—in Section 2, we define the Gibbs measure p5 and give some of its properties.

— in Section 3, we prove Theorem 0.0.1.

— Section 4 serves as a transition with Part II. We explain briefly the connection
between Frenkel-Kontorova models and symplectic twist diffeomorphisms of T¢ x
R?. In this context, the quantity lim,, + log[,, A”(¥)] has a nice interpretation in
terms of Lyapunov exponents. To draw an explicit link with Part II, we consider
the example

2
el

L(v0,m) = 5 (A/o) - (waﬁ - 70>7

where w € R? and V is a Z%periodic potential of class C2.
In Part II, we find that our result reads in an interesting way when transposed

to the field of lagrangian mechanics. In that part, we replace the configuration
space W = (R%)%/Z? by the space of continuous bi-infinite paths on the d-torus,



W = C(R,R%)/Z% = C(R,T?), and the function L by a lagrangian of the form

2
(0.0.1) L,(z,v) = @ —V(z) = (w,v)

on R? x R, V being a Z?-periodic function of class C3, w an element of R?, and
| . || the norm arising from the usual euclidean structure (.,.) on R

For 8 > 0, we consider the “twisted” Schrédinger operators:

A
(0.0.2) Hy =e P o (2ﬂ2 + V(m)) o efwa)
where A stands for the Laplace operator on R?. (For g = %, h being the Planck
constant, the operator Hj would be the quantization of the classical Hamiltonian

_lp+ ol
2

associated to the Lagrangian L,; but this is quite a different problem.)

Let 93,15 be the positive Z4%periodic eigenfunctions of, respectively, Hj and
its adjoint Hg*, associated to their common largest eigenvalue (this statement will
be given a precise meaning in Section 5). The focus of our attention is the measure

o Us@)yh(e)d
o T sy (y)dy

which is the invariant measure for the Markov process generated by the twisted
Schrodinger operators (Section 5). This process seems to be called P(¢);-process
in quantum field theory ([Si79]).

We study the behaviour of the family (u%) as 8 — +oo; 1/8 will now play
the role of a viscosity coefficient, or of the diffusion coefficient of the stochastic
process. We first prove that every limit point uY of the family (u%) B—+oo Can be

H,(z,p) + V(z)

lifted to the tangent bundle T¢ x R? to a probability measure jio, invariant under
the Euler-Lagrange flow of £, and which minimizes the integral of the lagrangian.
Such measures play a central role in J. Mather’s theory in lagrangian dynamical
systems: they are called “action-minimizing measures” (see [Ma91], and the work of
Maie on the subject, [Mn92], [Mn96] and [Mn97]). It is shown in the paper [Go02]
(Section 8) how the measures 3, for f§ > 0, may be seen as action-minimizing
measures in the world of stochastic dynamics.

Since there may be several action-minimizing measures, we seek additional con-
ditions satisfied by the limits of (u}) as 3 — +o0.

One way to state the result is as follows :

Theorem 0.0.2. Let 2. be a limit point of the family (,u%) as 3 — +oo.

Then there exists a probability measure fioo on T x R, which is invariant under
the Euler-Lagrange flow, action-minimizing in the sense of J. Mather, and whose
projection on T is p9. .

Moreover, under suitable assumptions (A1), (A2), (A3), s mazimizes the func-
tional

d
o) =5 [, (S AF@ (e

i=1
over the set of all action-minimizing measures.
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The assumptions (A1), (A2), (A3) are technical assumptions concerning the
behaviour of the action near its global minima. They will be stated in Section 5.

Here hg(p) stands for the metric entropy of the invariant probability measure
pon T x R4, under the action of the Euler-Lagrange flow ¢ = (¢¢)er; and the
A (z,v) are the d first (nonnegative) Lyapunov exponents of (z,v), under the action
of ¢. The definition of Lyapunov exponents will be given in Section 4. Note that,
for a smooth transformation ¢ of a compact manifold of dimension n, the Ruelle
inequality always holds:

hot) < 5 [ > Wi(e)ldua)

where the sum runs over all Lyapunov exponents (this is Theorem S.2.13 of [KH95],
applied to both ¢ and ¢~1). In Theorem 0.0.2, if we knew that ; was supported on
a smooth invariant Lagrangian graph (hence, of dimension d), we could interprete
the result as: “u minimizes the gap in Ruelle’s inequality”. As we shall explain
in Section 5, the fact that p is action-minimizing in the sense of Mather is a weak
form of the property of being carried by a smooth invariant Lagrangian graph.

. . . log 9%
There are alternative ways of formulating the result. For instance, ug = — ogﬁ%
is solution of the viscous Hamilton-Jacobi equation:
Au
—% + Hw(l’,dmu) = )\ﬁ,
1 5 - . . .
whereas vg = — Ogﬁ% is solution of the same equation for the time-reversed system:
Av
—% + Hw(l', —dIU) = )\g

The constant Ag is the eigenvalue of Hj and Hjg™ associated to the eigenfunctions
Y3, Y. We see that [ appears here in the role of the inverse of a viscosity coefficient.
The measure 15(z)Y5(7)dr may thus be written in the form e Blus(@)vs()) gy,
In dimension d = 1, the problem may also be formulated in terms of the Burgers
equation, which is the equation satisfied by dug (or dvg), obtained by differentiating
the Hamilton-Jacobi equation; in the paper [Si91], the asymptotic behaviour of the
viscous Burgers equation (as time tends to infinity, for a fixed viscosity coefficient)
was studied via the definition of Gibbs measures on path spaces; our construction, in
Section 5, of the Markov process associated to the Schrodinger equation, is similar.

Let us mention that in dimension d = 1, the convergence of the functions
ug, vg(8 — +00) was proved in [Bes02] for a time-dependent Lagrangian, and that
the result proved therein implies ours. However, the approach relies very much on
low-dimensional considerations and cannot be extended to higher dimension in an
obvious way. Besides, in low dimension, the entropy does not come into play.

The application of Theorem 0.0.2 in the case w = 0 yields an already known
result about the tunnelling effect in semi-classical mechanics ([He88], Section 4.4):

Corollary 0.0.3. Let Hy = hQ% +V, and let ¥y, be the unique Z-periodic positive
eigenfunction, corresponding to the largest eigenvalue of Hy in L?(T9).
Then, in the semi-classical limit h — 0, the probability measure

V2 (x)dz
de ¢% (y)dy



concentrates on the maxima of V.
Assume furthermore that the system satisfies (A1). If we consider the expansion
of V in orthonormal coordinates near a maximum xq, in the form

Viwo+3) = Vo) — 3 3 lac(zo)?s? +O),

then the measure w%(x)dx concentrates on those xgs for which the quantity

> lai(xo)|
is minimal.

Part II is organized as follows:

— in Section 5, we give more details about Mather theory and the notion of
viscosity solutions of Hamilton-Jacobi equations. We explain the spectral properties
of the twisted Schrodinger operator (0.0.2). We show how it generates a Markov
process of invariant distribution ,u%, and, finally we state Assumptions (Al), (A2),
(A3).

— in Section 6, we show how to adapt the proof of Theorem 0.0.1 to the new
situation. We also check that Assumptions (A2), (A3) are always satisfied in the
case w = 0, that is, we prove Corollary 0.0.3.

Part 1. Statistical mechanics
1. INTRODUCTION AND STATEMENT OF RESULTS

In this part, we consider a model where particles lie on the “l-dimensional lat-
tice” Z, and the state of each particle is described by an element of R?. Thus,a
configuration of the whole system is described by an element of (R%)%. A function

L:RYH — R,

called the potential of interaction, is used to describe the energy of interaction be-
tween particles. This is done the following way: given a configuration v = (v )kez €
(R4)Z, the energy of interaction associated to a finite subsequence (Vk)m<k<n is by

definition
n—1

AY|imn]) = Z L(o*)
k=m

where ¢ denotes the shift acting to the left:

(0)k = Yrt1

We will restrict our attention to potentials L depending only on the two first co-
ordinates (nearest neighbour interactions): in other words L(7y) = L(~o,v1), where
now L is a function from R% x R? to R.

Moreover, L will be of class C®, and have the following properties:

(Periodicity) L(x + s,y + s) = L(x,y), for all s € Z4.

L(z,y)

400
=91l oyl — o0

(Superlinear growth)

(‘Twist property’) For all x € R%, y + 9, L(z,y) is a diffeomorphism of R%.
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A model which assigns an energy
n—1
AV pmm) = Y Lvks Ye41)

k=m
to any finite segment m < k < n of a configuration v = (%), is usually called
a Frenkel-Kontorova model. Its “stationary configurations” are, by definition, the
configurations « which, for all m < n, are critical points of A with respect to
variations of v, m < k < n. In other words,

O L(Vk—1,7k) + O L(Vk; Ye+1) = 0
for all k.

Given the periodicity property of L, the convenient configuration space to work
with is the quotient space W = (R%)%/Z?, the action of Z¢ on (R?)% being defined
by

(8 =7k +s
for all s € Z4, for all v € (R%)Z, for all k € Z.

Notations : We shall denote 7 € W the equivalence class of v € (R?)Z under this
action. An element of W will always be denoted in the form 7, meaning thereby
that it is the equivalence class of some v € (R?)Z.

Similarly, for any subset I C Z, we shall introduce the quotient space W; =
(R4)! /7%, with the action of Z¢ defined as above, and we shall denote ¥ € W the
equivalence class of v € (R4)L.

The shift o, defined previously on (R%)%, can be defined on the quotient space
W; the same holds for the potential L. We keep the same notation for the shift
o and the potential L defined on W. More generally, when some functions or
transformations originally defined on (R%)% can go to the quotient space W, we
keep the same notation.

We also introduce the projections 77 : (R%)? — (R%)!, which go to the quotient
spaces:

mr: W — Wy
When I = [0, k], we shall write W}, 7 instead of Wy, 7;. In particular, Wy ~ T¢,
Wy ~ T4 x R4,

The topology used on (R%)Z is the product topology, and the topology on W is

the quotient topology. It is defined by the distance

dw (7,€) = dra(70, &) Jrz

kEZ

i min (1 [eer = ell = ll6ksr — &l111).

If I is an interval of Z containing 0, we define similarly a distance dy, on Wi; the
>~ now runs over all ks such that k € [,k+1 € I.

We can now introduce our Gibbs measures pg. As we shall prove in the next
section, for all 3 > 0, we can find Z% periodic, positive continuous functions Vg, Vs,
and a real number A\g, such that

(1.0.3) / eI Y (y)dy = M ()
]Rd
and

(1.0.4) / e PLWD s (y)dy = M (x),
Rd
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for all z. Actually, the real number Ag and (up to a multiplicative factor) the
functions ¢, v} are characterized by these properties.

We normalize the functions 15, so that f[o,l)d Yp(x)y(z)dr = 1.

The measure ¢g(z )y (x)dz appears as the unique Z4%periodic invariant measure
for the Markov process with transition probabilities

P(z,dy) = %e‘ﬂ”mvy)dy.

The stationary Markovian process on (R?)N, of initial distribution Ya(z)Ps(z)de

and transition probabilities P(x,dy), is realized by the following measure pg on
(RN

(105) ,Udﬂ({'%'}/() € AO;'YI € Al,my'Yn € An})

n—1
= e e /A A A U5 (0)¥a (e P Xm0 LR dygdryy L dryy,
0XALX...XAp

for all n > 0, for all Borel sets Ag, A1, ..., A,. By invariance of the initial distribu-
tion, the measure pg is invariant under the 1-sided shift on (R%)N, so that it can
be extended to a o-invariant measure on (R?)Z, that we still denote .

Actually, the periodicity properties of 13, ¢ and L imply that this measure is
invariant under the action of Z? on (R?)%. Also, the measure of the fundamental
domain (R%)%= x[0,1)%x (R%)%* is 1, due to our normalization of 9, ¥ Identifying
the quotient space W to this fundamental domain, we obtain a probability measure
(still denoted pg) on W, which is o-invariant, and which we call the Gibbs measure
for the potential L, at temperature 1/0.

Note that, if we replace the potential L(x,y) by L(z,y) — u(y) + u(z) + ¢, where
u is a continuous Z?periodic function and ¢ a constant, then the eigenfunctions
p(x) and ¢%(x) are replaced respectively by 1(z)e#*() and ¢ (x)e*) | and
Ap is replaced by Mg — fc; the Gibbs measure g is unchanged. According to the
usual terminology, we say that two potentials L(x,y) and L(x,y) are cohomologous
if there exists a continuous Z%periodic function u such that L(z,y) = L(z,y) —
u(y) + u(z), and we write L ~ L.

Remark 1.0.1. For n > 0, we denote dpug (J|mn41,400)(7): T(—00,0](7)) the condi-
tional law of ¥ knowing 7,11 4o0)(7) and m(_s 0)(¥). What is usually called the
“Gibbs property” is a property about the form of conditional measures (see for
instance [Ru78], Chapter 1.5):

ZseZd efﬁ(ZZ;é L(’Yk,W+1)+L(7m7n+1+5))dvl_

~dyn

dpg (’7|7r[n+1,+oo)(;7)v77(—0070](’7)) - Zﬁ(ﬂ'[ 1,400) (1) T(=00,01 (7))
n n+1,4+o00 7 oo,

To write this formula we have identified W with the fundamental domain (R%)%* x
0,1)4 x (R%)%+; the term ZB(Tnt1,400) (7)s T(—00,01 (7)) is a normalization factor.

It is not too hard to check that the measure pg constructed above has this
property. Moreover, it is proved in [Ru78], Chapter 5.9 (however, in the simpler
situation when the configuration space is discrete) that this property actually char-
acterizes the measure. We will not go further into this problem here, as we are not
going to use the Gibbs property in this form.
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Our aim is now to investigate the existence of a limit for the Gibbs measure pg,
as f — +o0.

We shall say that a sequence (i, )nen of probability measures on W converges
to a measure p if, for every finite interval I C Z, for every bounded continuous
function f on Wiy,

[ ramdun —. [ amut.

We shall prove in Section 3 (Lemma 3.1.5) that, from every sequence (ug, )ken of
Gibbs measures, one can extract a subsequence which converges to a probability
measure flo,. We ask which measures jio, can be obtained this way.

First, the measure fi, like the pgs, has to be invariant under the action of
the shift ¢. Then, intuition tells us that the measure p,, has to be carried by
configurations “minimizing the energy”:

Definition 1.0.2. A configuration 7 is called energy-minimizing if, for all m < n,
for all s € Z4, for all (Yrn1s s Ym1) € (Rdyn—m—1,

L(vmsYm+1) + L(Vm+1, Ym+2) + - + L(Yn—1,7n)
< L(’Ym>7;n+1) + L(7;L+17’Y;71+2) +ot L(’Y;L—la’Yn + )

In Section 3 (Lemma 3.1.6), we shall prove that limits of Gibbs measures are
carried by energy-minimizing configurations. We shall also prove a theorem, due
to Mather in the context of lagrangian dynamical systems ([Ma91]), which says
that a o-invariant probability measure p on W is carried by energy-minimizing
configurations if an only if it minimizes the mean energy f Ldy amongst all o-
invariant probability measures.

Definition 1.0.3. A o-invariant probability measure p on W, achieving the infi-
mum of the mean energy [ Ldu over the set of o-invariant probability measures, is
called an energy-minimizing measure.

‘We introduce the set
M =U,suppp C W,

(the union runs over energy-minimizing measures), and call it the Mather set, in
reference to the work of J. Mather in the theory of lagrangian dynamical systems
(see Part II).

We will thus show that every limit point of ug (8 — 00) is an energy-minimizing
measure. This fact, known by many, already appears in a paper by Sinai ([Si82]).
However, as Sinai’s paper precisely shows, there may be several energy-minimizing
measures.

Thus, we need a selection principle, telling us which energy-minimizing measures
can be obtained as limits of Gibbs measures. The main result of this paper, Theorem
0.0.1, selects an affine subset (possibly not reduced to one point) in the set of energy-
minimizing measures.

We now give the assumptions of the theorem, and define the objects entering its
statement:
Assumptions : Let m < n and &,,,&, € R?; we introduce the notation

(Rd)[m,’ﬂ]v(énngn) _ {(Vk)mgkzgn c (Rd)[m,n],,ym =&y Yn = gn}
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Recall that we have defined the energy of a sequence (Vx)o<k<n as A(7Y|[0,n]) =
n—1
Zk:o L(7k5 "Yk—i-l)-

Assumption (A1) For all n, for all endpoints &, &, € R?, the minima of the
energy A in the set (R%)(07):€0&n are non-degenerate (we mean thereby that the
hessian matrix of A at each minimum is non-degenerate). Besides, the number of
minimizers is bounded, independently of n, &g, &,.

In order to simplify the writing of the proof, we will assume that there is only
one minimizer, for all n,&y,&,.

Assumption (A2) There exists g > 0 such that, for all 0 < & < gq, there
exists a sequence (c,,) € [0, 1]N satisfying:

~ lim,, %8 =,

and :

— for all n > 0, for all 79,7, € R? such that

H Y — 50 ||S Cn€

| Yo —&n IS cne

for some energy-minimizing configuration ¢ € (R%)%, then there exists a minimizer
v of A: (R%)Onlv0m s R such that || v, — &, ||< e for all 0 < k < n.

Change of gage: We will prove in Section 3 (Proposition 3.1.3) that there exists
a Z%-periodic, Lipschitz function u, such that the potential L(vo,7y1) = L(70,71) —
u(y1) + u(y0) + ¢ is nonnegative, and vanishes on the Mather set. As we already
mentioned, replacing L by a potential L ~ L + ¢ does not change the definition
of the Gibbs measure. In all the definitions given above, we can replace L by a
new energy L, without changing the definition of energy-minimizing configurations,
Mather set, etc... The fact that u is not smooth is not really a problem, since we
only need to differentiate the energy functional A on the spaces (R%)0:7):€0-¢n | that
is, for fixed boundary conditions. Thus, by a change of gage, we may and will
assume in the rest of the paper that L is nonnegative, and vanishes on the Mather
set.

After performing this change of gage, we introduce the function

ho(z,y) = inf A,
() (]Rd)[})gz],(w,y)
defined on R¢ x R¢.
Assumption (A3) There exists a sequence B,, > 0 satisfying lim,,
such that for all n

log B, __
> n _O’

supﬁd/Q/ e_ﬂh"(”m%)d’yn <B,.
Yo R4

Assumptions (A1) and (A2) seem merely technical, and it is probably possible to
get rid of the second part of (A1) (about the number of minimizers). As to (A3), it
says something about the behaviour of the function h,, near its minima, uniformly
in n. Although these assumptions are not easy to interprete, we can at least check

(A2) and (A3) in the case when L is of the form L(vg,v1) = M —V(v0), where
V is Z%-periodic and of class C* (Lemma 6.4.2). However, it would be nice to have
another set of assumptions which, if not easier to check on examples, would be more
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conceptual and related to familiar notions of the theory of dynamical systems. In
Section 5, we will formulate a conjecture about other possible assumptions.

Metric entropy: Let us now recall the definition of the metric entropy, which
comes into play in Theorem 0.0.1. Consider a probability space (X, B, ), and a
measurable transformation 7' : X — X preserving the probability measure p
(meaning that u(T-1A) = u(A) for every A € B). One defines the metric entropy
of p with respect to the action of T', denoted hr(u), as follows:

For any partition P of X into a finite number of measurable sets, X = LF_| P;
one first defines the entropy of p with respect to 7" and the partition P, as

hT(:uv P) =

1
lim > —(Poy TP, .. TP, )ogu(Pay,NT'P,,.. TP, ).
" on Qg,...,an—1€{1,....,k}

The existence of the limit can be proved by a sub-additivity argument ([KH95],
Chapter 4.3).
Then, hp(p) is defined as

hr(p) = sup hr(u, P);

the supremum is taken over the set of all finite measurable partitions of X.
In this part, we shall apply this definition to X = W and T = o, and p will be
13, Moo, OF any o-invariant measure.

Hessian of the energy: The definition of an energy-minimizing configura-
tion implies in particular that if 4 is such a configuration, then, for all m < n,
(Ym+15 s Yn—1) is a global minimum of the function

AYms Yimt1s - Vo1 ¥) = L(Vms Y1) + L¥mg1s Ymgz) + o+ L(Vn—1:70);
defined on (R®)[mn):(ym:7n),
Let us consider the Hilbert space 12(Z7Rd) = {(m) € (Rd)Z’ZkeZ ||%||2 <
+00}. Consider the hessian matrix A”(5) € L(12(Z,R%)) of the formal sum
kEZ

It is an infinite symmetric matrix which can be decomposed into d x d blocks :

Al = 0%, L(vi—1,7%:) + 03, L(vi, vig1)

Al = 00 L(vi,vis1)
and A{; = 0 for |j —d[ > 1. This way, the nd x nd submatrix ,A"”(y), cor-

responding to indices 1 < 4,5 < n, is the hessian matrix of the function A on
(Rd)[o’"*‘l]v(’mﬁwﬂ).

We can now rewrite the statement of Theorem 0.0.1:
Theorem 1.0.4. Let po, be a limit point of (ug) as f — +o0o. Then, po is an

ENETgY-Mminimizing measure.
Moreover, under assumptions (A1), (A2) and (AS3), we have

o) = 5 [ tim gl A" ()ld(9) < o) =5 | Tim 108l 4”3 o ()
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for any energy-minimizing measure .

The proof includes a proof of the existence of the limit lim,, L log[, A" (¥)] € R,
for every energy-minimizing measure p, for p-almost every 4. The metric entropy
he (1), by definition, belongs to [0, +oc], but we shall see in Section 4 that it is
finite in our situation.

Note that the functional

b o) L /W lim ~ logl, A" (9))di(7)

is affine, so that our theorem still does not necessarily imply that p3 converges.

2. DEFINITION OF GIBBS MEASURES, AND SOME OF THEIR PROPERTIES.

In this part, we prove the existence and uniqueness of 13, 5 and A characterized
by (1.0.3), (1.0.4), and we construct the Gibbs measures.

We identify functions on T? and Z?-periodic functions. We also identify Radon
measures on T? and Z%invariant Radon measures on R%.

We introduce an operator P7, acting on the space of Z%periodic continuous
functions as follows: if f is such a function, then PE f is defined by :

(PrD@) = [ e f(g)dy.

for all z € R%. If the continuous function f is nonnegative and does not vanish
identically, then Pg f is positive.

By duality, Pg also acts on the set of Radon measures on the torus; we define
the dual action Pg‘ * on the set of measures by

[ s = [ P fan.

for every continuous function f on the torus, for every measure p.
We also introduce the operator P; (the adjoint of Pg in L?(T%)):

(P D) = [ 0 f(y)ay

we let it act on the space of Z%periodic continuous functions. We denote Py * the
dual action on measures.
It is immediate that, for all v, Py *v has density

(Dr)(@) = [ M uty),

whereas Pgr *v has density
(D)) = [ e ).
Rd

(To define the integral on R?, one considers measures on T? as Z%-invariant Radon
measures on R%.) The operators D, D* go from the space of measures on the torus
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to the space of continuous Z%periodic functions. In particular, we note that if v
has a density f with respect to Lebesgue measure, then Pg‘ *v has density

g(x) = /Rd e W) f(y)dy.

In other words, P;*(f(x)dac) = (Py f)(z)dz.

We now consider two transformations M+ and M~ (we forget the dependence
on [ in the notations), acting on the set of probability measures on the torus the
following way :

—+x Pi*
M+u:7ﬁ+'u andeuziﬁ_’u
fPﬁ ldp fPﬁ 1dp

They act continuously on the convex, compact set of probability measures on the
torus, endowed with the weak topology. The Schauder fixed point theorem implies
that M™ and M~ both have fixed points.

This exactly means that there exist probability measures g, p, and real num-
bers Ag, A such that :

Pg*,uz = e)‘ﬁu}; and Pg"ug = e pg.
The reader will readily check that we have the commutation relations PE D=
DP;* and Py D* = D*P;* on the space of measures.
Thus, if Pg * wh = s W, then D* i3 is an eigenfunction of Py for the eigenvalue
e*: we denote Y5 = D*pj. Similarly, Dug is an eigenfunction of Pg for the

eigenvalue e*#; we denote it P3.

We can also write:
Pﬁ_*(i/}g (z)dz) = e Yg(z)dz and Pg*(d);(z)da:) = e)‘;ﬁbg(z)dx.

Note that 1g and ¢} are positive continuous functions, and that e (respectively
e)‘g) is a simple eigenvalue for P; (respectively Py ) in the space of L2, Z?-periodic
functions. To see this, first note that a Z?-periodic, L? eigenfunction is necessarily
continuous. Then, consider a Z?periodic continuous function v, satisfying

Py =e .

Let A = sup/¢g. Then the function A3 — ¢ is nonnegative, and by continuity
vanishes at one point at least. Besides, it satisfies

(s — 1)) = e / L) (s — ) (y)dy

Rd
for all . Thus, if (Mpg—1)(x) = 0 for some x, then we must have (Mg —1)(y) =0
for all y; in other words 13 and % are proportional.
We have proved the beginning of the following proposition:

Proposition 2.0.5. The eigenvalue e (respectively eAZ) is a simple eigenvalue

for Pg (respectively Py ) in L?(T?). Besides, e*? is the spectral radius of Pg‘ in
L2(T9).

To prove the last assertion, note that the operator

N: fo ———PH(fup),

1
ers ’gbﬁ
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is stochastic: it fixes the constant function 1. We also say that it is “normalized”.
The dual operator N* on the space of measures fixes the measure ¢5(x)j(z)dz.
It follows from the Cauchy-Schwarz inequality that the norm of N in L?(T¢, Ya(x)Ps(z)dr)
is 1, so that its spectral radius is also 1. This now implies that the spectral radius
of Pg‘ in L2(T?) is e*s.

We know, by the definition of ¢5(x), that uj is proportional to ¢ (z)dz; and
Proposition 2.0.5 implies that pj is, up to a multiplicative factor, the unique mea-
sure such that Pg*ug = e’\z’uz;. A similar property hold for pg.

It remains to check that Ag = Aj3. We prove that g is (up to a multiplicative
constant) the only nonnegative L' eigenfunction of Pg‘ . Let ¥ be a nonnegative
eigenfunction of P7; obviously, 1) must be positive, continuous, and associated to
a positive eigenvalue e*. We write

[ vdus = [ Py
= [wdegu) = [ v

so that we must have A = Aj, and ¢ must be proportional to ¢g. In particular,
A = As.

Rephrasing what has just been done, we can say that the normalised operator N
fixes a unique Z?invariant Radon measure (up to a multiplicative factor), which is
positive, and has density 15(z);(x). We normalize it so that f[0,1)d Yp(x)(z)dr =
1.

Thus, the measure 15(z)yj(x)dr appears as the unique Z%-periodic invariant
measure for the transition semigroup generated by the following transition density:

P(z,dy) = e)\qf’z;y()x)e_ﬂ“%y)dy.

A stationary Markovian process on (R4)N, of initial distribution Yp(x)Ys(v)de

and transition probabilities P(x,dy) = Me’m(m’y)dy, is realized by the mea-

By ()
sure pg on (RN defined by :

(2.0.6) /Lﬂ({%% € Ap,m € A1,y € An})

n—1
e /A A A w2(70)¢5(’yn)6_ﬁ Li=o L(’YkﬁkJrl)d'YOd’Yl---d'Yn
oXA1X... n

for all n > 0, for all Borel sets Ag, Ay, ..., Ay,. This defines a positive measure pg on
(RN, as a consequence from Kolmogorov’s extension theorem. By the invariance
of the initial distribution, the measure pg is invariant under the 1-sided shift on
(RN, 50 that it can be extended to a o-invariant measure on (R%)%, that we still
denote pg. Actually, the periodicity properties of ¥s,¢5 and L imply that this
measure is invariant under the action of Z¢ on (R%)Z; finally, the measure of the
fundamental domain (R4)%~ x [0,1)? x (R4)%+ is 1, due to our normalization of

Vg, V-
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Identifying the quotient space W to the fundamental domain (R%)%= x [0,1)%
(R%)%% | we obtain a probability measure (that we still denote y13) on W, which is o-
invariant, and which we call the Gibbs measure for the potential L, at temperature
1/8.

Note that, if we replace the potential L(z,y) by L(z,y) — u(y) + u(x) + ¢, where
w is a continuous Z%periodic function and ¢ a constant, then the eigenfunctions
Yp(w) and ¥j(x) are replaced respectively by Yp(z)e ) and z/)g(ac)eﬁu(z) , and
Ag is replaced by Ag — Bc; the Gibbs measure 115 is unchanged.

We now prove a property of “quasi-invariance” by spatial translations of the
measure 13 on W. We denote W, the subset of W formed of elements 7 such that:
there exists N € N, there exist r, s € 74, such that v, = s for k > N and 7;, = r for
k < —N. Note that, if 7,7 € W, their sum 7+’ = v+’ € W is well defined.

Proposition 2.0.6. For all z € W,, for all measurable nonnegative continuous
function f on W, we have

/ f(y+2) dﬂ,@*/ (7 e B X rez(L(ve =2k, V41— 2k41) = L(%’V’““))dpg

Note that the ), ., in the right-hand side is actually a sum on a finite number
of terms, since z € W...

The reader is invited to compare this property with the definition of Gibbs
measures given in [Ha90]; it is proved there (however, in a different situation) that
this property actually characterizes the measure. We do not examine this problem
here.

Proof. Tt is sufficient to check it when f depends only on a finite number of coor-
dinates, by which we mean that f is of the form g o w; for some finite interval I
and for some bounded measurable function g on W'. Besides, by the o-invariance
of pg, it is enough to consider the case I = [—n,0]. Without loss of generality, we
may assume that zy =0 for k > 0 and 2z, =r € Z for k < —n.

To perform the calculation, it is simpler to identify W with the fundamental
domain (R%)%~ x [O 1) x (Rd) +. Now ¢ is a nonnegative measurable function on
(R == [0, 1)

/ F+2)dps = / 925 (Y-n)thp(r0)e ™ okmn LORM) gy

w (Rd)[ n,—1 [0 1)d

- / 9NV (v=n — 2—n ) (0 — Zo)e—mz;_n L2k 41— 2k41)) gy
(Rd)[ n —I]X[O 1):1

—1
B /( 4) 11x[0,1)4 g(’y)wg <’y_")w3(70)e_6(zk:*" L(vk =2k Vet 1 = 241) = L(Vk Yk 41))
R)[=m=11x[0,1
6_6(2;:177,, L(’Yk7’)’k+1))d,y
= /W f(ﬁ/)e_ﬁ Zkez(L('Yk—Zk7’)’k+1—zk+1)—L(7k,’yk+1))duﬁ

which proves the proposition. We have used the periodicity of ¢z and 5. O

To end this section, we prove that the Gibbs measure pg satisfies a variational
principle which looks like a thermodynamical variational principle. Once again
we identify W with the fundamental domain (R%)%Z- x [0,1)¢ x (R%)%+. For a
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probability measure p on (R4)%= x [0,1)% x (R%)%+, let us denote dp(v-1170,400))
the conditional law of v_1 knowing (o, 4oc)-

Proposition 2.0.7. The measure pug mazimizes the functional
dp(¥-1[70.400))
= oy oy 18 (RS ) du()

PN if du(y-1]7]0,400)) absolutely continuous w.r.t. dy_y,
—o0o otherwise

over the set of o-invariant probability measures on W ~ (R?)%= x [0,1)% x (R%)%+.

Proof. We use the following convexity inequality : if p, v are probability measures
on some space X, and if u is absolutely continuous with respect to v, then

dp
— [ log(“E)du <
/Xog(dy)u_(),

with equality for p = v.
Note that

1%(’7—1) A
i (v-1]Y0,100)) = ——e P TIHO0)dy
g [0.409) %(%)

Thus, for any o-invariant probability measure p on W such that du(y-1]v0,4+))
is absolutely continuous with respect to the Lebesgue measure dy_;, we have

dp(y-1 |7[0 +oo))
— [ dp(v-1170,400)) l0g = ) <0
/ L1710 +ee) 5 (v-1)vy (y0)e A=A O=10) dy

for p-almost every 7 +0), With equality for u = pg. Integrating with respect to
Y[0,+00), We obtain

- / dp() log dp(y-1170, +o0))
(g ('771)7/’;%71 (70)e= 8= ALO-1:70) dy_

= */\BJF/(lOg?/1;(’)’—1)710@/’?3(70))(1#*/ dpu(y) log< dp(y-1170,+o)) ) <0

5(v-1)vy (r0)dya
with equality for p = pg.
If v is o-invariant, [(log}(v-1) —logs(v0))dpu = 0. Thus, we get

dp(7=117[0,400))
_/log (eﬁL(’Y—h’Yo)d’)/_l (7)< As

for all o-invariant measures y, with equality for p = pg. O

After multiplication by —1/43, it would be tempting to decompose the functional
of Proposition 2.0.7 in the form :

[ Bau— 5

where H would be the functional defined by
dp(y- ~
Hu) = /log ( n(y ;Iww >)) ”
Y-1
Then, we would call [ Ldy the mean energy, and look as H (1) as a kind of entropy,
so that [ Ldu — %H(,u) would be a free energy.
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However, this decomposition does not always make sense, since both terms may
be infinite.

It would be interesting to see if Theorem 0.0.1 can be derived directly from
Proposition 2.0.7 by letting 8 — 400, and expanding the functional of Proposition
2.0.7 in powers of 3.

Remark 2.0.8. The situation is considerably simpler when the configuration space
is of the form B%, where B is a finite alphabet. In that situation, the Gibbs measure
g for a potential L, at temperature 1/, minimizes the free energy [ Ldu— %hg ()
([Ru78)); from the fact that h, is a bounded, lower semi-continuous functional, one
can deduce directly that any limit of (ug)s—oo is an energy-minimizing measure,
and maximizes the entropy amongst energy-minimizing measures. See, for instance,
Theorem 29 in [CLT01]; in that reference, the action of the shift on BZ arises as
the coding of an expansive map of the circle, and the potential L (depending on
infinitely many coordinates) is the logarithm of the jacobian of the map; so that
“energy-minimizing measures” are measures of minimal Lyapunov exponent.

When B = R?, difficulties arise from the fact that H(u) is not a bounded
functional and is not the metric entropy h,(u); also, Lyapunov exponents appear
when analyzing the gaussian fluctuations of the energy.

3. Proor or THEOREM 0.0.1.

To start with, we give the general idea of the proof, and explain the role of
assumptions (A1), (A2), (A3). These ideas are quite classical, their technical im-
plementation is performed in Section 3.2.

On a finite-dimensional configuration space (R%)", let A be an energy functional,
and BA(x)

e P T dy
dpg(w) = m

the associated “Gibbs measure”. Assume that A has only non-degenerate minima
(2;)ien. Then, as § — +00, g concentrates on the minima of A; more precisely,
it converges to

poo = (O (A" (@)]7V2) T A (@) V2 b,
where J,, is the Dirac mass at x; and A”(z;) the Hessian of A at x;.
In other words, pio is the measure maximizing

=3 e og ) — 5 / log{ A" (2))du(z),

amongst measures carried by the minima of A, x;.

We want to apply exactly this idea, when the configuration space, (R%)%/Z?, is
now infinite-dimensional. The difficulty is that both notions of Gibbs measures and
metric entropy are defined, from the finite-dimensional model described above, by
taking the thermodynamical limit n — oo. We are in a situation where n goes
first to co (the thermodynamical limit), and then 3 (the low temperature limit). If
we could first let § tend to oo, then n, we would be done.

Assumptions (Al), (A2), (A3) contain what we need to apply the heuristics
described above:

— non-degeneracy of the minimizers of the energy.
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— technical possibility to reverse the orders of the two limits n — 400 and
8 — +o0.

In the following, the space R is endowed with its canonical Euclidean structure,
we denote .|| the associated norm, ||.|| the norm ||z||oc = max;—1 4 |z¢|, and
[1f[x the norm [|zfly =32,y 4 12|

3.1. Preliminary results.

Lemma 3.1.1. Let (Bk)r>0 be a sequence such that B, — +o0o. Then the families
of functions (—ﬁ% log s, )i and (—ﬁik log w;k)k are equicontinuous.

Proof. The function g satisfies
va(z) = e~ 8 /Rd e‘ﬂL(m’y)wg(y)dy

= e [ e sy
0.0 seza

The potential L being superlinear, there exists M > 0 such that
Z e~ PL(s+2.y) < o=Binf,cpa L(st,y)
I[sl|>M
for all z,y € [0,1)%. Tt follows that
Z e PL(stzy) < Z e~ PL(stay) 4 o—Finfs L(stay) < (Md + 1)e—ﬂinfs L(s+m,y)
s€Zd lIsl|<M
so that
lim sup 1 log( Z e PLista)y < iI;f L(s+x,y).

p—o sezZ4
On the other hand, since
Z e PLlstzy) > o=Binfs Lis+a.y)
SEZA

one has the lower bound:

1
lim inf — log( Z e PLGHT2Y)Y > _inf L(s + x,y),

B—00 /8 sczd
so that
1
(3.1.1) ma = log( E e PLEHTY)Y — _inf L(s + 2,y).
—00 S
seZd

Besides, the argument proves that the convergence is uniform in z, y.

For z,y € R%, we denote I(z,y) = inf,cze L(s + z,y). This function is Z4-
periodic in both variables; we show that it is a lipschitz function on T¢ x T¢.
Because L(x,y) goes to infinity as ||z — y|| — 400, there exists M > 0 such that

I(x,y) = inf L(s+uz,y
(.9) lIs||<M ( )
for all 2,y € (0,1)%. Let us consider z,y,z’,3’ € (0,1/2)?. Assume that I(x,y) =
L(sp + z,y) with ||so|| < M. Then

I(2',y) < L(so+a’,¢') < Lsot+a,y) +C(|la—2'|[+|ly=y/[)) = I(z, y)+C([[e—2"l|+]ly—y'[])
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where C' is a bound on the norm of the derivative of L on (—M — 1, M + 1)¢ x
(0,1/2)%.

Since (z,y) and (2’,y’) play symmetric roles, we have proved that I is lipschitz
on (0,1/2)¢ x (0,1/2)¢, for the euclidean distance. Besides, in (0,1/2)? x (0,1/2)%
the distance ||z — 2'|| 4+ ||y — ¥’|| coincides with the distance of their images in the
torus, dpa(Z,Z') + dpa(7,7'). This way, we can cover T¢ x T by a finite number of
charts in which 1 is lipschitz.

We now write

: Lt = Liog [Joa(Sacas KNy (e)ds
hl 4 J) = 1
B 8 & Ys Ié] ) f[o,1)d(zsezd e—ﬁL(sﬂ,,z))wﬁ(z)dz
ZSEZd e—ﬁL(s+m,z)
log (Slzlp ZsEZd e—ﬁL(s+y7z))

—  sup I(z,z)—I(y,z
e S 12) 12

log ¢ (x)

<

x| =

the last line being a consequence of (3.1.1). Besides, the convergence is uniform in
,y.
Since [ is lipschitz, there exists C' such that sup, I(x, z) — I(y, 2) < Cdya(Z, §).
Thus, for all € > 0, there exists K such that, for all £ > K,

1 1
3, logva (@) — o

Since x and y play symmetric roles, it follows that (élog g, ) is a uniformly

log s, (y) < € 4 Cdra(Z,7)

equicontinuous family of Z?periodic functions.
A similar argument yields the result for (i log 5, )- O

We introduce the value

¢ = —inf{ / Ldy, p a o-invariant probability measure on W}.

Definition 3.1.2. (1) We say that a o-invariant probability measure p on W is
energy-minimizing if [, Ldp = —c.

(2) We say that a configuration # is strongly minimizing if, for all m < n, for all
m' < n', for all v/ ,, ...,y such that 7/, = v, and 7., = v, + s for some s € Z¢,

L(7m7 '7m+1)+"'+L(7n715 ’Yn)"’—c(m_n) < L(’y;nH 71/71’+1)+"'+L(’Yn’71,’Yn’)_‘_c(m/_nl)'

Obviously, a strongly minimizing configuration is minimizing (but the converse
is not necessarily true, see [Ber02] for a discussion of this issue in the context of
Lagrangian dynamical systems).

We say that a configuration 7 is recurrent if, for all k, for every ¢ > 0, there
exists an infinity of positive indices j and of negative indices j such that

dw, (Y, Vet 1)s (5, Y541)) < €

The Poincaré recurrence theorem implies that a configuration lying in the support
of a o-invariant probability measure on W is recurrent.

Proposition 3.1.3. There exists a lipschitz Z-periodic function u such that

u(z) + L(z,y) — u(y) + ¢ >0, for all z,y € RY,
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and u(z) + L(x,y) — u(y) + ¢ = 0 if there exists a configuration ¥ € W which is
recurrent strongly minimizing, or which lies in the support of an energy-minimizing
measure, such that v = x,71 = y.

Proof. By Lemma 3.1.1, we can find a sequence f8; — -+oo and a continuous
Z%-periodic function u such that
1
Bre

log v, Mo —u

uniformly.
We may also assume that )\‘f—f: converges in R U {—o0, +00}, say to a limit A.

We use the following

Lemma 3.1.4. Assume that (ug)s=o is a family of functions on T¢ which con-
verges uniformly to a continuous function v as 3 — 4o00. Then

lim llog/ P @) dr = sup u(x)
f—o0 f3 Td z€Td

The proof goes as follows : the inequality ug < u + ¢ < supwu + ¢, which holds
for every € > 0 and for g large enough, yields the upper bound on the limsup. The
fact that ug > u —¢, for every € > 0 and for 3 large enough, and that u > supu —¢
on a set of positive Lebesgue measure, yields the lower bound on the liminf.

Now, taking the log of both sides of the equality

Byla) = e / (3 e PLuats))ye (y)dy,

0.1)¢ seza
dividing by £, and passing to the limit for the subsequence (0y), we get
—u(z) = —A = nf{I(y, ») +u(y)} = -2 - nf{L(y, ) + u(y)}

or u(z) = A+inf, {L(y, z) + u(y)}. Since w is continuous, this implies already that
A is finite.

Imitating the notation of Fathi in [Fa97-1], we introduce the transformation
T : C(T%4,R) — C(T4,R):

To(w) = inf{L(y.2) + v(y)}.

If v is continuous, then T~ v is lipschitz. We admit this fact, whose proof is similar
to the proof that I is lipschitz.

Thus we have u = T~ u + A. This implies that w is lipschitz; besides, A is
necessarily equal to the critical value, c. This result is due to Fathi for a continuous
time Lagrangian system ([Fa97-1]). Since the full proof is still unpublished, we give
a general idea of it:

— The equality w = T~ u+ A implies that u(yo) + L(v0,71) —u(y1) + A > 0, for all
Y0,7v1 € R?. Taking the integral over an arbitrary o-invariant probability measure
won W yields A + [ Ldu > 0, so that A > c.

— Next, Fathi proves that u = T~ u + A is equivalent to the following: for all
70 € R?, there exists a sequence (7k)k<o such that, for all £ <0,

-1
u(w) + Y L(v5,v541) — ulyo) + [k[A = 0.

j=k
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Let us extend this sequence to a configuration (vx)rez. Fathi shows that the se-

quence of Birkhoff sums
0

1
- 5 ons
k| +1 Z oty
j=k
admits a convergent subsequence as k — —oo, and that the limit x is a o-invariant
probability measure satisfying [ Ldy = —X. Thus, A = c.

Now, let 7 be a strongly minimizing recurrent configuration, and assume that
there exists j such that w(v;) — u(vj41) + ¢ + L(7;,7v;41) > 0; for instance that
w(y1) — u(y2) + ¢ + L(y1,72) > 2¢ for some ¢ > 0. Since 7 is recurrent, we can
find k arbitrarily large, such that (yg,vk+1) comes arbitrarily close to (vo,7v1); this
implies that (Yo, vx+1) comes arbitrarily close to (79,71). Thus, for some k,

L(v0, Yr41) — u(Vrg1) +u(v0) + ¢ < L(v0,71) — u(y) +u(v) +c+e
k

< (u(vy) — u(vit1) + e+ L(vi, vi41))

0
k
= Z L(vjsvir1) — w(yks1) +u(yo) + (b + 1)c

To account for the second inequality, note that in the sum, all the terms are non-
negative, the first one is L(vg,v1) — u(71) +u(y0) + ¢, and the second one is greater
than 2e.

But this is in contradiction with the fact that % is strongly minimizing. So, we
must have u(y;) — u(yj+1) + ¢+ L(vj,v;+1) = 0 for all j if 4 is strongly minimizing
and recurrent.

To prove the last assertion of the lemma, we know that, for every 5 € W,

u(y1) —u(y0) < ¢+ L(¥)
and that

o=%%wm—wwmmm=ogamwwm

if p is an energy-minimizing measure (in particular, o-invariant). So, we must have
equality u(yo) — u(y1) = ¢+ L(¥) if 4 lies in the support of an energy-minimizing
measure.

O

We say that a sequence (ug, )ken (Br — +00) converges to a measure ji if, for
every k, for every bounded continuous function f on Wy,

[ tmdna ), — [ £

Lemma 3.1.5. Let (Bx) be a sequence such that B, — +o0o. Then it is possible to
extract from the sequence (fig, )kez a subsequence which converges to a o-invariant
probability measure on W.

Proof. We need to show that, for all I finite interval of Z, for all ¢ > 0, there
exists a compact subset K C Wy such that Mgﬂ';l(W] \ K) < ¢ for § large enough.
Once this is proved, we can apply Prohorod’s theorem and a diagonal extraction
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procedure to find a subsequence of g, ~such that ug, 77;1 converges in the weak*
topology, for all I :

Wi, T ik
Besides, if J C I, then ugo.ﬂjl = p. since Ky, 7r1_17r;1 = ug,, wjl. Kolmogorov’s
extension theorem ensures that there exists a probability measure p, on W such
that uoo.wfl = ul_, for all I. Finally, p is the limit of KBy, -

We now prove the first claim. Let I be finite interval of Z; since pg is o-invariant,
we can assume that I = [0,n]. There exists K such that, if |2! — y| > K for some
i=1,..,d, then L(z,y) > ||z — yl||1-

By Lemma 3.1.1, if we normalize 15 and 1 such that ¢5(0) = ¢5(0) = 1, there
exists M such that ¢g(z) < €M, Pi(w) < "M (for all z), and 1, VYa(y)¥p(y)dy >

—BM
e .

Thus, from the expression (2.0.6) defining ug, for alli =1,...,d,k =0, ...,n, and

by the o-invariance of g,

L ,
ey ({1 vesr — vl > K})
-BK
< 38N el =oll gy, < 39M CTET
Yo €[0, 1), |7i =i | > K g

If we take K large enough, this term tends to zero as § — oo, thus showing
that psm; ! concentrates on the compact set {||ve+1 — Yx|loo < K, for all k}.
O

Lemma 3.1.6. Let (Bi) be a sequence such that By, — +o0o and such that the
sequence (ug, )kez converges to a probability measure o, on W. Then each config-
uration v in the support of peo s a minimizing configuration.

Proof. Assume, on the contrary, that there exists a configuration £ in the support
of po, which is not minimizing. There exists z € W, such that

D (L = 2y €rpr — 2h41) — L€k Ge11)) < 0.
kez
By continuity of L, there exists a neighbourhood B of £, such that, for all 7 € B,
> (L = 2k Vra1 = 2k41) — Lk, Ya41)) < 0.
kEZ

Proposition 2.0.6 implies that

/W XB (’_Y)d,u;a(”_)/) = /W XB (7)/ _ g)e*ﬁ Zkez(L(Vk*Zk,”/k-H72k+1)*L(’Yka+1))d‘uﬁ(7)'

The right-hand side term tends to 0, and so pg(B) — 0, which contradicts the
fact that ¢ is in the support of pi. O

Lemma 3.1.7. The set of energy-minimizing configurations is relatively compact
m W.

Proof. A subset K C W is relatively compact if and only if there exists M such
that, for all 4, € K, || vk+1 — 7 ||< M (remember that the topology is defined by
the distance dy introduced in Section 1).
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Let A = sup{|L(z,y)],||x — y||loo < 1}. Because L grows superlinearly, there
exists M such that ||z — y|| > M = L(z,y) > 2A. For all z,y € R?, there exists
s € Z4 such that ||z — y — 8||eo < 1; thus,

H‘r_y” >M = (EIS € Zd,L(x—s,y) < L(xay))v

Let v € (R%)Z be such that ||yx+1 —Yx|| > M for some k, say k = 0 for instance.
Let s € Z% be such that L(yo —s,71) < L(70,71), then

L(vo — 5,71) + L(71,72) < L(v0,71) + L(71,72)

S0 <y is not energy-minimizing. Thus, we have found M such that
7 is energy-minimizing = ||vx+1 — Y&|| < M for all k € Z.
O

We can now prove a result, due to Mather ([Ma91]) in the context of lagrangian
dynamical systems:

Theorem 3.1.1. (a) Let p be a o-invariant probability measure on W. The three
following assertions are equivalent:

(i) v is energy-minimizing.

(#i) the support of u contains only strongly minimizing configurations.

(i4i) the support of u contains only minimizing configurations.

(b)Energy-minimizing measures do exist.

Proof. To prove the theorem, we note that the definition of an energy-minimizing
measure and of a (strongly) minimizing configuration is unchanged if we replace L
by L ~ L+c. Thus, using Proposition 3.1.3, we may assume that L is a nonnegative
function, that

inf{/id,u,u a o — invariant p. m.} =0,

and that L vanishes on strongly minimizing configurations and on the support of
any energy-minimizing measure. In this situation, it is clear that a o-invariant
measure /4 is energy-minimizing if and only if L vanishes on its support, and a
configuration 7 is strongly minimizing if and only if L(c*5) = 0 for all k.

This proves that (7) < (44).

It remains to prove that (iii)=-(i). We note that Lemma 3.1.7 implies that u
is compactly supported. We show that the ergodic components of u are energy-
minimizing. Let 4 be a point in the support of u, such that the sequence of proba-
bility measures

1 n—1
- > borq
k=0
converges weakly to a o-invariant probability measure 5 (this happens for pu-almost
every point, by Birkhoff’s ergodic theorem).
Let v be an arbitrary o-invariant probability measure, that we may assume
ergodic, without loss of generality. Let & be a point such that the sequence of
probability measures % ZZ;S kg converges weakly to v. We choose representatives

7, & such that ||y0 — &|| < 1. For all n, there exists s,, € Z¢ such that ||y, + s, —
Enlloo < 1. Assertion (ii) tells us that

L(v0,71) + L(71,72) + - + L(Yn—1,7) < L(70,&1) + L(&1,&) + ... + L(&n—1, 0 + Sn)
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We now choose a C > 0 such that v({7,|l71 — 70lle < C}) > 0. We have

[1€n — €n—1lloc < C for an infinity of n € N; we may also assume, without loss
of generality,that ||&; — & || < C.
Now,

L(v0,&1) + L(&1,&) + ... + L(&n—1,7 +5n) < L(&,&1) + L(&1,62) + .. + L(§n—1,&0) +2M

where M is an upper bound of ||0;L|| and [|02L|| on the set {(z,v), ||z — y||ooc <
C+1}.
Dividing both sides by n, and letting n — 400, we get

/ Ldus < / L.
w w

Thus, we have proved that all ergodic components of p are energy-minimizing,
implying that g itself is energy-minimizing.
Assertion (b) follows from Lemmas 3.1.5 and 3.1.6. O

We denote M the closure of the union of supports of energy minimizing measures:

M= U, en. min. SuppH C W,

and call it "Mather set”, for reasons explained in Section 4. It is a compact, o-
invariant subset of W.

Thanks to Proposition 3.1.3, we can operate a change of gage on the potential so
that it becomes nonnegative, and vanishes on the Mather set. Although the change
of gage is only lipschitz, the functions Z?;OI L(7i,7i+1) remain of class C® with
respect to the variables v1, ..., Yn_1-

3.2. The proof of Theorem 0.0.1. We begin by proving a subaddivity property
for the determinants [, A”(%)], when ¥ is a minimizing configuration.

Recall that A”(%) is the hessian matrix at 4 € W of the (formal) sum A(%) =
> kez L(Vk, Yes1). We see A”(7) as an infinite tridiagonal symmetric matrix, which
can be decomposed into d x d blocks (A" (i, j))i jez:

A"(i,3) = O3 L(vie1,7:) + O L(vi, Yit1),

A"(iyi 4+ 1) = 001 L(i, i),
and A”(i,j) = 01if |[j —i| > 1. The nd x nd submatrix , A”(v), corresponding to
indices 1 < 4,5 < n, is the hessian matrix of the action A(7|[0,n+1]) With respect to
the variables v1,- -+ , V.

Notations: — In what follows, we denote [M] the determinant of a square matrix
M of any dimension.

— unless stated otherwise, we shall always represent matrices in d-block form; for
instance, if M is an nd x nd matrix, M;; or M (i,j) (1 <4,j <n) will be the d x d
block in position (%, j).

— if v0,7, € R% we will denote ,A”(70,7V,) the hessian of the energy A :
(RHO1)(v0m) R at its minimizer (which, for simplicity, has been assumed
unique in Assumption (A1)). If 4 is energy-minimizing, then , A” (vo,vn) = A" ().

— We recall that h,(70,7,) denotes the value of the minimum of the action on
(R4)10:1):(v09m) (we have performed a change of gage so that h, > 0). If ¥ € W, we
will denote hy, (F) = hn (70, Vn)-
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Lemma 3.2.1. Let M be a symmetric matriz, decomposed in the form
A tC
ve(e s )
(where A and B are square symmetric matrices, and C' is a rectangular matriz of

appropriate dimension).
If M is definite semi-positive, then

[M] < [A].[B]

Proof. Assume first that A is invertible. Since the determinant of a matrix is
unchanged when adding to one line a linear combination of the others, we see that
the determinant of M is equal to that of the matrix

A tC
0 B-CAliC

Thus, [M] = [A].[B - CA~L t(C].

We now use the fact that an m xm matrix M is definite semi-positive if and only
if, for all J C {1, ..., m}, the determinant of the square submatrix M := (M, ;)i jes
is nonnegative.

In particular, if M is definite semi-positive, so are A and B.

Denote by k the dimension of A, and [ the dimension of B.

Let JC{k+1,...,k+1} and I = JU{1,..., k}. Like previously,

[M] = [AL[(B - CAT"C),).

It follows that all the determinants of (B — CA™! 'C); are nonnegative for all J;
thus, B — CA~! tC is definite semi-positive.
To conclude, note that A~! is a definite positive symmetric matrix, so that

B—-CA™''C < B,

meaning that
tX(B-CA ''C).X < 'X.B.X

for all X. But, if B and B — CA~! *C are positive semi-definite matrices such that
B—CA~''C < B, we must have [B—CA~! t!C] < [B] (this can be checked by using
the fact that there exists a matrix P such that both PBP and 'P(B—CA~' tC)P
are diagonal).

This ends the proof of the lemma when A is invertible. If A is not invertible, we
know by the previous result that [M +elI] < [A+¢el].[B+¢l] for all € > 0, and we
conclude by letting € tend to 0. O

Lemma 3.2.1 implies a property of subadditivity of log[, A" (%)]:

Lemma 3.2.2. If 5 € W is an energy-minimizing configuration, then, for allm <
n,

[nA" (D] < [m A" D) -[n-m A" (0]

According to the subbaditive ergodic theorem ([Ki73]), this implies the existence
of lim X log[, A”(v)] in RU {—oc}, for p-almost every v, if y is energy-minimizing.
We shall say more about this limit in Section 4; in particular, prove that it is in R.

We now turn to the proof of Theorem 0.0.1.
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Proof. For simplicity, we write the proof in the case d = 1.
Let oo be a limit point of ug, (8 — +00), and let p be an arbitrary energy-
minimizing measure on W; without loss of generality, we assume that u is ergodic.
For € > 0 and M > 0, consider the following (countable) partition of R?? = R?:

R® = U; ;P

where the union runs over {(i,5) € Z%,| j —i |< 2} U{(i,00),i € Z}, and the Pjs
are defined as follows:

Pij ={(v0,7),70 € lig, (i + 1)e),n € [j&, (j + 1))}

for | j—i|< L,

- L. . M L.
Pioo = {(70,71),70 € [ig, (i + 1)), 34, | j —i |> —me lje, (j +1)e)}

If € is the inverse of an integer, this gives a finite partition of the quotient Wy ~
R?/Z, and hence a finite partition of W = LIP;;:

Py ={y€W,(y,m) € Pij}

The number M will be fixed later — sufficiently large, whereas ¢ is doomed to tend
to 0.

We assume that g and po do not charge the boundary of the elements of the
partition P — if not so, we may translate the initial partition to a new partition
(Pij + )i, © € R%, so that this assumption is satisfied. For § > 0, we will denote
1(0) the p-measure of a d-neighbourhood of the boundary of the partition P. The
function u(0) tends to zero as § goes to zero.

The choice of the partition P induces a symbolic dynamics over a subshift in the
finite alphabet {P;;}:

WP = {(ak)kEZ C {(ij)}zvpak N U_1P0k+1 7& Q]}

If 41 is a o-invariant measure on W we will denote ! its image on WF.

Recall the following convexity inequality:
(32.1) —> pilogp; + > pilogg <0

whenever (p;) and (g;) are probability weights.
Hence, for all n,

- Z WPy NN ™M P, Vlogu(Pay N ..o ™M P, )

+ ) p(Pag NN o™ " Py, ) log pig(Pag N Mo " Py, ) <0

[e3%

the sums running over all word of length n in W7,

From now on, we will replace the N by dots . in expressions of the type Py, N
.Nontip, .
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We can rewrite this:

(322) = pPage-0 " Pay,_,)log p(Pay..0 " Py, )

-n /8 2 * — n—1 Vi
+>  p(Poy-.0 7" Py, ) log < / P(y0)e P Lizo L)y g (). dy
P

27T a0-<U_"+1Pan71

<- Z 115(Poy-.0 " P, )1og p1s(Pay..o " P, )+

2
> pp(Pao P, ) log <zﬁ) / 5 (o)™ X0 HOwre) iy, ). dy
m Poy..omn 1P, |
We have denoted dvg...dvy, the Lebesgue measure on W,,; we may see it as the
Lebesgue measure on the fundamental domain [0,1) x R"~! for the action of Z on
R™, which we identify to W,. In calculations, it will be convenient to keep this
identification in mind.
The rest of the proof is organized as follows: by the Laplace method, we first find
an upper bound for the right hand side of inequality (3.2.2), then state a couple of
results about tridiagonal matrices, and finally, find a lower bound for the left hand
side of inequality (3.2.2).
The conclusion of Theorem 0.0.1 is obtained by dividing the resulting inequality
by n, and first letting n tend to oo; then, § to oo, and then & to 0.
Upper bound. We begin with finding an upper bound for the right hand side
of inequality (3.2.2), in terms of the determinants [A”]. An integer N is fixed and
we take n = kN in the inequality above.

Lemma 3.2.3. (a) (Laplace method). Let vo,yn € R2. Then, assuming as
in (A1) that the minimizer of the energy in (R?)ONL(0N) s unique and non-
degenerate, we have

ﬂ)z/ BN Ly e—Bhn (v0,7w)
s e im0 LOVYit1) gy dynr 1 = 1+o0(1
(27r RN-1 TN [ N-1 "(707’7N)]1/2( Bio)o)
1
(14 0(1))

[ N=1A" (0, N1/ B—oo
where, for fized N, o(1) is uniform on each set {| yn — v |< K}.

B—00
(b) If the constant M, involved in the construction of the partition P, is chosen
large enough, then, for all vo € R,

N
() [
2m NEPuy..o~N+1P,

for B large enough, as soon as one the ay’s is of the form ioco.

[z

- 2
6—525\;01 L(’Yi77i+1)d’7]_--d'yN < (Qﬁ’ﬁ) o—BM <1

N-—1

Assertion (a) comes from the Laplace method for estimating integrals decaying
exponentially ([Di68], IV.2, or [Co65]). Since the method is very classical, we do not
provide a proof; we shall provide one later, when we will need an estimate uniform
in N. Assertion (a) requires the non-degeneracy of minima of the action, contained
in Assumption (Al). The remainder term o(1) is bounded in terms of the second
and third derivatives with respect to 71, ...,v,_1 of the energy Zf\!ol L(viyYit1),
so that it is uniform on compact sets.
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For (b), take M such that | v1 —vo |> M = L(y0,71) =| 71 — 70 |; and use the
fact that L > 0 elsewhere.
We define functions Fy and G?\, on WP, depending on N coordinates, as follows:

Fy(ag,..,an-1) =1
if one of the a;’s is of the form ico, and

1
[N—1A4" (Y0, 7N

—N+1P

Fn (oo, ..,an—1) = sup{ )]1/2,'76 P,,..0 N1}

otherwise;
G]Bv(ao, ) OéN—l) =1
if one of the o;’s is of the form ico, and

1/2
G?\I(O‘Ow-;aN—l) = (6> Sup/e—BhN(’Yo,’YN)d,yN
R

21 ~o

otherwise.
Assumption (A3) ensures that G?V is bounded, independently of 3, by By grow-
ing subexponentially with N.

Lemma 3.2.4. If the constant M, involved in the construction of the partition P,
is chosen large enough, then there exists C(8) > 0 and, for all N € N*, a real
B(N) > 0, such that: for all k, and for all ag, ..., axn—1,

EN
2

kEN-—1
<25) / Uh(v0)e P =0 FORT )5 (e n ) dy.dykn
s Py o *NH1P,
k—1 k—1
< C(B) H Fn(ajn, - aginyN-1) H Gn (N, - agryn—1)(1 + 5(1) )
j=0 =0 e

for all B> B(N), and with a uniform o(1).

B—o0

Proof. We first note that there exists C(8) > 0 such that C(3)71/2 < 15 <
C(3)'?, and C(B)~'/? < Yy < C(B)'/?, because they are continuous positive
Z%periodic functions.

Applying Fubini’s theorem, we first estimate the integral with respect to v _1)n41, -+, V&N,
while 7y, ..., Y(k—1)n are fixed.

If one of the P,,’s (j = (k —1)N,...,kN — 1) is of the form Pj,, we use Lemma
3.2.3 (b), and get

(3)

w2

- kot L(viyvi
/ e P Eimtkonn (W'VH)dW(kq)NH-d%N
(Y(k—1)N s+ TEN)

—N+1
€Pu(y_1yn-0 T Pajn_y

<1=Fy(am-1)n, wakN—l)G]‘iz(Ol(k—l)N, .y QEN-1)
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Otherwise, we use Lemma 3.2.3 (a), and write

(3.2.3)
N
(=)
2ﬂ- AEN—1
5\
< Fy(ap—1)N, - arv—1)(1 4 0o(1)) <27r) /67ﬁhN(V(k71)N%N)d%N

< Fn (1) - an—1) (1 + 0(1) G (1) N - 1)

The latter bound does not depend on 7(;_1)n; hence,

kEN—1
/ e*ﬁ Zi:(k—l)N L(%”Yi+1)d7(k71)N+1~-d’YkN
(Yk=1)N 1+ VEN)E Py gy -0~ NP,

kN
2 _
(25) / PR EO0 )y dyy
& Pog o TFNFTIPy
(k—1)N
2
< (ﬁ / e AT Lo dag.dry () n
2w Pao__o.—(k—l)N+1Pa<k71)N71
X FN(a(k—l)N7 o OékN—l)G]‘i[(a(k—l)Na oy OékN—l)(]- + 0(1) )
B—00
Lemma 3.2.4 can now be proved by induction on k.
O

About tridiagonal matrices. Before going on estimating integrals, we need
a few facts about tridiagonal matrices. We call a matrix (A4;;)1<i j<n tridiagonal if

Aij #0=|i—jI<1
The hessian of the energy is a tridiagonal matrix.
The following lemma is essentially proved in [AMB92] (p.128):

Lemma 3.2.5. For all a > 0, there exists r(a) > 0 such that: if A is an invertible
symmetric tridiagonal matriz with | A; 41 |< 1, then

| A7 ||l2< a implies || A7 [|oo< ()
independently of the dimension.

Proof. For 1 < j <n,let f/ = A~'e’, where (¢?) is the canonical basis of R”. Note
that A _
A7 s |l 3 | A
j Tk

since A~! is symmetric.
Let us fix j, and denote f = f/. For m > j, we define a vector ™f with
coordinates

"fr=20
for k < m, and
"fe = fr
for k > m. Then n = A."f has coordinates
m—1 = Am—l,mfm
Nm = _Am,mflfmfl
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and

|
=

Tk
otherwise.
Since, by assumption,
[ A PRera I PR
we get, for all m > j,

Pri=> [ i P< (| fon P+ | fn1 %)

k>m

As proved in [AMB92], p. 128, this inequality implies

2
7
1+ (1+4at)1/?

for k > j. Remembering that f stands for f7:

, +00 902 (k—2)/2
>l vay (H(WM)/) i 7()/2

k>j

k—j—2 k—j—2

20[2 2

We can use a similar trick for k£ < j, and get that
> I (),
1<k<n
independently of j and of the dimension n. O

We shall also need the following result, which is a part of the main result of
[AMB92] (Theorem 2):

Theorem 3.2.6. ([AMB92]) Let M be a symmetric tridiagonal Z x Z matriz, such
that there exists K > 0 such that, for all i, K= < |M; ;41| < K and |M; ;| < K|.
Assume that M defines a continuous, invertible endomorphism of 12(Z,R).

Then, the kernel of M in RZ is 2-dimensional and admits a basis s,u € R% such
that

|$ntm| < CO™||(sns snv)l
[tn—m| < CO™||(tn, uni1)l]
for allmn € Z, m > 0, for some constants C >0, 0 < 0 < 1.
Theorem 3.2.6 implies the existence of a real number L > 0 such that, for all
§ >0, for all 0 < n, for all v € R” such that M~y =0,
[v0| <0 and |y,| < § = |vyj| < Lo, forall j=1,...,n—1.
Indeed, fix 5 = 0,...,n — 1; there exist A1, Ay € R such that
(ks Sk+1) Y (U, Ukt1) 7
(s3> s+0)l (s, w1
for all k. Writing that || < ¢ and |vy,| < d, we obtain
CIM[077 = O\ |07 <6

(Ves Yh+1) =)\1H

and
ClXa|0~ =) — C|A |07 < 6,
which implies
CM|(1 — 6%™) < 266
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and
C|Aa|(1 — 6%™) < 260",
Hence,
v vl < [l + (o] < 46/C.

Lower bound. Let us turn to the left hand side of inequality (3.2.2), which we
will try to bound below before letting n = kN tend to co. Since p is a minimizing
measure, we note that the term p(P,,....c"""'P, _ ) is non zero only if all the
P,,’s are included in {| v1 — o |< M} (if M is large enough); besides, the cylinder
P,,...c7"T1P, _ must contain a trajectory, say ¢, in the Mather set.

In the coming calculations, the cylinder P,,...c ""1P, | is fixed, as well as
€€ Pyy..o ™R, N M. We need to estimate from below the integral

* B L(vi i
/P oy 1%(70)6 B2 L(’Y“’n+l)¢,@(’yn)d’y0~-~d'}/n.
g0

An—1

As previously, we shall use the Laplace method. However, since we need a
uniform estimate with respect to the length n of the path, we shall now give the
details.

Before starting, recall Assumptions (A2):

There exists €9 > 0 such that, for all 0 < § < &g, there exists a sequence
(cn) € [0,1]N satisfying:

~ lim,, %8 =,
and :
— for all n > 0, for all 79,7, € R? such that

70— &0 [I< cnd

” Tn —&n HS cnd

for some energy-minimizing configuration £, there exists a minimizer y of the energy:

A (Rd)[ovn]17077n . R
n—1
(707"'37”) — ZL(’Yia’Yi+1)7
=0

such that || v4 — & [|[< 6 for all 0 < k < n.
We denote (Y0,%1, -, ¥n—1,7n) the minimizer. Its energy is, by definition of the
function h,,
n—2

hn(¥0,7m) = L(v0,%1) + >, L(3i,5i41) + L(n-1,7n)-
i=1

Applying a Taylor formula to the function L(~o, ’yl)—i—Z?:_lZ L(vi,Yit1)+L(Yn—-1, Yn)
at the minimizer (41,92, ,Jn—1), We can write

n—1 . A
/P Y (o)e im0 FORI s (o, ) dyo...dy

g0 "1 Pa,

* _ _B 1 " ). (r—A 2_ (=4
:/P . ¥5(v0)e Bhn(v0,70) =3 n-1A" (70:7n)-(Y=4)"=BRx (v W)w@(vn)d%"d%
ao..0'7" Qg

1
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where the remainder R, is given by the integral formula:

Rty =3 = [ S5 A0G 41t )0 - P

so that

Ry =) S Cly=ABSClv=Flloll v=4 138 Ce |l v—4 3

where C is a bound onthe third derivative of L on the set {(z,y) € R?, |z —y| < M},
and ¢ is the diameter of the elements of the partition P.

Moreover, if the cylinder P,,..0 ""1P,  contains a configuration € in the
Mather set, then, for all ¥ € P,,..0c " "1P,

Qp—19

1

0 < hn(y0,7n) < L(v0,61) + L(&1,62) + .. + L(&n—1,7n)
< L(&,&1) + L(&,&) + ...+ L(&p—1,6n) + Ce = Ck,

where C' is a Lipschitz constant for L on {(z,y) € R?, |z —y| < M}.
Thus,

* B L(vi i
L p w,@(%)e B350 L(’Y“%Jrl)wﬁ('}/n)d’}/()...d’yn
g T s

-1

> C(ﬂ)*le*ﬁCE/ e P nflA”(WO,Vn)JrCEIn—l)'(“/l*‘Yl~~,7n—1*%L—l)de),O.“d,Yn
Pao"a_n_HPun71

We have denote I,,_; the identity matrix of dimension n — 1 and, as previously,

C(B)~'/? is a lower bound for both 15 and V5.

If we were sure that Po“)..cf’”“Pa,n_1 contained a neighbourhood of (79, 91, .-y Yn—1, Yn)s
for every 79, vn, our job would be quite easier and we could go directly to the es-
timate (3.2.10) a couple of pages ahead. However, this is not necessarily the case:
the problem occurs when (£;,£;41) comes too close to the boundary of the parti-
tion. The technical complications of the next few pages arise from the necessity of
dealing with this problem.

To begin with, we can write a very rough estimate:

w3

(3.2.4) C(B)~LeBCe <B)

2 / d’Yoan X
m Poy..omn 1P,

—1

/e—ﬂ(% n—1A" (v0,¥n)+Celn_1).(y1 =1, ,77171—’%71)2d,}/1”d7n71

> C(p) e PO <£r> ene KO

where K is an upper bound on the norm of $A” + Cel in I*(Z,R).
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Let us now try and give a more subtle estimate: we write

C’(ﬂ)*le*ﬁcs/ dyody, X

Po, ..a*”+1PQn71

/e—ﬂ(% n—1A" (v0,vn)+Celn_1).(v1 =1, ,’Yn—l—’yn_1)2d,ylnd,yn_1

> C(ﬂ)*lefﬁcs/ dyodry, x
1)

/e—ﬁ(% n—1A"(yo,yn)+Celn_1).(71 =41, ﬁn_l_’?n_l)zd'}/l--dvn—l

where the integral runs over the set

(]-) - Pao,,o'_n+1pan71 N {|’70 - §0| S Cnév h/n - £n| S Cné}v

for some 6 > 0. We choose
5 =B,

where B > 0 is arbitrary.

At this stage, it is useful to remember that (thanks to our definition of the parti-
tion P) the cylinder P,,..c™"*1P, | C[0,1) x R™ is the product of its projections
By, ..., B,, on the successive coordinates:

Puy,..o "R, | =By x ..x B,.

Moreover, the B;’s are segments of length e: B; = [a;, b;).
We denote

J(&) = {i € [0,n] such that & & (a; + 26,b; — 25)}.
One has

(3.2.5) C’(ﬁ)’le’ﬁcs/ dryodyn %
(1)

/e—ﬁ(% n—1A" (Y0, vn)+Celn_1).(y1—H1, ,'yn_l—%_l)zd,yl_.d,yn_l

> C(B) tePCE / dyody, X
(H)N(2)

/e—ﬁ(% n—lA”(Wo,'yn)+CsIn—1)-(71—'?17---wn,—l—'?n—l)zd%“d%_l
where
(2) = {vi € Bifori € J(§),7; € Bj and |y; —4;| <6 for j & J(§)}.
By Assumption (A2), if v € (1), then, for j & J(£),
v =431 <6 = ; € By,
so that actually

(2) ={v € Bifori e J(§),|v; — 4| < d for j & J(§)}
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We claim that

(3.2.6) C(B) le PCe / dyodry, X
(1)N(2)

1 " P 5, 1)?
/6—5(2 n—1A" (v0,7n)+Celn—_1).(v1 =91, \Yn—1—Fn-1) dyi..dyn—1

1 [J(&)]
> C(8)~te~ACe ((zw)*l/%/zf(—lB(L +1)e4K B<L+1>2) /( ! dyodryn X
/e—ﬁ(% n—lA”('YO1’Yn)+csln—l)'('71_;)’17"'7'Yn—1_;)’n—1)2drylndfyn_1

where:

— B = 362

— K is an upper bound on the norms of (34" + Cel) and (3A” + Cel)™! in
1*(Z,R)

— L is a real number such that, for all § > 0, for all v € R%, for all n > 0,

1
(§A” +Cel)y =0,]7] <8, <d=|yj|<Léforall j=1,..,n—1.

The existence of L is ensured by the remarks following Theorem 3.2.6 (note that L
depends on ¢).
Finally, (3) is the set

(3) ={l70 — &ol < cnd, |y — &nl < end, vy — 451 < 6 for j & J()}-
To prove (3.2.6), write J(§) as a disjoint union of intervals:
J(&) = k1, 1] U ke, l2] U ... U [y, L]

Integrate f(l)ﬂ(2) with respect to the variables g, , ..., 71, , the other variables fixed.

Since |k, —1 — Yk, —1] < 6 and |y, 41 — Ji,+1] < 9, we know that the critical point
of the function

1 . .
Vers o) = (5 01 A" (Y0,7m) + Celn_1).(v1 — 1, V-1 — An-1)>

2

is at uniform distance Lé from (g, ..., 51, ). From there, we shall prove that

(3.2.7) / e B(5 n1A4” (0,7n)+Celn_1).(y1 =1, xynq—%fl)zd%l dy,
ye(1)N(2)

l1—k1+1

> ((27r)_1/2\/2K*1B(L + 1)6—4K”B<L+1)2)
/ efﬁ(% "LflA”('YO)’Yn)JFCEInf1)'(717’3’17"' ”7"717’?"71)2d"}/k1..d"}/ll
vE(3)
All we can say about the domain of integration of (3.2.7) is that: if v € (1),

then for j € J(£) the domain of integration with respect to 7; contains either
{v; =%, € [6,€]}, or {v; —A4; € [—e,—6]}. Consider, for instance, the first situation.
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Integrate (3.2.7) with respect to k1. Say, for instance, k; = 2, and denote
M = % 34" (70, vm) + Cels. Then, estimate (3.2.7) goes as follows:

g
/ 6—5(21\/[12"/1’Y2+M22’Y§+2M2372’Y3)d,yZ
Y2=94
€
— 6—5(2M12’Yl"/2(min)‘f‘Mfzz’Yz(Inin)2+2M23’Y2(min)’Ys) / e BMa2(72 —72(mill))2d,}/2
Y2=0
where v, (min) is the point achieving the minimum of 2M1971 2+ Maav2 +2 Moz voys.

We know that |y2(min)| < L4, so that, if we perform the change of variable v, —
V2B Maz(y2 — y2(min)), and if K= < Myy < K, we have

(3.2.8) e F(2Mi27172 (min) +-Mazya (min)?+2Mas 7 (min)1s) / ) ¢~ M2z (12 =2 (min)) g
Y2=08

. 2 2K 3(e—LJ) 5
Z 67ﬁ(2M1271'yg(mm)Jngz'yQ(max) +2M2372(max)'yg)(ZﬂM22)71/2/ 6772/2d’}/2

V28K ~1§(L+1)

‘ . ' VZEB(e—L5) )
— ¢~ BE2Miz7172(min)+M2272 (min) +2M23’Yz(mln)’vs)(QBMQQ)—UQ/ 6_’)’2/2d72

V2K TB(L+1)
if we remember that 8 and & are linked by 362 = B. Now, for 3 large enough, we
can bound the last integral from below by the integral on the interval [V2K~1B(L+
1),2vV2K~1B(L + 1)], which is itself larger than

(3.2.9)
efﬁ(QMlg’yyyg(min)+M22'yg(min)2+2M23'yz(min)vg) (2ﬂM22)71/2m(L+1)674K71B(L+1)2

_ (27T)71/2/ 675(2M127172+M227§+2M23W2’73)d%'q/2K71B(L+ 1)3*4K_1B(L+1)2
R

We have integrated (3.2.7) with respect to g, . We can iterate the procedure and
integrate successively with respect to g, +1,...,71,, to prove (3.2.7). From (3.2.7),
(3.2.6) is obtained by combining the similar estimates for all the intervals [k;,[;].

It remains to estimate the integral f(g) (cf (3.2.6)). The integral f(3) runs over
v; € R, for all j € J(§). For an index ¢ ¢ J(§), it still runs over the set {|y; — %] <

5}.

For a break, we prove the following corollary of Lemma 3.2.5:

Corollary 3.2.7. There exists p(e) such that, for alln, for all v € W,
12 1
<
= 26
Proof. Obviously, the spectrum of ,_1A"(v) 4+ 2Cel,,_1 is included in an interval

[2Ce, A] independent of the dimension n. Let C be a closed contour in C\ R,
—1/2

I (nA”(y) + 2Cel, 1)

going once around [2Ce,\]. The matrix ( ,—1A"(v) + 2Cel,,_1)
holomorphic functional calculus:

is given by

1

(no1A”(7) +2Cel, )2 = — / V2 (20, g — (s A" (y) + 2Cel, 1)) Nz
C

2T
Now, for all z € C,
| (2In—1 — (114" (7) +2CeLo1)) "
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is bounded, independently of n, by

1
a(z) = sup
wveppoe | 2 — T |

By Lemma 3.2.5,
| (2Lt = (1A () +2Celu1) ™" oo r(al2)
independently of n, and

" —1/2 < i/ —1/2 —
I CnaA™(y) +2Celn1) 7 lloo< o . |27 r(a(2))dz : @

We resume the calculations from (3.2.6):
(3.2.10)
/ d’YOd'Yn-‘/eiﬁ(% n—1A" (v0,vn)+Celn_1).(v1 =1, ¢7n71*§n71)2d71'.d7n_1
3)

>

/ d’YOd’Yn X
[vo—Eol<end,|vn—E€nl<cnd

/ 6—5(% n—1A" (70,7n)+Cel_1).(y1—A1, 7’yn71_’?n71)2d’)’1--d’7n71
(v=eo <6

>

/ deOd’Yn X
‘707€0|§C7L67"Y7L7£n‘Scné

/ 6*5(% n—1A" (Y0, )+Celp—1).(y1—H1, ,’Yn71f’yn71)2drylndfyn_1
1"
[[(2= 20000 | 0e1,)1/2. (v—4) | <p(e)d

6 —(n—1)/2
— () / dyodyn X
2 o—€ol<end | vn—Enl<cnd

1 1
X
[n14"(70,n) + 20l ]'/2 = (2m)(n=1)/2 /Hylooéx/ﬁp(s)é
—(n—1)/2
1

> (nd)? (-
27 maxyeaq| n_14”(y) + 2Cel,_1]'/?
The max in the last line is to be read as the max over all the v € P,,..0 7" TP, .

To get the last inequality, we have used the following estimate on tails of the
Gaussian distribution on R:

(€

_ ()
€ 2 dyl“dynfl

(1- o= Bn()? % =1

Y2

1 lyl? e 2
—_— T2 dy <2
(2m)1/2 /IyZY ¢ TWsTy

which yields, in dimension n — 1,

2

1 b?
(3.2.11) 7/ e dyredyyy > (1— 7"
lyllee <Y

(QW)(n—l)/z

for Y > 2. We apply it to Y = /Bp(e)d = p(e)v/B; we take B large enough to
ensure that ¥ > 2.
The main point in estimate (3.2.10) is summarized in the following lemma:
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Lemma 3.2.8. There exists p = p(e) such that, for all o, Vn,
/ =B 1A (07Ol 1)- (=T a1 =T oy
v =)loe <6

—(n—1)/2
- ﬁ ( )/ 1 (1 B e*ﬁf%)n*l
—\2r [ n—1A"(7) + 2Cel,, 1]'/?

And more generally,

Lemma 3.2.9. For all K > 0, and for all ¢ > 0, there exists a p > 0 such that,
for all n, for all nd x nd block-tridiagonal positive symmetric matriz @ satisfying
|| Qijit1 | K for all i.
-Q >¢ely,
then

n/2 . 2 n/2 o,z
(f) / e ) du,, > (1—e P07 )" (f) / e P9y du,
™ o0 <5 T R

(1- e_ﬂp%)"
Q2

as soon as 62 is large enough.
To sum up, the calculations of the last pages lead to the following lower bound:

Lemma 3.2.10. Assume that P,,..c ""1P, . contains an element, denoted &,
in the Mather set. Then, if |v0 — &| < ¢nd and |y, — &nl < ¢nd

8 " / n—1
2 o Lvi, i el
(271') b ot exp ﬁ; (Vi, Yix1) | dy1...dyn—1

Q" a1
1 2\ 17 (&)] 1
> 7505(2 12 K—1B(L + 1)e—4K B(L+1))
>e (2m) (L+1)e [ n1A” (Y0, 7n) + 2Cel,_1]1/2

(e Eyt
for some p = p(e) > 0 depending only on ¢.

Let us define
Bad(n) = {(ao, ..., an_1), for all € € M N Pyy..o” " P, |, |J(€)] > 2u(20)n}.

(The definition of ©(d) was given at the beginning of the proof; it is the py-measure
of a d-neighbourhood of the boundary of the partition P.)
By Birkhoft’s ergodic theorem,

,n+1Pan71) — 5 0.

,u(Bad(n)) =L (U(ao,...,a“,l)eBad(n)Pao"U e

To end the proof of Theorem 0.0.1: take n = kN in inequality (3.2.2). Bound
the right-hand side from above using Lemma 3.2.4. Bound the left-hand side from
below, using the rough estimate (3.2.4) for the cylinders (ao, ..., vn—1) € Bad(n),
and Lemma 3.2.10 for the other cylinders, for which we know that |J(&)| < 2u(20)n.
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(3.2.12) ZN @o* 7kN+1PO¢kN 1) log p(Pog .. 7kN+1PCUcN 2

_5 Z /’L(Pao _kN—HPOlkN 1)1og(max[ kN—lA//(’Y)+2CEI/€N—1])+(kN_1) log(l_e_ng)
= dSte

~10g(C(8) (b 1)

—(kN)(BKe2—log e)u(Bad(kN))—2kN 11(26) log ((27r)—1/ 2VoK1B(L + 1)6—4K’IB<L+1>2)

S o ZMﬁ(PaO. 7kN+1P0¢kN 1) IOg Nﬁ(Pao kN+1P0¢kN 1)+1Og C(ﬁ)"_k 10g(1+0(1))

B—o0

+ kZNB(Pao--~ _NHPQN ) log Fy(ag,..,an—1) + klog By

for 3 large enough. Remember that B = (352 is fixed (and arbitrary).

We notice that log max,cq[ n—14"(v) + 2Cel,_1], as a function of the sequence
(o, .., tn—1), has the following subadditivity property: if (o, .., ,—1) intersects
the Mather set, then

log meax[ n—1A"(7) + 2Cel,,_1]
YEQ
<log meax[ mA” (7) + 2Cel,,] + log meax[ n-1-mA" (™) + 20l 1)
YEa YEQ

This follows directly from Lemma 3.2.1.
As a consequence, if p is an (invariant) minimizing measure, then

1 _
N D 1(Pago NP, ) log max| ey—14"(7) + 20elin—1]
converges to its infimum, as Kk — +00. And in particular, the limit is less than
1 _
N 2 iPag0 TN Pay ) logmax| w14 (7) + 202y ]

Thus, if we divide both side of (3.2.12) by kN and let k tend to oo (3 being kept
fixed), we get the inequality:

1 1
ho(n, P) = 5 /WP 7 logmax[ v—1A"(7) + 2Celn1]dp” (@)

-1 [J(€)]
—log(1— e %) — 2u(20) log ((2@*1/2 2K 1B(L +1)e 4K B<L+1>2)
1 log By
P
oA / ¥ log Pl )y (@) + (o)) + =5

We used the fact (assumed in (A2)) that logc,/n — 0. The first term h, (g, P) is
the metric entropy of the invariant measure p, with respect to the partition P and
the transformation o on W in other words, it is the metric entropy of the measure
u® on the subshift of finite type W7.

Now, let 3 — +o00; or more precisely, take a sequence i such that pg, con-
verges weakly to pio. Since we have assumed that o, does not charge the boundary
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of the elements of the partition, we get
1 1
ol P) = 5 [ logmax| oA () + 2Ce L1 )d" (@)
2 WP N
_ 2B P log BN
—log(1 — e 2) < hy(poo, P flogFN a)dpizo (@) + —

The point in fixing N was to integrate only functlons depending on a finite number
of coordinates, so as to be able to pass to the weak limit.

At this stage, we can let B — 400, so that log(1 — e_ng) — 0.

Now, letting € (the diameter of the partition P) tend to 0, and recalling the
definition of Fly,

1 / L tog[ y_1A”(1)]du(y)
log By

< (o) = 5 [ 3 108w (e () + 0

and, finally, letting N — 400 (and using Assumption (A3)), we get the result.

O
This ends the proof of Theorem 0.0.1. It remains to prove that the functional
1 .. 1 _ _
pho(p) — 5 lim [ —logln A”(7)ldu(7)
n—oo [y N

is finite on energy-minimizing measures.

4. FRENKEL-KONTOROVA MODELS AND TWIST-MAPS

4.1. We now give (without proofs) a few links between Frenkel-Kontorova models
and symplectic twist diffeomorphisms of R? x RY.  We refer to [AMB92] for a
detailed discussion. This section will allow us to prove that the term h,(u) —

$limp, oo fiy £ 1og[n A" (%)]dp(9) is finite in Theorem 0.0.1. It also provides a link
w1th Part II, which is more focused on the lagrangian aspects of the problem.

If L satisfies the “twist property” (cf Section 1), it is shown in [AMB92] how
to associate to the Frenkel-Kontorova model, discussed above, a symplectic “twist
diffeomorphism” of R? x R? to itself : this map ¢* is defined by

(«,p') = ¢*(2,p) <= DL(z,2") =p',—0Li(z,2") = p.

Recall the definition of a stationary configuration for the Frenkel-Kontorova
model: it is a sequence (v )rez such that

(4.1.1) 02 L(Vi—1, k) + 01 L(Vie, Yet1) = 0,

for all k. There is a homeomorphism between R? x R? and the set of stationary
configurations of the Frenkel-Kontorova model, given by

(z,p) = (V)kez

where, for all k, 7, is the projection of ¢**(x, p) on the first factor R%. Besides, this
homeomorphism is a conjugacy between ¢* and the shift o restricted to the set of
stationary configurations.

This way, one can associate to every Frenkel-Kontorova satisfying the “twist
property”, a symplectic twist diffeomorphism; and conversely, to every symplectic
twist map of R x R?, a Frenkel-Kontorova model with configuration space (R%)Z.
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We can also introduce another diffeomorphism ¢ of R? x R? to itself, defined by

(7-1,7) = (70, M)
where vy_1,70, 71 are related by (4.1.1) with & = 0; equivalently,

" (v-1,p-1) = (70,P0), 2" (70,P0) = (71,p1)

for some p_1,pg, p1- The bijection

(4.1.2) 0 : (ve)kez = (0,71)

between the set of stationary configurations and R¢ x R? is a conjugacy between
the shift and ¢. For this reason, we will sometimes call stationary configurations
“trajectories of ¢”. The conjugacy 6 also allows to identify ¢-invariant probability
measures on R? x R? and o-invariant probability measures carried by the set of
stationary configurations.

If L is Z%periodic, it is natural to take the quotient space W = (R%)%/Z% as
configuration space for the Frenkel-Kontorova model. A stationary configuration in
W is defined as the image of a stationary configuration in (R%)% in the quotient. The
diffeomorphism ¢* can be then be defined on the quotient R%/Z¢ x R? = T4 x R9,
and the diffeomorphism ¢, on the quotient space (R? x R9)/Z4, the action of Z? in
this last case is defined by

s(z,y) = (x+s,y+s)

for all s € Z¢, for all z,y € R%.

The conjugacies defined previously between the action of the shift ¢ on the set
of stationary configurations, and ¢ or ¢*, are compatible with the actions of Z,
and thus go to the quotient spaces.

The description of energy-minimizing configurations (rather called action-minimizing
in this context) is precisely the heart of what is called “Mather theory” in the study
of symplectic exact diffeomorphisms of T¢ x R¢. In this context, what is classically
called “Mather set” is the subset of (M) C (R?xR%)/Z4, where M C W is the set
defined at the end of 3.1. The Mather set, as a subset of (R? x R%)/Z<, is compact
(Lemma 3.1.7), and ¢-invariant.

We will say more about Mather theory in Part II, in the case of a continuous
time dynamical system. The function L will be called a Lagrangian, ¢ will be the
associated Euler-Lagrange flow, and ¢* the corresponding Hamiltonian flow.

4.2. Determinants and Lyapunov exponents. Motivated by a paper by Thou-
less ([Th72]) in dimension d = 1, we now give a relation between the Hessian of
the energy, and Lyapunov exponents. This relation is not new; in the case of a
continuous time Lagrangian systems, it is known as the Levit-Smilansky formula
(Paragraph 6.3).

Lyapunov exponents are defined by Oseledets’ theorem (see for instance [KH95],
Supplement), which we use in the following form:

Oseledets’ theorem: Let ¢ : (R? x RY)/Z4 — (R? x RY)/Z% be a C! diffeo-
morphism, and let v be a ¢-invariant probability measure, carried by a compact
subset of (R? x RY)/Z?. Then, there exists a set Y C (R? x R%)/Z? such that
v(Y)=1, ¢(Y) =Y, and such that:
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For all y € Y, there exists r(y) € N, and real numbers x1(y) < x2(y) < ... <
Xr(y)(y), such that the tangent space T, ((R* x R?)/R?) ~ R? x R? admits a de-
composition

Ty(T* x RY) = E1(y) & ... ® B, (y)
satisfying:
1
Yo € Bu(y)\ {0}, - log ld(@) vl — xily).
The decomposition is ¢-invariant, in the sense that r(¢(y)) = r(y) and E;(¢(y)) =

The subspace E°(y) = @y, (y)<ofi(y) is called the stable subspace at y, E"(y) =
Oy:(y)>0Fi(y) is the unstable subspace, and E%(y) = E;(y) fir x;(y) = 0 is called
the neutral subspace.

In our situation, we adopt a slightly different convention for the Lyapunov ex-
ponents. Since ¢ is conjugate to the symplectic diffeomorphism ¢*, its Lyapunov
exponents come into pairs (A, —A). We denote

A (W) < =AT W)+ < <=M () S0<AT(y) < <A ()

the Lyapunov exponents; they are now repeated with multiplicity, according to the
dimensions of the corresponding subspaces E;.

Lemma 4.2.1. Let v be a trajectory of ¢, and let n € N. Let us consider the
equation (4.1.1) linearized at (7;)iez:

02 L(viz1,7).Yic1 + (022 L(viz1,7vi) + 011 L (i, vit1)).Yi + 021 L(vi, Yit1)-Yix1 = 0,

for alli e Z.

Fiz the initial condition Yy = 0.

Then, for all n, the determinant of the linear map Yy — Y, (from R? to R?)
is equal to the determinant

H k+1 KT nflAN]~

Proof. A vector Y = (Y1,---,Y,) (V; € RY) satisfies ,A”.Y = (0,0,0,---,0,x), if
and only if Y is the solution of the linearized equation with Yy = 0.
Equivalently,
(Yn 1y ) = d(¢n 1) ’Yoﬂ’l)'(o’yl)

The matrix ,_1A"” is non-invertible if and only if there exists Y with Y; # 0
and Y,, = 0 such that ,A”.Y = (0,0,0,---,0,%); that is, the map Y; — Y}, is not
invertible. In this case, Lemma 4.1.1 is obv10us. Thus, let us assume that the map
Y; — Y, is invertible.

Also assume for the momen that ,, A” () is invertible. Me may then decompose
the matrix G = ,,G = nA”(’y)_1 into d x d blocks (Gjj;)1<i j<n. The components
Y1 and Y, are related by:

"

Y Gn’ﬂ Gnl
Let us evaluate the determinant of G,,.G,| in terms of the determinant of
A" (). We first define a sequence of d x d matrices (ag,ay, -+ ,an—1) by ag = Id

and

. " " " -1
ap = — Ak (Age + a1 A% 1),
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agreeing here that Afj; = 0 (the sequence is well defined if ,, A” has been assumed
invertible).
We also define an nd x nd matrix T decomposed into d x d blocks (T};)1<i j<n
with
T, =1d

i
T = H @ik
k=3

(this way, T is lower block-triangular). In fact, the matrix T is constructed in such
a way that D = T. ,A” is an upper block triangular matrix, with blocks on the
diagonal

Dyr = Dy = A} + ap—14% 1,

We have G = DT which yields G,,,,G,\ = D, T,,;' D;;* so that

[GnnG;ll} = [Tnl]il
n—1
= (H[anfk])_l
k=1
= ()" [1A% D)t x T D4]
k=1 k=1

n
= () ([ X (a1 ]
k=1
where the last equality comes from the observation that [ ,—1A”] = [ ,—1D].
Thus, the determinant of Y1 — Y, is equal to (—1)"*(TT;_, [A} 41 x]) 7 %[ n14”].
By continuity of both expressions with respect to the energy functional, Lemma
4.1.1 remains valid even when ,, A" is not invertible. O

Proposition 4.2.2. If pu is an energy-minimizing measure on W, then the limit
lim % log[, A" (7)] exists for p-almost every 7, and is equal to

n—1

d
1
SON (s ) +lim = 3 log | 102, L (v, 7i41)] |
1 n

=0

where the A} (70,71) are the d-first (nonnegative) Lyapunov exponents of (7o,71)
under the diffeomorphism ¢.

. o -1
Proof. The existence of the limit lim + 37" "log | [0%L(v:,vi41)] | for p-almost
every 7 is guaranteed by Birkhoff’s theorem, applied to the function

W — R
5y~ log|[0%L(v0,m)] |

We denote 6 * i the image of 1 under the conjugacy 0 (4.1.2). It is a ¢-invariant
probability measure. Let us now denote A%(R? x R9) the d-fold exterior product
of R? x R?. Tt is endowed with the euclidean structure coming from the euclidean
structure on R? x R%. The Oseledets theorem implies that, for @ * u-almost every
y € (R x RY)/Z4, for every P € A4(R? x RY), the limit

1 \
lim =~ log]|d("),.P|

n
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exists (besides, it is of the form Zle E(i))\z(i), where €(i) = £1, a(i) € {1,...,d},
the pairs (e(¢), (7)) all distinct). We denote this limit Ap(y).

Denote (e, es, ..., e24) an orthonormal basis of R? x R? such that (eq, es, ..., eq)
is an orthonormal basis of R? x {0} and (egi1, ..., e24) is an orthonormal basis of
{0} xR9. The Birkhoff and Oseledets theorems, combined with Lemma 4.2.1, imply
that, for p-almost every 4,

n—1
tim +log] A" (7)] = Ap(r0, ) + lim - > log | [9F2L(3s,70:1)] |
i=0
where P = eg11 Aegya... N eggq. Indeed, Ap is precisely the exponential growth rate
of the determinant of Y7 — Y,,, for the fixed initial condition Yy = 0. This relation
also shows that Ap(v0,71) = Ap(71,72) for p-almost every 7.

Let (v0,71) be in the Mather set, and ¥ = 67 1(y9,71) € M. We show that
{0} x R C T(%m)(]Rd x R?)/Z® is transverse to the stable subspace at (7o, 71)-
Otherwise, there would exist an element (&;);cz in the kernel of A”(%), such that
& =0 and & e 0 exponentially fast. Define an element ¢ € (R%)% by

¢j =0 for j <0,

Then ¢ € 1?(Z,R%), and, since A” (). = 0 and the first coordinate of ¢ vanishes,

(A"(%)¢,¢) =0.

But, since ¥ is in the Mather set, A”(¥) is a positive semi-definite operator in
12(Z,R%). Thus, the function (A”(%).,.) achieves a minimum at ¢. Its derivative at
¢ must vanish: A”(vy).¢ = 0.

An element of KerA”(%) is entirely determined by two successive coordinates.
Since (1 = (o = 0, we have ( = 0. The same argument now shows that £ = 0.

We have thus shown that {0} x R? C T{,, ,)(R? x R?) is transverse to the stable
subspace for ¢.

Now, let (y9,71) be a point satisfying the conclusions of Oseledets’ theorem with
respect to pu, and 5 = 071(79,71). Let E°(v,71) be the neutral subspace, and
do = dimE°(vo,71). Note that dy is even. We have

d
Ap(0:m) = DA (0, 71)

i=1

unless dim(E°(yp,71) N ({0} x R?)) > dy/2.

Remember however that Ap(y0,71) = Ap(71,72). We cannot have simultane-
ously dim(E°(yo,v1)N ({0} x R?)) > dy/2 and dim(E°(y1,v2) N ({0} x RY)) > dy /2.
Otherwise,

0" (E°(0,1) N ({0} x RY)) @ 60 (E%(1,72) N ({0} x RY)))

would be a subspace of dimension > dy of KerA” (%), composed of sequences (£x)kez
such that

. 1
kgrfoo z log |[(&k, &kv1)]| = 0,

a contradiction with the definition of dp. O
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An example. Consider the example

_ =l

9 V(fyo) - <wa’71 - ’-YO>7

L(rYOv’Yl)

w a vector in R%.
Then, 0?2, L is —Id, so that log |[0%,L]| = 0. In this situation, we simply get that
any limit point po of the (ug)s maximizes the functional

1 d
p= ho(p) — B /W Z A (0, 1) dp ().
i—1

The reason for the additional term lim X Z?:_Ol log | [0%L(vi,vit1)] | in the gen-

eral situation is that, in the definition of Gibbs measures, we have chosen the flat
Lebesgue measure on RY as the reference measure, although there was no rea-
son to favour this choice amongst other smooth measures. In the special case
L(vo,m) = M —V(v0) — {w,71 — Y0), the function L is defined in reference
to a certain euclidean structure on R¢, so that it is natural to take the associated
Lebesgue measure as reference measure.

In the special case w = 0, we may assume that maxV = 0, then the Mather set
is

M= {73z R V(z)=0,v; = = for all i}.

The entropy of any energy-minimizing measure vanishes, since M consists in fixed
points of 0. So, in Theorem 0.0.1, the functional reduces to the sum of nonnegative
Lyapunov exponents. Finally, in this situation, we will prove in paragraph 6.4 that
assumptions (A2) and (A3) are always satisfied.

Part 2. Lagrangian dynamics

5. HAMILTON-JACOBI, AUBRY-MATHER AND SCHRODINGER

Let R? be endowed with its usual euclidean structure denoted (.,.), and let us
consider the lagrangian

2
L(z,v) = @ —V(z)
on R? x R4, V being a Z?-periodic potential of class C3, and ||.|| being the norm

associated to the scalar product (., .).
For w € R?, perform the change of gage

vl B
L,(x,v) = 5 V(z) — (w,x),
in the definition of the Lagrangian.

The corresponding Hamiltonian (energy) is then

i+l

Hy(z,p) 5

+V(x)
on R? x R4,

The Euler-Lagrange flow is the flow (¢;) on R? x R?, defined by ¢;(zo,v0) =
(v(t),4(t)) where v is the solution to the second order equation

Je = =V'(n),
with the initial condition v(0) = xg, ¥(0) = vo.
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Trajectories of the Euler-Lagrange flow are characterized by a variational prin-
ciple: let v : [a,b] — R? be a C! curve. Then t — (v;,%;) is trajectory of the
Euler-Lagrange flow if and only if  is a critical point of the action functional

b
A() = / L6, &)t

restricted to the set of O curves ¢ : [a,b] — R such that £(a) = v(a), £(b) = v(b).
The dynamics is described in an equivalent way by the Hamiltonian flow, whose
trajectories are solution to the system of Hamilton equations

{ &= 0pH,(z,p)
p = _awHw(va)

on R% x R%. Moreover, the energy is constant along trajectories of the flow.

Since V is periodic, both the Euler-Lagrange and the Hamiltonian flow can be
defined on the quotient space T?¢ x R?.

When one tries to understand the action of the Hamiltonian flow on the phase
space T? x R?, it is natural to try and find invariant regions. Of particular interest
are invariant lagrangian graphs, that is, invariant subsets of the form

{(z,w + du(z))} ¢ T¢ x R?,

(w € R u: T — R as smooth as possible). Such a subset, if it exists, projects
diffeomorphically to the base T%.

For this subset to be invariant, it is necessary and sufficient that there exist a
constant C' such that u satisfies the stationary Hamilton-Jacobi equation (HJ):

H,(z,du(x)) =C

for all z.

However, generally speaking, the Hamilton-Jacobi equation (HJ) may have no
smooth solution. There are two ways out: the theory of viscosity solutions, and
Mather theory. The connection between the two approaches has been made very
clear by the recent, and still mostly unpublished, work of Fathi ([Fal).

Viscosity solutions.
Let us consider the equation

—eAu+ Hy,(z,d,u) = C,

for e > 0. When € = 0, it is equation (HJ); otherwise, it is called the viscous,
stationary Hamilton-Jacobi equation, (HJV).

A continuous Z?-periodic function u is called a viscosity solution of the equation
if, for every C*-function (C? in the case of (HJV)) ¢,

— if u — ¢ attains a local maximum at yq, then —eAd(yo) + H(z,d.0(y0)) < C,

and

—if u — ¢ attains a local minimum at yo, then —eA¢(yo) + H(z,d,¢(yo)) > C.

See, for instance, [CEL84], [CL83], [Ba94]. A justification of this definition is
that it coincides with the classical notion of solutions if u is smooth.
It may be checked that, if a viscosity solution exists, then
inf H(z,0) < C < sup H(z,0),

by applying the definition to ¢ = 0 and yg, successively, a local maximum or
minimum of u.
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Besides, since H,,(x, p) tends to infinity with ||p||, viscosity solutions are lipschitz
and share a common lipschitz constant. Indeed, consider ¢, (y) = K[|z — y||, and
apply the definition. Assume that u — ¢, has a local maximum at y # x, then

Y-
H,(x,K 7) <C,
|y — =|
which is not possible if K has been chosen large enough. Thus, u — ¢, attains its
maximum at x, which means that

u(y) —u(z) < K|z —yll.
The definition of viscosity solution also holds, with obvious modifications, for
the evolutive Hamilton-Jacobi equation:
Owu+ H,(z,dyu) = 0.

We are in the situation when H,,(z,p) is C?, superlinear in p, strictly convex. In
this case, given a continuous initial condition ug, the solution u; is unique ([Ba94],
Theorem 2.8), and given by the expression:

up(x) = 1nf{u /[Z 4(s))ds},

where the inf is taken over all curves v : [—¢,0] — V with square integrable
derivatives, and such that y(—t) = x. Moreover, u; is lipschitz in x for all ¢ > 0
([Fa97-1]).

The semi-group (T} )i>0 on C (T4, R), defined by
0

T u(e) = nf{u(2(0) + [ Lo((5),3()ds),

is called the Hopf-lax or Lax-Oleinik semi-group, according to sources.
There is also a second semi-group (7;);>0

THo(x) = sup / L., A(s))ds},

~:[0,t] > T4,v(0)==
which gives the opposite of the solutions of the equation
owu+ Hy,(z, —dyu) =0,

which corresponds to reversing the orientation of time.

Notice that u is a viscosity solution of the stationary (HJ) equation if and only
if u — Ct is a solution of the evolutive equation. Thus, looking for solutions of the
stationary equation is the same as solving the fixed point problem:

T, u=u+Ct,

for all ¢.
The existence of such fixed points is given by a theorem of Fathi, called the
“weak KAM theorem”:

Theorem 5.0.3. ([Fa], [Fa97-1]) For a unique constant ¢ = c(w) € R, there ex-
ist continuous functions u_ and uy on T¢, solutions to the following fized points
problem:

T, u_ =u_+ct
and

T uy =uy — ct.
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They are lipschitz, and satisfy the two following properties:
— for all C* curve v : [0,t] — V,

s (7(8)) — us(1(0)) < / L(v(5),3(3))ds + c(w)t

— for all x € V, there exist two curves y_ : (—o00,0] — V and 4 : [0, +00) —
V with v_(0) = v4+(0) = =, such that, for allt >0,
0

u(2) — u_(y-(~1)) = / Lo (8), 4= (5))ds + c(w)t

—t
and

e (4 (1) = us () = / Lo (), (5))ds + e(w)t

Note that the theorem does not assert the uniqueness of solutions. Obviously,
if u is a solution, then v + K also, for all K € R, but there may even be solutions
which do not differ by a constant.

Of course, the existence of viscosity solutions of the stationary (HJ) solution
was known before this theorem. It was usually proved by the “vanishing viscosity
method”, which consists, first, in finding a solution wu, for (HJV), then in letting
€ — 0 and proving a “stability” result: any limit of u. in the uniform topology is
a viscosity solution of the non-viscous (HJ) equation ([CEL84], Theorem 3.1).

If u_ is, as above, a (lipschitz) viscosity solution of H,(z,d,u) = C, then it is
differentiable almost everywhere: the graph

Graph(du_) c T¢ x R?

is a graph lying over a set of full Lebesgue measure in T¢, and invariant under
the positive times of the Hamiltonian flow. Similarly, if uy is as above, then
Graph(—duy) C T¢ x R? is a graph over a set of full Lebesgue measure in T,
and invariant under the negative times of the Hamiltonian flow (see [Fa]).

Applying Theorem 5.0.3 to various ws, one obtains weak solutions to the problem
of finding invariant Lagrangian graphs.

Mather theory. The starting point of Mather theory is the remark that, if
v : R — T% is a trajectory of the Euler-Lagrange flow, lying in an invariant
lagrangian torus of the form Graph(w + du), then v is a global minimizer of the
action, meaning that

b b '
/ Lo e)dt < / L6, )t

for all a < b, for all € : [a,b] — T of class C! such that £(a) = v(a), £(b) = v(b) €
T<. Note that this notion of action-minimizing trajectory depends on w, contrarily
to the definition of the Euler-Lagrange flow. It would be more adequate to speak
of “w-action-minimizing” trajectories.

Thus, even if an invariant lagrangian graph associated to w does not exist, one
may still look for action-minimizing trajectories. Or, if we are only interested
in invariant measures of the flow, for (w-)action-minimizing measures : these are
defined as probability measures on the phase space, invariant under the flow, and
achieving the minimum of the integral

/ Lo, 0)da(a, v)
Td xR2
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over the set of all invariant probability measures.

Theorem 5.0.4. ([Ma91]) (a) For each w, action-minimizing measures do erist.
(b) For each w, let us define the Mather set M,, C T? x R? as the (closure of)
the union of supports of w-action-minimizing measures:

M, = U, act. min.SUPPH-

Then M., is a compact set, invariant under the Euler-Lagrange flow.

(c) A probability measure, invariant under the Euler-Lagrange flow, is w-action-
minimizing if and only if its support lies in the Mather set M.

(e) A probability measure, invariant under the Fuler-Lagrange flow, is w-action-
minimizing if and only if the trajectories in its support are w-action-minimizing.

(f) (The Graph Theorem) The projection m : T¢ x R4 — T¢, restricted to M,,,
is injective. Its inverse, defined on

M, =7 (M),
is Lipschitz.

The links with the theory of viscosity solutions have been made explicit in the
(still mostly unpublished) work of Fathi ([Fal, [Fa97-1], [Fa97-2]). For instance, the
w-action-minimizing trajectories of the Euler-Lagrange flow, when carried by Le-
gendre duality to the cotangent bundle, are the complete trajectories of the Hamil-
tonian flow lying in Graph(du), for some viscosity solution w of H,(x,d,u) = ¢(w)
(recall that Graph(du) is, a priori, only invariant by the positive times of the
Hamiltonian flow). The Mather set M, (transported by Legendre duality to the
cotangent bundle) is contained in Graph(du) for any such u. Finally, the value of
c(w) is

c(w) = —inf{ L, (z,v)dv(z,v),v a ¢-invariant probability measure}.
TdxR4
The constant ¢(w), called the effective hamiltonian in PDE, is called the Mather
function (seen as a function of w) by others; or sometimes, Mane’s critical value for
the Lagrangian L.
Let us end this paragraph by a proposition, due to Fathi, which will be useful
later.

Proposition 5.0.5. ([Fa97-2]) For every fized point of u— of the semi-group (T, —
c(w)t)i>0, there exists a unique fived point uy of the semi-group (T, + c(w)t)i>o0
such that u_ and uy coincide on M,,. They satisfy u— > uy. The fized points u_
and uy are then called conjugate.

The Schrédinger equation, the viscous Hamilton-Jacobi equation, and
the associated stochastic process.
Given a scalar 3, we consider the Schrodinger operator on R%:
A

H’B:Tﬂz

+V,
and we define
Hg — e_ﬁ<wa$> o) Hﬁ o eﬁ<w7$>.

Although we do not precise for the moment on which space it acts, we can
note that, for any 3, Hj preserves (formally) the set of Z?-periodic functions. For



48 NALINI ANANTHARAMAN

B =i/h (h being the Planck constant), the operator H} is the quantization of the
classical Hamiltonian H,, defined earlier. In this paper, however, we consider the
case when (> 0.

We will use the following properties of the operator Hg, proved for instance in
[AS82], [Si79], I1.6 (for the moment, without the change of gage represented by w):

The operator Hg is essentially self-adjoint, bounded from above. By using func-
tional calculus, one can define the semi-group (exp(t8Hg)):>0 of bounded operators
on L?(R4). For every t > 0, exp(t3Hp) is an integral operator, with a positive ker-
nel Kf(z,y) depending continuously on (,x,y) € (0, +00) X R? x R?, given by the
Feynman-Kac formula ([AS82], [Si79] I1.6):

K= [ VeIt o),
C([0,t],R4)

where dw[%igf’” denotes the brownian bridge between = and y. It is a positive
measure on the set of continuous paths C([0,¢], R?); its definition is recalled a bit
later.

i B,(Iﬁg) Jé3 d/2 _M
From this formula, and the fact that de[O,t] (7) = <ﬁ> e =5 one

sees in particular that

Y
where M is an upper bound on V.
We now define eXp(tB'Hg) as
exp(tBH;) = e P o exp(tBH ) 0 @),
For each ¢ > 0, it is a kernel operator, with a continuous kernel given by
K, (z,y) = e‘mw’”)Kg(x,y)eﬁ(”’y).

Jé] d/2 _ Bllz—ylI?
—_— e 2t s
27t

It also acts as a kernel operator on the set of Z?periodic functions.

Remark 5.0.6. When writing this paper for the first time, the author was not aware
that the Feynman-Kac formula also holds (with the necessary modifications) in the
presence of a magnetic field, i.e. when w is replaced by a non-closed 1-form: see
[Si79], V.15. This seems to indicate that all the results below also hold in the
presence of a magnetic field.

We can apply the results of Section 2 to the operator P; = exp(tﬂHg). There
exist positive, Z?-continuous functions Y3 and ¢, and a real number Ag, such that

(5.0.1) exp(tBHE s = €91
and
(5.0.2) exp(tAHE) b = ey,

for all t. For each t > 0, P is the spectral radius of exp(tGHy) in L?(T9), and
it is a simple eigenvalue.

(More precisely, the proof of Section 2 would allow us to find such g, Y5 and
Ag for each given t. But since the operators exp(tfH};) commute and since 15, ¥
and Ag are defined uniquely by equations (5.0.1), (5.0.2), they must be the same
for all ¢.)
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Besides, the differentiation of equation (5.0.1) with respect to time yields that
(5.0.3) Hsvs = Asbp

in the sense of distributions. Since the Laplace operator is elliptic, this implies that
s is of class C? (at least) and that (5.0.3) holds in the strong sense. Similarly, (o
is of class C?, and

(5.0.4) HE" V5 = g
_ IngE _ log s . .
If we let ug = ——5* and vg = ——5=, a simple computation shows that
Au

—% + Hw(x,dxu) = )\g

and that
A
_Tg + Hu}($7 _dl’v) = >\,37

in other words, ug is a solution of (HJV) with viscosity coefficient 1/, and vg is a
solution of (HJV) for the reversed orientation of time.

Remark 5.0.7. We have seen that (ug) is a uniformly lipschitz family, and that
(Ag)p is bounded. It follows from the stability result for viscosity solutions ([CEL84],
Theorem 3.1), that any limit point u of ug in the uniform topology is a viscosity
solution of

H,(x,dyu) = C,

where C is a limit point of Ag. Since we know (Theorem 5.0.3) that this equation
has solutions for C' = ¢(w) only, this implies that

A .
)

We are now interested in the behaviour of the measure

dpg(x) = va(x)Pjs(2)dz,

which we normalize to give a probability measure on the torus.

Theorem 5.0.8. Let Hj = e Al o (% + V(x)) 0@ and Hg* =Hz*. Let

Vs, ¢ be the C? positive eigenfunctions, defined above.
Then, as 8 — 400, the measure

o _Ys@)ds
O Jras)h(y)dy
on T concentrates on the Mather set M,,.

Assume the system satisfies the properties (A1), (A2), (A3) below. If ul, is
a limit point of (M%)7 and s 1S the corresponding action-minimizing measure on

T¢ x R4, then pio mazimizes the functional

d
mo) =5 [, (S Aot

i=1

amongst all action-minimizing measures.
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The fact that u2, can be lifted in a unique way to an action-minimizing measure
comes from the Graph Theorem (Theorem 5.0.4 (f)).

In the theorem, hy(p) stands for the metric entropy of the invariant measure p
with respect to the Euler-Lagrange flow (¢;), and the A (z,v) stand for the non-
negative Lyapunov exponents of (z,v) under the action of the flow. See Paragraph
4.2 for a definition of Lyapunov exponents.

Remark 5.0.9. The first point of the theorem (i.e. the concentration on the Mather
set) was already known to a number of people, see for instance [Go02] (Section 8)
where the measures /1% appear under the name “stochastic Mather measures”. The
point in the theorem is the variational principle satisfied by fiso-

Before going on, we need to introduce notations for various path spaces and for
the Wiener measure(s).
We denote Hjg the Hilbert space of paths [0,t] — R?, with L? derivative.

For z,y € R, H, [% n denotes the affine subspace of paths starting at x, and H [‘f)’%
the space of paths with endpoints z,y. The space H [00’2} is endowed with the scalar

product
t
P = .u7 .u du.
(16 = [ Gl

We denote Cfo4 the space of continuous paths [0,7] — R?. The topology is
that of uniform convergence; C’[%’t] and C’[%”% are, respectively, the affine subspaces
of paths starting at x, and with endpoints z, y.

Cr = C(R,R?) is the space of continuous paths from R to R?, endowed with the
topology of uniform convergence on compact intervals.

We let Z? act on C(R,R?) or Cjo 4 by

(s.7)(u) = y(u) + 5

for all u € R, s € Z%, v € C(R,R%). The quotient space C(R,R%)/Z? (respec-
tively Cio,4/ 7%) is naturally identified with the space of continuous paths R — T¢
(respectively [0,¢] — T), and denoted W (resp. W ).

There is also a natural action of R by translation of time on C(R,R¢) or on W

o' (Y)(u) = y(u +1)

for v € C(R,R%) or W.

Later, we will be interested in measures on C(R,R?) or W. When we speak of
measures, let us precise that the Borel o-field on path spaces is the smallest for
which all the maps v — =, are measurable.

Measures on W will be naturally identified with measures on C(R,R%), invariant
under the action of Z?.

The space Wy can be endowed with the Wiener measure starting at z, a
B,z
[0,t]

W{égy) is a positive measure carried on W[f)’g],
thereafter. The parameter 5 > 0 is the inverse of the diffusion coefficient.

We refer to [Si79], I1.4,5 for the construction of Wiener processes. For z,y €

R?, the brownian bridge Wﬁo(le’) with diffusion coefficient 1/, starting at = and

probability measure denoted W and carried on W[“é % The brownian bridge

and whose definition is recalled
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ending at y, in the time interval [to,?,] is defined as the unique positive measure
on C([to,ts], RY) such that

_ Bllzipr—=l1?
e 2(tj41—t;)

/zleBl,...,z,MEB,,Ll E (2 (tipr — )/ B4/
for all tg < t; < --+ < ty, for all B C C([to,tn],R?) of the form B = {y,v, €

B;,Vi=1,...,n — 1}, where the B;’s are measurable subsets of R¢.
The Wiener measure started at =, W[%f], is related to the brownian bridges

(z,y) by

n

dZZ'

W (B) =

tn]

we

[0,4]
8, - ( B, (22 )
W[O t / W [0,] !

for every measurable B.

We now state Assumptions (Al), (A2), (A3).
Assumptions : Recall that we have defined the action of a path 7 : [0,¢] — R¢

t
A7)=/O L(Vs,7s)ds

Assumption (A1) For all n, for all endpoints &, &, € R?, the minima of the

action A in the space H [5"’5]"' are non-degenerate (we mean thereby that the hessian

as

of A at each minimum is invertible as an operator in the Hilbert space HY 0, n])
Besides, the number of minimizers is bounded, independently of n, &g, &,.

Assumption (A2) There exists g > 0 such that, for all 0 < & < ¢g, there
exists a sequence (c,,) € [0, 1]V satisfying:

- lim,, 18 =,
and :
— for all n > 0, for all 79,7, € R? such that

Yo =& lI< cne

| Yn —&n (1< cne
for some trajectory ¢ in the Mather set (lifted to R?), then there exists a minimizer

vof A: H%"f]" — R such that || v — & |[< e forall 0 <k <n.

Change of gage: It follows from the weak KAM theorem 5.0.3 that there exists
a Z%-periodic, Lipschitz function u, and a constant ¢, such that the functional

v = A(y) = ulye) +u(yo) +ct

is nonnegative on Hjg, for all ¢, and vanishes if « is a portion of a trajectory in
the Mather set. In all the definitions given above, we can replace the action A
by this new functional, without changing the definition of Euler-Lagrange flow,
Mather set, etc... The fact that u is not smooth is not really a problem, since we
only need to differentiate the action functional with respect to variations of the
path leaving endpoints fixed. As far as Schrédinger operators are concerned, this
change in the choice of the action functional would amount to replacing the kernel
K} ,(z,y) by e Pete P KL (2,y)e?*W), which would lead to replacing ()
by wg(x)e’ﬁu(””) and ¢5(z) by z/);(x)e’ﬁu(””). Eventually, the measure ,u% would
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remain unchanged. In the rest of this part, we renormalize the action functional so
that it is nonnegative, and vanishes on the Mather set.

After this modification of the action, we introduce the function

hn(z,y) = inf A,

[0,n]

defined on R¢ x R¢.
Assumption (A3) There exists a sequence B,, > 0 satisfying lim, lognB" =0,
such that, for all n,

supwﬁdﬂ /d e*ﬂhn(vo,wn)d,yn < B,.
R

The non-degeneracy of minimima of the action is necessary for the Laplace
method (Section 6); the second part of (A1), about the number of minimizers, seems
less crucial. Assumptions (A2), (A3) are not very easy to interprete, although we
check in 6.4 that they are always satisfied when w = 0. (A3) says something about
the behaviour of h,, near its minima, uniformly in n. We formulate a conjecture
about a different assumption under which the theorem could hold:

Conjecture: These assumptions can be replaced by the assumption that the
Mather set is a uniformly hyperbolic set for the action of the Euler-Lagrange flow.

Of course, this assumption is not easier to check on examples than the previous
ones, but it is more conceptual. A proof seems close at hand for discrete time
systems (i.e the situation of twist maps described in Section 4), however not for
continuous time systems.

In paragraph 6.4, we show that (A2) and (A3) are always satisfied in the case
w = 0. In this case, the theorem seems to be part of the folklore in the study of
the tunnelling effect in semi-classical mechanics:

Corollary 5.0.10. Let Hj = EQ%—FV, and let 1y, be the unique Z*-periodic positive

eigenfunction, corresponding to the largest eigenvalue of Hy, in L*(T?).
Then, as h — 0, the probability measure

V3 (x)dz
f']l‘d 7//%(3/)@
concentrates on the maxima of V.

Assume furthermore that the system satisfies (A1). If we consider the expansion
of V' in orthonormal coordinates near a mazrimum xg, in the form

1
Viwo +y) = Viwo) = 5 3 lai(o)?s? +O°),
then the measure V3 (x)dx concentrates on those xos for which the quantity
> lai(xo)|
is the smallest.

Note that the maxima are not assumed to be non-degenerate nor isolated. The
same result (assuming non-degenerate maxima) is contained, but hidden amongst



53

deeper theorems, in paragraph 4.4 of [He88|, where Y |a;(x0)| appears as the bot-
tom of the spectrum of the quantum harmonic oscillator:

A 1
—h2§ T3 Z |ai(xo)|?7,

and the result is obtained by BKW estimates. Corollary 5.0.10 is in agreement with
the results therein, if we change the sign in front of the laplacian and replace the
word “maximum” by “minimum”.

As in Part I, Theorem 0.0.2 (=5.0.8) is proved by associating to the Schrédinger
equation (5.0.3), (5.0.4) a stationary stochastic process of initial distribution pf.
This process is the Markov process of initial distribution M% and with transition
semi-group:

1
frPh,f= WexptﬁHﬁ-Wﬁf)

Since ¢ and ¢ satisfy (5.0.1), (5.0.2), ,u% is indeed the invariant Z?-periodic
distribution.

The process corresponds to a measure pg on the path space C(R,RY), defined
by the formula

({7 Mo, € K})

eftﬁx\g / ,
= U5 (7o) dy / eB o V(%)ds+ﬁ<wmfw>¢ ~ dWﬁ’A’“ ~
f']rd wﬁwﬂ ~o €T IB( 0) 0 S ﬁ( t) [0,t] ( )

when K is a measurable subset of Cfg 4.
Since u% is invariant under the transition semi-group, the measure jiz is invariant

by the translations of time (o?);cr, as well as by the action of Z¢ on C(R, R?). Thus,
it defines a probability measure pg on the quotient

C(R,RY /7 = C(R,T¢) = W.

6. PROOF OF THEOREM 0.0.2

6.1. Preliminary results.

Lemma 6.1.1. For each sequence (3, — +00, there exists a subsequence (3,
and a probability measure oo, on W, such that, for alll € N, for all t1 < to... < 1y,

KB (g(’Ytl, "‘V’Ytl)) k:joo /‘LOO(g(’ytu "')’ytl)))

for every bounded continuous function g on (R?)!/Z9.

In this case, we shall say that the sequence (ug, converges t0 fioo-

(k))

Proof. Fix T > 0. To get rid of some constants, assume that | w ||[< land | V |[< 1.
We denote pg(.[y0 = x) the measure pg conditioned with respect to o.
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Forall 0 < ¢t < T, for all x € R?,

ty s)ds W,y —T B,z
St Tli—slzanye® s VORIl ()

p(ll =0 lloo= 4t In0 = 2) = - -
me B S V(vs)ds+B{w,ve— dWOt]( )

R sz DA ()
- fW[o,t e—Bt+ve— z\l)dwgf]( )

ly)?

P i Yy sany eI dy
Joa =PI —plyl® dy

_glyl?
2" [oa Wyl zarye ™ 5 dy

Joa e P15 gy

for all ¢ > 0, for 3 large enough; we have used the following estimate on the tail of
a gaussian distribution on R¢:

5 C(t)e_ﬁ’gtﬁ(d_l)/2

(52

1 ||yu
D dy < Qd—
(2m)/2 /|y|oo )

as well as the fact that

o~ Alyl+152) 4 :i/ ~(ly
/Rd YT

as # — +o00. As a consequence, for all 0 < s <t <T,
(6.1.1) sl e = s o> 4t — 5) ) S C(t — s)e 8= gld=1)/2

This implies in particular the tightness of the laws of v, under (1g)s>0, for all
t. Thus, we can find a subsequence f3,(;) — +00, and a probability measure fi
on Wi r1ng, such that, for all ¢; < ... <t € [0,7]NQ,

C

Nﬁn(k)(g(7t1,~~~,’}/tl)) k:m :U'OO(g(’ytu "‘V’Ytl))

for every bounded continuous function g on (R%)!/Z4.
But actually, thanks to inequality (6.1.1), the convergence will take place for all
t; < ... < t; €[0,T], and every bounded continuous function g on (R%)!/Z9. O
Proposition 6.1.2. (a) Let 15,v} satisfiy (5.0.1), (5.0.2). Then the families of
functions (f% log ¥3) >0, (f% log¥5)p>0 are equilipschitz.
(b) If Br. — +0o0 is a sequence such that
1
——logvgs, — —u4
Br
and )
——logv}, — v_
B & Vs,
in the uniform topology, for some continuous functions uy and v_, then T uy =

uy —c(w)t and Ty v— = v_ + c(w)t, for all t > 0.
(c) Let J =inf(v_ —uy), so that

_log ¢, +log ¢, 10gf¢ﬂk V¥, (y)dy
ﬂk‘ Bk

— U —uy — J,
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and let u_ be the fized point of (T, — c(w)t) which is conjugate to uy. Then
u_ <wv_ —J.

Proof. Assertion (a) was proved in Section 5 (remember that f% log ¢ and f% log ¢
are solutions of viscous Hamilton-Jacobi equations).

Assertion (b) follows from the stability result for viscosity solutions ([CEL84],
Theorem 3.1).

The fact that

log [ s, ()5, (W)dy ;
Bre
follows from Lemma 3.1.4. As to the last assertion, it is a consequence of the
inequality v_ — uy — J > 0, and the characterization of u_ as the smallest fixed
point of (T, — c(w;) satisfying u_ — uy > 0 ([Fa97-2]). O

Proposition 6.1.3. (Large deviation upper bound) Let t > 0. Then for any subset
Ky C Wiy, closed for the uniform topology,

1 . .
Zlog pa({v; o,y € Ki}) < — inf inf u_(y0)+A(Y0,) —u+ (1) +He(w)

lim su
P B YEK: (u—,uy)

where the second inf is taken over the set of conjugate fized points of the Hopf-Lax
Semi-groups.

Corollary 6.1.4. If oo s a limit point of pg, it is carried by action-minimizing
trajectories of the Fuler-Lagrange flow.

Proof. (Proposition 6.1.3) Recall the expression of 15({7, V0,9 € Kt}), for a mea-
surable K; C Wi 4:

(6.1.2)  ps({v, V0,4 € Ki})

e—tﬁ}g / +
— _ U5 (v0)dyo / B Jo V(’Y‘*)ds—"_ﬁ(w’%_%)lﬂ,@(’yt)dwﬁ”yo ()
de wﬁwﬁ Yo €T 7 Yio,1) €Kt 0.1

We have seen that Mg 5 —J; c(w). We also recall that, if K; is closed, then, for all
x €T,

1 ¢
(6.1.3) limsup — log/ P Jo V(Vs)d”m“’m*70>e*’8“(%)dwg’f] ()
0,6 EK+ ’

< — inf A + u
= €K vo=a (’Y|[0,t]) (’Yt)

for every continuous function u on T¢. This follows from an application of the
large deviation result of Schilder ([Sc66], [DZ92]: Theorem 5.2.3) combined with
“Varadhan’s lemma” ([Va67], [DZ92]: Theorem 4.3.1).

Finally, let us consider a sequence (, — 400 such that ﬁ—lk log pis, ({7, M0, €

K,}) converges in RU {—o0}. Keeping the notations of Proposition 6.1.2, we may
also assume (after further extractions) that

1
——log g, — —u4
Br

b

loghs — v_
B g¢ﬁk
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and
11/1/)1p* J
1o —
/3kg1rdﬁﬁ

with v_ — J larger than the function u_ conjugate to u.
Combining this with (6.1.2), we get

1
Br

limsup —log 11, ({7,7)j0,g € K¢}) < — inf v (v0)+A(yj0,0) —us (Vi) +Hte(w)—J

V10,6 €Kt

<— inf u_(v0)+AM0,q) — ut (1) + te(w)
V0,4 EKt

S - inf inf w_ (’VO) + A(’YHO,t]) — u+(fyt> + tC(w)
Yo, €K (u—,uy)

Since this is true for every subsequence i, we have proved Proposition 6.1.3. [

Proof. (Corollary 6.1.4) Let K be a closed subset of W, and K its projection on
Wio,qj- Then

pe(K) < Nﬁ({%’ﬂ[o,t] € K;})

and, after Proposition 6.1.3, the measure of K will go to zero exponentially fast
unless

inf ol Ju-(0)+4 — s () + te(w) = 0,
YEK: (u_yuy) (%) (o.7) + (1) (w)

for all ¢. But, for a path 7| 4,

u—(v0) + A(Yjjo,g) — ut(7e) +te(w) =0
implies that
Aj0.) = Ao.)

for every path £ such that §§ = 79 and & = ;.
We have thus proved that po. is carried by action-minimizing trajectories of the
Euler-Lagrange flow. O

The measure ji, as a measure on W carried by action-minimizing trajectories
and invariant by translation of time (c!);cg, can be naturally identified to an action-
minimizing measure on T¢ x R?. The identification takes place via the map

v : R — T%, trajectories of the E-L flow; — X
R — T, trajectories of the E-L fl T¢ x R?
7 = (%)

which is a conjugacy between the translation of time (¢!) and the Euler-Lagrange
flow.
In particular, the measure % on T¢, defined by

19 (A) = piso{y € W, 70 € A}

is carried by the set M,,. We have thus proved the first assertion of Theorem 5.0.8:
the measure ,u% concentrates on M,,.
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6.2. Sketch of proof. Definition of the hessian of the action, and of its
determinant.

Let ,y € R The action A : H[%"Z] — R is twice differentiable, and its second
0,0 .

derivative at a point v, d®A(Y), is a symmetric bilinear form on H, [0} One may

write it as
P A(7)-££ = (A" (1)E,€)
where A” () is a self-adjoint operator on H: the hessian of A at .
Remembering the expression of A, one can actually write

A'(y) =T+,
f being defined by

(f€.€) = /0 V7 (30) £ Euds

This last bilinear form may be extended to a continuous symmetric bilinear form
on W; and this implies that f is a trace operator ([Ku75], p.83): the sum of the
eigenvalues of f, (A\;)en, is absolutely convergent.

Thus, one may define the determinant of I + f as [I + f] := [[;cn(1+ A:), which
is well defined (possibly zero). This determinant will be non zero if and only if —1
is not an eigenvalue of f, that is, if and only if the operator A”(7) is invertible in

7700

[0,2]"

If ~ is a critical point of A : H[%’g] — R such that A" () is invertible, we will
say that 7 is a non-degenerate critical point of A : H[”g’?i] — R

Like in Part I, if v € Hjy) for some ¢ > t, we will denote [ ;A”(7)] the
determinant of the hessian of A(yjj0) : H['gf;i“ — R, at 7.
We prove the following proposition, which is the direct transposition of Theorem

0.0.1 in continuous time:

Proposition 6.2.1. Let pi0o be a limit point of (ug)s—too,and let p be a o-
invariant probability measure on W, carried by action-minimizing trajectories of
the Euler-Lagrange flow. Then, under assumption (A1), (A2) and (A3),

1

holi) — 3 [ i 3 1081 A"0)dn(3) < (o) — 3. [ Tin 310810 A" () (2)

The proof of Proposition 6.2.1 goes along the same lines as that of Theorem
0.0.1. The main difference is a higher degree of technicality in the writing of the
Laplace method for estimating path integrals. We do not rewrite the proof in its
entirety, but indicate how to adapt Paragraph 3.2 to the new situation.

To simplify notations we consider again the case d = 1.

The proof starts, as in Paragraph 3.2, with the construction of a partition P of
C(]0,1],R):

Py = {v € C([0,1],R), o € [ic, (i + 1)e), 71 € [je, (j + 1)e)}

for | j —i|< 2, and

= o LM o
Pico = {7,70 € lig, (1 + 1)), 3j, | =i |2 — m € [je, (G + 1)e)}

If ¢ is the inverse of an integer, the partition goes to the quotient Wi 1; = C([0,1],R)/Z,
and gives a finite partition P of W.
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The proof is then identical to that of Theorem 0.0.1 until the statement of Lemma
3.2.3 (a). The integrands

ﬁ anl n—1 L

just need to be replaced by

Bl V(Ws)derB(wﬁt7“/0)dw[%:§1"]m,’7n) (7).

We now indicate how to adapt Lemma 3.2.3.

Laplace method (fixed time interval). Lemma 3.2.3 (b), which is a con-
sequence of the superlinear growth of the Lagrangian, can be obtained from the
estimate a2

- 2
Kb (x,y) < M (;J o~ 27t Bl la vl
mentioned in Section 5.
As to Lemma 3.2.3 (a), it comes from the following:

Theorem 6.2.2. ([Be88|, [BDS93]) Let vo,v: € R2. Assume that the action A :
H[A(’)Oi]% — R has only one minimum %, which is non degenerate, and let Q) be a
neighbourhood of 4 in the uniform topology. Then

—BA#)
(Jo V(vs)ds+{w,ve—70)) B,(v0,7t) _ e v
fyra™™® o™ 0) = ¢+ o))
For fixred t and K, the o(1) is uniform on the set {|v: — vo| < K}.

B—o00

Let us give a general idea of how this estimate may be obtained (the reader is
referred to [Be88], [BDS93] for a complete proof). Exactly as in the case of an
integral over a finite dimensional space, one begins by applying a Taylor expansion
of order 2 of the function:

t
y H/ V(vs)ds + (w, v — 70)
0

at the minimizer of the action 4, and in the space W[got]%

YV (ys)d B0Vt _
(6.2.1) / o fo (vs) SdW[O,t]O t(,y) —
W' mQ
B I3V (Ae)ds / B IV, (o =As)ds+5 [§ V3! .(vs—%)"‘dsz(w—a)deth (y) =
W ne (0]
eB o V(3s)ds B s v =)+ 5 [o Vil (vs—As) ds+BR(v—4 dWﬁ ’Yo ()
W’YO Yt nQ

[0.1]

_ A st vsa)as / % J5 VA lastORE) gy (00) ()
wastna-s |
where the last line is obtained by the Cameron-Martin formula ([Ku75], p.111), and
the line before comes from the fact that 4 is a critical point of the action.
The remainder R(7), given by Taylor’s integral formula, is bounded (indepen-
dently of n) by C || v ||3, where C is a bound on the third derivative of V; and

actually, if  is a uniform neighbourhood of radius € around %, R(7) is bounded by



59

by Ce || v ||3. One shows that this remainder does not interfer in the estimate of
Theorem 6.2.2.
The final ingredient is the formula

—B{fv, 8,00/ N _ -1/2
/Wo ) B{fv PY)dW[O,t] (v) = [ + f] /
[0.1]
valid as soon as (f.,.) is a continuous symmetric bilinear form on H[o 1 which

admits a continuous extension to W[o i It is obtained by diagonalization of f in
an orthonormal basis for (.,.). It yields Theorem 6.2.2 when applied to

t
(fr,7) = / VI ylds
0

Lemma 3.2.4 is unchanged, with the necessary modifications in the expression
of path integrals, as explained earlier. We now need to adapt Lemma 3.2.8.

Laplace method (lower bound, independent of the time interval).
In order to adapt the result of Lemma 3.2.8, the point is to find a lower bound of
(6.2.1), independent of t. We can take t = n € N. As before, let 4 be the minimizer

of the action on H, [1’)0;3" Lemma 3.2.8 is replaced by:

Lemma 6.2.3. Let € >0, and 6 < . Then there exists p = p(e) such that, for all
n?

(6.2.2) / e Ja VAL atHORG) gy (0.0
[l <6

> (1—e 79" )" (1+0(1))" ! / o I VALt I el do=e L 1P gy (0.0)
- ,n
B W[D n]

— p2§ n—1 0 n—1 !
=(l-e s ) (1+ (Bl)) [ A" () + 2¢eby, ]1/2

where by, is the quadratic form on H [((;]’2]) :

n n—1
bn(7,7) = C/ s 12 ds + ) 1l
0 =
and C' is an upper bound on the third derivative of V.

Proof. We know that [R(y)| < C||I} < Ce|lyll3 < CellyI3 + e X2 l? =
gbn (7, 7). Thus,

(6.2.3) / % I3 ViLATHIR) gy 00
[V]lee <6 '

>/ e i Vi, = () g0
[7]lec <6

Let us consider the action (associated to a non-autonomous lagrangian):

1
’V|Ot] / |'Ys| /V// 2d8+CE/ |’75‘ ds
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for t <n,and vy € H [%’On]. Let us also introduce the functions on R?:

. i a? +y°
Qi(z,y)= inf  Alyj41) +¢

Vi=T,Yi+1=Y 2

for 0 < j < n — 1. They are quadratic forms on R2.
If we condition the last term of (6.2.3) with respect to v1,...,vn—1, and apply a
Laplace estimate (Theorem 6.2.2) for fixed 71, ..., 7,1 and for the action A4, we get

/ eg fon V‘;L »’Yf—,BEbn ('Y)dW%vaO
I17loo <& [0,n]

= (14 o(1))"

B—o0

67§(Q0(0571)+-~~+Qn*1(’yn*170))
/ d’}/l...d’)/n_l
[lleo<e

n—1r 7
IT5 2 [A71Y/2
where [A;’] is the determinant of the hessian of A : H, [zjjljf]l — R at a minimum,
and does not depend on the endpoints 7;, 41, since the action Ais a quadratic
form in the path. Thus, the problem is reduced to estimating integrals over finite
dimensional spaces.

But now,

Q715 Yn=1)s (V15 -+, Yn—1)) := Qo(0,71) + Q2(71,72) - + Qn—1(Vn-1,0)

is a quadratic form in (y1,...,7,—1) € R, which satisfies all the assumptions of
Lemma 3.2.9.
Thus, we can use Lemma 3.2.9 and find p such that

e*ﬁ(QO(Oy’Yl)Jr---Jranl(’Yn71,0)
/ d’yl...d’)/n_l
[vllee <6

%

-5 0 n— n— 70

- (1 _e—ﬁng)n—l/ e~ 2 (Qo(0m+ -fQ 1(¥n—-1,0)
- 1
Rn—1 H_AJ

dyr.dyn—y

—Bp2E n—1
= (1—6_ﬁp2%)n—1/ o5 I3 VAL AE=Bebn (v:7) P (0:0) _ (1—e P 7)
Wwo.0 [0,n] [nAN(’YOa ’Yn> -+ ZCgbn]l/Q

O

[OY‘ n]

Lemma 3.2.10 can now be proved the same way as in Paragraph 3.2, and the
estimates of the end of paragraph 3.2 can be performed the same way to yield
Proposition 6.2.1.

The last point in the proof of Theorem 0.0.2 is to draw a link between the deter-
minant of the hessian of 4, and Lyapunov exponents. We have seen in paragraph
4.2 how it works for a discrete time system. What we need is the analogue of
Lemma 4.2.1 for a continuous time system. It is known as the Levit-Smilansky
formula:

6.3. The Levit-Smilansky formula.

Theorem 6.3.1. Let 7 : [0,t] — R? be a critical point of the action

A€0.) = /Ot <H72|2 - V(’Vs)) ds
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on the affine Hilbert space H[”a’g] ={¢€ Hi 41,80 = @,& = y},whose tangent space

H[Oo’g] is endowed with the scalar product

t .
<f»7l> :/0 &s.nsds

Then the hessian A”(7), a self-adjoint operator on H[%’g], has a well defined

determinant — the infinite product of its eigenvalues. And this determinant coincides
with the determinant of the linear endomorphism of RY, sending v € RY to ¥

t
where ys € T,, R (s € [0,t]) is the solution of the linearized equation:

Js + V”(’Ys)-ys =0
Yo = 0) yO = y(l]
We refer the reader to [LS65] for a proof; there also exists a more conceptual
proof written by Colin de Verdiere ([CV99]).

The Levit-Smilansky formula, combined with Oseledets’ theorem, implies the
following proposition, analogous to Proposition 4.2.2:

Proposition 6.3.2. Let p is a o-invariant probability measure on W, carried by
action-minimizing trajectories of the Euler-Lagrange flow. Then the limit lim X log][,,.A” (v)]
exists for p-almost every «v, and is equal to

d
Z)‘;_(’Y()v':yo%
1

where the N} (70,%0) are the d-first (nonnegative) Lyapunov exponents of (7o,%0)
under the Fuler-Lagrange flow.

Proposition 6.2.1, associated with Proposition 6.3.2, implies that o, (that we
have identified to an action-minimizing measure on T¢ x R¢ at the end of paragraph
6.1), maximizes

d
1
o he(p) — 3 /Td y Z)\j(m,v)du(x,v)
X 1

over the set of action-minimizing measures.

This is equivalent to Theorem 5.0.8, since po is the action-minimizing lift of
13-
6.4. Proof of Corollary 0.0.3. We can assume that maxV = 0. When w = 0,
the Mather set My is the set {(x,0) € T¢ x R% V(z) = 0}.

Action-minimizing have zero entropy since the Mather set consists in fixed point

of the Euler-Lagrange flow. Besides, if we consider the expansion of V' in orthonor-
mal coordinates near a maximum zg, in the form

V(o +5) ~ Viwo) — 5 3 laslao) Py? + 0,

then the Lyapunov exponents of the fixed point (zg,0) are the *|a;|. To prove
Corollary 0.0.3, it remains to check that:

Lemma 6.4.1. When w =0, Assumptions (A2) and (A3) are automatically satis-
fied.
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Proof. Assumption (A2). Let V(xg) = 0, let € > 0, and let 7, v, satisfy ||vo—xo|| <
cne and 7o, v, satisty ||y, — zo|| < cne for some ¢, € [0, 1].

We have h,(v0,7n) < c2e?; indeed, this last quantity is the action of a curve
joining 7p to xo in the time interval [0, 1], staying at x in the time interval [1,n—1],
and going from x to 7, in the time interval [n — 1,n].

On the other hand, the action of any curve « joining vy to 7, in the time interval

(1—cp)2e?
2n

[0,7n], and such that ||y, — zo|| > € for some ¢, is larger than , which is
2

the energy needed to leave the ball B(zg,¢) in time n. Thus, if we take ¢, = n™%,
the minimizer of the action joining 7o to 7y, must stay inside the ball B(xg,¢), and
Assumption (A2) is satisfied.

Assumption (A3). Since max V = 0, no change of gage is necessary to ensure that

Lo > 0 and Ly vanishes on the Mather set. Since V' < 0, hy, (70, Vn) > W, SO
that

ﬂd/2/6_5hn("/077n)d,yn < ﬁd/Q/e_ﬂWd'yn = (2m)¥? = B,
O

Exactly the same way, we can prove

Lemma 6.4.2. Let L(vy,v1) = W — V() where V is a Z%-periodic poten-
tial. Then, the assumptions (A2), (A3) of Theorem 0.0.1 are satisfied.
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