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Abstract. We study the zero-temperature limit for Gibbs measures associ-
ated to Frenkel-Kontorova models on (Rd)Z/Zd. We prove that equilibrium
states concentrate on configurations of minimal energy, and, in addition, must
satisfy a variational principle involving metric entropy and Lyapunov expo-
nents, a bit like in the Ruelle-Pesin inequality. Then we transpose the result
to certain continuous-time stationary stochastic processes associated to the
viscous Hamilton-Jacobi equation. As the viscosity vanishes, the invariant
measure of the process concentrates on the so-called “Mather set” of classi-
cal mechanics, and must, in addition, minimize the gap in the Ruelle-Pesin
inequality.

In statistical mechanics, Gibbs measures are probability measures on the config-
uration space, describing states of thermodynamical equilibrium. One of the major
problems is to study the dependence of equilibrium states on the temperature (or
other parameters): a lack of analyticity in this dependence is interpreted as the
occurrence of a phase transition, and the existence of several Gibbs measures at a
given temperature, as the coexistence of several phases.

In Part I of this paper, we are interested in the behaviour of Gibbs measures
as temperature goes to zero, in the model where the particles of the system lie
on the 1-dimensional lattice Z. This is not the favourite situation in statistical
mechanics: in this case, and if the energy of interaction between particles satisfies
reasonable assumptions, there is usually no phase transition. But even then, there
is, to my knowledge, no general result describing completely the behaviour of Gibbs
measures at zero temperature: for instance, the existence or not of a limit of the
equilibrium state. It is intuitive to think, and possible to prove, that such a limit
must minimize the mean energy, but there are examples where it is not enough to
conclude, as there may be several states of minimal mean energy ([Si82]).

This paper deals with the case where the state of each particle is represented by
an element of Rd, so that a configuration of the system is described by a sequence
γ = (γk)k∈Z ∈ (Rd)Z. We work in the Markovian case: the potential of interaction is
of the form L̄(γ) = L(γ0, γ1). Such models are sometimes called Frenkel-Kontorova
models. In the paper, the function L : Rd×Rd → R will be of class C3, and satisfy
the following assumptions :

(Periodicity) L(x+ s, y + s) = L(x, y), for all s ∈ Zd.
(Superlinear growth) L(x,y)

||x−y|| −→
||x−y||→∞

+∞

(‘Twist property’) For all x ∈ Rd, y 7→ ∂1L(x, y) is a diffeomorphism of Rd.
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Given the periodicity property of L, the convenient configuration space to work
with is the quotient spaceW = (Rd)Z/Zd. We will denote σ the shift transformation
on W , acting on sequences by shifting them to the left.

For each parameter β > 0 (representing the inverse of the temperature), we will
construct in Section 2 a σ-invariant probability measure µβ on W , called “the Gibbs
measure associated to the potential L̄, at temperature 1/β”.

We will then prove the following theorem:

Theorem 0.0.1. Let µβ be the Gibbs measure associated to the potential L̄, at
temperature 1/β. Let µ∞ be a limit point of the family (µβ)β>0 as β tends to
infinity. Then µ∞ minimizes the mean energy

∫
W
L̄dµ over the set of all σ-invariant

probability measures on W .
Moreover, under suitable assumptions (A1), (A2), (A3), µ∞ maximizes the func-

tional

µ 7→ hσ(µ)− 1
2

lim
n→∞

∫

W

1
n

log[nA′′(γ̄)]dµ(γ̄)

over all energy-minimizing measures.

In the theorem, hσ(µ) stands for the metric entropy of the measure µ under the
action of the shift σ. This functional is one of the fundamental objects in ergodic
theory; its definition is given in Section 1.

We denote A′′(γ) the hessian matrix of the formal sum

A(γ) =
∑

k∈Z
L(γk, γk+1).

It is an infinite matrix, tridiagonal by blocks of size d. The notation nA
′′(γ) stands

for the nd × nd submatrix corresponding to k ∈ [1, n] and, in Theorem 0.0.1,
[nA′′(γ)] stands for the determinant of that matrix.

The assumptions (A1), (A2), (A3) are technical assumptions concerning the
behaviour of the energy near its minima. They will be stated in Section 1.

We note that our result does not necessarily imply the existence of a limit for
the family (µβ)β→+∞, since the functional that µ∞ must maximize is affine.

Part I is organized as follows:
– in Section 1, we introduce notations, and give a more precise statement of

Theorem 0.0.1 with its assumptions (A1), (A2), (A3).
– in Section 2, we define the Gibbs measure µβ and give some of its properties.
– in Section 3, we prove Theorem 0.0.1.
– Section 4 serves as a transition with Part II. We explain briefly the connection

between Frenkel-Kontorova models and symplectic twist diffeomorphisms of Td ×
Rd. In this context, the quantity limn

1
n log[nA′′(γ̄)] has a nice interpretation in

terms of Lyapunov exponents. To draw an explicit link with Part II, we consider
the example

L(γ0, γ1) =
||γ1 − γ0||2

2
− V (γ0)− 〈ω, γ1 − γ0〉,

where ω ∈ Rd and V is a Zd-periodic potential of class C3.

In Part II, we find that our result reads in an interesting way when transposed
to the field of lagrangian mechanics. In that part, we replace the configuration
space W = (Rd)Z/Zd by the space of continuous bi-infinite paths on the d-torus,
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W = C(R,Rd)/Zd = C(R,Td), and the function L by a lagrangian of the form

Lω(x, v) =
‖ v ‖2

2
− V (x)− 〈ω, v〉(0.0.1)

on Rd × Rd, V being a Zd-periodic function of class C3, ω an element of Rd, and
‖ . ‖ the norm arising from the usual euclidean structure 〈., .〉 on Rd.

For β > 0, we consider the “twisted” Schrödinger operators:

Hω
β = e−β〈ω,x〉 ◦

(
∆

2β2
+ V (x)

)
◦ eβ〈ω,x〉,(0.0.2)

where ∆ stands for the Laplace operator on Rd. (For β = i
~ , ~ being the Planck

constant, the operator Hω
β would be the quantization of the classical Hamiltonian

Hω(x, p) =
||p+ ω||2

2
+ V (x)

associated to the Lagrangian Lω; but this is quite a different problem.)
Let ψβ , ψ∗β be the positive Zd-periodic eigenfunctions of, respectively, Hω

β and
its adjoint Hω∗

β , associated to their common largest eigenvalue (this statement will
be given a precise meaning in Section 5). The focus of our attention is the measure

µ0
β =

ψβ(x)ψ∗β(x)dx∫
Td ψβ(y)ψ∗β(y)dy

,

which is the invariant measure for the Markov process generated by the twisted
Schrödinger operators (Section 5). This process seems to be called P (φ)1-process
in quantum field theory ([Si79]).

We study the behaviour of the family (µ0
β) as β −→ +∞; 1/β will now play

the role of a viscosity coefficient, or of the diffusion coefficient of the stochastic
process. We first prove that every limit point µ0

∞ of the family (µ0
β)β→+∞ can be

lifted to the tangent bundle Td ×Rd to a probability measure µ∞, invariant under
the Euler-Lagrange flow of Lω, and which minimizes the integral of the lagrangian.
Such measures play a central role in J. Mather’s theory in lagrangian dynamical
systems: they are called “action-minimizing measures” (see [Ma91], and the work of
Mañe on the subject, [Mn92], [Mn96] and [Mn97]). It is shown in the paper [Go02]
(Section 8) how the measures µ0

β , for β > 0, may be seen as action-minimizing
measures in the world of stochastic dynamics.

Since there may be several action-minimizing measures, we seek additional con-
ditions satisfied by the limits of (µ0

β) as β −→ +∞.
One way to state the result is as follows :

Theorem 0.0.2. Let µ0
∞ be a limit point of the family (µ0

β) as β → +∞.
Then there exists a probability measure µ∞ on Td×Rd, which is invariant under

the Euler-Lagrange flow, action-minimizing in the sense of J. Mather, and whose
projection on Td is µ0

∞.
Moreover, under suitable assumptions (A1), (A2), (A3), µ∞ maximizes the func-

tional

hφ(µ)− 1
2

∫

Td×Rd

(
d∑

i=1

λ+
i (x, v))dµ(x, v)

over the set of all action-minimizing measures.
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The assumptions (A1), (A2), (A3) are technical assumptions concerning the
behaviour of the action near its global minima. They will be stated in Section 5.

Here hφ(µ) stands for the metric entropy of the invariant probability measure
µ on Td × Rd, under the action of the Euler-Lagrange flow φ = (φt)t∈R; and the
λ+
i (x, v) are the d first (nonnegative) Lyapunov exponents of (x, v), under the action

of φ. The definition of Lyapunov exponents will be given in Section 4. Note that,
for a smooth transformation φ of a compact manifold of dimension n, the Ruelle
inequality always holds:

hφ(µ) ≤ 1
2

∫ n∑

i=1

|λi(x)|dµ(x)

where the sum runs over all Lyapunov exponents (this is Theorem S.2.13 of [KH95],
applied to both φ and φ−1). In Theorem 0.0.2, if we knew that µ was supported on
a smooth invariant Lagrangian graph (hence, of dimension d), we could interprete
the result as: “µ minimizes the gap in Ruelle’s inequality”. As we shall explain
in Section 5, the fact that µ is action-minimizing in the sense of Mather is a weak
form of the property of being carried by a smooth invariant Lagrangian graph.

There are alternative ways of formulating the result. For instance, uβ = − logψ∗β
β

is solution of the viscous Hamilton-Jacobi equation:

−∆u
2β

+Hω(x, dxu) = λβ ,

whereas vβ = − logψ∗β
β is solution of the same equation for the time-reversed system:

−∆v
2β

+Hω(x,−dxv) = λβ .

The constant λβ is the eigenvalue of Hω
β and Hω∗

β associated to the eigenfunctions
ψβ , ψ

∗
β . We see that β appears here in the role of the inverse of a viscosity coefficient.

The measure ψβ(x)ψ∗β(x)dx may thus be written in the form e−β(uβ(x)+vβ(x))dx.
In dimension d = 1, the problem may also be formulated in terms of the Burgers
equation, which is the equation satisfied by duβ (or dvβ), obtained by differentiating
the Hamilton-Jacobi equation; in the paper [Si91], the asymptotic behaviour of the
viscous Burgers equation (as time tends to infinity, for a fixed viscosity coefficient)
was studied via the definition of Gibbs measures on path spaces; our construction, in
Section 5, of the Markov process associated to the Schrödinger equation, is similar.

Let us mention that in dimension d = 1, the convergence of the functions
uβ , vβ(β → +∞) was proved in [Bes02] for a time-dependent Lagrangian, and that
the result proved therein implies ours. However, the approach relies very much on
low-dimensional considerations and cannot be extended to higher dimension in an
obvious way. Besides, in low dimension, the entropy does not come into play.

The application of Theorem 0.0.2 in the case ω = 0 yields an already known
result about the tunnelling effect in semi-classical mechanics ([He88], Section 4.4):

Corollary 0.0.3. Let H~ = ~2 ∆
2 +V , and let ψ~ be the unique Zd-periodic positive

eigenfunction, corresponding to the largest eigenvalue of H~ in L2(Td).
Then, in the semi-classical limit ~ −→ 0, the probability measure

ψ2
~(x)dx∫

Td ψ2
~(y)dy
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concentrates on the maxima of V .
Assume furthermore that the system satisfies (A1). If we consider the expansion

of V in orthonormal coordinates near a maximum x0, in the form

V (x0 + y) = V (x0)− 1
2

∑
|ai(x0)|2y2

i +O(y3),

then the measure ψ2
~(x)dx concentrates on those x0s for which the quantity

∑
|ai(x0)|

is minimal.

Part II is organized as follows:
– in Section 5, we give more details about Mather theory and the notion of

viscosity solutions of Hamilton-Jacobi equations. We explain the spectral properties
of the twisted Schrödinger operator (0.0.2). We show how it generates a Markov
process of invariant distribution µ0

β , and, finally we state Assumptions (A1), (A2),
(A3).

– in Section 6, we show how to adapt the proof of Theorem 0.0.1 to the new
situation. We also check that Assumptions (A2), (A3) are always satisfied in the
case ω = 0, that is, we prove Corollary 0.0.3.

Part 1. Statistical mechanics

1. Introduction and statement of results

In this part, we consider a model where particles lie on the “1-dimensional lat-
tice” Z, and the state of each particle is described by an element of Rd. Thus,a
configuration of the whole system is described by an element of (Rd)Z. A function

L̄ : (Rd)Z −→ R,

called the potential of interaction, is used to describe the energy of interaction be-
tween particles. This is done the following way: given a configuration γ = (γk)k∈Z ∈
(Rd)Z, the energy of interaction associated to a finite subsequence (γk)m≤k≤n is by
definition

A(γ|[m,n]) =
n−1∑

k=m

L̄(σkγ)

where σ denotes the shift acting to the left:

(σγ)k = γk+1

We will restrict our attention to potentials L̄ depending only on the two first co-
ordinates (nearest neighbour interactions): in other words L̄(γ) = L(γ0, γ1), where
now L is a function from Rd × Rd to R.

Moreover, L will be of class C3, and have the following properties:

(Periodicity) L(x+ s, y + s) = L(x, y), for all s ∈ Zd.
(Superlinear growth) L(x,y)

||x−y|| −→
||x−y||−→∞

+∞

(‘Twist property’) For all x ∈ Rd, y 7→ ∂1L(x, y) is a diffeomorphism of Rd.
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A model which assigns an energy

A(γ|[m,n]) =
n−1∑

k=m

L(γk, γk+1)

to any finite segment m ≤ k ≤ n of a configuration γ = (γk), is usually called
a Frenkel-Kontorova model. Its “stationary configurations” are, by definition, the
configurations γ which, for all m < n, are critical points of A with respect to
variations of γk, m < k < n. In other words,

∂2L(γk−1, γk) + ∂1L(γk, γk+1) = 0

for all k.
Given the periodicity property of L, the convenient configuration space to work

with is the quotient space W = (Rd)Z/Zd, the action of Zd on (Rd)Z being defined
by

(s.γ)k = γk + s

for all s ∈ Zd, for all γ ∈ (Rd)Z, for all k ∈ Z.

Notations : We shall denote γ̄ ∈W the equivalence class of γ ∈ (Rd)Z under this
action. An element of W will always be denoted in the form γ̄, meaning thereby
that it is the equivalence class of some γ ∈ (Rd)Z.

Similarly, for any subset I ⊂ Z, we shall introduce the quotient space WI =
(Rd)I/Zd, with the action of Zd defined as above, and we shall denote γ̄ ∈WI the
equivalence class of γ ∈ (Rd)I .

The shift σ, defined previously on (Rd)Z, can be defined on the quotient space
W ; the same holds for the potential L̄. We keep the same notation for the shift
σ and the potential L̄ defined on W . More generally, when some functions or
transformations originally defined on (Rd)Z can go to the quotient space W , we
keep the same notation.

We also introduce the projections πI : (Rd)Z −→ (Rd)I , which go to the quotient
spaces:

πI : W −→WI

When I = [0, k], we shall write Wk, πk instead of WI , πI . In particular, W0 ' Td,
W1 ' Td × Rd.

The topology used on (Rd)Z is the product topology, and the topology on W is
the quotient topology. It is defined by the distance

dW (γ̄, ξ̄) = dTd(γ0, ξ0) +
∑

k∈Z

1
2|k|

min (| ||γk+1 − γk|| − ||ξk+1 − ξk|| |, 1) .

If I is an interval of Z containing 0, we define similarly a distance dWI on WI ; the∑
now runs over all ks such that k ∈ I, k + 1 ∈ I.
We can now introduce our Gibbs measures µβ . As we shall prove in the next

section, for all β > 0, we can find Zd-periodic, positive continuous functions ψβ , ψ∗β ,
and a real number λβ , such that∫

Rd

e−βL(x,y)ψβ(y)dy = eλβψβ(x)(1.0.3)

and ∫

Rd

e−βL(y,x)ψ∗β(y)dy = eλβψ∗β(x),(1.0.4)
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for all x. Actually, the real number λβ and (up to a multiplicative factor) the
functions ψβ , ψ∗β are characterized by these properties.

We normalize the functions ψβ , ψ∗β so that
∫
[0,1)d ψβ(x)ψ∗β(x)dx = 1.

The measure ψβ(x)ψ∗β(x)dx appears as the unique Zd-periodic invariant measure
for the Markov process with transition probabilities

P (x, dy) =
ψβ(y)

eλβψβ(x)
e−βL(x,y)dy.

The stationary Markovian process on (Rd)N, of initial distribution ψβ(x)ψ∗β(x)dx
and transition probabilities P (x, dy), is realized by the following measure µβ on
(Rd)N:

(1.0.5) µβ({γ, γ0 ∈ A0, γ1 ∈ A1, ..., γn ∈ An})

= e−nλβ

∫

A0×A1×...×An

ψ∗β(γ0)ψβ(γn)e−β
Pn−1

k=0 L(γk,γk+1)dγ0dγ1...dγn

for all n ≥ 0, for all Borel sets A0, A1, ..., An. By invariance of the initial distribu-
tion, the measure µβ is invariant under the 1-sided shift on (Rd)N, so that it can
be extended to a σ-invariant measure on (Rd)Z, that we still denote µβ .

Actually, the periodicity properties of ψβ , ψ∗β and L imply that this measure is
invariant under the action of Zd on (Rd)Z. Also, the measure of the fundamental
domain (Rd)Z

∗
−×[0, 1)d×(Rd)Z

∗
+ is 1, due to our normalization of ψβ , ψ∗β . Identifying

the quotient space W to this fundamental domain, we obtain a probability measure
(still denoted µβ) on W , which is σ-invariant, and which we call the Gibbs measure
for the potential L, at temperature 1/β.

Note that, if we replace the potential L(x, y) by L(x, y)−u(y) +u(x) + c, where
u is a continuous Zd-periodic function and c a constant, then the eigenfunctions
ψβ(x) and ψ∗β(x) are replaced respectively by ψβ(x)e−βu(x) and ψ∗β(x)e

βu(x) , and
λβ is replaced by λβ − βc; the Gibbs measure µβ is unchanged. According to the
usual terminology, we say that two potentials L(x, y) and L̃(x, y) are cohomologous
if there exists a continuous Zd-periodic function u such that L̃(x, y) = L(x, y) −
u(y) + u(x), and we write L ∼ L̃.

Remark 1.0.1. For n > 0, we denote dµβ
(
γ̄|π[n+1,+∞)(γ̄), π(−∞,0](γ̄)

)
the condi-

tional law of γ̄ knowing π[n+1,+∞)(γ̄) and π(−∞,0](γ̄). What is usually called the
“Gibbs property” is a property about the form of conditional measures (see for
instance [Ru78], Chapter 1.5):

dµβ
(
γ̄|π[n+1,+∞)(γ̄), π(−∞,0](γ̄)

)
=

∑
s∈Zd e−β(

Pn−1
k=0 L(γk,γk+1)+L(γn,γn+1+s))dγ1...dγn

Zβn(π[n+1,+∞)(γ̄), π(−∞,0](γ̄))
.

To write this formula we have identified W with the fundamental domain (Rd)Z
∗
− ×

[0, 1)d × (Rd)Z
∗
+ ; the term Zβn(π[n+1,+∞)(γ̄), π(−∞,0](γ̄)) is a normalization factor.

It is not too hard to check that the measure µβ constructed above has this
property. Moreover, it is proved in [Ru78], Chapter 5.9 (however, in the simpler
situation when the configuration space is discrete) that this property actually char-
acterizes the measure. We will not go further into this problem here, as we are not
going to use the Gibbs property in this form.
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Our aim is now to investigate the existence of a limit for the Gibbs measure µβ ,
as β −→ +∞.

We shall say that a sequence (µn)n∈N of probability measures on W converges
to a measure µ if, for every finite interval I ⊂ Z, for every bounded continuous
function f on WI , ∫

f(πI γ̄)dµn(γ̄) −→
n→∞

∫
f(πI γ̄)dµ(γ̄).

We shall prove in Section 3 (Lemma 3.1.5) that, from every sequence (µβk
)k∈N of

Gibbs measures, one can extract a subsequence which converges to a probability
measure µ∞. We ask which measures µ∞ can be obtained this way.

First, the measure µ∞, like the µβs, has to be invariant under the action of
the shift σ. Then, intuition tells us that the measure µ∞ has to be carried by
configurations “minimizing the energy”:

Definition 1.0.2. A configuration γ̄ is called energy-minimizing if, for all m < n,
for all s ∈ Zd, for all (γ′m+1, ..., γ

′
n−1) ∈ (Rd)n−m−1,

L(γm, γm+1) + L(γm+1, γm+2) + ...+ L(γn−1, γn)

≤ L(γm, γ′m+1) + L(γ′m+1, γ
′
m+2) + ...+ L(γ′n−1, γn + s)

In Section 3 (Lemma 3.1.6), we shall prove that limits of Gibbs measures are
carried by energy-minimizing configurations. We shall also prove a theorem, due
to Mather in the context of lagrangian dynamical systems ([Ma91]), which says
that a σ-invariant probability measure µ on W is carried by energy-minimizing
configurations if an only if it minimizes the mean energy

∫
L̄dµ amongst all σ-

invariant probability measures.

Definition 1.0.3. A σ-invariant probability measure µ on W , achieving the infi-
mum of the mean energy

∫
L̄dµ over the set of σ-invariant probability measures, is

called an energy-minimizing measure.

We introduce the set
M = ∪µsuppµ ⊂W,

(the union runs over energy-minimizing measures), and call it the Mather set, in
reference to the work of J. Mather in the theory of lagrangian dynamical systems
(see Part II).

We will thus show that every limit point of µβ (β →∞) is an energy-minimizing
measure. This fact, known by many, already appears in a paper by Sinai ([Si82]).
However, as Sinai’s paper precisely shows, there may be several energy-minimizing
measures.

Thus, we need a selection principle, telling us which energy-minimizing measures
can be obtained as limits of Gibbs measures. The main result of this paper, Theorem
0.0.1, selects an affine subset (possibly not reduced to one point) in the set of energy-
minimizing measures.

We now give the assumptions of the theorem, and define the objects entering its
statement:

Assumptions : Let m ≤ n and ξm, ξn ∈ Rd; we introduce the notation

(Rd)[m,n],(ξm,ξn) = {(γk)m≤k≤n ∈ (Rd)[m,n], γm = ξm, γn = ξn}.
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Recall that we have defined the energy of a sequence (γk)0≤k≤n as A(γ|[0,n]) =∑n−1
k=0 L(γk, γk+1).

Assumption (A1) For all n, for all endpoints ξ0, ξn ∈ Rd, the minima of the
energy A in the set (Rd)[0,n],ξ0,ξn are non-degenerate (we mean thereby that the
hessian matrix of A at each minimum is non-degenerate). Besides, the number of
minimizers is bounded, independently of n, ξ0, ξn.

In order to simplify the writing of the proof, we will assume that there is only
one minimizer, for all n, ξ0, ξn.

Assumption (A2) There exists ε0 > 0 such that, for all 0 ≤ ε ≤ ε0, there
exists a sequence (cn) ∈ [0, 1]N satisfying:

– limn
log cn

n = 0,
and :
– for all n > 0, for all γ0, γn ∈ Rd such that

‖ γ0 − ξ0 ‖≤ cnε

‖ γn − ξn ‖≤ cnε

for some energy-minimizing configuration ξ ∈ (Rd)Z, then there exists a minimizer
γ of A : (Rd)[0,n],γ0,γn −→ R such that ‖ γk − ξk ‖≤ ε for all 0 ≤ k ≤ n.

Change of gage: We will prove in Section 3 (Proposition 3.1.3) that there exists
a Zd-periodic, Lipschitz function u, such that the potential L̃(γ0, γ1) = L(γ0, γ1)−
u(γ1) + u(γ0) + c is nonnegative, and vanishes on the Mather set. As we already
mentioned, replacing L by a potential L̃ ∼ L + c does not change the definition
of the Gibbs measure. In all the definitions given above, we can replace L by a
new energy L̃, without changing the definition of energy-minimizing configurations,
Mather set, etc... The fact that u is not smooth is not really a problem, since we
only need to differentiate the energy functional A on the spaces (Rd)[0,n],ξ0,ξn , that
is, for fixed boundary conditions. Thus, by a change of gage, we may and will
assume in the rest of the paper that L is nonnegative, and vanishes on the Mather
set.

After performing this change of gage, we introduce the function

hn(x, y) = inf
(Rd)[0,n],(x,y)

A,

defined on Rd × Rd.
Assumption (A3) There exists a sequence Bn ≥ 0 satisfying limn

logBn

n = 0,
such that for all n

sup
γ0

βd/2
∫

Rd

e−βhn(γ0,γn)dγn ≤ Bn.

Assumptions (A1) and (A2) seem merely technical, and it is probably possible to
get rid of the second part of (A1) (about the number of minimizers). As to (A3), it
says something about the behaviour of the function hn near its minima, uniformly
in n. Although these assumptions are not easy to interprete, we can at least check
(A2) and (A3) in the case when L is of the form L(γ0, γ1) = ||γ1−γ0||2

2 −V (γ0), where
V is Zd-periodic and of class C3 (Lemma 6.4.2). However, it would be nice to have
another set of assumptions which, if not easier to check on examples, would be more
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conceptual and related to familiar notions of the theory of dynamical systems. In
Section 5, we will formulate a conjecture about other possible assumptions.

Metric entropy: Let us now recall the definition of the metric entropy, which
comes into play in Theorem 0.0.1. Consider a probability space (X,B, µ), and a
measurable transformation T : X −→ X preserving the probability measure µ
(meaning that µ(T−1A) = µ(A) for every A ∈ B). One defines the metric entropy
of µ with respect to the action of T , denoted hT (µ), as follows:

For any partition P of X into a finite number of measurable sets, X = tki=1Pi,
one first defines the entropy of µ with respect to T and the partition P , as

hT (µ, P ) =

lim
n→+∞

1
n

∑

α0,...,αn−1∈{1,...,k}
−µ(Pα0∩T−1Pα1 ...T

−n+1Pαn−1) log µ(Pα0∩T−1Pα1 ...T
−n+1Pαn−1).

The existence of the limit can be proved by a sub-additivity argument ([KH95],
Chapter 4.3).

Then, hT (µ) is defined as

hT (µ) = sup
P
hT (µ, P );

the supremum is taken over the set of all finite measurable partitions of X.
In this part, we shall apply this definition to X = W and T = σ, and µ will be

µβ , µ∞, or any σ-invariant measure.

Hessian of the energy: The definition of an energy-minimizing configura-
tion implies in particular that if γ̄ is such a configuration, then, for all m < n,
(γm+1, ..., γn−1) is a global minimum of the function

A(γm, γ′m+1, ..., γ
′
n−1, γn) = L(γm, γ′m+1) + L(γ′m+1, γ

′
m+2) + ...+ L(γ′n−1, γn),

defined on (Rd)[m,n],(γm,γn).
Let us consider the Hilbert space l2(Z,Rd) = {(γk) ∈ (Rd)Z,

∑
k∈Z ||γk||2 <

+∞}. Consider the hessian matrix A′′(γ̄) ∈ L(l2(Z,Rd)) of the formal sum

A(γ̄) =
∑

k∈Z
L(γk, γk+1).

It is an infinite symmetric matrix which can be decomposed into d× d blocks :

A′′ii = ∂2
22L(γi−1, γi) + ∂2

11L(γi, γi+1)

A′′i,i+1 = ∂21L(γi, γi+1)

and A′′i,j = 0 for |j − i| > 1. This way, the nd × nd submatrix nA
′′(γ̄), cor-

responding to indices 1 ≤ i, j ≤ n, is the hessian matrix of the function A on
(Rd)[0,n+1],(γ0,γn+1).

We can now rewrite the statement of Theorem 0.0.1:

Theorem 1.0.4. Let µ∞ be a limit point of (µβ) as β → +∞. Then, µ∞ is an
energy-minimizing measure.

Moreover, under assumptions (A1), (A2) and (A3), we have

hσ(µ)− 1
2

∫

W

lim
n

1
n

log[nA′′(γ̄)]dµ(γ̄) ≤ hσ(µ∞)− 1
2

∫

W

lim
n

1
n

log[nA′′(γ̄)]dµ∞(γ̄)



11

for any energy-minimizing measure µ.

The proof includes a proof of the existence of the limit limn
1
n log[nA′′(γ̄)] ∈ R,

for every energy-minimizing measure µ, for µ-almost every γ̄. The metric entropy
hσ(µ), by definition, belongs to [0,+∞], but we shall see in Section 4 that it is
finite in our situation.

Note that the functional

µ 7→ hσ(µ)− 1
2

∫

W

lim
n

1
n

log[nA′′(γ̄)]dµ(γ̄)

is affine, so that our theorem still does not necessarily imply that µβ converges.

2. Definition of Gibbs measures, and some of their properties.

In this part, we prove the existence and uniqueness of ψβ , ψ∗β and λ characterized
by (1.0.3), (1.0.4), and we construct the Gibbs measures.

We identify functions on Td and Zd-periodic functions. We also identify Radon
measures on Td and Zd-invariant Radon measures on Rd.

We introduce an operator P+
β , acting on the space of Zd-periodic continuous

functions as follows: if f is such a function, then P+
β f is defined by :

(P+
β f)(x) =

∫

Rd

e−βL(x,y)f(y)dy,

for all x ∈ Rd. If the continuous function f is nonnegative and does not vanish
identically, then P+

β f is positive.
By duality, Pβ also acts on the set of Radon measures on the torus; we define

the dual action P+∗
β on the set of measures by

∫

Td

fd(P+∗
β µ) =

∫

Td

P+
β fdµ,

for every continuous function f on the torus, for every measure µ.
We also introduce the operator P−β (the adjoint of P+

β in L2(Td)):

(P−β f)(x) =
∫

Rd

e−βL(y,x)f(y)dy;

we let it act on the space of Zd-periodic continuous functions. We denote P−∗β the
dual action on measures.

It is immediate that, for all ν, P−∗β ν has density

(Dν)(x) =
∫

Rd

e−βL(x,y)dν(y),

whereas P+∗
β ν has density

(D∗ν)(x) =
∫

Rd

e−βL(y,x)dν(y).

(To define the integral on Rd, one considers measures on Td as Zd-invariant Radon
measures on Rd.) The operators D,D∗ go from the space of measures on the torus
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to the space of continuous Zd-periodic functions. In particular, we note that if ν
has a density f with respect to Lebesgue measure, then P+∗

β ν has density

g(x) =
∫

Rd

e−βL(y,x)f(y)dy.

In other words, P+∗
β (f(x)dx) = (P−β f)(x)dx.

We now consider two transformations M+ and M− (we forget the dependence
on β in the notations), acting on the set of probability measures on the torus the
following way :

M+µ =
P+∗
β µ∫
P+
β 1dµ

and M−µ =
P−∗β µ∫
P−β 1dµ

They act continuously on the convex, compact set of probability measures on the
torus, endowed with the weak topology. The Schauder fixed point theorem implies
that M+ and M− both have fixed points.

This exactly means that there exist probability measures µβ , µ∗β , and real num-
bers λβ , λ∗β such that :

P+∗
β µ∗β = eλ

∗
βµ∗β and P−∗β µβ = eλβµβ .

The reader will readily check that we have the commutation relations P+
β D =

DP−∗β and P−β D
∗ = D∗P+∗

β on the space of measures.
Thus, if P+∗

β µ∗β = eλ
∗
βµ∗β , then D∗µ∗β is an eigenfunction of P−β for the eigenvalue

eλ
∗
β ; we denote ψ∗β = D∗µ∗β . Similarly, Dµβ is an eigenfunction of P+

β for the
eigenvalue eλβ ; we denote it ψβ .

We can also write:

P−∗β (ψβ(x)dx) = eλβψβ(x)dx and P+∗
β (ψ∗β(x)dx) = eλ

∗
βψ∗β(x)dx.

Note that ψβ and ψ∗β are positive continuous functions, and that eλβ (respectively
eλ
∗
β ) is a simple eigenvalue for P+

β (respectively P−β ) in the space of L2, Zd-periodic
functions. To see this, first note that a Zd-periodic, L2 eigenfunction is necessarily
continuous. Then, consider a Zd-periodic continuous function ψ, satisfying

P+
β ψ = eλβψ.

Let λ = supψ/ψβ . Then the function λψβ − ψ is nonnegative, and by continuity
vanishes at one point at least. Besides, it satisfies

(λψβ − ψ)(x) = e−λβ

∫

Rd

e−βL(x,y)(λψβ − ψ)(y)dy

for all x. Thus, if (λψβ−ψ)(x) = 0 for some x, then we must have (λψβ−ψ)(y) = 0
for all y; in other words ψβ and ψ are proportional.

We have proved the beginning of the following proposition:

Proposition 2.0.5. The eigenvalue eλβ (respectively eλ
∗
β ) is a simple eigenvalue

for P+
β (respectively P−β ) in L2(Td). Besides, eλβ is the spectral radius of P+

β in
L2(Td).

To prove the last assertion, note that the operator

N : f 7→ 1
eλβψβ

P+
β (fψβ),



13

is stochastic: it fixes the constant function 1. We also say that it is “normalized”.
The dual operator N∗ on the space of measures fixes the measure ψβ(x)ψ∗β(x)dx.

It follows from the Cauchy-Schwarz inequality that the norm ofN in L2(Td, ψβ(x)ψ∗β(x)dx)
is 1, so that its spectral radius is also 1. This now implies that the spectral radius
of P+

β in L2(Td) is eλβ .

We know, by the definition of ψ∗β(x), that µ∗β is proportional to ψ∗β(x)dx; and
Proposition 2.0.5 implies that µ∗β is, up to a multiplicative factor, the unique mea-
sure such that P+∗

β µ∗β = eλ
∗
βµ∗β . A similar property hold for µβ .

It remains to check that λβ = λ∗β . We prove that ψβ is (up to a multiplicative
constant) the only nonnegative L1 eigenfunction of P+

β . Let ψ be a nonnegative
eigenfunction of P+

β ; obviously, ψ must be positive, continuous, and associated to
a positive eigenvalue eλ. We write

eλ
∫
ψdµ∗β =

∫
P+
β (ψ)dµ∗β

=
∫
ψd(P+∗

β µ∗β) = eλ
∗
β

∫
ψdµ∗β

so that we must have λ = λ∗β , and ψ must be proportional to ψβ . In particular,
λβ = λ∗β .

Rephrasing what has just been done, we can say that the normalised operator N
fixes a unique Zd-invariant Radon measure (up to a multiplicative factor), which is
positive, and has density ψβ(x)ψ∗β(x).We normalize it so that

∫
[0,1)d ψβ(x)ψ∗β(x)dx =

1.
Thus, the measure ψβ(x)ψ∗β(x)dx appears as the unique Zd-periodic invariant

measure for the transition semigroup generated by the following transition density:

P (x, dy) =
ψβ(y)

eλβψβ(x)
e−βL(x,y)dy.

A stationary Markovian process on (Rd)N, of initial distribution ψβ(x)ψ∗β(x)dx

and transition probabilities P (x, dy) = ψβ(y)

eλβψβ(x)
e−βL(x,y)dy, is realized by the mea-

sure µβ on (Rd)N defined by :

(2.0.6) µβ({γ, γ0 ∈ A0, γ1 ∈ A1, ..., γn ∈ An})

= e−nλβ

∫

A0×A1×...×An

ψ∗β(γ0)ψβ(γn)e−β
Pn−1

k=0 L(γk,γk+1)dγ0dγ1...dγn

for all n ≥ 0, for all Borel sets A0, A1, ..., An. This defines a positive measure µβ on
(Rd)N, as a consequence from Kolmogorov’s extension theorem. By the invariance
of the initial distribution, the measure µβ is invariant under the 1-sided shift on
(Rd)N, so that it can be extended to a σ-invariant measure on (Rd)Z, that we still
denote µβ . Actually, the periodicity properties of ψβ , ψ∗β and L imply that this
measure is invariant under the action of Zd on (Rd)Z; finally, the measure of the
fundamental domain (Rd)Z

∗
− × [0, 1)d × (Rd)Z

∗
+ is 1, due to our normalization of

ψβ , ψ
∗
β .
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Identifying the quotient space W to the fundamental domain (Rd)Z
∗
− × [0, 1)d ×

(Rd)Z
∗
+ , we obtain a probability measure (that we still denote µβ) on W , which is σ-

invariant, and which we call the Gibbs measure for the potential L, at temperature
1/β.

Note that, if we replace the potential L(x, y) by L(x, y)−u(y) +u(x) + c, where
u is a continuous Zd-periodic function and c a constant, then the eigenfunctions
ψβ(x) and ψ∗β(x) are replaced respectively by ψβ(x)e−βu(x) and ψ∗β(x)e

βu(x) , and
λβ is replaced by λβ − βc; the Gibbs measure µβ is unchanged.

We now prove a property of “quasi-invariance” by spatial translations of the
measure µβ on W . We denote Wc the subset of W formed of elements γ̄ such that:
there exists N ∈ N, there exist r, s ∈ Zd, such that γk = s for k ≥ N and γk = r for
k ≤ −N . Note that, if γ̄, γ̄′ ∈W , their sum γ̄ + γ̄′ = γ + γ′ ∈W is well defined.

Proposition 2.0.6. For all z̄ ∈ Wc, for all measurable nonnegative continuous
function f on W , we have∫

W

f(γ̄ + z̄)dµβ =
∫

W

f(γ̄)e−β
P

k∈Z(L(γk−zk,γk+1−zk+1)−L(γk,γk+1))dµβ .

Note that the
∑
k∈Z in the right-hand side is actually a sum on a finite number

of terms, since z̄ ∈Wc.
The reader is invited to compare this property with the definition of Gibbs

measures given in [Ha90]; it is proved there (however, in a different situation) that
this property actually characterizes the measure. We do not examine this problem
here.

Proof. It is sufficient to check it when f depends only on a finite number of coor-
dinates, by which we mean that f is of the form g ◦ πI for some finite interval I
and for some bounded measurable function g on W I . Besides, by the σ-invariance
of µβ , it is enough to consider the case I = [−n, 0]. Without loss of generality, we
may assume that zk = 0 for k ≥ 0 and zk = r ∈ Z for k ≤ −n.

To perform the calculation, it is simpler to identify W with the fundamental
domain (Rd)Z

∗
− × [0, 1)d × (Rd)Z

∗
+ . Now g is a nonnegative measurable function on

(Rd)[−n,−1] × [0, 1)d.

∫

W

f(γ̄+z̄)dµβ =
∫

(Rd)[−n,−1]×[0,1)d

g(γ+z)ψ∗β(γ−n)ψβ(γ0)e−β(
P−1

k=−n L(γk,γk+1))dγ

=
∫

(Rd)[−n,−1]×[0,1)d

g(γ)ψ∗β(γ−n− z−n)ψβ(γ0− z0)e−β(
P−1

k=−n L(γk−zk,γk+1−zk+1))dγ

=
∫

(Rd)[−n,−1]×[0,1)d

g(γ)ψ∗β(γ−n)ψβ(γ0)e−β(
P−1

k=−n L(γk−zk,γk+1−zk+1)−L(γk,γk+1)).

e−β(
P−1

k=−n L(γk,γk+1))dγ

=
∫

W

f(γ̄)e−β
P

k∈Z(L(γk−zk,γk+1−zk+1)−L(γk,γk+1))dµβ

which proves the proposition. We have used the periodicity of ψβ and ψ∗β .

To end this section, we prove that the Gibbs measure µβ satisfies a variational
principle which looks like a thermodynamical variational principle. Once again
we identify W with the fundamental domain (Rd)Z

∗
− × [0, 1)d × (Rd)Z

∗
+ . For a
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probability measure µ on (Rd)Z
∗
− × [0, 1)d × (Rd)Z

∗
+ , let us denote dµ(γ−1|γ[0,+∞))

the conditional law of γ−1 knowing γ[0,+∞).

Proposition 2.0.7. The measure µβ maximizes the functional

µ 7→





− ∫
(Rd)

Z∗−×[0,1)d×(Rd)
Z∗+ log

(
dµ(γ−1|γ[0,+∞))

e−βL(γ−1,γ0)dγ−1

)
dµ(γ)

if dµ(γ−1|γ[0,+∞)) absolutely continuous w.r.t. dγ−1,
−∞ otherwise

over the set of σ-invariant probability measures on W ' (Rd)Z
∗
− × [0, 1)d × (Rd)Z

∗
+ .

Proof. We use the following convexity inequality : if µ, ν are probability measures
on some space X, and if µ is absolutely continuous with respect to ν, then

−
∫

X

log(
dµ

dν
)dµ ≤ 0,

with equality for µ = ν.
Note that

dµβ(γ−1|γ[0,+∞)) =
ψ∗β(γ−1)
ψ∗β(γ0)

e−λβ−βL(γ−1,γ0)dγ−1.

Thus, for any σ-invariant probability measure µ on W such that dµ(γ−1|γ[0,+∞))
is absolutely continuous with respect to the Lebesgue measure dγ−1, we have

−
∫
dµ(γ−1|γ[0,+∞)) log

(
dµ(γ−1|γ[0,+∞))

ψ∗β(γ−1)ψ∗−1
β (γ0)e−λβ−βL(γ−1,γ0)dγ−1

)
≤ 0

for µ-almost every γ[0,+∞), with equality for µ = µβ . Integrating with respect to
γ[0,+∞), we obtain

−
∫
dµ(γ) log

(
dµ(γ−1|γ[0,+∞))

ψ∗β(γ−1)ψ∗−1
β (γ0)e−λβ−βL(γ−1,γ0)dγ−1

)

= −λβ+
∫

(logψ∗β(γ−1)−logψ∗β(γ0))dµ−
∫
dµ(γ) log

(
dµ(γ−1|γ[0,+∞))

ψ∗β(γ−1)ψ∗−1
β (γ0)dγ−1

)
≤ 0

with equality for µ = µβ .
If µ is σ-invariant,

∫
(logψ∗β(γ−1)− logψ∗β(γ0))dµ = 0. Thus, we get

−
∫

log
(
dµ(γ−1|γ[0,+∞))
e−βL(γ−1,γ0)dγ−1

)
dµ(γ) ≤ λβ

for all σ-invariant measures µ, with equality for µ = µβ .

After multiplication by −1/β, it would be tempting to decompose the functional
of Proposition 2.0.7 in the form :∫

L̄dµ− 1
β
H(µ)

where H would be the functional defined by

H(µ) =
∫

log
(
dµ(γ−1|γ[0,+∞))

dγ−1

)
dµ

Then, we would call
∫
L̄dµ the mean energy, and look as H(µ) as a kind of entropy,

so that
∫
Ldµ− 1

βH(µ) would be a free energy.
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However, this decomposition does not always make sense, since both terms may
be infinite.

It would be interesting to see if Theorem 0.0.1 can be derived directly from
Proposition 2.0.7 by letting β → +∞, and expanding the functional of Proposition
2.0.7 in powers of β.

Remark 2.0.8. The situation is considerably simpler when the configuration space
is of the form BZ, where B is a finite alphabet. In that situation, the Gibbs measure
µβ for a potential L, at temperature 1/β, minimizes the free energy

∫
Ldµ− 1

βhσ(µ)
([Ru78]); from the fact that hσ is a bounded, lower semi-continuous functional, one
can deduce directly that any limit of (µβ)β→∞ is an energy-minimizing measure,
and maximizes the entropy amongst energy-minimizing measures. See, for instance,
Theorem 29 in [CLT01]; in that reference, the action of the shift on BZ arises as
the coding of an expansive map of the circle, and the potential L (depending on
infinitely many coordinates) is the logarithm of the jacobian of the map; so that
“energy-minimizing measures” are measures of minimal Lyapunov exponent.

When B = Rd, difficulties arise from the fact that H(µ) is not a bounded
functional and is not the metric entropy hσ(µ); also, Lyapunov exponents appear
when analyzing the gaussian fluctuations of the energy.

3. Proof of Theorem 0.0.1.

To start with, we give the general idea of the proof, and explain the role of
assumptions (A1), (A2), (A3). These ideas are quite classical, their technical im-
plementation is performed in Section 3.2.

On a finite-dimensional configuration space (Rd)n, let A be an energy functional,
and

dµβ(x) =
e−βA(x)dx∫
e−βA(y)dy

the associated “Gibbs measure”. Assume that A has only non-degenerate minima
(xi)i∈N. Then, as β −→ +∞, µβ concentrates on the minima of A; more precisely,
it converges to

µ∞ = (
∑

i

[A′′(xi)]−1/2)−1
∑

i

[A′′(xi)]−1/2 δxi

where δxi is the Dirac mass at xi and A′′(xi) the Hessian of A at xi.
In other words, µ∞ is the measure maximizing

−
∑

i

µ(xi) log µ(xi)− 1
2

∫
log[A′′(x)]dµ(x),

amongst measures carried by the minima of A, xi.
We want to apply exactly this idea, when the configuration space, (Rd)Z/Zd, is

now infinite-dimensional. The difficulty is that both notions of Gibbs measures and
metric entropy are defined, from the finite-dimensional model described above, by
taking the thermodynamical limit n −→ ∞. We are in a situation where n goes
first to ∞ (the thermodynamical limit), and then β (the low temperature limit). If
we could first let β tend to ∞, then n, we would be done.

Assumptions (A1), (A2), (A3) contain what we need to apply the heuristics
described above:

– non-degeneracy of the minimizers of the energy.
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– technical possibility to reverse the orders of the two limits n −→ +∞ and
β −→ +∞.

In the following, the space Rd is endowed with its canonical Euclidean structure,
we denote ||.|| the associated norm, ||.||∞ the norm ||x||∞ = maxi=1,..,d |xi|, and
||.||1 the norm ||x||1 =

∑
i=1,..,d |xi|.

3.1. Preliminary results.

Lemma 3.1.1. Let (βk)k≥0 be a sequence such that βk −→ +∞. Then the families
of functions (− 1

βk
logψβk

)k and (− 1
βk

logψ∗βk
)k are equicontinuous.

Proof. The function ψβ satisfies

ψβ(x) = e−λβ

∫

Rd

e−βL(x,y)ψβ(y)dy

= e−λβ

∫

[0,1)d

(
∑

s∈Zd

e−βL(s+x,y))ψβ(y)dy

The potential L being superlinear, there exists M > 0 such that
∑

||s||>M
e−βL(s+x,y) ≤ e−β inf

s∈Zd L(s+x,y)

for all x, y ∈ [0, 1)d. It follows that
∑

s∈Zd

e−βL(s+x,y) ≤
∑

||s||≤M
e−βL(s+x,y) + e−β infs L(s+x,y) ≤ (Md + 1)e−β infs L(s+x,y)

so that
lim sup
β−→∞

1
β

log(
∑

s∈Zd

e−βL(s+x,y)) ≤ − inf
s
L(s+ x, y).

On the other hand, since
∑

s∈Zd

e−βL(s+x,y) ≥ e−β infs L(s+x,y),

one has the lower bound:

lim inf
β−→∞

1
β

log(
∑

s∈Zd

e−βL(s+x,y)) ≥ − inf
s
L(s+ x, y),

so that

lim
β−→∞

1
β

log(
∑

s∈Zd

e−βL(s+x,y)) = − inf
s
L(s+ x, y).(3.1.1)

Besides, the argument proves that the convergence is uniform in x, y.
For x, y ∈ Rd, we denote I(x, y) = infs∈Zd L(s + x, y). This function is Zd-

periodic in both variables; we show that it is a lipschitz function on Td × Td.
Because L(x, y) goes to infinity as ||x− y|| −→ +∞, there exists M > 0 such that

I(x, y) = inf
||s||≤M

L(s+ x, y)

for all x, y ∈ (0, 1)d. Let us consider x, y, x′, y′ ∈ (0, 1/2)d. Assume that I(x, y) =
L(s0 + x, y) with ||s0|| ≤M . Then

I(x′, y′) ≤ L(s0+x′, y′) ≤ L(s0+x, y)+C(||x−x′||+||y−y′||) = I(x, y)+C(||x−x′||+||y−y′||)
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where C is a bound on the norm of the derivative of L on (−M − 1,M + 1)d ×
(0, 1/2)d.

Since (x, y) and (x′, y′) play symmetric roles, we have proved that I is lipschitz
on (0, 1/2)d × (0, 1/2)d, for the euclidean distance. Besides, in (0, 1/2)d × (0, 1/2)d

the distance ||x− x′||+ ||y − y′|| coincides with the distance of their images in the
torus, dTd(x̄, x̄′) + dTd(ȳ, ȳ′). This way, we can cover Td ×Td by a finite number of
charts in which I is lipschitz.

We now write

1
β

logψβ(x)− 1
β

logψβ(y) =
1
β

log

(∫
[0,1)d(

∑
s∈Zd e−βL(s+x,z))ψβ(z)dz∫

[0,1)d(
∑
s∈Zd e−βL(s+y,z))ψβ(z)dz

)

≤ 1
β

log

(
sup
z

∑
s∈Zd e−βL(s+x,z)

∑
s∈Zd e−βL(s+y,z))

)

−→
β−→+∞

sup
z∈[0,1)d

I(x, z)− I(y, z)

the last line being a consequence of (3.1.1). Besides, the convergence is uniform in
x, y.

Since I is lipschitz, there exists C such that supz I(x, z)− I(y, z) ≤ CdTd(x̄, ȳ).
Thus, for all ε > 0, there exists K such that, for all k > K,

1
βk

logψβk
(x)− 1

βk
logψβk

(y) ≤ ε+ CdTd(x̄, ȳ)

Since x and y play symmetric roles, it follows that ( 1
βk

logψβk
) is a uniformly

equicontinuous family of Zd-periodic functions.
A similar argument yields the result for ( 1

βk
logψ∗βk

).

We introduce the value

c = − inf{
∫
L̄dµ, µ a σ-invariant probability measure on W}.

Definition 3.1.2. (1) We say that a σ-invariant probability measure µ on W is
energy-minimizing if

∫
W
L̄dµ = −c.

(2) We say that a configuration γ̄ is strongly minimizing if, for all m < n, for all
m′ < n′, for all γ′m′ , ..., γ

′
n′ such that γ′m′ = γm and γ′n′ = γn + s for some s ∈ Zd,

L(γm, γm+1)+...+L(γn−1, γn)+c(m−n) ≤ L(γ′m′ , γ
′
m′+1)+...+L(γn′−1, γn′)+c(m′−n′).

Obviously, a strongly minimizing configuration is minimizing (but the converse
is not necessarily true, see [Ber02] for a discussion of this issue in the context of
Lagrangian dynamical systems).

We say that a configuration γ̄ is recurrent if, for all k, for every ε > 0, there
exists an infinity of positive indices j and of negative indices j such that

dW1((γk, γk+1), (γj , γj+1)) ≤ ε

The Poincaré recurrence theorem implies that a configuration lying in the support
of a σ-invariant probability measure on W is recurrent.

Proposition 3.1.3. There exists a lipschitz Zd-periodic function u such that

u(x) + L(x, y)− u(y) + c ≥ 0, for all x, y ∈ Rd,
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and u(x) + L(x, y) − u(y) + c = 0 if there exists a configuration γ̄ ∈ W which is
recurrent strongly minimizing, or which lies in the support of an energy-minimizing
measure, such that γ0 = x, γ1 = y.

Proof. By Lemma 3.1.1, we can find a sequence βk −→ +∞ and a continuous
Zd-periodic function u such that

1
βk

logψ∗βk
−→

k−→+∞
−u

uniformly.
We may also assume that λβk

βk
converges in R ∪ {−∞,+∞}, say to a limit λ.

We use the following

Lemma 3.1.4. Assume that (uβ)β>0 is a family of functions on Td which con-
verges uniformly to a continuous function u as β −→ +∞. Then

lim
β−→∞

1
β

log
∫

Td

eβuβ(x)dx = sup
x∈Td

u(x)

The proof goes as follows : the inequality uβ ≤ u + ε ≤ supu + ε, which holds
for every ε > 0 and for β large enough, yields the upper bound on the limsup. The
fact that uβ ≥ u− ε, for every ε > 0 and for β large enough, and that u ≥ supu− ε
on a set of positive Lebesgue measure, yields the lower bound on the liminf.

Now, taking the log of both sides of the equality

ψ∗β(x) = e−λβ

∫

[0,1)d

(
∑

s∈Zd

e−βL(y,x+s))ψ∗β(y)dy,

dividing by β, and passing to the limit for the subsequence (βk), we get

−u(x) = −λ− inf
y
{I(y, x) + u(y)} = −λ− inf

y
{L(y, x) + u(y)}

or u(x) = λ+ infy{L(y, x) + u(y)}. Since u is continuous, this implies already that
λ is finite.

Imitating the notation of Fathi in [Fa97-1], we introduce the transformation
T− : C(Td,R) −→ C(Td,R):

T−v(x) = inf
y
{L(y, x) + v(y)}.

If v is continuous, then T−v is lipschitz. We admit this fact, whose proof is similar
to the proof that I is lipschitz.

Thus we have u = T−u + λ. This implies that u is lipschitz; besides, λ is
necessarily equal to the critical value, c. This result is due to Fathi for a continuous
time Lagrangian system ([Fa97-1]). Since the full proof is still unpublished, we give
a general idea of it:

– The equality u = T−u+λ implies that u(γ0)+L(γ0, γ1)−u(γ1)+λ ≥ 0, for all
γ0, γ1 ∈ Rd. Taking the integral over an arbitrary σ-invariant probability measure
µ on W yields λ+

∫
L̄dµ ≥ 0, so that λ ≥ c.

– Next, Fathi proves that u = T−u + λ is equivalent to the following: for all
γ0 ∈ Rd, there exists a sequence (γk)k≤0 such that, for all k ≤ 0,

u(γk) +
−1∑

j=k

L(γj , γj+1)− u(γ0) + |k|λ = 0.
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Let us extend this sequence to a configuration (γk)k∈Z. Fathi shows that the se-
quence of Birkhoff sums

1
|k|+ 1

0∑

j=k

δσkγ̄

admits a convergent subsequence as k −→ −∞, and that the limit µ is a σ-invariant
probability measure satisfying

∫
L̄dµ = −λ. Thus, λ = c.

Now, let γ̄ be a strongly minimizing recurrent configuration, and assume that
there exists j such that u(γj) − u(γj+1) + c + L(γj , γj+1) > 0; for instance that
u(γ1) − u(γ2) + c + L(γ1, γ2) > 2ε for some ε > 0. Since γ̄ is recurrent, we can
find k arbitrarily large, such that (γk, γk+1) comes arbitrarily close to (γ0, γ1); this
implies that ¯(γ0, γk+1) comes arbitrarily close to ¯(γ0, γ1). Thus, for some k,

L(γ0, γk+1)− u(γk+1) + u(γ0) + c ≤ L(γ0, γ1)− u(γ1) + u(γ0) + c+ ε

<

k∑

j=0

(u(γj)− u(γj+1) + c+ L(γj , γj+1))

=
k∑

j=0

L(γj , γj+1)− u(γk+1) + u(γ0) + (k + 1)c

To account for the second inequality, note that in the sum, all the terms are non-
negative, the first one is L(γ0, γ1)−u(γ1)+u(γ0)+ c, and the second one is greater
than 2ε.

But this is in contradiction with the fact that γ̄ is strongly minimizing. So, we
must have u(γj)−u(γj+1)+ c+L(γj , γj+1) = 0 for all j if γ̄ is strongly minimizing
and recurrent.

To prove the last assertion of the lemma, we know that, for every γ̄ ∈W ,

u(γ1)− u(γ0) ≤ c+ L̄(γ̄)

and that

0 =
∫

W

(u(γ1)− u(γ0))dµ(γ̄)) = c+
∫

W

L̄(γ̄)dµ(γ̄)

if µ is an energy-minimizing measure (in particular, σ-invariant). So, we must have
equality u(γ0) − u(γ1) = c + L̄(γ̄) if γ̄ lies in the support of an energy-minimizing
measure.

We say that a sequence (µβk
)k∈N (βk → +∞) converges to a measure µ∞ if, for

every k, for every bounded continuous function f on Wk,∫
f(πkγ̄)dµβk

(γ̄) −→
k−→+∞

∫
f(πkγ̄)dµ∞(γ̄)

Lemma 3.1.5. Let (βk) be a sequence such that βk −→ +∞. Then it is possible to
extract from the sequence (µβk

)k∈Z a subsequence which converges to a σ-invariant
probability measure on W .

Proof. We need to show that, for all I finite interval of Z, for all ε > 0, there
exists a compact subset K ⊂WI such that µβπ−1

I (WI \K) ≤ ε for β large enough.
Once this is proved, we can apply Prohorod’s theorem and a diagonal extraction
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procedure to find a subsequence of µβkn
such that µβkn

π−1
I converges in the weak*

topology, for all I :
µβkn

π−1
I −→ µI∞

Besides, if J ⊂ I, then µI∞.π
−1
J = µJ∞ since µβkn

π−1
I π−1

J = µβkn
π−1
J . Kolmogorov’s

extension theorem ensures that there exists a probability measure µ∞ on W such
that µ∞.π−1

I = µI∞, for all I. Finally, µ∞ is the limit of µβkn
.

We now prove the first claim. Let I be finite interval of Z; since µβ is σ-invariant,
we can assume that I = [0, n]. There exists K such that, if |xi − yi| > K for some
i = 1, ..., d, then L(x, y) ≥ ||x− y||1.

By Lemma 3.1.1, if we normalize ψβ and ψ∗β such that ψβ(0) = ψ∗β(0) = 1, there
exists M such that ψβ(x) ≤ eβM , ψ∗β(x) ≤ eβM (for all x), and

∫
Td ψβ(y)ψ∗β(y)dy ≥

e−βM .
Thus, from the expression (2.0.6) defining µβ , for all i = 1, ..., d, k = 0, ..., n, and

by the σ-invariance of µβ ,

µβπ
−1
I ({|γik+1 − γik| > K})

≤ e3βM
∫

γ0∈[0,1)d,|γi
1−γi

0|>K
e−β||γ1−γ0||1dγ0dγ1 ≤ e3βM

Cst.e−βK

β

If we take K large enough, this term tends to zero as β −→ ∞, thus showing
that µβπ−1

I concentrates on the compact set {||γk+1 − γk||∞ ≤ K, for all k}.

Lemma 3.1.6. Let (βk) be a sequence such that βk −→ +∞ and such that the
sequence (µβk

)k∈Z converges to a probability measure µ∞ on W . Then each config-
uration γ̄ in the support of µ∞ is a minimizing configuration.

Proof. Assume, on the contrary, that there exists a configuration ξ̄ in the support
of µ∞, which is not minimizing. There exists z̄ ∈Wc such that

∑

k∈Z
(L(ξk − zk, ξk+1 − zk+1)− L(ξk, ξk+1)) < 0.

By continuity of L, there exists a neighbourhood B of ξ̄, such that, for all γ̄ ∈ B,
∑

k∈Z
(L(γk − zk, γk+1 − zk+1)− L(γk, γk+1)) < 0.

Proposition 2.0.6 implies that
∫

W

χB(γ̄)dµβ(γ̄) =
∫

W

χB(γ̄ − z̄)e−β
P

k∈Z(L(γk−zk,γk+1−zk+1)−L(γk,γk+1))dµβ(γ̄).

The right-hand side term tends to 0, and so µβ(B) −→ 0, which contradicts the
fact that ξ̄ is in the support of µ∞.

Lemma 3.1.7. The set of energy-minimizing configurations is relatively compact
in W .

Proof. A subset K ⊂ W is relatively compact if and only if there exists M such
that, for all γ̄k ∈ K, ‖ γk+1 − γk ‖≤M (remember that the topology is defined by
the distance dW introduced in Section 1).
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Let A = sup{|L(x, y)|, ||x − y||∞ ≤ 1}. Because L grows superlinearly, there
exists M such that ||x− y|| > M =⇒ L(x, y) > 2A. For all x, y ∈ Rd, there exists
s ∈ Zd such that ||x− y − s||∞ ≤ 1; thus,

||x− y|| > M =⇒ (∃s ∈ Zd, L(x− s, y) < L(x, y)),

Let γ ∈ (Rd)Z be such that ||γk+1− γk|| > M for some k, say k = 0 for instance.
Let s ∈ Zd be such that L(γ0 − s, γ1) < L(γ0, γ1), then

L(γ0 − s, γ1) + L(γ1, γ2) < L(γ0, γ1) + L(γ1, γ2)

so γ is not energy-minimizing. Thus, we have found M such that

γ̄ is energy-minimizing ⇒ ||γk+1 − γk|| ≤M for all k ∈ Z.

We can now prove a result, due to Mather ([Ma91]) in the context of lagrangian
dynamical systems:

Theorem 3.1.1. (a) Let µ be a σ-invariant probability measure on W . The three
following assertions are equivalent:

(i) µ is energy-minimizing.
(ii) the support of µ contains only strongly minimizing configurations.
(iii) the support of µ contains only minimizing configurations.

(b)Energy-minimizing measures do exist.

Proof. To prove the theorem, we note that the definition of an energy-minimizing
measure and of a (strongly) minimizing configuration is unchanged if we replace L
by L̃ ∼ L+c. Thus, using Proposition 3.1.3, we may assume that L̄ is a nonnegative
function, that

inf{
∫
L̄dµ, µ a σ − invariant p. m.} = 0,

and that L̄ vanishes on strongly minimizing configurations and on the support of
any energy-minimizing measure. In this situation, it is clear that a σ-invariant
measure µ is energy-minimizing if and only if L̄ vanishes on its support, and a
configuration γ̄ is strongly minimizing if and only if L̄(σkγ̄) = 0 for all k.

This proves that (i) ⇔ (ii).
It remains to prove that (iii)⇒(i). We note that Lemma 3.1.7 implies that µ

is compactly supported. We show that the ergodic components of µ are energy-
minimizing. Let γ̄ be a point in the support of µ, such that the sequence of proba-
bility measures

1
n

n−1∑

k=0

δσkγ̄

converges weakly to a σ-invariant probability measure µγ̄ (this happens for µ-almost
every point, by Birkhoff’s ergodic theorem).

Let ν be an arbitrary σ-invariant probability measure, that we may assume
ergodic, without loss of generality. Let ξ be a point such that the sequence of
probability measures 1

n

∑n−1
k=0 δσk ξ̄ converges weakly to ν. We choose representatives

γ, ξ such that ||γ0 − ξ0|| ≤ 1. For all n, there exists sn ∈ Zd such that ||γn + sn −
ξn||∞ ≤ 1. Assertion (ii) tells us that

L(γ0, γ1) + L(γ1, γ2) + ...+ L(γn−1, γn) ≤ L(γ0, ξ1) + L(ξ1, ξ2) + ...+ L(ξn−1, γn + sn)
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We now choose a C > 0 such that ν({γ̄, ||γ1 − γ0||∞ ≤ C}) > 0. We have
||ξn − ξn−1||∞ ≤ C for an infinity of n ∈ N; we may also assume, without loss
of generality,that ||ξ1 − ξ0|| ≤ C.

Now,

L(γ0, ξ1) + L(ξ1, ξ2) + ...+ L(ξn−1, γn + sn) ≤ L(ξ0, ξ1) + L(ξ1, ξ2) + ...+ L(ξn−1, ξn) + 2M

where M is an upper bound of ||∂1L|| and ||∂2L|| on the set {(x, y), ||x − y||∞ ≤
C + 1}.

Dividing both sides by n, and letting n −→ +∞, we get
∫

W

L̄dµγ̄ ≤
∫

W

L̄dν.

Thus, we have proved that all ergodic components of µ are energy-minimizing,
implying that µ itself is energy-minimizing.

Assertion (b) follows from Lemmas 3.1.5 and 3.1.6.

We denoteM the closure of the union of supports of energy minimizing measures:

M = ∪µ en. min. suppµ ⊂W,

and call it ”Mather set”, for reasons explained in Section 4. It is a compact, σ-
invariant subset of W .

Thanks to Proposition 3.1.3, we can operate a change of gage on the potential so
that it becomes nonnegative, and vanishes on the Mather set. Although the change
of gage is only lipschitz, the functions

∑n−1
i=0 L(γi, γi+1) remain of class C3 with

respect to the variables γ1, ..., γn−1.

3.2. The proof of Theorem 0.0.1. We begin by proving a subaddivity property
for the determinants [nA′′(γ̄)], when γ̄ is a minimizing configuration.

Recall that A′′(γ̄) is the hessian matrix at γ̄ ∈ W of the (formal) sum A(γ̄) =∑
k∈Z L(γk, γk+1). We see A′′(γ̄) as an infinite tridiagonal symmetric matrix, which

can be decomposed into d× d blocks (A′′(i, j))i,j∈Z:

A′′(i, i) = ∂2
22L(γi−1, γi) + ∂2

11L(γi, γi+1),

A′′(i, i+ 1) = ∂21L(γi, γi+1),

and A′′(i, j) = 0 if |j − i| > 1. The nd × nd submatrix nA
′′(γ), corresponding to

indices 1 ≤ i, j ≤ n, is the hessian matrix of the action A(γ|[0,n+1]) with respect to
the variables γ1, · · · , γn.

Notations: – In what follows, we denote [M ] the determinant of a square matrix
M of any dimension.

– unless stated otherwise, we shall always represent matrices in d-block form; for
instance, if M is an nd× nd matrix, Mij or M(i, j) (1 ≤ i, j ≤ n) will be the d× d
block in position (i, j).

– if γ0, γn ∈ Rd, we will denote nA
′′(γ0, γn) the hessian of the energy A :

(Rd)[0,n],(γ0,γn) −→ R at its minimizer (which, for simplicity, has been assumed
unique in Assumption (A1)). If γ̄ is energy-minimizing, then nA

′′(γ0, γn) = nA
′′(γ̄).

– We recall that hn(γ0, γn) denotes the value of the minimum of the action on
(Rd)[0,n],(γ0,γn) (we have performed a change of gage so that hn ≥ 0). If γ̄ ∈W , we
will denote hn(γ̄) = hn(γ0, γn).
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Lemma 3.2.1. Let M be a symmetric matrix, decomposed in the form

M =
(
A tC
C B

)

(where A and B are square symmetric matrices, and C is a rectangular matrix of
appropriate dimension).

If M is definite semi-positive, then

[M ] ≤ [A].[B]

Proof. Assume first that A is invertible. Since the determinant of a matrix is
unchanged when adding to one line a linear combination of the others, we see that
the determinant of M is equal to that of the matrix

(
A tC
0 B − CA−1 tC

)

Thus, [M ] = [A].[B − CA−1 tC].
We now use the fact that an m×m matrix M is definite semi-positive if and only

if, for all J ⊂ {1, ...,m}, the determinant of the square submatrix MJ := (Mi,j)i,j∈J
is nonnegative.

In particular, if M is definite semi-positive, so are A and B.
Denote by k the dimension of A, and l the dimension of B.
Let J ⊂ {k + 1, ..., k + l} and I = J ∪ {1, ..., k}. Like previously,

[MI ] = [A].[(B − CA−1 tC)J ].

It follows that all the determinants of (B − CA−1 tC)J are nonnegative for all J ;
thus, B − CA−1 tC is definite semi-positive.

To conclude, note that A−1 is a definite positive symmetric matrix, so that

B − CA−1 tC ≤ B,

meaning that
tX.(B − CA−1 tC).X ≤ tX.B.X

for all X. But, if B and B−CA−1 tC are positive semi-definite matrices such that
B−CA−1 tC ≤ B, we must have [B−CA−1 tC] ≤ [B] (this can be checked by using
the fact that there exists a matrix P such that both tPBP and tP (B−CA−1 tC)P
are diagonal).

This ends the proof of the lemma when A is invertible. If A is not invertible, we
know by the previous result that [M + εI] ≤ [A+ εI].[B + εI] for all ε > 0, and we
conclude by letting ε tend to 0.

Lemma 3.2.1 implies a property of subadditivity of log[nA′′(γ̄)]:

Lemma 3.2.2. If γ̄ ∈W is an energy-minimizing configuration, then, for all m ≤
n,

[ nA′′(γ̄)] ≤ [mA′′(γ̄)].[ n−mA′′(σmγ̄)]

According to the subbaditive ergodic theorem ([Ki73]), this implies the existence
of lim 1

n log[ nA′′(γ)] in R∪ {−∞}, for µ-almost every γ, if µ is energy-minimizing.
We shall say more about this limit in Section 4; in particular, prove that it is in R.

We now turn to the proof of Theorem 0.0.1.
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Proof. For simplicity, we write the proof in the case d = 1.
Let µ∞ be a limit point of µβ , (β → +∞), and let µ be an arbitrary energy-

minimizing measure on W ; without loss of generality, we assume that µ is ergodic.
For ε > 0 and M > 0, consider the following (countable) partition of R2d = R2:

R2 = ti,jP̃ij
where the union runs over {(i, j) ∈ Z2, | j − i |< M

ε } ∪ {(i,∞), i ∈ Z}, and the P̃ijs
are defined as follows:

P̃ij = {(γ0, γ1), γ0 ∈ [iε, (i+ 1)ε), γ1 ∈ [jε, (j + 1)ε)}

for | j − i |< M
ε ,

P̃i∞ = {(γ0, γ1), γ0 ∈ [iε, (i+ 1)ε), ∃j, | j − i |≥ M

ε
, γ1 ∈ [jε, (j + 1)ε)}

If ε is the inverse of an integer, this gives a finite partition of the quotient W1 '
R2/Z, and hence a finite partition of W = tPij :

Pij = {γ̄ ∈W, (γ0, γ1) ∈ P̃ij}
The number M will be fixed later – sufficiently large, whereas ε is doomed to tend
to 0.

We assume that µ and µ∞ do not charge the boundary of the elements of the
partition P – if not so, we may translate the initial partition to a new partition
(P̃ij + x)ij , x ∈ Rd, so that this assumption is satisfied. For δ > 0, we will denote
µ(δ) the µ-measure of a δ-neighbourhood of the boundary of the partition P . The
function µ(δ) tends to zero as δ goes to zero.

The choice of the partition P induces a symbolic dynamics over a subshift in the
finite alphabet {Pij}:

WP = {(αk)k∈Z ⊂ {(ij)}Z, Pαk
∩ σ−1Pαk+1 6= ∅}

If µ is a σ-invariant measure on W we will denote µP its image on WP .

Recall the following convexity inequality:

−
∑

pi log pi +
∑

pi log qi ≤ 0(3.2.1)

whenever (pi) and (qi) are probability weights.
Hence, for all n,

−
∑
α

µ(Pα0 ∩ ... ∩ σ−n+1Pαn−1) log µ(Pα0 ∩ ... ∩ σ−n+1Pαn−1)

+
∑
α

µ(Pα0 ∩ ... ∩ σ−n+1Pαn−1) logµβ(Pα0 ∩ ... ∩ σ−n+1Pαn−1) ≤ 0

the sums running over all word of length n in WP .

From now on, we will replace the ∩ by dots . in expressions of the type Pα0 ∩
... ∩ σ−n+1Pαn−1 .
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We can rewrite this:

(3.2.2) −
∑

µ(Pα0 ...σ
−n−1Pαn−1) log µ(Pα0 ..σ

−n+1Pαn−1)

+
∑

µ(Pα0 ..σ
−nPαn) log

(
β

2π

)n
2

∫

Pα0 ..σ
−n+1Pαn−1

ψ∗β(γ0)e−β
Pn−1

i=0 L(γi,γi+1)ψβ(γn)dγ0..dγn

≤ −
∑

µβ(Pα0 ..σ
−n+1Pαn−1) log µβ(Pα0 ..σ

−n+1Pαn−1) +

∑
µβ(Pα..σ−n+1Pαn−1) log

(
β

2π

)n
2

∫

Pα0 ..σ
−n+1Pαn−1

ψ∗β(γ0)e−β
Pn−1

i=0 L(γi,γi+1)ψβ(γn)dγ0..dγn

We have denoted dγ0...dγn the Lebesgue measure on Wn; we may see it as the
Lebesgue measure on the fundamental domain [0, 1)×Rn−1 for the action of Z on
Rn, which we identify to Wn. In calculations, it will be convenient to keep this
identification in mind.

The rest of the proof is organized as follows: by the Laplace method, we first find
an upper bound for the right hand side of inequality (3.2.2), then state a couple of
results about tridiagonal matrices, and finally, find a lower bound for the left hand
side of inequality (3.2.2).

The conclusion of Theorem 0.0.1 is obtained by dividing the resulting inequality
by n, and first letting n tend to ∞; then, β to ∞, and then ε to 0.

Upper bound. We begin with finding an upper bound for the right hand side
of inequality (3.2.2), in terms of the determinants [A′′]. An integer N is fixed and
we take n = kN in the inequality above.

Lemma 3.2.3. (a) (Laplace method). Let γ0, γN ∈ R2. Then, assuming as
in (A1) that the minimizer of the energy in (Rd)[0,N ],(γ0,γN ) is unique and non-
degenerate, we have

(
β

2π

)N−1
2

∫

RN−1
e−β

PN−1
i=0 L(γi,γi+1)dγ1...dγN−1 =

e−βhN (γ0,γN )

[ N−1A′′(γ0, γN )]1/2
(1+ o(1)

β→∞
)

≤ 1
[ N−1A′′(γ0, γN )]1/2

(1 + o(1)
β→∞

)

where, for fixed N , o(1)
β→∞

is uniform on each set {| γN − γ0 |≤ K}.
(b) If the constant M , involved in the construction of the partition P , is chosen

large enough, then, for all γ0 ∈ R,
(
β

2π

)N
2

∫

γ̄∈Pα0 ..σ
−N+1PαN−1

e−β
PN−1

i=0 L(γi,γi+1)dγ1..dγN ≤
(
β

2π

)N
2

e−βM ≤ 1

for β large enough, as soon as one the αk’s is of the form i∞.

Assertion (a) comes from the Laplace method for estimating integrals decaying
exponentially ([Di68], IV.2, or [Co65]). Since the method is very classical, we do not
provide a proof; we shall provide one later, when we will need an estimate uniform
in N . Assertion (a) requires the non-degeneracy of minima of the action, contained
in Assumption (A1). The remainder term o(1) is bounded in terms of the second
and third derivatives with respect to γ1, ..., γn−1 of the energy

∑N−1
i=0 L(γi, γi+1),

so that it is uniform on compact sets.
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For (b), take M such that | γ1 − γ0 |> M ⇒ L(γ0, γ1) ≥| γ1 − γ0 |; and use the
fact that L ≥ 0 elsewhere.

We define functions FN and GβN on WP , depending on N coordinates, as follows:

FN (α0, .., αN−1) = 1

if one of the αj ’s is of the form i∞, and

FN (α0, .., αN−1) = sup{ 1
[N−1A′′(γ0, γN )]1/2

, γ̄ ∈ Pα0 ..σ
−N+1PαN−1}

otherwise;

GβN (α0, .., αN−1) = 1

if one of the αj ’s is of the form i∞, and

GβN (α0, .., αN−1) =
(
β

2π

)1/2

sup
γ0

∫

R
e−βhN (γ0,γN )dγN

otherwise.
Assumption (A3) ensures that GβN is bounded, independently of β, by BN grow-

ing subexponentially with N .

Lemma 3.2.4. If the constant M , involved in the construction of the partition P ,
is chosen large enough, then there exists C(β) ≥ 0 and, for all N ∈ N∗, a real
β(N) > 0, such that: for all k, and for all α0, ..., αkN−1,

(
β

2π

) kN
2

∫

Pα0 ..σ
−kN+1PαkN−1

ψ∗β(γ0)e−β
PkN−1

i=0 L(γi,γi+1)ψβ(γkN )dγ0...dγkN

≤ C(β)
k−1∏

j=0

FN (αjN , .., α(j+1)N−1)
k−1∏

l=0

GN (αjN , .., α(j+1)N−1)(1 + o(1)
β→∞

)k

for all β > β(N), and with a uniform o(1)
β→∞

.

Proof. We first note that there exists C(β) > 0 such that C(β)−1/2 ≤ ψβ ≤
C(β)1/2, and C(β)−1/2 ≤ ψ∗β ≤ C(β)1/2, because they are continuous positive
Zd-periodic functions.

Applying Fubini’s theorem, we first estimate the integral with respect to γ(k−1)N+1, ..., γkN ,
while γ0, ..., γ(k−1)N are fixed.

If one of the Pαj ’s (j = (k− 1)N, ..., kN − 1) is of the form Pi∞, we use Lemma
3.2.3 (b), and get

(
β

2π

)N
2

∫

(γ(k−1)N ,..,γkN )∈Pα(k−1)N
..σ−N+1PαkN−1

e
−βPkN−1

i=(k−1)N
L(γi,γi+1)dγ(k−1)N+1..dγkN

≤ 1 = FN (α(k−1)N , .., αkN−1)G
β
N (α(k−1)N , .., αkN−1)
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Otherwise, we use Lemma 3.2.3 (a), and write

(3.2.3)
(
β

2π

)N
2

∫

(γ(k−1)N ,..,γkN )∈Pα(k−1)N
..σ−N+1PαkN−1

e
−βPkN−1

i=(k−1)N
L(γi,γi+1)dγ(k−1)N+1..dγkN

≤ FN (α(k−1)N , .., αkN−1)(1 + o(1))
(
β

2π

) 1
2

∫
e−βhN (γ(k−1)N ,γkN )dγkN

≤ FN (α(k−1)N , .., αkN−1)(1 + o(1))GβN (α(k−1)N , .., αkN−1)

The latter bound does not depend on γ(k−1)N ; hence,

(
β

2π

) kN
2

∫

Pα0 ..σ
−kN+1PαkN−1

e−β
PkN−1

i=0 L(γi,γi+1)dγ0...dγkN

≤
(
β

2π

) (k−1)N
2

∫

Pα0 ..σ
−(k−1)N+1Pα(k−1)N−1

e−β
P(k−1)N−1

i=0 L(γi,γi+1)dγ0...dγ(k−1)N

× FN (α(k−1)N , .., αkN−1)G
β
N (α(k−1)N , .., αkN−1)(1 + o(1)

β→∞
)

Lemma 3.2.4 can now be proved by induction on k.

About tridiagonal matrices. Before going on estimating integrals, we need
a few facts about tridiagonal matrices. We call a matrix (Aij)1≤i,j≤n tridiagonal if

Aij 6= 0 ⇒| i− j |≤ 1

The hessian of the energy is a tridiagonal matrix.
The following lemma is essentially proved in [AMB92] (p.128):

Lemma 3.2.5. For all α > 0, there exists r(α) > 0 such that: if A is an invertible
symmetric tridiagonal matrix with | Ai,i+1 |≤ 1, then

‖ A−1 ‖2≤ α implies ‖ A−1 ‖∞≤ r(α)

independently of the dimension.

Proof. For 1 ≤ j ≤ n, let f j = A−1ej , where (ej) is the canonical basis of Rn. Note
that

‖ A−1 ‖∞≤ sup
k

∑

j

| f jk |= sup
j

∑

k

| f jk |

since A−1 is symmetric.
Let us fix j, and denote f = f j . For m > j, we define a vector mf with

coordinates
mfk = 0

for k < m, and
mfk = fk

for k ≥ m. Then η = A.mf has coordinates

ηm−1 = Am−1,mfm

ηm = −Am,m−1fm−1
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and
ηk = 0

otherwise.
Since, by assumption,

‖ mf ‖2≤ α ‖ η ‖2,
we get, for all m > j,

Pm :=
∑

k≥m
| fk |2≤ α2(| fm |2 + | fm−1 |2)

As proved in [AMB92], p. 128, this inequality implies

| fk |≤
(

2α2

1 + (1 + 4α4)1/2

) k−j−2
2

||f ||2 ≤
(

2α2

1 + (1 + 4α4)1/2

) k−j−2
2 √

α

for k ≥ j. Remembering that f stands for f j :

∑

k≥j
| f jk |≤

√
α

+∞∑

k=0

(
2α2

1 + (1 + 4α4)1/2

)(k−2)/2

=: r(α)/2

We can use a similar trick for k < j, and get that∑

1≤k≤n
| f jk |≤ r(α),

independently of j and of the dimension n.

We shall also need the following result, which is a part of the main result of
[AMB92] (Theorem 2):

Theorem 3.2.6. ([AMB92]) Let M be a symmetric tridiagonal Z×Z matrix, such
that there exists K > 0 such that, for all i, K−1 ≤ |Mi,i+1| ≤ K and |Mi,i| ≤ K|.
Assume that M defines a continuous, invertible endomorphism of l2(Z,R).

Then, the kernel of M in RZ is 2-dimensional and admits a basis s, u ∈ RZ such
that

|sn+m| ≤ Cθm||(sn, sn+1)||
|un−m| ≤ Cθm||(un, un+1)||

for all n ∈ Z, m ≥ 0, for some constants C > 0, 0 < θ < 1.

Theorem 3.2.6 implies the existence of a real number L > 0 such that, for all
δ > 0, for all 0 < n, for all γ ∈ RZ such that Mγ = 0,

|γ0| ≤ δ and |γn| ≤ δ ⇒ |γj | ≤ Lδ, for all j = 1, ..., n− 1.

Indeed, fix j = 0, ..., n− 1; there exist λ1, λ2 ∈ R such that

(γk, γk+1) = λ1
(sk, sk+1)
||(sj , sj+1)|| + λ2

(uk, uk+1)
||(uj , uj+1)|| ,

for all k. Writing that |γ0| ≤ δ and |γn| ≤ δ, we obtain

C|λ1|θ−j − C|λ2|θj ≤ δ

and
C|λ2|θ−(n−j) − C|λ1|θn−j ≤ δ,

which implies
C|λ1|(1− θ2n) ≤ 2δθj



30 NALINI ANANTHARAMAN

and
C|λ2|(1− θ2n) ≤ 2δθn−j .

Hence,
||(γj , γj+1)|| ≤ |λ1|+ |λ2| ≤ 4δ/C.

Lower bound. Let us turn to the left hand side of inequality (3.2.2), which we
will try to bound below before letting n = kN tend to ∞. Since µ is a minimizing
measure, we note that the term µ(Pα0 ....σ

−n+1Pαn−1) is non zero only if all the
Pαi

’s are included in {| γ1 − γ0 |≤M} (if M is large enough); besides, the cylinder
Pα0 ....σ

−n+1Pαn−1 must contain a trajectory, say ξ̄, in the Mather set.
In the coming calculations, the cylinder Pα0 ....σ

−n+1Pαn−1 is fixed, as well as
ξ̄ ∈ Pα0 ....σ

−n+1Pαn−1 ∩M. We need to estimate from below the integral
∫

Pα0 ..σ
−n+1Pαn−1

ψ∗β(γ0)e−β
Pn−1

i=0 L(γi,γi+1)ψβ(γn)dγ0...dγn.

As previously, we shall use the Laplace method. However, since we need a
uniform estimate with respect to the length n of the path, we shall now give the
details.

Before starting, recall Assumptions (A2):
There exists ε0 > 0 such that, for all 0 ≤ δ ≤ ε0, there exists a sequence

(cn) ∈ [0, 1]N satisfying:
– limn

log cn

n = 0,
and :
– for all n > 0, for all γ0, γn ∈ Rd such that

‖ γ0 − ξ0 ‖≤ cnδ

‖ γn − ξn ‖≤ cnδ

for some energy-minimizing configuration ξ, there exists a minimizer γ of the energy:

A : (Rd)[0,n],γ0,γn −→ R

(γ0, ..., γn) 7→
n−1∑

i=0

L(γi, γi+1),

such that ‖ γk − ξk ‖≤ δ for all 0 ≤ k ≤ n.
We denote (γ0, γ̂1, ..., γ̂n−1, γn) the minimizer. Its energy is, by definition of the

function hn,

hn(γ0, γn) = L(γ0, γ̂1) +
n−2∑

i=1

L(γ̂i, γ̂i+1) + L(γ̂n−1, γn).

Applying a Taylor formula to the function L(γ0, γ1)+
∑n−2
i=1 L(γi, γi+1)+L(γn−1, γn)

at the minimizer (γ̂1, γ̂2, · · · , γ̂n−1), we can write
∫

Pα0 ..σ
−n+1Pαn−1

ψ∗β(γ0)e−β
Pn−1

i=0 L(γi,γi+1)ψβ(γn)dγ0...dγn

=
∫

Pα0 ..σ
−n+1Pαn−1

ψ∗β(γ0)e−βhn(γ0,γn)− β
2 n−1A

′′(γ0,γn).(γ−γ̂)2−βRn(γ−γ̂)ψβ(γn)dγ0..dγn
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where the remainder Rn is given by the integral formula:

Rn(γ − γ̂) =
∫ 1

0

(1− t)2

2
A(3)(γ̂ + t(γ − γ̂)).((γ − γ̂))3dt

so that

|Rn(γ − γ̂)| ≤ C ‖ γ − γ̂ ‖33≤ C ‖ γ − γ̂ ‖∞‖ γ − γ̂ ‖22≤ Cε ‖ γ − γ̂ ‖22

where C is a bound onthe third derivative of L on the set {(x, y) ∈ R2, |x−y| ≤M},
and ε is the diameter of the elements of the partition P .

Moreover, if the cylinder Pα0 ..σ
−n+1Pαn−1 contains a configuration ξ̄ in the

Mather set, then, for all γ̄ ∈ Pα0 ..σ
−n+1Pαn−1 ,

0 ≤ hn(γ0, γn) ≤ L(γ0, ξ1) + L(ξ1, ξ2) + ...+ L(ξn−1, γn)

≤ L(ξ0, ξ1) + L(ξ1, ξ2) + ...+ L(ξn−1, ξn) + Cε = Cε,

where C is a Lipschitz constant for L on {(x, y) ∈ R2, |x− y| ≤M}.
Thus,

∫

Pα0 ..σ
−n+1Pαn−1

ψ∗β(γ0)e−β
Pn−1

i=0 L(γi,γi+1)ψβ(γn)dγ0...dγn

≥ C(β)−1e−βCε
∫

Pα0 ..σ
−n+1Pαn−1

e−β( 1
2 n−1A

′′(γ0,γn)+CεIn−1).(γ1−γ̂1,..,γn−1−γ̂n−1)
2
dγ0...dγn

We have denote In−1 the identity matrix of dimension n − 1 and, as previously,
C(β)−1/2 is a lower bound for both ψβ and ψ∗β .

If we were sure that Pα0 ..σ
−n+1Pαn−1 contained a neighbourhood of (γ0, γ̂1, ..., γ̂n−1, γn),

for every γ0, γn, our job would be quite easier and we could go directly to the es-
timate (3.2.10) a couple of pages ahead. However, this is not necessarily the case:
the problem occurs when (ξj , ξj+1) comes too close to the boundary of the parti-
tion. The technical complications of the next few pages arise from the necessity of
dealing with this problem.

To begin with, we can write a very rough estimate:

(3.2.4) C(β)−1e−βCε
(
β

2π

)n
2

∫

Pα0 ..σ
−n+1Pαn−1

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

≥ C(β)−1e−βCε
(
β

2π

)n
2

εne−nKβε
2

where K is an upper bound on the norm of 1
2A

′′ + CεI in l2(Z,R).
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Let us now try and give a more subtle estimate: we write

C(β)−1e−βCε
∫

Pα0 ..σ
−n+1Pαn−1

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

≥ C(β)−1e−βCε
∫

(1)

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

where the integral runs over the set

(1) = Pα0 ..σ
−n+1Pαn−1 ∩ {|γ0 − ξ0| ≤ cnδ, |γn − ξn| ≤ cnδ},

for some δ > 0. We choose

δ2 = Bβ−1,

where B > 0 is arbitrary.
At this stage, it is useful to remember that (thanks to our definition of the parti-

tion P ) the cylinder Pα0 ..σ
−n+1Pαn−1 ⊂ [0, 1)×Rn is the product of its projections

B0, ..., Bn on the successive coordinates:

Pα0 ..σ
−n+1Pαn−1 = B0 × ...×Bn.

Moreover, the Bi’s are segments of length ε: Bi = [ai, bi).
We denote

J(ξ) = {i ∈ [0, n] such that ξi 6∈ (ai + 2δ, bi − 2δ)}.
One has

(3.2.5) C(β)−1e−βCε
∫

(1)

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

≥ C(β)−1e−βCε
∫

(1)∩(2)

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

where

(2) = {γi ∈ Bi for i ∈ J(ξ), γj ∈ Bj and |γj − γ̂j | ≤ δ for j 6∈ J(ξ)}.
By Assumption (A2), if γ ∈ (1), then, for j 6∈ J(ξ),

|γj − γ̂j | ≤ δ =⇒ γj ∈ Bj ,
so that actually

(2) = {γi ∈ Bi for i ∈ J(ξ), |γj − γ̂j | ≤ δ for j 6∈ J(ξ)}.



33

We claim that

(3.2.6) C(β)−1e−βCε
∫

(1)∩(2)

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

≥ C(β)−1e−βCε
(
(2π)−1/2

√
2K−1B(L+ 1)e−4K−1B(L+1)2

)|J(ξ)| ∫

(3)

dγ0dγn ×
∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

where:
– B = βδ2

– K is an upper bound on the norms of (1
2A

′′ + CεI) and ( 1
2A

′′ + CεI)−1 in
l2(Z,R)

– L is a real number such that, for all δ > 0, for all γ ∈ RZ, for all n > 0,

(
1
2
A′′ + CεI).γ = 0, |γ0| ≤ δ, |γn| ≤ δ ⇒ |γj | ≤ Lδ for all j = 1, ..., n− 1.

The existence of L is ensured by the remarks following Theorem 3.2.6 (note that L
depends on ε).

Finally, (3) is the set

(3) = {|γ0 − ξ0| ≤ cnδ, |γn − ξn| ≤ cnδ, |γj − γ̂j | ≤ δ for j 6∈ J(ξ)}.

To prove (3.2.6), write J(ξ) as a disjoint union of intervals:

J(ξ) = [k1, l1] ∪ [k2, l2] ∪ ... ∪ [kr, lr].

Integrate
∫
(1)∩(2)

with respect to the variables γk1 , ..., γl1 , the other variables fixed.
Since |γk1−1 − γ̂k1−1| ≤ δ and |γl1+1 − γ̂l1+1| ≤ δ, we know that the critical point
of the function

(γk1 , ..., γl1) 7→ (
1
2 n−1A

′′(γ0, γn) + CεIn−1).(γ1 − γ̂1, · · · , γn−1 − γ̂n−1)2

is at uniform distance Lδ from (γ̂k1 , ..., γ̂l1). From there, we shall prove that

(3.2.7)
∫

γ∈(1)∩(2)

e−β( 1
2 n−1A

′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)
2
dγk1 ..dγl1

≥
(
(2π)−1/2

√
2K−1B(L+ 1)e−4K−1B(L+1)2

)l1−k1+1

∫

γ∈(3)

e−β( 1
2 n−1A

′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)
2
dγk1 ..dγl1

All we can say about the domain of integration of (3.2.7) is that: if γ ∈ (1),
then for j ∈ J(ξ) the domain of integration with respect to γj contains either
{γj− γ̂j ∈ [δ, ε]}, or {γj− γ̂j ∈ [−ε,−δ]}. Consider, for instance, the first situation.
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Integrate (3.2.7) with respect to k1. Say, for instance, k1 = 2, and denote
M = 1

2 3A
′′(γ0, γn) + CεI3. Then, estimate (3.2.7) goes as follows:

∫ ε

γ2=δ

e−β(2M12γ1γ2+M22γ
2
2+2M23γ2γ3)dγ2

= e−β(2M12γ1γ2(min)+M22γ2(min)2+2M23γ2(min)γ3)

∫ ε

γ2=δ

e−βM22(γ2−γ2(min))2dγ2

where γ2(min) is the point achieving the minimum of 2M12γ1γ2+M22γ
2
2+2M23γ2γ3.

We know that |γ2(min)| ≤ Lδ, so that, if we perform the change of variable γ2 7→√
2βM22(γ2 − γ2(min)), and if K−1 ≤M22 ≤ K, we have

(3.2.8) e−β(2M12γ1γ2(min)+M22γ2(min)2+2M23γ2(min)γ3)

∫ ε

γ2=δ

e−βM22(γ2−γ2(min))2dγ2

≥ e−β(2M12γ1γ2(min)+M22γ2(max)2+2M23γ2(max)γ3)(2βM22)−1/2

∫ √
2Kβ(ε−Lδ)

√
2βK−1δ(L+1)

e−γ
2
2/2dγ2

= e−β(2M12γ1γ2(min)+M22γ2(min)2+2M23γ2(min)γ3)(2βM22)−1/2

∫ √
2Kβ(ε−Lδ)

√
2K−1B(L+1)

e−γ
2
2/2dγ2

if we remember that β and δ are linked by βδ2 = B. Now, for β large enough, we
can bound the last integral from below by the integral on the interval [

√
2K−1B(L+

1), 2
√

2K−1B(L+ 1)], which is itself larger than

(3.2.9)

e−β(2M12γ1γ2(min)+M22γ2(min)2+2M23γ2(min)γ3)(2βM22)−1/2
√

2K−1B(L+1)e−4K−1B(L+1)2

= (2π)−1/2

∫

R
e−β(2M12γ1γ2+M22γ

2
2+2M23γ2γ3)dγ2.

√
2K−1B(L+ 1)e−4K−1B(L+1)2

We have integrated (3.2.7) with respect to γk1 . We can iterate the procedure and
integrate successively with respect to γk1+1, ..., γl1 , to prove (3.2.7). From (3.2.7),
(3.2.6) is obtained by combining the similar estimates for all the intervals [kj , lj ].

It remains to estimate the integral
∫
(3)

(cf (3.2.6)). The integral
∫
(3)

runs over
γj ∈ R, for all j ∈ J(ξ). For an index i 6∈ J(ξ), it still runs over the set {|γi− γ̂i| ≤
δ}.

For a break, we prove the following corollary of Lemma 3.2.5:

Corollary 3.2.7. There exists ρ(ε) such that, for all n, for all γ ∈W ,

‖ ( n−1A
′′(γ) + 2CεIn−1)

−1/2 ‖∞≤ 1
ρ(ε)

Proof. Obviously, the spectrum of n−1A
′′(γ) + 2CεIn−1 is included in an interval

[2Cε, λ] independent of the dimension n. Let C be a closed contour in C \ R−,
going once around [2Cε, λ]. The matrix ( n−1A

′′(γ) + 2CεIn−1)
−1/2 is given by

holomorphic functional calculus:

( n−1A
′′(γ) + 2CεIn−1)−1/2 =

1
2iπ

∫

C
z−1/2(zIn−1 − ( n−1A

′′(γ) + 2CεIn−1))−1dz

Now, for all z ∈ C,
‖ (zIn−1 − ( n−1A

′′(γ) + 2CεIn−1))
−1 ‖2
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is bounded, independently of n, by

α(z) = sup
x∈[2Cε,λ]

1
| z − x |

By Lemma 3.2.5,

‖ (zIn−1 − ( n−1A
′′(γ) + 2CεIn−1))

−1 ‖∞≤ r(α(z))

independently of n, and

‖ ( n−1A
′′(γ) + 2CεIn−1)

−1/2 ‖∞≤ 1
2π

∫

C
| z |−1/2 r(α(z))dz :=

1
ρ(ε)

We resume the calculations from (3.2.6):

(3.2.10)∫

(3)

dγ0dγn.

∫
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

≥
∫

|γ0−ξ0|≤cnδ,|γn−ξn|≤cnδ

dγ0dγn ×
∫

‖(γ−γ̂)‖∞≤δ
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)

2
dγ1..dγn−1

≥
∫

|γ0−ξ0|≤cnδ,|γn−ξn|≤cnδ

dγ0dγn ×
∫

‖( n−1A
′′(γ0,γn)
2 +CεIn)1/2.(γ−γ̂)‖∞≤ρ(ε)δ

e−β( 1
2 n−1A

′′(γ0,γn)+CεIn−1).(γ1−γ̂1,··· ,γn−1−γ̂n−1)
2
dγ1..dγn−1

=
(
β

2π

)−(n−1)/2 ∫

|γ0−ξ0|≤cnδ,|γn−ξn|≤cnδ

dγ0dγn ×

1
[ n−1A′′(γ0, γn) + 2CεIn−1]1/2

× 1
(2π)(n−1)/2

∫

‖y‖∞≤
√
βρ(ε)δ

e−
(y,y)

2 dy1..dyn−1

≥ (cnδ)2
(
β

2π

)−(n−1)/2 1
maxγ∈α[ n−1A′′(γ) + 2CεIn−1]1/2

(1− e−βρ(ε)
2 δ2

2 )n−1

The max in the last line is to be read as the max over all the γ ∈ Pα0 ..σ
−n+1Pαn−1 .

To get the last inequality, we have used the following estimate on tails of the
Gaussian distribution on R:

1
(2π)1/2

∫

|y|≥Y
e−

|y|2
2 dy ≤ 2

e−
|Y |2

2

Y

which yields, in dimension n− 1,
1

(2π)(n−1)/2

∫

‖y‖∞≤Y
e−

(y,y)2

2 dy1..dyn−1 ≥ (1− e−
Y 2
2 )n−1(3.2.11)

for Y > 2. We apply it to Y =
√
βρ(ε)δ = ρ(ε)

√
B; we take B large enough to

ensure that Y > 2.
The main point in estimate (3.2.10) is summarized in the following lemma:
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Lemma 3.2.8. There exists ρ = ρ(ε) such that, for all γ0, γn,

∫

‖(γ−γ̂)‖∞≤δ
e−β( 1

2 n−1A
′′(γ0,γn)+CεIn−1).(γ1−γ̄1,··· ,γn−1−γ̄n−1)

2
dγ1..dγn−1

≥
(
β

2π

)−(n−1)/2 1
[ n−1A′′(γ) + 2CεIn−1]1/2

(1− e−βρ
2 δ2

2 )n−1

And more generally,

Lemma 3.2.9. For all K ≥ 0, and for all ε > 0, there exists a ρ > 0 such that,
for all n, for all nd× nd block-tridiagonal positive symmetric matrix Q satisfying

– ‖ Qi,i+1 ‖≤ K for all i.
– Q ≥ εIn,
then

(
β

2π

)n/2 ∫

‖x‖∞≤δ
e−β

(Qx,x)
2 dx1..dxn ≥ (1−e−βρ δ2

2 )n
(
β

2π

)n/2 ∫

Rn

e−β
(Qx,x)

2 dx1..dxn

=
(1− e−βρ

δ2
2 )n

[Q]1/2

as soon as βδ2 is large enough.

To sum up, the calculations of the last pages lead to the following lower bound:

Lemma 3.2.10. Assume that Pα0 ..σ
−n+1Pαn−1 contains an element, denoted ξ,

in the Mather set. Then, if |γ0 − ξ0| ≤ cnδ and |γn − ξn| ≤ cnδ

(
β

2π

)n−1
2

∫

Pα0 ..σ
−n+1Pαn−1

exp

(
−β

n−1∑

i=0

L(γi, γi+1)

)
dγ1...dγn−1

≥ e−βCε
(
(2π)−1/2

√
2K−1B(L+ 1)e−4K−1B(L+1)2

)|J(ξ)| 1
[ n−1A′′(γ0, γn) + 2CεIn−1]1/2

(1−e−ρ2 B
2 )n−1

for some ρ = ρ(ε) > 0 depending only on ε.

Let us define

Bad(n) = {(α0, ..., αn−1), for all ξ ∈M∩ Pα0 ..σ
−n+1Pαn−1 , |J(ξ)| > 2µ(2δ)n}.

(The definition of µ(δ) was given at the beginning of the proof; it is the µ-measure
of a δ-neighbourhood of the boundary of the partition P .)

By Birkhoff’s ergodic theorem,

µ(Bad(n)) := µ
(∪(α0,...,αn−1)∈Bad(n)Pα0 ..σ

−n+1Pαn−1

) −→
n−→+∞

0.

To end the proof of Theorem 0.0.1: take n = kN in inequality (3.2.2). Bound
the right-hand side from above using Lemma 3.2.4. Bound the left-hand side from
below, using the rough estimate (3.2.4) for the cylinders (α0, ..., αn−1) ∈ Bad(n),
and Lemma 3.2.10 for the other cylinders, for which we know that |J(ξ)| ≤ 2µ(2δ)n.
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(3.2.12) −
∑

µ(Pα0 ....σ
−kN+1PαkN−1) log µ(Pα0 ...σ

−kN+1PαkN−1)

−1
2

∑
α

µ(Pα0 ..σ
−kN+1PαkN−1) log(max

γ∈α
[ kN−1A

′′(γ)+2CεIkN−1])+(kN−1) log(1−e−ρ2 B
2 )

− log(C(β)(ckNδ)2e−βCε
β

2π
)

−(kN)(βKε2−log ε)µ(Bad(kN))−2kNµ(2δ) log
(
(2π)−1/2

√
2K−1B(L+ 1)e−4K−1B(L+1)2

)

≤ −
∑

µβ(Pα0 ....σ
−kN+1PαkN−1) logµβ(Pα0 ....σ

−kN+1PαkN−1)+logC(β)+k log(1+ o(1)
β→∞

)

+ k
∑

µβ(Pα0 ....σ
−N+1PαN−1) logFN (α0, .., αN−1) + k logBN

for β large enough. Remember that B = βδ2 is fixed (and arbitrary).

We notice that log maxγ∈α[ n−1A
′′(γ) + 2CεIn−1], as a function of the sequence

(α0, .., αn−1), has the following subadditivity property: if (α0, .., αn−1) intersects
the Mather set, then

log max
γ∈α

[ n−1A
′′(γ) + 2CεIn−1]

≤ log max
γ∈α

[ mA′′(γ) + 2CεIm] + log max
γ∈α

[ n−1−mA′′(σmγ) + 2CεIn−1−m]

This follows directly from Lemma 3.2.1.
As a consequence, if µ is an (invariant) minimizing measure, then

1
kN

∑
µ(Pα0 ..σ

−kN+1PαkN−1) log max
γ∈α

[ kN−1A
′′(γ) + 2CεIkN−1]

converges to its infimum, as k −→ +∞. And in particular, the limit is less than

1
N

∑
µ(Pα0 ..σ

−N+1PαN−1) log max
γ∈α

[ N−1A
′′(γ) + 2CεIN−1]

Thus, if we divide both side of (3.2.12) by kN and let k tend to ∞ (β being kept
fixed), we get the inequality:

hσ(µ, P )− 1
2

∫

WP

1
N

log max
γ∈α

[ N−1A
′′(γ) + 2CεIN−1]dµP (α)

− log(1− e−ρ
2 B

2 )− 2µ(2δ) log
(
(2π)−1/2

√
2K−1B(L+ 1)e−4K−1B(L+1)2

)|J(ξ)|

≤ hσ(µβ , P ) +
∫

WP

1
N

logFN (α)dµPβ (α) +
1
N

( o(1)
β→∞

) +
logBN
N

We used the fact (assumed in (A2)) that log cn/n −→ 0. The first term hσ(µ, P ) is
the metric entropy of the invariant measure µ, with respect to the partition P and
the transformation σ on W ; in other words, it is the metric entropy of the measure
µP on the subshift of finite type WP .

Now, let β −→ +∞; or more precisely, take a sequence βk such that µβk
con-

verges weakly to µ∞. Since we have assumed that µ∞ does not charge the boundary
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of the elements of the partition, we get

hσ(µ, P )− 1
2

∫

WP

1
N

log max
α

[ N−1A
′′(γ) + 2CεIN−1])dµP (α)

− log(1− e−ρ
2 B

2 ) ≤ hσ(µ∞, P ) +
∫

WP

1
N

logFN (α)dµP∞(α) +
logBN
N

The point in fixing N was to integrate only functions depending on a finite number
of coordinates, so as to be able to pass to the weak limit.

At this stage, we can let B −→ +∞, so that log(1− e−ρ
2 B

2 ) −→ 0.
Now, letting ε (the diameter of the partition P ) tend to 0, and recalling the

definition of FN ,

hσ(µ)− 1
2

∫
1
N

log[ N−1A
′′(γ)]dµ(γ)

≤ hσ(µ∞)− 1
2

∫
1
N

log[ N−1A
′′(γ)]dµ∞(γ) +

logBN
N

and, finally, letting N → +∞ (and using Assumption (A3)), we get the result.

This ends the proof of Theorem 0.0.1. It remains to prove that the functional

µ 7→ hσ(µ)− 1
2

lim
n→∞

∫

W

1
n

log[nA′′(γ̄)]dµ(γ̄)

is finite on energy-minimizing measures.

4. Frenkel-Kontorova models and twist-maps

4.1. We now give (without proofs) a few links between Frenkel-Kontorova models
and symplectic twist diffeomorphisms of Rd × Rd. We refer to [AMB92] for a
detailed discussion. This section will allow us to prove that the term hσ(µ) −
1
2 limn→∞

∫
W

1
n log[nA′′(γ̄)]dµ(γ̄) is finite in Theorem 0.0.1. It also provides a link

with Part II, which is more focused on the lagrangian aspects of the problem.
If L satisfies the “twist property” (cf Section 1), it is shown in [AMB92] how

to associate to the Frenkel-Kontorova model, discussed above, a symplectic “twist
diffeomorphism” of Rd × Rd to itself : this map φ∗ is defined by

(x′, p′) = φ∗(x, p) ⇐⇒ ∂2L(x, x′) = p′,−∂L1(x, x′) = p.

Recall the definition of a stationary configuration for the Frenkel-Kontorova
model: it is a sequence (γk)k∈Z such that

∂2L(γk−1, γk) + ∂1L(γk, γk+1) = 0,(4.1.1)

for all k. There is a homeomorphism between Rd × Rd and the set of stationary
configurations of the Frenkel-Kontorova model, given by

(x, p) 7→ (γk)k∈Z
where, for all k, γk is the projection of φ∗k(x, p) on the first factor Rd. Besides, this
homeomorphism is a conjugacy between φ∗ and the shift σ restricted to the set of
stationary configurations.

This way, one can associate to every Frenkel-Kontorova satisfying the “twist
property”, a symplectic twist diffeomorphism; and conversely, to every symplectic
twist map of Rd × Rd, a Frenkel-Kontorova model with configuration space (Rd)Z.
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We can also introduce another diffeomorphism φ of Rd×Rd to itself, defined by

φ(γ−1, γ0) = (γ0, γ1)

where γ−1, γ0, γ1 are related by (4.1.1) with k = 0; equivalently,

φ∗(γ−1, p−1) = (γ0, p0), φ∗(γ0, p0) = (γ1, p1)

for some p−1, p0, p1. The bijection

θ : (γk)k∈Z 7→ (γ0, γ1)(4.1.2)

between the set of stationary configurations and Rd × Rd is a conjugacy between
the shift and φ. For this reason, we will sometimes call stationary configurations
“trajectories of φ”. The conjugacy θ also allows to identify φ-invariant probability
measures on Rd × Rd and σ-invariant probability measures carried by the set of
stationary configurations.

If L is Zd-periodic, it is natural to take the quotient space W = (Rd)Z/Zd as
configuration space for the Frenkel-Kontorova model. A stationary configuration in
W is defined as the image of a stationary configuration in (Rd)Z in the quotient. The
diffeomorphism φ∗ can be then be defined on the quotient Rd/Zd ×Rd = Td ×Rd,
and the diffeomorphism φ, on the quotient space (Rd×Rd)/Zd, the action of Zd in
this last case is defined by

s.(x, y) = (x+ s, y + s)

for all s ∈ Zd, for all x, y ∈ Rd.
The conjugacies defined previously between the action of the shift σ on the set

of stationary configurations, and φ or φ∗, are compatible with the actions of Zd,
and thus go to the quotient spaces.

The description of energy-minimizing configurations (rather called action-minimizing
in this context) is precisely the heart of what is called “Mather theory” in the study
of symplectic exact diffeomorphisms of Td×Rd. In this context, what is classically
called “Mather set” is the subset of θ(M) ⊂ (Rd×Rd)/Zd, where M⊂W is the set
defined at the end of 3.1. The Mather set, as a subset of (Rd×Rd)/Zd, is compact
(Lemma 3.1.7), and φ-invariant.

We will say more about Mather theory in Part II, in the case of a continuous
time dynamical system. The function L will be called a Lagrangian, φ will be the
associated Euler-Lagrange flow, and φ∗ the corresponding Hamiltonian flow.

4.2. Determinants and Lyapunov exponents. Motivated by a paper by Thou-
less ([Th72]) in dimension d = 1, we now give a relation between the Hessian of
the energy, and Lyapunov exponents. This relation is not new; in the case of a
continuous time Lagrangian systems, it is known as the Levit-Smilansky formula
(Paragraph 6.3).

Lyapunov exponents are defined by Oseledets’ theorem (see for instance [KH95],
Supplement), which we use in the following form:

Oseledets’ theorem: Let φ : (Rd × Rd)/Zd −→ (Rd × Rd)/Zd be a C1 diffeo-
morphism, and let ν be a φ-invariant probability measure, carried by a compact
subset of (Rd × Rd)/Zd. Then, there exists a set Y ⊂ (Rd × Rd)/Zd such that
ν(Y ) = 1, φ(Y ) = Y , and such that:
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For all y ∈ Y , there exists r(y) ∈ N, and real numbers χ1(y) < χ2(y) < ... <
χr(y)(y), such that the tangent space Ty((Rd × Rd)/Rd) ' Rd × Rd admits a de-
composition

Ty(Td × Rd) = E1(y)⊕ ...⊕ Er(y)(y)
satisfying:

∀v ∈ Ei(y) \ {0}, 1
n

log ||d(φ)ny .v|| −→
n−→±∞

χi(y).

The decomposition is φ-invariant, in the sense that r(φ(y)) = r(y) and Ei(φ(y)) =
dφy.Ei(y).

The subspace Es(y) = ⊕χi(y)<0Ei(y) is called the stable subspace at y, Eu(y) =
⊕χi(y)>0Ei(y) is the unstable subspace, and E0(y) = Ei(y) fir χi(y) = 0 is called
the neutral subspace.

In our situation, we adopt a slightly different convention for the Lyapunov ex-
ponents. Since φ is conjugate to the symplectic diffeomorphism φ∗, its Lyapunov
exponents come into pairs (λ,−λ). We denote

−λ+
1 (y) ≤ −λ+

2 (y)+ ≤ ... ≤ −λ+
d (y) ≤ 0 ≤ λ+

d (y) ≤ ... ≤ λ+
1 (y)

the Lyapunov exponents; they are now repeated with multiplicity, according to the
dimensions of the corresponding subspaces Ej .

Lemma 4.2.1. Let γ be a trajectory of φ, and let n ∈ N. Let us consider the
equation (4.1.1) linearized at (γi)i∈Z:

∂12L(γi−1, γi).Yi−1 + (∂22L(γi−1, γi) + ∂11L(γi, γi+1)).Yi + ∂21L(γi, γi+1).Yi+1 = 0,

for all i ∈ Z.
Fix the initial condition Y0 = 0.
Then, for all n, the determinant of the linear map Y1 7−→ Yn (from Rd to Rd)

is equal to the determinant

(−1)nd(
n∏

k=1

[A′′k+1,k])
−1 × [ n−1A

′′].

Proof. A vector Y = (Y1, · · · , Yn) (Yi ∈ Rd) satisfies nA
′′.Y = (0, 0, 0, · · · , 0, ∗), if

and only if Y is the solution of the linearized equation with Y0 = 0.
Equivalently,

(Yn−1, Yn) = d(φn−1)(γ0,γ1).(0, Y1)
The matrix n−1A

′′ is non-invertible if and only if there exists Y with Y1 6= 0
and Yn = 0 such that nA

′′.Y = (0, 0, 0, · · · , 0, ∗); that is, the map Y1 7→ Yn is not
invertible. In this case, Lemma 4.1.1 is obvious. Thus, let us assume that the map
Y1 7→ Yn is invertible.

Also assume for the momen that nA′′(γ) is invertible. Me may then decompose
the matrix G = nG = nA

′′(γ)−1 into d × d blocks (Gij)1≤i,j≤n. The components
Y1 and Yn are related by:

Yn = Gnn.G
−1
n1 Y1

Let us evaluate the determinant of Gnn.G−1
n1 in terms of the determinant of

A′′(γ). We first define a sequence of d × d matrices (a0, a1, · · · , an−1) by a0 = Id
and

ak = −A′′k+1,k(A
′′
kk + ak−1A

′′
k−1,k)

−1,
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agreeing here that A′′01 = 0 (the sequence is well defined if nA′′ has been assumed
invertible).

We also define an nd × nd matrix T decomposed into d × d blocks (Tij)1≤i,j≤n
with

Tii = Id

Tij =
i∏

k=j

ai−k

(this way, T is lower block-triangular). In fact, the matrix T is constructed in such
a way that D = T. nA

′′ is an upper block triangular matrix, with blocks on the
diagonal

Dkk = Dk = A′′kk + ak−1A
′′
k−1,k

We have G = D−1T which yields GnnG−1
n1 = DnT

−1
n1 D

−1
n so that

[GnnG−1
n1 ] = [Tn1]−1

= (
n−1∏

k=1

[an−k])−1

= (−1)nd(
n∏

k=1

[A′′k+1,k])
−1 ×

n−1∏

k=1

[Dk]

= (−1)nd(
n∏

k=1

[A′′k+1,k])
−1 × [ n−1A

′′]

where the last equality comes from the observation that [ n−1A
′′] = [ n−1D].

Thus, the determinant of Y1 7→ Yn is equal to (−1)nd(
∏n
k=1[A

′′
k+1,k])

−1×[ n−1A
′′].

By continuity of both expressions with respect to the energy functional, Lemma
4.1.1 remains valid even when nA

′′ is not invertible.

Proposition 4.2.2. If µ is an energy-minimizing measure on W , then the limit
lim 1

n log[nA′′(γ̄)] exists for µ-almost every γ̄, and is equal to
d∑
1

λ+
i (γ0, γ1) + lim

1
n

n−1∑

i=0

log | [∂2
12L(γi, γi+1)] |,

where the λ+
i (γ0, γ1) are the d-first (nonnegative) Lyapunov exponents of (γ0, γ1)

under the diffeomorphism φ.

Proof. The existence of the limit lim 1
n

∑n−1
i=0 log | [∂2

12L(γi, γi+1)] | for µ-almost
every γ̄ is guaranteed by Birkhoff’s theorem, applied to the function

W −→ R
γ̄ 7→ log | [∂2

12L(γ0, γ1)] |
We denote θ ∗µ the image of µ under the conjugacy θ (4.1.2). It is a φ-invariant

probability measure. Let us now denote Λd(Rd × Rd) the d-fold exterior product
of Rd × Rd. It is endowed with the euclidean structure coming from the euclidean
structure on Rd × Rd. The Oseledets theorem implies that, for θ ∗ µ-almost every
y ∈ (Rd × Rd)/Zd, for every P ∈ Λd(Rd × Rd), the limit

lim
n−→±∞

1
n

log ||d(φn)y.P ||
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exists (besides, it is of the form
∑d
i=1 ε(i)λ

+
α(i), where ε(i) = ±1, α(i) ∈ {1, ..., d},

the pairs (ε(i), α(i)) all distinct). We denote this limit λP (y).
Denote (e1, e2, ..., e2d) an orthonormal basis of Rd × Rd such that (e1, e2, ..., ed)

is an orthonormal basis of Rd × {0} and (ed+1, ..., e2d) is an orthonormal basis of
{0}×Rd. The Birkhoff and Oseledets theorems, combined with Lemma 4.2.1, imply
that, for µ-almost every γ̄,

lim
1
n

log[ nA′′(γ̄)] = λP (γ0, γ1) + lim
1
n

n−1∑

i=0

log | [∂2
12L(γi, γi+1)] |

where P = ed+1 ∧ ed+2...∧ e2d. Indeed, λP is precisely the exponential growth rate
of the determinant of Y1 7→ Yn, for the fixed initial condition Y0 = 0. This relation
also shows that λP (γ0, γ1) = λP (γ1, γ2) for µ-almost every γ̄.

Let (γ0, γ1) be in the Mather set, and γ̄ = θ−1(γ0, γ1) ∈ M. We show that
{0} × Rd ⊂ T

(γ0,γ1)
(Rd × Rd)/Zd is transverse to the stable subspace at (γ0, γ1).

Otherwise, there would exist an element (ξi)i∈Z in the kernel of A′′(γ̄), such that
ξ0 = 0 and ξi −→

i→+∞
0 exponentially fast. Define an element ζ ∈ (Rd)Z by

ζj = 0 for j ≤ 0,

ζj = ξj for j ≥ 0.

Then ζ ∈ l2(Z,Rd), and, since A′′(γ).ξ = 0 and the first coordinate of ζ vanishes,

〈A′′(γ̄)ζ, ζ〉 = 0.

But, since γ̄ is in the Mather set, A′′(γ̄) is a positive semi-definite operator in
l2(Z,Rd). Thus, the function 〈A′′(γ̄)., .〉 achieves a minimum at ζ. Its derivative at
ζ must vanish: A′′(γ).ζ = 0.

An element of KerA′′(γ̄) is entirely determined by two successive coordinates.
Since ζ−1 = ζ0 = 0, we have ζ = 0. The same argument now shows that ξ = 0.

We have thus shown that {0}×Rd ⊂ T(γ0,γ1)(Rd×Rd) is transverse to the stable
subspace for φ.

Now, let (γ0, γ1) be a point satisfying the conclusions of Oseledets’ theorem with
respect to µ, and γ̄ = θ−1(γ0, γ1). Let E0(γ0, γ1) be the neutral subspace, and
d0 = dimE0(γ0, γ1). Note that d0 is even. We have

λP (γ0, γ1) =
d∑

i=1

λ+
i (γ0, γ1)

unless dim(E0(γ0, γ1) ∩ ({0} × Rd)) > d0/2.
Remember however that λP (γ0, γ1) = λP (γ1, γ2). We cannot have simultane-

ously dim(E0(γ0, γ1)∩({0}×Rd)) > d0/2 and dim(E0(γ1, γ2)∩({0}×Rd)) > d0/2.
Otherwise,

θ−1
(
E0(γ0, γ1) ∩ ({0} × Rd)))⊕ θ−1σ−1

(
E0(γ1, γ2) ∩ ({0} × Rd)))

would be a subspace of dimension> d0 ofKerA′′(γ̄), composed of sequences (ξk)k∈Z
such that

lim
k→±∞

1
k

log ||(ξk, ξk+1)|| = 0,

a contradiction with the definition of d0.
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An example. Consider the example

L(γ0, γ1) =
||γ1 − γ0||2

2
− V (γ0)− 〈ω, γ1 − γ0〉,

ω a vector in Rd.
Then, ∂2

12L is −Id, so that log |[∂2
12L]| = 0. In this situation, we simply get that

any limit point µ∞ of the (µβ)s maximizes the functional

µ 7→ hσ(µ)− 1
2

∫

W

d∑

i=1

λ+
i (γ0, γ1)dµ(γ̄).

The reason for the additional term lim 1
n

∑n−1
i=0 log | [∂2

12L(γi, γi+1)] | in the gen-
eral situation is that, in the definition of Gibbs measures, we have chosen the flat
Lebesgue measure on Rd as the reference measure, although there was no rea-
son to favour this choice amongst other smooth measures. In the special case
L(γ0, γ1) = ||γ1−γ0||2

2 − V (γ0)− 〈ω, γ1 − γ0〉, the function L is defined in reference
to a certain euclidean structure on Rd, so that it is natural to take the associated
Lebesgue measure as reference measure.

In the special case ω = 0, we may assume that maxV = 0, then the Mather set
is

M = {γ̄, ∃x ∈ Rd, V (x) = 0, γi = x for all i}.
The entropy of any energy-minimizing measure vanishes, since M consists in fixed
points of σ. So, in Theorem 0.0.1, the functional reduces to the sum of nonnegative
Lyapunov exponents. Finally, in this situation, we will prove in paragraph 6.4 that
assumptions (A2) and (A3) are always satisfied.

Part 2. Lagrangian dynamics

5. Hamilton-Jacobi, Aubry-Mather and Schrödinger

Let Rd be endowed with its usual euclidean structure denoted 〈., .〉, and let us
consider the lagrangian

L(x, v) =
‖ v ‖2

2
− V (x)

on Rd × Rd, V being a Zd-periodic potential of class C3, and ||.|| being the norm
associated to the scalar product 〈., .〉.

For ω ∈ Rd, perform the change of gage

Lω(x, v) =
‖ v ‖2

2
− V (x)− 〈ω, x〉,

in the definition of the Lagrangian.
The corresponding Hamiltonian (energy) is then

Hω(x, p) =
||p+ ω||2

2
+ V (x)

on Rd × Rd.
The Euler-Lagrange flow is the flow (φt) on Rd × Rd, defined by φt(x0, v0) =

(γ(t), γ̇(t)) where γ is the solution to the second order equation

γ̈t = −V ′(γt),
with the initial condition γ(0) = x0, γ̇(0) = v0.
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Trajectories of the Euler-Lagrange flow are characterized by a variational prin-
ciple: let γ : [a, b] −→ Rd be a C1 curve. Then t 7→ (γt, γ̇t) is trajectory of the
Euler-Lagrange flow if and only if γ is a critical point of the action functional

A(ξ) =
∫ b

a

L(ξt, ξ̇t)dt,

restricted to the set of C1 curves ξ : [a, b] −→ Rd such that ξ(a) = γ(a), ξ(b) = γ(b).
The dynamics is described in an equivalent way by the Hamiltonian flow, whose

trajectories are solution to the system of Hamilton equations{
ẋ = ∂pHω(x, p)
ṗ = −∂xHω(x, p)

on Rd × Rd. Moreover, the energy is constant along trajectories of the flow.
Since V is periodic, both the Euler-Lagrange and the Hamiltonian flow can be

defined on the quotient space Td × Rd.
When one tries to understand the action of the Hamiltonian flow on the phase

space Td×Rd, it is natural to try and find invariant regions. Of particular interest
are invariant lagrangian graphs, that is, invariant subsets of the form

{(x, ω + du(x))} ⊂ Td × Rd,
(ω ∈ Rd, u : Td −→ R as smooth as possible). Such a subset, if it exists, projects
diffeomorphically to the base Td.

For this subset to be invariant, it is necessary and sufficient that there exist a
constant C such that u satisfies the stationary Hamilton-Jacobi equation (HJ):

Hω(x, du(x)) = C

for all x.
However, generally speaking, the Hamilton-Jacobi equation (HJ) may have no

smooth solution. There are two ways out: the theory of viscosity solutions, and
Mather theory. The connection between the two approaches has been made very
clear by the recent, and still mostly unpublished, work of Fathi ([Fa]).

Viscosity solutions.
Let us consider the equation

−ε∆u+Hω(x, dxu) = C,

for ε ≥ 0. When ε = 0, it is equation (HJ); otherwise, it is called the viscous,
stationary Hamilton-Jacobi equation, (HJV).

A continuous Zd-periodic function u is called a viscosity solution of the equation
if, for every C1-function (C2 in the case of (HJV)) φ,

– if u− φ attains a local maximum at y0, then −ε∆φ(y0) +H(x, dxφ(y0)) ≤ C,
and
– if u− φ attains a local minimum at y0, then −ε∆φ(y0) +H(x, dxφ(y0)) ≥ C.

See, for instance, [CEL84], [CL83], [Ba94]. A justification of this definition is
that it coincides with the classical notion of solutions if u is smooth.

It may be checked that, if a viscosity solution exists, then

infH(x, 0) ≤ C ≤ supH(x, 0),

by applying the definition to φ = 0 and y0, successively, a local maximum or
minimum of u.
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Besides, since Hω(x, p) tends to infinity with ||p||, viscosity solutions are lipschitz
and share a common lipschitz constant. Indeed, consider φx(y) = K||x − y||, and
apply the definition. Assume that u− φx has a local maximum at y 6= x, then

Hω(x,K
y − x

||y − x|| ) ≤ C,

which is not possible if K has been chosen large enough. Thus, u − φx attains its
maximum at x, which means that

u(y)− u(x) ≤ K||x− y||.

The definition of viscosity solution also holds, with obvious modifications, for
the evolutive Hamilton-Jacobi equation:

∂tu+Hω(x, dxu) = 0.

We are in the situation when Hω(x, p) is C2, superlinear in p, strictly convex. In
this case, given a continuous initial condition u0, the solution ut is unique ([Ba94],
Theorem 2.8), and given by the expression:

ut(x) = inf
γ
{u(γ(0)) +

∫ 0

−t
Lω(γ(s), γ̇(s))ds},

where the inf is taken over all curves γ : [−t, 0] −→ V with square integrable
derivatives, and such that γ(−t) = x. Moreover, ut is lipschitz in x for all t > 0
([Fa97-1]).

The semi-group (T−t )t≥0 on C(Td,R), defined by

T−t u(x) = inf
γ
{u(γ(0)) +

∫ 0

−t
Lω(γ(s), γ̇(s))ds},

is called the Hopf-lax or Lax-Oleinik semi-group, according to sources.
There is also a second semi-group (T+

t )t≥0

T+
t v(x) = sup

γ:[0,t]→Td,γ(0)=x

{v(γ(t))−
∫ t

0

Lω(γ(s), γ̇(s))ds},

which gives the opposite of the solutions of the equation

∂tu+Hω(x,−dxu) = 0,

which corresponds to reversing the orientation of time.
Notice that u is a viscosity solution of the stationary (HJ) equation if and only

if u− Ct is a solution of the evolutive equation. Thus, looking for solutions of the
stationary equation is the same as solving the fixed point problem:

T−t u = u+ Ct,

for all t.
The existence of such fixed points is given by a theorem of Fathi, called the

“weak KAM theorem”:

Theorem 5.0.3. ([Fa], [Fa97-1]) For a unique constant c = c(ω) ∈ R, there ex-
ist continuous functions u− and u+ on Td, solutions to the following fixed points
problem:

T−t u− = u− + ct

and
T+
t u+ = u+ − ct.
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They are lipschitz, and satisfy the two following properties:
– for all C1 curve γ : [0, t] −→ V ,

u±(γ(t))− u±(γ(0)) ≤
∫ t

0

Lω(γ(s), γ̇(s))ds+ c(ω)t

– for all x ∈ V , there exist two curves γ− : (−∞, 0] −→ V and γ+ : [0,+∞) −→
V with γ−(0) = γ+(0) = x, such that, for all t ≥ 0,

u−(x)− u−(γ−(−t)) =
∫ 0

−t
Lω(γ−(s), γ̇−(s))ds+ c(ω)t

and

u+(γ+(t))− u+(x) =
∫ t

0

Lω(γ+(s), γ̇+(s))ds+ c(ω)t

Note that the theorem does not assert the uniqueness of solutions. Obviously,
if u is a solution, then u+K also, for all K ∈ R, but there may even be solutions
which do not differ by a constant.

Of course, the existence of viscosity solutions of the stationary (HJ) solution
was known before this theorem. It was usually proved by the “vanishing viscosity
method”, which consists, first, in finding a solution uε for (HJV), then in letting
ε −→ 0 and proving a “stability” result: any limit of uε in the uniform topology is
a viscosity solution of the non-viscous (HJ) equation ([CEL84], Theorem 3.1).

If u− is, as above, a (lipschitz) viscosity solution of Hω(x, dxu) = C, then it is
differentiable almost everywhere: the graph

Graph(du−) ⊂ Td × Rd
is a graph lying over a set of full Lebesgue measure in Td, and invariant under
the positive times of the Hamiltonian flow. Similarly, if u+ is as above, then
Graph(−du+) ⊂ Td × Rd is a graph over a set of full Lebesgue measure in Td,
and invariant under the negative times of the Hamiltonian flow (see [Fa]).

Applying Theorem 5.0.3 to various ωs, one obtains weak solutions to the problem
of finding invariant Lagrangian graphs.

Mather theory. The starting point of Mather theory is the remark that, if
γ : R −→ Td is a trajectory of the Euler-Lagrange flow, lying in an invariant
lagrangian torus of the form Graph(ω + du), then γ is a global minimizer of the
action, meaning that

∫ b

a

Lω(γt, γ̇t)dt ≤
∫ b

a

Lω(ξt, ξ̇t)dt

for all a < b, for all ξ : [a, b] −→ Td of class C1 such that ξ(a) = γ(a), ξ(b) = γ(b) ∈
Td. Note that this notion of action-minimizing trajectory depends on ω, contrarily
to the definition of the Euler-Lagrange flow. It would be more adequate to speak
of “ω-action-minimizing” trajectories.

Thus, even if an invariant lagrangian graph associated to ω does not exist, one
may still look for action-minimizing trajectories. Or, if we are only interested
in invariant measures of the flow, for (ω-)action-minimizing measures : these are
defined as probability measures on the phase space, invariant under the flow, and
achieving the minimum of the integral∫

Td×Rd

Lω(x, v)dµ(x, v)
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over the set of all invariant probability measures.

Theorem 5.0.4. ([Ma91]) (a) For each ω, action-minimizing measures do exist.
(b) For each ω, let us define the Mather set M̃ω ⊂ Td × Rd as the (closure of)

the union of supports of ω-action-minimizing measures:

M̃ω = ∪µ act. min.suppµ.

Then M̃ω is a compact set, invariant under the Euler-Lagrange flow.
(c) A probability measure, invariant under the Euler-Lagrange flow, is ω-action-

minimizing if and only if its support lies in the Mather set M̃ω.
(e) A probability measure, invariant under the Euler-Lagrange flow, is ω-action-

minimizing if and only if the trajectories in its support are ω-action-minimizing.
(f) (The Graph Theorem) The projection π : Td ×Rd −→ Td, restricted to M̃ω,

is injective. Its inverse, defined on

Mω := π(M̃ω),

is Lipschitz.

The links with the theory of viscosity solutions have been made explicit in the
(still mostly unpublished) work of Fathi ([Fa], [Fa97-1], [Fa97-2]). For instance, the
ω-action-minimizing trajectories of the Euler-Lagrange flow, when carried by Le-
gendre duality to the cotangent bundle, are the complete trajectories of the Hamil-
tonian flow lying in Graph(du), for some viscosity solution u of Hω(x, dxu) = c(ω)
(recall that Graph(du) is, a priori, only invariant by the positive times of the
Hamiltonian flow). The Mather set M̃ω (transported by Legendre duality to the
cotangent bundle) is contained in Graph(du) for any such u. Finally, the value of
c(ω) is

c(ω) = − inf{
∫

Td×Rd

Lω(x, v)dν(x, v), ν a φ-invariant probability measure}.

The constant c(ω), called the effective hamiltonian in PDE, is called the Mather
function (seen as a function of ω) by others; or sometimes, Mañe’s critical value for
the Lagrangian Lω.

Let us end this paragraph by a proposition, due to Fathi, which will be useful
later.

Proposition 5.0.5. ([Fa97-2]) For every fixed point of u− of the semi-group (T−t −
c(ω)t)t≥0, there exists a unique fixed point u+ of the semi-group (T+

t + c(ω)t)t≥0

such that u− and u+ coincide on Mω. They satisfy u− ≥ u+. The fixed points u−
and u+ are then called conjugate.

The Schrödinger equation, the viscous Hamilton-Jacobi equation, and
the associated stochastic process.

Given a scalar β, we consider the Schrödinger operator on Rd:

Hβ =
∆

2β2
+ V,

and we define
Hω
β = e−β〈ω,x〉 ◦ Hβ ◦ eβ〈ω,x〉.

Although we do not precise for the moment on which space it acts, we can
note that, for any β, Hω

β preserves (formally) the set of Zd-periodic functions. For
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β = i/h (h being the Planck constant), the operator Hω
β is the quantization of the

classical Hamiltonian Hω defined earlier. In this paper, however, we consider the
case when β > 0.

We will use the following properties of the operator Hβ , proved for instance in
[AS82], [Si79], II.6 (for the moment, without the change of gage represented by ω):

The operator Hβ is essentially self-adjoint, bounded from above. By using func-
tional calculus, one can define the semi-group (exp(tβHβ))t≥0 of bounded operators
on L2(Rd). For every t > 0, exp(tβHβ) is an integral operator, with a positive ker-
nel Kt

β(x, y) depending continuously on (t, x, y) ∈ (0,+∞)×Rd×Rd, given by the
Feynman-Kac formula ([AS82], [Si79] II.6):

Kt
β(x, y) =

∫

C([0,t],Rd)

eβ
R t
0 V (γu)dudWβ,(x,y)

[0,t] (γ),

where dWβ,(x,y)
[0,t] denotes the brownian bridge between x and y. It is a positive

measure on the set of continuous paths C([0, t],Rd); its definition is recalled a bit
later.

From this formula, and the fact that
∫
dWβ,(x,y)

[0,t] (γ) =
(

β
2πt

)d/2
e−

β||x−y||2
2t , one

sees in particular that

Kt
β(x, y) ≤ eβMt

(
β

2πt

)d/2
e−

β||x−y||2
2t ,

where M is an upper bound on V .

We now define exp(tβHω
β ) as

exp(tβHω
β ) = e−β〈ω,x〉 ◦ exp(tβHβ) ◦ eβ〈ω,x〉.

For each t > 0, it is a kernel operator, with a continuous kernel given by

Kt
β,ω(x, y) = e−β〈ω,x〉Kt

β(x, y)e
β〈ω,y〉.

It also acts as a kernel operator on the set of Zd-periodic functions.

Remark 5.0.6. When writing this paper for the first time, the author was not aware
that the Feynman-Kac formula also holds (with the necessary modifications) in the
presence of a magnetic field, i.e. when ω is replaced by a non-closed 1-form: see
[Si79], V.15. This seems to indicate that all the results below also hold in the
presence of a magnetic field.

We can apply the results of Section 2 to the operator P+
β = exp(tβHω

β ). There
exist positive, Zd-continuous functions ψβ and ψ∗β , and a real number λβ , such that

exp(tβHω
β )ψβ = etβλβψβ(5.0.1)

and

exp(tβHω
β )∗ψ∗β = etβλβψ∗β ,(5.0.2)

for all t. For each t > 0, etβλβ is the spectral radius of exp(tβHω
β ) in L2(Td), and

it is a simple eigenvalue.
(More precisely, the proof of Section 2 would allow us to find such ψβ , ψ∗β and

λβ for each given t. But since the operators exp(tβHω
β ) commute and since ψβ , ψ∗β

and λβ are defined uniquely by equations (5.0.1), (5.0.2), they must be the same
for all t.)
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Besides, the differentiation of equation (5.0.1) with respect to time yields that

Hω
βψβ = λβψβ(5.0.3)

in the sense of distributions. Since the Laplace operator is elliptic, this implies that
ψβ is of class C2 (at least) and that (5.0.3) holds in the strong sense. Similarly, ψ∗β
is of class C2, and

Hω∗
β ψ∗β = λβψ

∗
β .(5.0.4)

If we let uβ = − logψ∗β
β and vβ = − logψβ

β , a simple computation shows that

−∆u
2β

+Hω(x, dxu) = λβ

and that

−∆v
2β

+Hω(x,−dxv) = λβ ,

in other words, uβ is a solution of (HJV) with viscosity coefficient 1/β, and vβ is a
solution of (HJV) for the reversed orientation of time.

Remark 5.0.7. We have seen that (uβ) is a uniformly lipschitz family, and that
(λβ)β is bounded. It follows from the stability result for viscosity solutions ([CEL84],
Theorem 3.1), that any limit point u of uβ in the uniform topology is a viscosity
solution of

Hω(x, dxu) = C,

where C is a limit point of λβ . Since we know (Theorem 5.0.3) that this equation
has solutions for C = c(ω) only, this implies that

λβ −→
β→+∞

c(ω).

We are now interested in the behaviour of the measure

dµ0
β(x) = ψβ(x)ψ∗β(x)dx,

which we normalize to give a probability measure on the torus.

Theorem 5.0.8. Let Hω
β = e−β〈ω,x〉 ◦

(
∆

2β2 + V (x)
)
◦eβ〈ω,x〉 and Hω∗

β = H−ωβ . Let

ψβ , ψ
∗
β be the C2 positive eigenfunctions, defined above.

Then, as β → +∞, the measure

µ0
β =

ψβ(x)ψ∗β(x)dx∫
Td ψβ(y)ψ∗β(y)dy

on Td concentrates on the Mather set Mω.
Assume the system satisfies the properties (A1), (A2), (A3) below. If µ0

∞ is
a limit point of (µ0

β), and µ∞ is the corresponding action-minimizing measure on
Td × Rd, then µ∞ maximizes the functional

hφ(µ)− 1
2

∫

Td×Rd

(
d∑

i=1

λ+
i (x, v))dµ(x, v)

amongst all action-minimizing measures.
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The fact that µ0
∞ can be lifted in a unique way to an action-minimizing measure

comes from the Graph Theorem (Theorem 5.0.4 (f)).
In the theorem, hφ(µ) stands for the metric entropy of the invariant measure µ

with respect to the Euler-Lagrange flow (φt), and the λ+
i (x, v) stand for the non-

negative Lyapunov exponents of (x, v) under the action of the flow. See Paragraph
4.2 for a definition of Lyapunov exponents.

Remark 5.0.9. The first point of the theorem (i.e. the concentration on the Mather
set) was already known to a number of people, see for instance [Go02] (Section 8)
where the measures µ0

β appear under the name “stochastic Mather measures”. The
point in the theorem is the variational principle satisfied by µ∞.

Before going on, we need to introduce notations for various path spaces and for
the Wiener measure(s).

We denote H[0,t] the Hilbert space of paths [0, t] −→ Rd, with L2 derivative.
For x, y ∈ Rd, Hx

[0,t] denotes the affine subspace of paths starting at x, and Hx,y
[0,t]

the space of paths with endpoints x, y. The space H0,0
[0,t] is endowed with the scalar

product

〈γ, ξ〉 =
∫ t

0

〈γ̇u, ξ̇u〉du.

We denote C[0,t] the space of continuous paths [0, t] −→ Rd. The topology is
that of uniform convergence; Cx[0,t] and Cx,y[0,t] are, respectively, the affine subspaces
of paths starting at x, and with endpoints x, y.
CR = C(R,Rd) is the space of continuous paths from R to Rd, endowed with the

topology of uniform convergence on compact intervals.
We let Zd act on C(R,Rd) or C[0,t] by

(s.γ)(u) = γ(u) + s

for all u ∈ R, s ∈ Zd, γ ∈ C(R,Rd). The quotient space C(R,Rd)/Zd (respec-
tively C[0,t]/Zd) is naturally identified with the space of continuous paths R −→ Td
(respectively [0, t] −→ Td), and denoted W (resp. W[0,t]).

There is also a natural action of R by translation of time on C(R,Rd) or on W :

σt(γ)(u) = γ(u+ t)

for γ ∈ C(R,Rd) or W .
Later, we will be interested in measures on C(R,Rd) or W . When we speak of

measures, let us precise that the Borel σ-field on path spaces is the smallest for
which all the maps γ 7→ γu are measurable.

Measures on W will be naturally identified with measures on C(R,Rd), invariant
under the action of Zd.

The space W[0,t] can be endowed with the Wiener measure starting at x, a
probability measure denoted Wβ,x

[0,t] and carried on W x
[0,t]. The brownian bridge

Wβ,(x,y)
[0,t] is a positive measure carried on W x,y

[0,t], and whose definition is recalled
thereafter. The parameter β > 0 is the inverse of the diffusion coefficient.

We refer to [Si79], II.4,5 for the construction of Wiener processes. For x, y ∈
Rd, the brownian bridge Wβ,(x,y)

[t0,tn] with diffusion coefficient 1/β, starting at x and
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ending at y, in the time interval [t0, tn] is defined as the unique positive measure
on C([t0, tn],Rd) such that

Wβ,(x,y)
[t0,tn] (B) =

∫

z1∈B1,...,zn−1∈Bn−1

n∏

i=1

e
− β||zi+1−zi||2

2(ti+1−ti)

(2π(ti+1 − ti)/β)d/2
dzi

for all t0 < t1 < · · · < tn, for all B ⊂ C([t0, tn],Rd) of the form B = {γ, γti ∈
Bi,∀i = 1, ..., n− 1}, where the Bi’s are measurable subsets of Rd.

The Wiener measure started at x, Wβ,x
[0,t], is related to the brownian bridges

Wβ,(x,y)
[0,t] by

Wβ,x
[0,t](B) =

∫
Wβ,(x,y)

[0,t] (B)dy

for every measurable B.

We now state Assumptions (A1), (A2), (A3).
Assumptions : Recall that we have defined the action of a path γ : [0, t] −→ Rd

as

A(γ) =
∫ t

0

L(γs, γ̇s)ds.

Assumption (A1) For all n, for all endpoints ξ0, ξn ∈ Rd, the minima of the
action A in the space Hξ0,ξn

[0,n] are non-degenerate (we mean thereby that the hessian

of A at each minimum is invertible as an operator in the Hilbert space H0,0
[0,n]).

Besides, the number of minimizers is bounded, independently of n, ξ0, ξn.

Assumption (A2) There exists ε0 > 0 such that, for all 0 ≤ ε ≤ ε0, there
exists a sequence (cn) ∈ [0, 1]N satisfying:

– limn
log cn

n = 0,
and :
– for all n > 0, for all γ0, γn ∈ Rd such that

‖ γ0 − ξ0 ‖≤ cnε

‖ γn − ξn ‖≤ cnε

for some trajectory ξ in the Mather set (lifted to Rd), then there exists a minimizer
γ of A : Hξ0,ξn

[0,n] −→ R such that ‖ γk − ξk ‖≤ ε for all 0 ≤ k ≤ n.

Change of gage: It follows from the weak KAM theorem 5.0.3 that there exists
a Zd-periodic, Lipschitz function u, and a constant c, such that the functional

γ 7→ A(γ)− u(γt) + u(γ0) + ct

is nonnegative on H[0,t] for all t, and vanishes if γ is a portion of a trajectory in
the Mather set. In all the definitions given above, we can replace the action A
by this new functional, without changing the definition of Euler-Lagrange flow,
Mather set, etc... The fact that u is not smooth is not really a problem, since we
only need to differentiate the action functional with respect to variations of the
path leaving endpoints fixed. As far as Schrödinger operators are concerned, this
change in the choice of the action functional would amount to replacing the kernel
Kt
β,ω(x, y) by e−βcte−βu(x)Kt

β,ω(x, y)eβu(y), which would lead to replacing ψβ(x)
by ψβ(x)e−βu(x) and ψ∗β(x) by ψ∗β(x)e

−βu(x). Eventually, the measure µ0
β would
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remain unchanged. In the rest of this part, we renormalize the action functional so
that it is nonnegative, and vanishes on the Mather set.

After this modification of the action, we introduce the function

hn(x, y) = inf
Hx,y

[0,n]

A,

defined on Rd × Rd.
Assumption (A3) There exists a sequence Bn ≥ 0 satisfying limn

logBn

n = 0,
such that, for all n,

supγ0β
d/2

∫

Rd

e−βhn(γ0,γn)dγn ≤ Bn.

The non-degeneracy of minimima of the action is necessary for the Laplace
method (Section 6); the second part of (A1), about the number of minimizers, seems
less crucial. Assumptions (A2), (A3) are not very easy to interprete, although we
check in 6.4 that they are always satisfied when ω = 0. (A3) says something about
the behaviour of hn near its minima, uniformly in n. We formulate a conjecture
about a different assumption under which the theorem could hold:

Conjecture: These assumptions can be replaced by the assumption that the
Mather set is a uniformly hyperbolic set for the action of the Euler-Lagrange flow.

Of course, this assumption is not easier to check on examples than the previous
ones, but it is more conceptual. A proof seems close at hand for discrete time
systems (i.e the situation of twist maps described in Section 4), however not for
continuous time systems.

In paragraph 6.4, we show that (A2) and (A3) are always satisfied in the case
ω = 0. In this case, the theorem seems to be part of the folklore in the study of
the tunnelling effect in semi-classical mechanics:

Corollary 5.0.10. Let H~ = ~2 ∆
2 +V , and let ψ~ be the unique Zd-periodic positive

eigenfunction, corresponding to the largest eigenvalue of H~ in L2(Td).
Then, as ~ −→ 0, the probability measure

ψ2
~(x)dx∫

Td ψ2
~(y)dy

concentrates on the maxima of V .
Assume furthermore that the system satisfies (A1). If we consider the expansion

of V in orthonormal coordinates near a maximum x0, in the form

V (x0 + y) = V (x0)− 1
2

∑
|ai(x0)|2y2

i +O(y3),

then the measure ψ2
~(x)dx concentrates on those x0s for which the quantity

∑
|ai(x0)|

is the smallest.

Note that the maxima are not assumed to be non-degenerate nor isolated. The
same result (assuming non-degenerate maxima) is contained, but hidden amongst
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deeper theorems, in paragraph 4.4 of [He88], where
∑ |ai(x0)| appears as the bot-

tom of the spectrum of the quantum harmonic oscillator:

−~2 ∆
2

+
1
2

∑
|ai(x0)|2y2

i ,

and the result is obtained by BKW estimates. Corollary 5.0.10 is in agreement with
the results therein, if we change the sign in front of the laplacian and replace the
word “maximum” by “minimum”.

As in Part I, Theorem 0.0.2 (=5.0.8) is proved by associating to the Schrödinger
equation (5.0.3), (5.0.4) a stationary stochastic process of initial distribution µ0

β .
This process is the Markov process of initial distribution µ0

β and with transition
semi-group:

f 7→ P tβ,ωf =
1

etβλβψβ
exp tβHω

β .(ψβf).

Since ψβ and ψ∗β satisfy (5.0.1), (5.0.2), µ0
β is indeed the invariant Zd-periodic

distribution.
The process corresponds to a measure µβ on the path space C(R,Rd), defined

by the formula

µβ({γ, γ|[0,t] ∈ K})

=
e−tβλβ∫
Td ψβψ∗β

∫

γ0∈Td

ψ∗β(γ0)dγ0

(∫

γ|[0,t]∈K
eβ
R t
0 V (γs)ds+β〈ω,γt−γ0〉ψβ(γt)dWβ,γ0

[0,t] (γ)

)

when K is a measurable subset of C[0,t].
Since µ0

β is invariant under the transition semi-group, the measure µβ is invariant
by the translations of time (σt)t∈R, as well as by the action of Zd on C(R,Rd). Thus,
it defines a probability measure µβ on the quotient

C(R,Rd)/Zd = C(R,Td) =: W.

6. Proof of Theorem 0.0.2

6.1. Preliminary results.

Lemma 6.1.1. For each sequence βn −→ +∞, there exists a subsequence βn(k)

and a probability measure µ∞ on W , such that, for all l ∈ N, for all t1 < t2... < tl,

µβn(k)(g(γt1 , ..., γtl)) −→
k−→∞

µ∞(g(γt1 , ..., γtl)),

for every bounded continuous function g on (Rd)l/Zd.

In this case, we shall say that the sequence (µβn(k)) converges to µ∞.

Proof. Fix T > 0. To get rid of some constants, assume that ‖ ω ‖≤ 1 and | V |≤ 1.
We denote µβ(.|γ0 = x) the measure µβ conditioned with respect to γ0.
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For all 0 < t ≤ T , for all x ∈ Rd,

µβ(‖ γt−γ0 ‖∞≥ 4t |γ0 = x) =

∫
C[0,t]

1I{‖γt−x‖∞≥4t}eβ
R t
0 V (γs)ds+β〈ω,γt−x〉dWβ,x

[0,t](γ)∫
C[0,t]

eβ
R t
0 V (γs)ds+β〈ω,γt−x〉dWβ,x

[0,t](γ)

≤
∫
W[0,t]

1I{‖γt−x‖∞≥4t}eβ(t+‖γt−x‖)dWβ,x
[0,t](γ)∫

W[0,t]
e−β(t+‖γt−x‖)dWβ,x

[0,t](γ)

=
e2βt

∫
Rd 1I{‖y‖∞≥4t}eβ‖y‖−β

‖y‖2
2t dy

∫
Rd e

−β‖y‖−β ‖y‖2
2t dy

≤ e2βt
∫
Rd 1I{‖y‖∞≥4t}e−β

‖y‖2
4t dy

∫
Rd e

−β(‖y‖+ ‖y‖2
2t )dy

. C(t)e−6βtβ(d−1)/2

for all t > 0, for β large enough; we have used the following estimate on the tail of
a gaussian distribution on Rd:

1
(2π)d/2

∫

‖y‖∞≥δ
e−

‖y‖2
2 dy ≤ 2d

e−
δ2
2

δ

as well as the fact that∫

Rd

e−β(‖y‖+ ‖y‖2
2t )dy =

1
βd

∫

Rd

e−(‖y‖+ ‖y‖2
2βt )dy ∼ C

βd

as β −→ +∞. As a consequence, for all 0 ≤ s < t ≤ T ,

µβ(‖ γt − γs ‖∞≥ 4(t− s) |) . C(t− s)e−6β(t−s)β(d−1)/2(6.1.1)

This implies in particular the tightness of the laws of γt under (µβ)β>0, for all
t. Thus, we can find a subsequence βn(k) −→ +∞, and a probability measure µ∞
on W[0,T ]∩Q, such that, for all t1 < ... < tl ∈ [0, T ] ∩Q,

µβn(k)(g(γt1 , ..., γtl)) −→
k−→+∞

µ∞(g(γt1 , ..., γtl))

for every bounded continuous function g on (Rd)l/Zd.
But actually, thanks to inequality (6.1.1), the convergence will take place for all

t1 < ... < tl ∈ [0, T ], and every bounded continuous function g on (Rd)l/Zd.

Proposition 6.1.2. (a) Let ψβ , ψ∗β satisfiy (5.0.1), (5.0.2). Then the families of
functions (− 1

β logψβ)β>0, (− 1
β logψ∗β)β>0 are equilipschitz.

(b) If βk −→ +∞ is a sequence such that

− 1
βk

logψβk
−→ −u+

and
− 1
βk

logψ∗βk
−→ v−

in the uniform topology, for some continuous functions u+ and v−, then T+
t u+ =

u+ − c(ω)t and T−t v− = v− + c(ω)t, for all t ≥ 0.
(c) Let J = inf(v− − u+), so that

− logψβk
+ logψ∗βk

βk
+

log
∫
ψβk

(y)ψ∗βk
(y)dy

βk
−→ v− − u+ − J,
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and let u− be the fixed point of (T−t − c(ω)t) which is conjugate to u+. Then
u− ≤ v− − J .

Proof. Assertion (a) was proved in Section 5 (remember that− 1
β logψβ and− 1

β logψ∗β
are solutions of viscous Hamilton-Jacobi equations).

Assertion (b) follows from the stability result for viscosity solutions ([CEL84],
Theorem 3.1).

The fact that
log

∫
ψβk

(y)ψ∗βk
(y)dy

βk
−→−J

follows from Lemma 3.1.4. As to the last assertion, it is a consequence of the
inequality v− − u+ − J ≥ 0, and the characterization of u− as the smallest fixed
point of (T−t − c(ωt) satisfying u− − u+ ≥ 0 ([Fa97-2]).

Proposition 6.1.3. (Large deviation upper bound) Let t ≥ 0. Then for any subset
Kt ⊂W[0,t], closed for the uniform topology,

lim sup
1
β

logµβ({γ, γ|[0,t] ∈ Kt}) ≤ − inf
γ∈Kt

inf
(u−,u+)

u−(γ0)+A(γ|[0,t])−u+(γt)+tc(ω)

where the second inf is taken over the set of conjugate fixed points of the Hopf-Lax
semi-groups.

Corollary 6.1.4. If µ∞ is a limit point of µβ, it is carried by action-minimizing
trajectories of the Euler-Lagrange flow.

Proof. (Proposition 6.1.3) Recall the expression of µβ({γ, γ|[0,t] ∈ Kt}), for a mea-
surable Kt ⊂W[0,t]:

(6.1.2) µβ({γ, γ|[0,t] ∈ Kt})

=
e−tβλβ∫
Td ψβψ∗β

∫

γ0∈Td

ψ∗β(γ0)dγ0

(∫

γ|[0,t]∈Kt

eβ
R t
0 V (γs)ds+β〈ω,γt−γ0〉ψβ(γt)dWβ,γ0

[0,t] (γ)

)

We have seen that λβ −→
β−→+∞

c(ω). We also recall that, if Kt is closed, then, for all

x ∈ Td,

(6.1.3) lim sup
1
β

log
∫

γ|[0,t]∈Kt

eβ
R t
0 V (γs)ds+β〈ω,γt−γ0〉e−βu(γt)dWβ,x

[0,t](γ)

≤ − inf
γ|[0,t]∈Kt,γ0=x

A(γ|[0,t]) + u(γt)

for every continuous function u on Td. This follows from an application of the
large deviation result of Schilder ([Sc66], [DZ92]: Theorem 5.2.3) combined with
“Varadhan’s lemma” ([Va67], [DZ92]: Theorem 4.3.1).

Finally, let us consider a sequence βk → +∞ such that 1
βk

logµβk
({γ, γ|[0,t] ∈

Kt}) converges in R ∪ {−∞}. Keeping the notations of Proposition 6.1.2, we may
also assume (after further extractions) that

− 1
βk

logψβk
−→ −u+

− 1
βk

logψ∗βk
−→ v−
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and
1
βk

log
∫

Td

ψβψ
∗
β −→ −J,

with v− − J larger than the function u− conjugate to u+.
Combining this with (6.1.2), we get

lim sup
1
βk

logµβk
({γ, γ|[0,t] ∈ Kt}) ≤ − inf

γ|[0,t]∈Kt

v−(γ0)+A(γ|[0,t])−u+(γt)+tc(ω)−J

≤ − inf
γ|[0,t]∈Kt

u−(γ0) +A(γ|[0,t])− u+(γt) + tc(ω)

≤ − inf
γ|[0,t]∈Kt

inf
(u−,u+)

u−(γ0) +A(γ|[0,t])− u+(γt) + tc(ω)

Since this is true for every subsequence βk, we have proved Proposition 6.1.3.

Proof. (Corollary 6.1.4) Let K be a closed subset of W , and Kt its projection on
W[0,t]. Then

µβ(K) ≤ µβ({γ, γ|[0,t] ∈ Kt})
and, after Proposition 6.1.3, the measure of K will go to zero exponentially fast
unless

inf
γ∈Kt

inf
(u−,u+)

u−(γ0) +A(γ|[0,t])− u+(γt) + tc(ω) = 0,

for all t. But, for a path γ|[0,t],

u−(γ0) +A(γ|[0,t])− u+(γt) + tc(ω) = 0

implies that

A(ξ|[0,t]) ≥ A(γ|[0,t])

for every path ξ such that ξ0 = γ0 and ξt = γt.
We have thus proved that µ∞ is carried by action-minimizing trajectories of the

Euler-Lagrange flow.

The measure µ∞, as a measure on W carried by action-minimizing trajectories
and invariant by translation of time (σt)t∈R, can be naturally identified to an action-
minimizing measure on Td × Rd. The identification takes place via the map

{γ : R −→ Td, trajectories of the E-L flow} −→ Td × Rd
γ 7→ (γ0, γ̇0)

which is a conjugacy between the translation of time (σt) and the Euler-Lagrange
flow.

In particular, the measure µ0
∞ on Td, defined by

µ0
∞(A) = µ∞{γ ∈W,γ0 ∈ A}

is carried by the set Mω. We have thus proved the first assertion of Theorem 5.0.8:
the measure µ0

β concentrates on Mω.
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6.2. Sketch of proof. Definition of the hessian of the action, and of its
determinant.

Let x, y ∈ Rd. The action A : Hx,y
[0,t] −→ R is twice differentiable, and its second

derivative at a point γ, d2A(γ), is a symmetric bilinear form on H0,0
[0,t]; one may

write it as
d2A(γ).ξ.ξ = 〈A′′(γ)ξ, ξ〉

where A′′(γ) is a self-adjoint operator on H: the hessian of A at γ.
Remembering the expression of A, one can actually write

A′′(γ) = I + f,

f being defined by

〈fξ, ξ〉 =
∫ t

0

V ′′(γs).ξs.ξsds

This last bilinear form may be extended to a continuous symmetric bilinear form
on W ; and this implies that f is a trace operator ([Ku75], p.83): the sum of the
eigenvalues of f , (λi)i∈N, is absolutely convergent.

Thus, one may define the determinant of I + f as [I + f ] :=
∏
i∈N(1+λi), which

is well defined (possibly zero). This determinant will be non zero if and only if −1
is not an eigenvalue of f , that is, if and only if the operator A′′(γ) is invertible in
H0,0

[0,t].
If γ is a critical point of A : Hx,y

[0,t] −→ R such that A′′(γ) is invertible, we will
say that γ is a non-degenerate critical point of A : Hx,y

[0,t] −→ R.
Like in Part I, if γ ∈ H[0,t′] for some t′ ≥ t, we will denote [ tA

′′(γ)] the
determinant of the hessian of A(γ|[0,t]) : Hγ0,γt

[0,t] −→ R, at γ.
We prove the following proposition, which is the direct transposition of Theorem

0.0.1 in continuous time:

Proposition 6.2.1. Let µ∞ be a limit point of (µβ)β−→+∞,and let µ be a σ-
invariant probability measure on W , carried by action-minimizing trajectories of
the Euler-Lagrange flow. Then, under assumption (A1), (A2) and (A3),

hσ(µ)− 1
2

∫
lim
t

1
t

log[tA′′(γ)]dµ(γ) ≤ hσ(µ∞)− 1
2

∫
lim
t

1
t

log[tA′′(γ)]dµ∞(γ)

The proof of Proposition 6.2.1 goes along the same lines as that of Theorem
0.0.1. The main difference is a higher degree of technicality in the writing of the
Laplace method for estimating path integrals. We do not rewrite the proof in its
entirety, but indicate how to adapt Paragraph 3.2 to the new situation.

To simplify notations we consider again the case d = 1.
The proof starts, as in Paragraph 3.2, with the construction of a partition P̃ of

C([0, 1],R):

P̃ij = {γ ∈ C([0, 1],R), γ0 ∈ [iε, (i+ 1)ε), γ1 ∈ [jε, (j + 1)ε)}
for | j − i |< M

ε , and

P̃i∞ = {γ, γ0 ∈ [iε, (i+ 1)ε),∃j, | j − i |≥ M

ε
, γ1 ∈ [jε, (j + 1)ε)}

If ε is the inverse of an integer, the partition goes to the quotientW[0,1] = C([0, 1],R)/Z,
and gives a finite partition P of W .
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The proof is then identical to that of Theorem 0.0.1 until the statement of Lemma
3.2.3 (a). The integrands

(
β

2π

)n−1
2

e−β
Pn−1

i=0 L(γi,γi+1)dγ1..dγn−1

just need to be replaced by

eβ
R n
0 V (γs)ds+β〈ω,γt−γ0〉dWβ,(γ0,γn)

[0,n] (γ).

We now indicate how to adapt Lemma 3.2.3.

Laplace method (fixed time interval). Lemma 3.2.3 (b), which is a con-
sequence of the superlinear growth of the Lagrangian, can be obtained from the
estimate

Kt
β,ω(x, y) ≤ eβMt

(
β

2πt

)d/2
e−

β||x−y||2
2t .eβ||ω||.||x−y||,

mentioned in Section 5.
As to Lemma 3.2.3 (a), it comes from the following:

Theorem 6.2.2. ([Be88], [BDS93]) Let γ0, γt ∈ R2. Assume that the action A :
Hγ0,γt

[0,t] −→ R has only one minimum γ̂, which is non degenerate, and let Ω be a
neighbourhood of γ̂ in the uniform topology. Then

∫

W
γ0,yγt
[0,t] ∩Ω

eβ(
R t
0 V (γs)ds+〈ω,γt−γ0〉)dWβ,(γ0,γt)

[0,t] (γ) =
e−βA(γ̂)

[ tA′′(γ̂)]1/2
(1 + o(1)

β→∞
).

For fixed t and K, the o(1)
β→∞

is uniform on the set {|γt − γ0| ≤ K}.

Let us give a general idea of how this estimate may be obtained (the reader is
referred to [Be88], [BDS93] for a complete proof). Exactly as in the case of an
integral over a finite dimensional space, one begins by applying a Taylor expansion
of order 2 of the function:

γ 7→
∫ t

0

V (γs)ds+ 〈ω, γt − γ0〉

at the minimizer of the action γ̂, and in the space W γ0,γt

[0,t]

(6.2.1)
∫

W
γ0,γt
[0,t] ∩Ω

eβ
R t
0 V (γs)dsdWβ,γ0,γt

[0,t] (γ) =

eβ
R t
0 V (γ̂s)ds

∫

W
γ0,γt
[0,t] ∩Ω

eβ
R t
0 V

′
γ̂s
.(γs−γ̂s)ds+ β

2

R t
0 V

′′
γ̂s
.(γs−γ̂s)2ds+βR(γ−γ̂)dWβ,γ0,γt

[0,t] (γ) =

eβ
R t
0 V (γ̂s)ds

∫

W
γ0,γt
[0,t] ∩Ω

eβ〈γ̂s,γs−γ̂s〉+ β
2

R t
0 V

′′
γ̂s
.(γs−γ̂s)2ds+βR(γ−γ̂)dWβ,γ0,γt

[0,t] (γ)

= e−β
R t
0

˙̂γ2

2 +β
R t
0 V (γ̂s)ds

∫

W
γ0,γt
[0,t] ∩Ω−γ̂

e
β
2

R t
0 V

′′
γ̂s
.γ2

sds+βR(γ)dWβ,(0,0)
[0,t] (γ)

where the last line is obtained by the Cameron-Martin formula ([Ku75], p.111), and
the line before comes from the fact that γ̂ is a critical point of the action.

The remainder R(γ), given by Taylor’s integral formula, is bounded (indepen-
dently of n) by C ‖ γ ‖33, where C is a bound on the third derivative of V ; and
actually, if Ω is a uniform neighbourhood of radius ε around γ̂, R(γ) is bounded by
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by Cε ‖ γ ‖22. One shows that this remainder does not interfer in the estimate of
Theorem 6.2.2.

The final ingredient is the formula
∫

W 0,0
[0,t]

e−β〈fγ,γ〉dWβ,0,0
[0,t] (γ) = [I + f ]−1/2

valid as soon as 〈f., .〉 is a continuous symmetric bilinear form on H0,0
[0,t] which

admits a continuous extension to W 0,0
[0,t]. It is obtained by diagonalization of f in

an orthonormal basis for 〈., .〉. It yields Theorem 6.2.2 when applied to

〈fγ, γ〉 =
∫ t

0

V ′′γ̂s
.γ2
sds.

Lemma 3.2.4 is unchanged, with the necessary modifications in the expression
of path integrals, as explained earlier. We now need to adapt Lemma 3.2.8.

Laplace method (lower bound, independent of the time interval).
In order to adapt the result of Lemma 3.2.8, the point is to find a lower bound of

(6.2.1), independent of t. We can take t = n ∈ N. As before, let γ̂ be the minimizer
of the action on Hγ0,γn

[0,n] . Lemma 3.2.8 is replaced by:

Lemma 6.2.3. Let ε > 0, and δ ≤ ε. Then there exists ρ = ρ(ε) such that, for all
n,

(6.2.2)
∫

||γ||∞≤δ
e

β
2

R n
0 V ′′γ̂s

.γ2
s+βR(γ)dWβ,(0,0)

[0,n]

≥ (1−e−βρ2 δ2
2 )n−1(1+o(1)

β

)n−1

∫

W[0,n]

e
β
2

R n
0 V ′′γ̂s

.γ2
s−βCε

R n
0 |γs|2ds−βε

Pn−1
j=1 |γj |2dWβ,(0,0)

[0,n]

= (1− e−βρ
2 δ2

2 )n−1(1 + o(1)
β

)n−1 1
[ nA′′(γ̂) + 2εbn]1/2

where bn is the quadratic form on H
(0,0)
[0,n] :

bn(γ, γ) = C

∫ n

0

| γs |2 ds+
n−1∑

j=1

|γj |2,

and C is an upper bound on the third derivative of V .

Proof. We know that |R(γ)| ≤ C||γ||33 ≤ Cε||γ||22 ≤ Cε||γ||22 + ε
∑n−1
j=1 |γj |2 =

εbn(γ, γ). Thus,

(6.2.3)
∫

||γ||∞≤δ
e

β
2

R n
0 V ′′γ̂s

.γ2
s+βR(γ)dWβ,0,0

[0,n]

≥
∫

||γ||∞≤δ
e

β
2

R n
0 V ′′γ̂s

.γ2
s−εβbn(γ,γ)dWβ,0,0

[0,n]

Let us consider the action (associated to a non-autonomous lagrangian):

Ã(γ|[0,t]) =
∫ t

0

| γ̇s |2
2

− 1
2

∫ t

0

V ′′γ̂s
.γ2
sds+ Cε

∫ t

0

|γs|2ds
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for t ≤ n, and γ ∈ H0,0
[0,n]. Let us also introduce the functions on R2:

Qj(x, y) = inf
γj=x,γj+1=y

Ã(γ|[j,j+1]) + ε
x2 + y2

2

for 0 ≤ j ≤ n− 1. They are quadratic forms on R2.
If we condition the last term of (6.2.3) with respect to γ1, ..., γn−1, and apply a

Laplace estimate (Theorem 6.2.2) for fixed γ1, ..., γn−1 and for the action Ã, we get
∫

||γ||∞≤ε
e

β
2

R n
0 V ′′γ̄s

.γ2
s−βεbn(γ)dWβ,0,0

[0,n]

≥ (1 + o(1)
β→∞

)n
∫

||γ||∞≤ε

e−
β
2 (Q0(0,γ1)+...+Qn−1(γn−1,0))

∏n−1
j=0 [Ã′′j ]1/2

dγ1...dγn−1

where [Ã′′j ] is the determinant of the hessian of Ã : Hγj ,γj+1

[j,j+1] −→ R at a minimum,

and does not depend on the endpoints γj , γj+1, since the action Ã is a quadratic
form in the path. Thus, the problem is reduced to estimating integrals over finite
dimensional spaces.

But now,

〈Q(γ1, ..., γn−1), (γ1, ..., γn−1)〉 := Q0(0, γ1) +Q2(γ1, γ2)...+Qn−1(γn−1, 0)

is a quadratic form in (γ1, ..., γn−1) ∈ Rn−1, which satisfies all the assumptions of
Lemma 3.2.9.

Thus, we can use Lemma 3.2.9 and find ρ such that
∫

||γ||∞≤δ

e−β(Q0(0,γ1)+...+Qn−1(γn−1,0)

∏ Ã′′j
dγ1...dγn−1

≥ (1− e−βρ
2 δ2

2 )n−1

∫

Rn−1

e−
β
2 (Q0(0,γ)+...+Qn−1(γn−1,0)

∏ Ã′′j
dγ1...dγn−1

= (1−e−βρ2 δ2
2 )n−1

∫

W 0,0
[0,n]

e−
β
2

R n
0 V ′′γ̄s

.γ2
s−βεbn(γ,γ)dWβ,(0,0)

[0,n] =
(1− e−βρ

2 δ2
2 )n−1

[nA′′(γ0, γn) + 2Cεbn]1/2

Lemma 3.2.10 can now be proved the same way as in Paragraph 3.2, and the
estimates of the end of paragraph 3.2 can be performed the same way to yield
Proposition 6.2.1.

The last point in the proof of Theorem 0.0.2 is to draw a link between the deter-
minant of the hessian of A, and Lyapunov exponents. We have seen in paragraph
4.2 how it works for a discrete time system. What we need is the analogue of
Lemma 4.2.1 for a continuous time system. It is known as the Levit-Smilansky
formula:

6.3. The Levit-Smilansky formula.

Theorem 6.3.1. Let γ : [0, t] −→ Rd be a critical point of the action

A(ξ|[0,t]) =
∫ t

0

( ||γ̇s||2
2

− V (γs)
)
ds



61

on the affine Hilbert space Hx,y
[0,t] = {ξ ∈ H[0,t], ξ0 = x, ξt = y},whose tangent space

H0,0
[0,t] is endowed with the scalar product

〈ξ, η〉 =
∫ t

0

ξ̇s.η̇sds

Then the hessian A′′(γ), a self-adjoint operator on H0,0
[0,t], has a well defined

determinant – the infinite product of its eigenvalues. And this determinant coincides
with the determinant of the linear endomorphism of Rd, sending y′0 ∈ Rd to yt

t ,
where ys ∈ TγsRd (s ∈ [0, t]) is the solution of the linearized equation:

ÿs + V ′′(γs).ys = 0
y0 = 0, ẏ0 = y′0

We refer the reader to [LS65] for a proof; there also exists a more conceptual
proof written by Colin de Verdière ([CV99]).

The Levit-Smilansky formula, combined with Oseledets’ theorem, implies the
following proposition, analogous to Proposition 4.2.2:

Proposition 6.3.2. Let µ is a σ-invariant probability measure on W , carried by
action-minimizing trajectories of the Euler-Lagrange flow. Then the limit lim 1

n log[nA′′(γ)]
exists for µ-almost every γ, and is equal to

d∑
1

λ+
i (γ0, γ̇0),

where the λ+
i (γ0, γ̇0) are the d-first (nonnegative) Lyapunov exponents of (γ0, γ̇0)

under the Euler-Lagrange flow.

Proposition 6.2.1, associated with Proposition 6.3.2, implies that µ∞ (that we
have identified to an action-minimizing measure on Td×Rd at the end of paragraph
6.1), maximizes

µ 7→ hφ(µ)− 1
2

∫

Td×Rd

d∑
1

λ+
i (x, v)dµ(x, v)

over the set of action-minimizing measures.
This is equivalent to Theorem 5.0.8, since µ∞ is the action-minimizing lift of

µ0
∞.

6.4. Proof of Corollary 0.0.3. We can assume that maxV = 0. When ω = 0,
the Mather set M̃0 is the set {(x, 0) ∈ Td × Rd, V (x) = 0}.

Action-minimizing have zero entropy since the Mather set consists in fixed point
of the Euler-Lagrange flow. Besides, if we consider the expansion of V in orthonor-
mal coordinates near a maximum x0, in the form

V (x0 + y) ∼ V (x0)− 1
2

∑
|ai(x0)|2y2

i +O(y3),

then the Lyapunov exponents of the fixed point (x0, 0) are the ±|ai|. To prove
Corollary 0.0.3, it remains to check that:

Lemma 6.4.1. When ω = 0, Assumptions (A2) and (A3) are automatically satis-
fied.
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Proof. Assumption (A2). Let V (x0) = 0, let ε > 0, and let γ0, γn satisfy ||γ0−x0|| ≤
cnε and γ0, γn satisfy ||γn − x0|| ≤ cnε for some cn ∈ [0, 1].

We have hn(γ0, γn) ≤ c2nε
2; indeed, this last quantity is the action of a curve

joining γ0 to x0 in the time interval [0, 1], staying at x0 in the time interval [1, n−1],
and going from x0 to γn in the time interval [n− 1, n].

On the other hand, the action of any curve γ joining γ0 to γn in the time interval
[0, n], and such that ||γt − x0|| ≥ ε for some t, is larger than (1−cn)2ε2

2n , which is
the energy needed to leave the ball B(x0, ε) in time n. Thus, if we take cn = n−2,
the minimizer of the action joining γ0 to γn must stay inside the ball B(x0, ε), and
Assumption (A2) is satisfied.

Assumption (A3). Since maxV = 0, no change of gage is necessary to ensure that
L0 ≥ 0 and L0 vanishes on the Mather set. Since V ≤ 0, hn(γ0, γn) ≥ ||γ0−γn||2

2n , so
that

βd/2
∫
e−βhn(γ0,γn)dγn ≤ βd/2

∫
e−β

||γ0−γn||2
2n dγn = (2πn)d/2 =: Bn

Exactly the same way, we can prove

Lemma 6.4.2. Let L(γ0, γ1) = ||γ1−γ0||2
2 − V (γ0) where V is a Zd-periodic poten-

tial. Then, the assumptions (A2), (A3) of Theorem 0.0.1 are satisfied.
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