
ENTROPY AND THE LOCALIZATION OF EIGENFUNCTIONS.

NALINI ANANTHARAMAN

Abstract. We study the large eigenvalue limit for the eigenfunctions of the
Laplacian, on a compact manifold of variable negative curvature – or more
generally, assuming only that the geodesic flow has the Anosov property. We
prove that the Wigner measures associated to eigenfunctions cannot concen-
trate entirely on sets of small topological entropy under the action of the
geodesic flow, such as, for instance, closed geodesics.

1. Introduction, statement of results

We consider a compact Riemannian manifold M of dimension d ≥ 2, and as-
sume that the geodesic flow (gt)t∈R, acting on the unit tangent bundle of M , has a
“chaotic” behaviour; this refers to certain asymptotic properties of the flow when
time t tends to infinity: ergodicity, mixing, hyperbolicity... Here we mean that the
geodesic flow has the Anosov property. The name “quantum chaos” expresses the
belief that the chaotic properties of the flow should still be visible in the correspond-
ing quantized dynamical system: that is, according to the Schrödinger equation, the
unitary flow

(
exp(i~t∆

2 )
)
t∈R acting on the Hilbert space L2(M) – where ∆ stands

for the Laplacian on M and ~ is something proportional to the Planck constant. At
the quantum level, one expects that the chaotic features should express themselves
in certain behaviours of the eigenfunctions of the Laplacian, or in the distribution
of its eigenvalues (see [Sa95]). These ideas rely on the fact that the quantum flow(
exp(i~t∆

2 )
)
t∈R converges, in a sense to be precised below, to the classical flow (gt)

in the so-called “semi-classical limit” ~ −→ 0: one likes to imagine that “for ~
small” the qualitative behaviour of quantum system will be related to that of the
classical flow.

The convergence of the quantum flow to the classical flow is stated precisely
in the Egorov theorem. Let us consider one of the usual quantization procedures,
say Op~, which associates an operator Op~(a) acting on L2(M) to every smooth
compactly supported function a ∈ C∞c (TM) on the tangent bundle TM . The
Egorov theorem says that, for fixed t,

|| exp(−it
~∆
2

).Op~(a). exp(it
~∆
2

)−Op~(a ◦ gt)||L2(M) = O(~)
~→0

.

In this paper, we focus our attention on the behaviour of the eigenfunctions on
the Laplacian,

−h2∆ψh = ψh

in the large energy limit h −→ 0 (we simply use the notation h instead of ~, and − 1
h2

ranges over the spectrum of the Laplacian). Let us consider an orthonormal basis
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of eigenfunctions in L2(M) = L2(M, dV ol) where V ol is the Riemannian volume.
Each wave function ψh defines a probability measure on M :

|ψh(x)|2dV ol(x),

that can be lifted to the tangent bundle by considering the distribution

νh : a ∈ C∞c (TM) 7→ 〈Oph(a)ψh, ψh〉L2(M),

usually called Wigner measure or Husimi measure (depending on the choice of the
quantization) associated to the eigenfunction ψh; or also, sometimes, “microlocal
lift” of the probability measure |ψh(x)|2dx. If the quantization procedure was cho-
sen positive, which can be done using Friedrichs symmetrization (see [Ze86], Section
3, or [Co85], 1.1), then the distributions νhs are actually probability measures. It
is possible to extract converging subsequences of the family (νh)h→0, and the limit,
say ν0, of such a subsequence is necessarily a probability measure carried by the
unit tangent bundle S1M ⊂ TM . In addition, the Egorov theorem implies that
ν0 is invariant under the (classical) geodesic flow. We will call such a measure
ν0 a semi-classical invariant measure of the flow. The question of identifying all
such measures ν0 arises naturally: the Snirelman theorem ([Sn74], [Ze87], [Co85],
[HM87]) answers that the Liouville measure is one of them, in fact it is a limit along
a subsequence “of density one” of the family (νh), as soon as the geodesic flow acts
ergodically on S1M with respect to the Liouville measure. It is not known in such
a general context whether there can be exceptional subsequences which converge to
other invariant measures, like, for instance, measures carried by closed geodesics.
It was conjectured in [RS94] that the whole sequence actually converges to the Li-
ouville measure, if M has negative sectional curvature: this is called the “Quantum
Unique Ergodicity” conjecture.

The problem was solved recently by Lindenstrauss ([Li03]) in the case of an arith-
metic surface of constant negative curvature, when the functions ψh are common
eigenstates for the Laplacian and the Hecke operators; but little is known for other
Riemann surfaces or in higher dimension. In the setting of discrete time dynam-
ical systems, and in the very particular case of linear Anosov diffeomorphisms of
the torus, Faure, Nonnenmacher and De Bièvre provided counter-examples to the
conjecture: they constructed semi-classical invariant measures formed by a convex
combination of the Lebesgue measure on the torus and of the measure carried by a
closed orbit ([FNDB03]). However, it was shown in [BDB03], for the same discrete
time model, that semi-classical invariant measures cannot be entirely carried on a
closed orbit.

1.1. Non-concentration on sets of small topological entropy. We work in
the general context of Anosov geodesic flows for manifolds of arbitrary dimension,
and we are interested in the entropy of semi-classical invariant measures. The Kol-
mogorov entropy, also called metric entropy, of a (gt)-invariant probability measure
ν0 is a nonnegative number hg(ν0) that measures, in some sense, the asymptotic
complexity of a generic orbit of the flow when time tends to infinity. For example, a
measure carried on a closed geodesic has zero entropy; said the other way round, a
measure having positive entropy cannot be entirely carried on a closed geodesic. On
the other hand, an upper bound on entropy is given by the Ruelle inequality: since
the geodesic flow has the Anosov property, the unit tangent bundle S1M is foliated
into unstable manifolds of the flow, and for any invariant probability measure ν0
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one has

hg(ν0) ≤
∫

S1M

| log Ju(v)|dν0(v),(1.1.1)

where Ju(v) is the unstable jacobian of the flow at v, defined as the jacobian of
g−1 restricted to the unstable manifold of g1v. In (1.1.1) equality holds if and
only if ν0 is the Liouville measure on S1M ([LY85]). Thus, proving Quantum
Unique Ergodicity is equivalent to proving that hg(ν0) =

∫
S1M

| log Ju|dν0 for any
semi-classical invariant measure ν0. But already a non-trivial lower bound on the
entropy of ν0 would be nice.

Denote
χ = − sup

v∈S1M

log Ju(v).

For instance, for a d-dimensional manifold of constant sectional curvature −1, χ =
d− 1. We will prove the following theorems:

Theorem 1.1.1. Let F be a closet subset of S1M , invariant under the geodesic
flow, with a topological entropy htop(F ) < χ

2 . Then, under Assumption (I) below,

ν0(F ) < 1.

In other words, the support of ν0 has topological entropy greater than χ
2 .

Remark 1.1.2. Assumption (I) is a technical assumption of real analyticity for the
propagator of the Schrödinger equation, which is straighforward to check for a
manifold of constant curvature −1.

Remark 1.1.3. The so-called Variational Principle ([KH]) asserts that, if F is a
(gt)-invariant closed subset of S1M ,

sup
ν(F )=1

hg(ν) = htop(F ),

where the supremum runs over the set of (gt)-invariant probability measures sup-
ported on F ([KH]). Thus, the conclusion of Theorem 1.1.1 is weaker than the
statement that hg(ν0) ≥ χ

2 .

Conjecture 1.1.4. For any semi-classical measure ν0,

hg(ν0) ≥ 1
2

∫

S1M

| log Ju(v)|dν0(v).

Theorem 1.1.1 is to be compared to the results in [BDB03], according to which
the semi-classical invariant measures cannot be entirely carried on a closed geo-
desic. See also [CP94], where it is proved, in constant negative curvature, the
concentration on a closed geodesic cannot be too fast.

The proof of Theorem 1.1.1 is based on the following ideas: if ν0 is a semi-classical
measure, we construct in paragraph 1.3 a sequence of invariant “pseudo-measures”
converging to ν0 and for which we prove nice exponential estimates for the measures
of the so-called cylinder sets, at the heart of the concept of entropy (Theorem 1.3.3).
Conjecture 1.1.4 would follow immediately from the semi-continuity of entropy, were
our pseudo-measures genuine probability measures. This is unfortunately not the
case since they are not positive. What we obtain at the end is not an estimate
of the metric entropy of ν0, but a lower bound for the topological entropy of the
support of ν0. The method should work for more general hyperbolic hamiltonian
systems. In [AN05] it is implemented for the toy model of the Baker’s map, for
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which Quantum Unique Ergodicity is known to fail. The analogue of Theorem 1.1.1,
as well as Conjecture 1.1.4 are proved (with considerable simplifications due to the
nature of the model); is also shown that the bound of Theorem 1.1.1 is achieved,
for this toy model. Thus, Theorem 1.1.1 should not be interpreted as a step in the
direction of Quantum Unique Ergodicity, but rather as a general fact which holds
even when Quantum Unique Ergodicity is known to fail.

In the next paragraph we recall the definition of metric entropy. Then, in para-
graph 1.3, we construct our pseudo-measures, and state Theorems 1.3.3 on the
decay of the measures of cylinder sets, the key to Theorem 1.1.1. All these results
rely on Theorem 4.0.1, which – speaking very roughly – uses the uniform hyperbol-
icity of the classical flow to estimate the kernel of exp(ih∆

2 )n when h −→ 0, and
for large n.

1.2. Entropy of the geodesic flow.

Topological entropy. We denote htop(S1M) the topological entropy of the
action of (gt) on S1M . More generally, if F ⊂ S1M is closed and invariant under
(gt), we denote htop(F ) the topological entropy of the flow restricted to F : we refer
to [KH] for the definition.

We linger more on the definition of metric entropy:

Metric entropy.
Recall the definition of metric entropy, defined by Kolmogorov and Sinai. Let

S1M = P1 t ... t Pl be a finite measurable partition of the unit tangent bundle
S1M . The entropy of ν0 with respect to the action of geodesic flow and to the
partition P is defined by

hg(ν0, P )

= lim
n−→+∞

− 1
n

∑

(αj)∈{1,...,l}n+1

ν0(Pα0∩g−1Pα1 ...∩g−nPαn) log ν0(Pα0∩g−1Pα1 ...∩g−nPαn)

= inf
n∈N

− 1
n

∑

(αj)∈{1,...,l}n+1

ν0(Pα0∩g−1Pα1 ...∩g−nPαn) log ν0(Pα0∩g−1Pα1 ...∩g−nPαn).

The existence of the limit, and the fact that it coincides with the inf follow from a
subadditivity argument. Then, the entropy of ν0 itself with respect to the action
of the geodesic flow is defined as

hg(ν0) = sup
P

hg(ν0, P ),

the supremum running over all finite measurable partitions P . Rather often, this
supremum is actually reached for a well-chosen partition P .

The entropy is non-negative, and bounded a priori from above; for instance, on
a compact d-dimensional riemannian manifold of constant sectional curvature −1,
the entropy of any measure is smaller than d − 1; more generally, for an Anosov
geodesic flow, one has an a priori bound in terms of the unstable Jacobian, called
the Ruelle inequality (see [KH]):

hg(ν0) ≤
∫

S1M

| log Ju|dν0,
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with equality if and only if ν0 is the Liouville measure on S1M ([LY85]) – let us also
mention the so-called Variational Principle, asserting that, if F is a (gt)-invariant
closed subset of S1M ,

sup
ν(F )=1

hg(ν) = htop(F ),

where the supremum runs over the set of (gt)-invariant probability measures sup-
ported on F ([KH]).

For later purposes, we reformulate slightly the definition of entropy. The follow-
ing definition, although equivalent to the usual one, is a bit different, in that we
only use partitions of the base M1.

Let P = (P1, ...Pl) be a finite measurable partition of M (instead of S1M); we
denote ε/2, (ε > 0) an upper bound on the diameter of the Pis. We can also
consider P as a partition of the tangent bundle, simply by lifting it to TM .

Let Σ = {1, ...l}Z. To each tangent vector v ∈ S1M one can associate a unique
element I(v) = (αj)j∈Z ∈ Σ, by requiring gjv ∈ Pαj

for all integers j. Thus, one
defines a “coding map” I : S1M −→ Σ. If we define the shift σ acting on Σ by

σ((αj)j∈Z) = (αj+1)j∈Z,

we have I ◦ g1 = σ ◦ I.
We introduce the probability measure µ0 on Σ, image of ν0 under the coding

map I. More explicitly, the finite-dimensional marginals of µ0 are given by

µ0

(
[α0, ..., αn−1]

)
= ν0(Pα0 ∩ g−1Pα1 ... ∩ g−n+1Pαn−1).

We have denoted [α0, ..., αn−1] the subset of Σ, formed of sequences in Σ begin-
ning with the letters (α0, ..., αn−1); such a set is called a cylinder set of length n.
We will denote Σn the set of cylinder sets of length n; they form a partition of Σ.

Since ν0 is carried by the unit tangent bundle, and (gt)-invariant, its image µ0

is σ-invariant. The entropy of µ0 with respect to the action of the shift σ is

hσ(µ0) = lim
n−→+∞

− 1
n

∑

C∈Σn

µ0(C) log µ0(C)(1.2.1)

= inf
n
− 1

n

∑

C∈Σn

µ0(C) log µ0(C).(1.2.2)

The fact that the limit exists and coincides with the inf comes from the remark
that the sequence (−∑

C∈Σn
µ0(C) log µ0(C))n∈N is subadditive, which follows from

the concavity of the log and the σ-invariance of µ0 (see [KH]). Then, hg(ν0) is the
sup, over all partitions P of M , of the entropies hσ(µ0) obtained by the previous
construction: we can indeed restrict our attention to partitions P depending only
on the base M , and work with time one of the geodesic flow g1, if the injectivity
radius is greater than one (a harmless assumption we will make in the rest of the
paper).

The advantage of definition (1.2.2) is that the entropy, defined on the set of
σ-invariant probability measures on Σ, is the infimum of a family of continuous
functions, and thus is an upper semi-continuous function (for the weak topology).
In other words, if we could find a sequence (µk) of σ-invariant probability measures

1The reason for doing so is to be able to work with multiplication operators in paragraph 1.3,
instead of having to deal with more general pseudo-differential operators.
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converging to µ0 on Σ, and satisfying – for some β ≥ 0 and some positive real
numbers (Ck),

µk(C(n)) ≤ Cke−βn

for every n ∈ N, every cylinder set C(n) of length n, and every k, this would imply
that hσ(µ0) ≥ β and thus hg(ν0) ≥ β.

This motivates the following attempt to find a lower bound on the entropy of the
semi-classical measure µ0, by “quantizing” the construction above, and estimating
the rate of decay of the quantum measures of cylinder sets.

1.3. The quantized construction: estimates on the decay of the measures
of cylinder sets.

1.3.1. The measure µh. Since we will resort to microlocal analysis we have to re-
place characteristic functions 1IPi by smooth functions. We will assume that the Pi

have smooth boundary, and will consider a smooth partition of unity obtained by
smoothing the characteristic functions 1IPi

; that is, a finite family of C∞ functions
Ai ≥ 0 (i = 1, ..., l), such that

l∑

i=1

Ai = 1.

We can consider the Ais as functions on TM , depending only on the base point. For
each i, denote P̂i a set that contains the support of Ai in its interior. Throughout
the paper we denote ε > 0 an upper bound on the diameters of the P̂is.

Actually, the way we smooth the 1IPis to obtain Ai is rather crucial, and will
be discussed in paragraph 2.1. Let us just say, for the moment, that the Ai will
depend on h in a way that

Ah
i −→

h−→0
1(1.3.1)

uniformly in every compact subset in the interior of Pi, and

Ah
i −→

h−→0
0(1.3.2)

uniformly in every compact subset outside Pi. We also assume that the smoothing
is done at a scale hκ (κ ∈ [0, 1/2)), so that the derivatives of Ah

i are controlled as

||DnAh
i || ≤ C(n)h−nκ.

This implies that the results of pseudo-differential calculus are applicable to the
functions Ah

i (see Appendix A1).
For technical reasons, we will need to control more precisely the derivatives of

the Ais. We assume that M is a real-analytic manifold, and we take the Ais in a
Gevrey class Gs for some s > 1. Let us recall the definition of this class of functions.

The Gevrey class Gs:

Let f be a function of class C∞, going from an open subset Ω of a normed vector
space to some other normed vector space – say, of finite dimensions. We say that
f is in the Gevrey class of order s, denoted Gs ,if for every compact set K ⊂ Ω,
there exist C, R > 0 such that for every k in N, for every x ∈ K,

||Dkf(x)|| ≤ CRk(k!)s.(1.3.3)
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Note that G1 coincides with the class of real analytic functions. If a function f
satisfies (1.3.3) for all x ∈ Ω, we write f ∈ Gs(R, C), and we call the real number
max{R,C} a “Gevrey constant” (or “analyticity constant”, in the case s = 1) for
f . Obviously, these numbers depend on the choice of the norms on the two vector
spaces in question.

Each Gevrey class Gs is invariant by composition with an analytic function ([Ho],
Chapter 8), so that one can also speak of the Gevrey class on a real analytic man-
ifold. By Theorem 1.3.5 in [Ho], on a real analytic compact manifold, there exist
partitions of unity in the class Gs for any s > 1.

We construct a functional µh defined on a certain class of functions on Σ. We
see the functions Ai as multiplication operators on L2(M); and we denote Ai(t)
their evolutions under the quantum flow:

Ai(t) = exp
(− it

~∆
2

) ◦Ai ◦ exp
(
it
~∆
2

)
.

We define the “measures” of cylinder sets under µh, by the expressions:

µh

(
[α0, ..., αn]

)
= 〈Aαn(n)....Aα1(1)Aα0(0)ψh, ψh 〉M(1.3.4)
= 〈Aαn(0)....Aα1(−1)Aα0(−n)ψh, ψh 〉M .(1.3.5)

For C = [α0, ..., αn−1] ∈ Σn, we will denote Ĉh the operator Ĉh = Aαn−1(0)....Aα1(−n+
2)Aα0(−n + 1).

The functional µh is defined on the vector space spanned by characteristic func-
tions. Note that µh is not a positive measure, because the operator Ĉh used in
(1.3.4) are not positive. The first part of the following proposition is a compati-
bility condition; the second part says that µh is σ-invariant. The proof is obvious
and uses the fact that ψh is en eigenfunction. The third condition holds if ψh is
normalized in L2(M).

Proposition 1.3.1. (i) For every n, for every cylinder [α0, ..., αn−1] ∈ Σn,
∑
αn

µh

(
[α0, ..., αn]

)
= µh

(
[α0, ..., αn−1]

)
.

(ii) For every n, for every cylinder [α0, ..., αn−1] ∈ Σn,
∑
α−1

µh

(
[α−1, .., αn−1]

)
= µh

(
[α0, .., αn−1]

)
.

(iii) For every n ≥ 0,
∑

[α0,...,αn−1]

µh

(
[α0, ..., αn−1]

)
= 1.

We assume in the rest of the paper that we have extracted from the sequence
(νh)−1/h2∈Sp(∆) a sequence (νhk

)k∈N that converges to ν0 in the weak topology:
〈Ophk

(a)ψhk
, ψhk

〉L2(M) −→
k−→+∞

∫
S1M

a dν0, for every a ∈ C∞c (TM). To simplify

notations, we forget about the extraction, and simply consider that νh −→
h−→0

ν0.

If the partition of unity (Ai) does not depend on h, the usual Egorov theorem
shows that µh converges, as h −→ 0, to a same σ-invariant probability measure
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defined by µ
(A)
0 on Σ, defined by

µ
(A)
0

(
[α0, ..., αn]

)
= ν0

(
Aα0 .Aα1 ◦ g1...Aαn ◦ gn)

)
.

By “convergence”, we mean that the measure of each cylinder set converges. Now,
suppose the partition of unity depends on h so as to satisfy (1.3.1), (1.3.2); we may,
and will also assume that ν0 does not charge the boundary of P .

Proposition 1.3.2. The family (µh) converges to µ0 as h −→ 0.

Proof. Let C = [α0, ..., αn] be a cylinder set. By the Egorov theorem 5.0.3,

||Ĉh −Oph

(
Aα0 Aα1 ◦ g1...Aαn−1 ◦ gn−1

)
||L2(M) = O(h1−2κ).(1.3.6)

The function Aα0 Aα1 ◦ g...Aαn−1 ◦ gn−1 is nonnegative, and, as h −→ 0, it
converges uniformly to 1 on every compact subset in the interior of Pα0∩g−1Pα1 ...∩
g−n+1Pαn−1 , since Ai converges uniformly to 1 on every compact subset in the
interior of Pi (1.3.1).

If we chose a positive quantization procedure Oph, it follows from (1.3.6) that

lim inf
h−→0

µh(C) = lim inf
h−→0

〈Oph

(
Aα0 Aα1 ◦ g...Aαn−1 ◦ gn−1

)
ψh, ψh〉

≥ lim inf νh

(
int(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1)

) ≥ ν0

(
int(Pα0∩g−1Pα1 ...∩g−n+1Pαn−1)

)

We have assumed that ν0 does not charge the boundary of the Pis, and thus the
last term is also ν0

(
Pα0 ∩ g−1Pα1 ... ∩ g−n+1Pαn−1

)
.

Similarly, using (1.3.2) one can prove that

lim sup
h−→0

µh(C) ≤ ν0

(
Pα0 ∩ g−1Pα1 ... ∩ g−n+1Pαn−1

)
.

This ends the proof since we assumed ν0 does not charge the boundary of the
partition P .

The key technical result of this paper, proved in Section 4, is an upper bound
on µh, valid for cylinder sets of all lengths.

1.3.2. Decay of the measures of cylinder sets. Remember that ε is an upper bound
on the diameter of the support of the Ais. We denote Gs(A) a common Gevrey
constant for all the Ais. We also recall the definition of the unstable Jacobian: since
the geodesic flow is Anosov, each energy layer SλM = {v ∈ TM, ||v|| = λ} (λ > 0) is
foliated into strong unstable manifolds of the geodesic flow. The unstable Jacobian
Ju(v) at v ∈ TM is defined as the jacobian of g−1, restricted to the unstable leaf
at the point g1v.

Theorem 1.3.3. Under Assumption (I), one has the following estimates on the
measures of cylinder sets.

There exists a function R(n, h) such that:
For every η > 0, there exists ε0 > 0, h0 > 0, such that, if 0 < ε ≤ ε0, if

0 < h < h0, one has an upper bound of the form:

|µh

(
[α0, ..., αn]

)| ≤
(
1 + η

)n
(∏n−1

i=0 Ju(vi)
(2πh)d

)1/2

[1 + R(n, h)],(1.3.7)

valid for every cylinder [α0, ..., αn].
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Here vi is a vector in supp Ai, such that g1vi ∈ suppAi+1 and d(vi, g
1vi) =

d(supp Ai, supp Ai+1).

The function R(n, h) tends to 0 as h −→ 0, uniformly for n ≤ K| log h| (for any
arbitrary K).

Assumption (I) is given in paragraph 1.4.
The proof of Theorem 1.3.3 does not use the fact that ψh is an eigenfunction;

it relies on an estimate of the kernel of the operator Aα0Aα1(1)...Aαn
(n), given by

Theorem 4.0.1 in Section 4.
The fact that ψh is an eigenfunction is used through the invariance of µh under

the shift, which is crucial to go from Theorem 1.3.3 to Theorem 1.1.1. The proof
of Theorem 1.1.1 may be roughly summarized by two observations:

(a) For all n ∈ N, Theorem 1.3.3 tells us that, for every cylinder C ∈ Σn,
|µh(C)| ≤ e−n(χ/2−η)

(2πh)d/2 [1 + R(n, h)], where R(n, h) is a remainder term that remains
small when n says of order | log h|.

Thus, for any θ ∈ (0, 1), a set of µh-measure greater than (1 − θ) cannot be
covered by less than (1− θ)(2πh)d/2en(χ/2−η)[1 + R(n, h)]−1 cylinders of length n.

(b) If F̃ ⊂ Σ is a σ-invariant set of topological entropy strictly less than χ/2,
then there exists C, δ > 0 such that, for all n, F̃ can be covered by Cen(χ/2−δ)

cylinder sets of length n.

These two simple remarks encourage the intuition that the limit µ0 cannot be
carried by a set of topological entropy less than χ/2.

The problem we will have to face when passing to the limits h −→ 0 is that
the inequality |µh(C)| ≤ e−n(χ/2−η)

(2πh)d/2 [1 + R(n, h)] only contains information when
e−n( χ

2 −η)

(2πh)d/2 << 1, that is, n ≥ ϑ| log h| for a certain ϑ (roughly speaking, ϑ = d
χ ).

On the other hand, observation (b) is only exploitable if µh is close to being a
probability measure; semi-classical analysis tells us that this is the case on the set of
cylinders of length ≤ κ̄| log h|, where κ̄ is also somehow controlled by the Lyapunov
exponents of the flow (this time scale is called the Ehrenfest time). A priori, κ̄ < ϑ,
and our task will be to link the two regimes n ≤ κ̄| log h| and n ≥ ϑ| log h|. This
will be done by a certain sub-multiplicative argument presented in paragraph 2.2.
The fact that ψh is an eigenfunction will be used through the σ-invariance of µ.

The paper is organized as follows:
– in Section 1 we prove Theorems 1.1.1, admitting the estimates provided by

Theorem 1.3.3.
– in Section 2 we recall the main theorem of the paper [AMB92] by Aubry-

McKay-Baesens, with a an aim to applying it to the proof of Theorems 4.0.1 and
1.3.3. The result translates the uniform hyperbolicity of the geodesic flow into
certain properties of its generating function.

– in Section 3, we use the stationary phase method combined to the result of
[AMB92] to prove Theorems 4.0.1 and 1.3.3.

The paper has two appendices. In A1 we construct the partition of unity Ah
i . In

A2 we collect some facts about small scale pseudo-differential operators.
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The last paragraph of this section is devoted to the statement and discussion of
the assumptions.

1.4. Assumptions.

Assumption (I) (regularity assumptions): Let χh be a pseudo-differential oper-
ator whose symbol has compact support, localized in a small neighbourhood of the
energy layer S1M . If the injectivity radius is greater than 1, it follows from the
theory of Fourier Integral operators that the propagator exp( ih∆

2 )χh can be written
as Eh.χh, where the kernel of Eh is

e(h)(x, y, 1) =
1

(2πh)d/2
e

id2
M (x,y)
2h a(h)(x, y),

and a(h)(x, y) ∼ ∑
j hjaj(x, y) is in a good class of symbols.

We assume that the manifold M is real-analytic, endowed with a real-analytic
metric. Besides, we assume that (a(h))0<h≤1 is a family of analytic functions on the
set {(x, y), 1

2 ≤ dM (x, y) ≤ 3
2}, with uniform analyticity constants. In other words,

on this set, there exists for all h an analyticity constant G1(a(h)) for a(h), such that
sup0<h≤1 G1(a(h)) < +∞.

Remark 1.4.1. We check that Assumption (I) is satisfied for a surface of constant
negative curvature at the end of Section 4. In a more general context, I do not know
if anything has been proved concerning the analyticity of the propagator of the
Schrödinger equation on analytic manifolds. For the heat kernel, the corresponding
result is proved in [LGS96].

Let us fix a few notations:
– for distances: we will denote dM , dTM , etc... the distances on M,TM, ...

induced by the Riemannian metric. When there is no ambiguity, we will omit the
subscripts M, TM, ..., and simply denote with the letter d any of these distances.

– for projections: the letter π will denote the natural projection TM −→ M
– and for the quantum evolution of operators: if Â is an operator, we will denote

Â(t) its evolution under the quantum flow, that is, Â(t) = exp(−ith∆
2 ).Â. exp(ith∆

2 ).

2. Proof of Theorem 1.1.1.

Here we admit Theorem 1.3.3 and prove Theorem 1.1.1. The proof of the theorem
may be roughly summarized in two observations:

(a) For all n ∈ N,
∑
C∈Σn

µh(C) = 1, and we know that, for every cylinder
C ∈ Σn,

|µh(C)| ≤ e−n(χ/2−η−Ch)

(2πh)d/2
[1 + R(n, h)];

we have limh−→0 R(n, h) = 0 uniformly for n ≤ K| log h| (for arbitrary K).
Thus, for any θ ∈ (0, 1), a set of µh-measure greater than (1 − θ) cannot be

covered by less than (1− θ)(2πh)d/2en(χ/2−η−Ch)[1+R(n, h)]−1 cylinders of length
n (see Paragraph 2.2).

(b) If F̃ ⊂ Σ is a σ-invariant set of topological entropy strictly less than χ/2; say
htop(F̃ ) ≤ χ/2− 11δ for some positive δ. Then there exists C such that, for every
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n ∈ N , F̃ can be covered by Cen(htop(F̃ )+δ) ≤ Cen(χ/2−δ) cylinder sets of length n
(see Paragraph 2.3.)

The two observations (a) and (b) lead us to form the intuition that it is difficult
for the limit measure µ0 to concentrate on a set of topological entropy less than
χ/2.

Sketch of the proof. We will start with a variant of observation (b), proved
in paragraph 2.3:

(b’) Let F̃ ⊂ Σ be a σ-invariant set of topological entropy htop(F̃ ) ≤ χ/2− 11δ.
Then there exists a neighbourhood Σ(Wn1) of F̃ , formed of cylinders of length n1,
such that, for N large enough, for every µ ∈ [0, 1],

]ΣN (Wn1 , µ) ≤ e8δNeNhtop(F )e(1−µ)N(1+n1) log l,

where l is the number of elements of the partition P .
Here we denote ΣN (Wn1 , µ) the set of N -cylinders [α0, ..., αN−1] such that

]
{
j ∈ [0, N − n1], [αj , ..., αj+n1−1] ∈ Σ(Wn1)

}

N − n1 + 1
≥ µ.

They correspond to orbits that spend a lot of time in the neighbourhood of F̃ .

Comparing (a) and (b’), we see that, if η < δ and µ is sufficiently close to 1, one
can find ϑ large enough so that, for N ≥ ϑ| log h|,

(1− θ)(2πh)d/2eN(χ/2−η−Ch)[1 + R(N, h)]−1 > e8δNeNhtop(F )e(1−µ)Nhtop(S1M).

Hence:

|µh

(
ΣN (Wn1 , µ)

)| ≤ 1− θ.(2.0.1)

Then, using the σ-invariance of µh, we want to write, for N = ϑ| log h|,

|µh (Σ(Wn1)) | = | 1
N − n1

N−n1−1∑

k=0

µh

(
σ−kΣ(Wn1)

) |(2.0.2)

= |µh

( 1
N − n1

N−n1−1∑

k=0

1Iσ−kΣ(Wn1 )

)
|(2.0.3)

≤ µh

(
ΣN (Wn1 , µ)

)
+ µ µh

(
ΣN (Wn1 , µ)c

)
(2.0.4)

≤ (1− µ)µh

(
ΣN (Wn1 , µ)

)
+ µ(2.0.5)

≤ (1− µ)(1− θ) + µ,(2.0.6)

and, passing to the limit h −→ 0, we get µ0(Σ(Wn1)) ≤ (1 − µ)(1 − θ) + µ and
hence

µ0(F̃ ) ≤ (1− µ)(1− θ) + µ < 1.

For (2.0.4), we have used the fact that

1
N − n1

N−n1−1∑

k=0

1Iσ−kΣ(Wn1 ) ≤ 1
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in general, and that
1

N − n1

N−n1−1∑

k=0

1Iσ−kΣ(Wn1 ) ≤ µ

on ΣN (Wn1 , µ)c, the complement of ΣN (Wn1 , µ). The problem is that this line is
not correct since µh is not a probability measure !

We know however that µh converges weakly to a probability measure, and we
may try to make this statement more quantitative. Semi-classical analysis will tell
us that µh is close to being a probability measure when restricted to the set of
cylinders of length N ≤ κ̄| log h|, for κ̄ not too large. To sum up, the inequality
(2.0.1) only holds for N ≥ ϑ| log h| whereas the heuristics (2.0.2)–(2.0.6) only makes
sense for N ≤ κ̄| log h|; and a priori, κ̄ < ϑ. Our job will be to pass from one time-
scale to the other; this will be done thanks to the sub-multiplicative lemma of
paragraph 2.2.

In paragraph 2.1 we give certain important precisions about the partitions of
unity we want to use. In 2.2, we come back to observation (a) and prove the
crucial sub-multiplicativity lemma. Paragraph 2.3 is dedicated to proving (b’). In
paragraph 2.4 we show that, until a certain time κ̄| log h|, the measure µh can be
treated as a probability measure. Finally, we conclude as in (2.0.2)–(2.0.6).

2.1. Nice partitions of unity. For reasons that will become clear later, we need
to be more specific about our partitions of unity (Ai). In order to apply semi-
classical methods we need the Ai to be smooth, and on the other hand we would
like the family Ai to behave almost like a family of orthogonal projectors: A2

i ' Ai,
AiAj ' 0 for i 6= j.

Take a finite partition M = P1 t ... t Pl by sets of diameter less than ε/2, and
such that each Pi contains a ball of radius ε/4. By modifying slightly the Pis we
may assume that the semi-classical measure ν0 does not charge the boundary of the
partition. Denoting Pi the closure of Pi, we also have M = P1 ∪ ...∪ Pl, this union
is no longer disjoint but two different sets may intersect only at boundary points.

Our partition of unity will be defined by taking

Ãh
i (x) =

1
hκ

1IPi ∗ ζ
(
x/hκ

)
;(2.1.1)

that is,

Ãh
i (x) =

1
hκ

∫
ζ

( y

hκ

)
1IPi(x− y)dy,

where ζ is a nonnegative, compactly supported function in the Gevrey class Gs, of
integral 1; the convolution is to be unterstood in a local chart, and κ ≥ 0 will be
chosen later. Then, we take as a partition of unity the family

Ai =
Ãh

i∑l
j=1 Ãh

j

.

The partition of unity (Ai)1≤i≤l depends on h, and if κ > 0 it converges weakly
to (1IPi)1≤i≤l when h −→ 0. It has the following properties:
• Pi ⊂ suppAi ⊂ B(Pi, ε/2) for all i, for h small enough. In accordance with the

notations of the previous sections, we denote P̂i = B(Pi, ε/2).
• Ai

2 = Ai except on a set of measure of order hκ.
• for i 6= j, AiAj = 0 except on a set of measure of order hκ.
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• for all i, Ai ∈ Gs(Ch−κ, C), for some C depending only on the cut-off function
ζ used in the definition of Ãi.

We must choose κ so that semi-classical methods still work: that is, h2Gs(A) −→
h−→0

0,

in other words κ < 1/2 (see Appendix A1).
In addition, we need to assume that there exists some p > 0 such that
• For all i, ||(A2

i −Ai)ψh||L2(M) = O(hp/2).
• For i 6= j, ||AiAjψh||L2(M) = O(hp/2).

In other words, the operators Ai act on ψh almost as a family of orthogonal pro-
jectors. Because ||ψh||L2(M) = 1, it is always possible to construct the Ais in order
to satisfy all the requirements above; this requires to modify slightly the partition
Pi before applying the convolution (2.1.1). The construction is described in detail
in Appendix A2.

2.2. Counting (h, (1− θ), n)-covers: a sub-multiplicative property. We now
try to exploit observation (a). As already mentioned, we will have to face the
problem that the inequality |µh(C)| ≤ e−n(χ/2−η−Ch)

(2πh)d/2 [1 + R(n, h)] only contains in-

formation when e−n( χ
2 −η−Ch)

(2πh)d/2 << 1, that is, n ≥ ϑ| log h| for a certain ϑ. On the
other hand, observation (a) is only exploitable if µh is close to being a proba-
bility measure; semi-classical analysis tells us that this is the case on the set of
cylinders of length ≤ κ̄| log h|. A priori, κ̄ < ϑ, and to reconcile the two regimes
n ≤ κ̄| log h| and n ≥ ϑ| log h| we will need a certain sub-multiplicativity property
(Lemma 2.2.3).

Definition 2.2.1. (i) Let W be a subset of Σn, the set of n-cylinders in Σ; we
denote W c ⊂ Σn its complement. For a given h > 0 and θ ∈ [0, 1], we say that W
is a (h, (1− θ), n)-cover of Σ if

||
∑

C∈W c

Ĉhψh||L2(M) ≤ θ.(2.2.1)

(ii) We define

Nh(n, θ) = min{]W,W is a (h, (1− θ), n)-cover of Σ},
the minimal cardinality of an (h, (1− θ), n)-cover of Σ.

Remember the notation: for C = [α0, ..., αn−1] ∈ Σn, Ĉh stands for the operator
Ĉh = Aαn−1(0)....Aα1(−n + 2)Aα0(−n + 1).

In some sense, (2.2.1) means that the measure of the complement of W is
small. The reason why we measure this by ||∑C∈W c Ĉhψh||L2(M), and not by
|∑C∈W c µh(C)| = |∑C∈W c〈Ĉhψh, ψh〉L2(M)|, is that we need the sub-multiplicative
property of Nh(n, θ) given by the next lemma, and that it only works with definition
2.2.1.

We will use the following lemma, proved in Appendix A1:

Lemma 2.2.2. Let χh be a pseudo-differential operator, whose symbol is an energy
cut-off, supported in a neighbourhood of the energy layer ||v|| = 1. There exist κ̄
and α > 0 such that, for all n ≤ κ̄| log h|, for every subset W ⊂ Σn,

||χ∗h
∑

C∈W

Ĉhχh||L2(M) ≤ 1 + O(hα).
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Lemma 2.2.3. (Sub-multiplicativity) If κ̄ and α are as in Lemma 2.2.2, then for
every n ≤ κ̄| log h|, k ∈ N and θ ∈]0, 1[,

Nh

(
kn, kθ(1 + O(nhα)

)
≤ Nh

(
n, θ

)k
.

Proof. Given a (h, (1 − θ), n)-cover of Σ, denoted W , we show that W k ⊂ Σkn,
defined as the set of kn-cylinders [α0, ..., αkn−1] such that [αjn, ..., α(j+1)n−1] ∈ W
for all j ∈ [0, k − 1], is a (h, 1− kθ, kn)-cover:

Each C ∈ (W k)c may be decomposed into the concatenation of k cylinders of
length n, C = C0C1...Ck−1, one of which is not in W . Thus, we have

(2.2.2) ||
∑

C∈(W k)c

Ĉhψh||L2(M)

= ||
k−1∑

j=0

∑

Ci∈W for i<j,Cj∈W c,Ci∈Σn for i>j

Ĉ0
h...Ĉj

h(−jn)...Ĉk−1
h (−(k − 1)n)ψh||

= ||
k−1∑

j=0

∑

Ci∈W for i<j,Cj∈W c

Ĉ0
h...Ĉj

h(−jn)ψh||.

Using Lemma 2.2.2 to bound the norm of
∑
Ci∈W for i<j Ĉ0

h...Ĉj−1
h (−(j − 1)n)

by (1 + O(hα))j , we see that (2.2.2) is less than

(1 + O(hα))n
k−1∑

j=0

||
∑

Cj∈W c

Ĉj
h(−jn)ψh||

= (1 + O(hα))n
k−1∑

j=0

||
∑

Cj∈W c

Ĉj
hψh|| ≤ kθ(1 + O(nhα)).

We used here the fact that ψh is an eigenfunction.

The next proposition is just an expression of Observation (a).

Proposition 2.2.4. For every N large enough and for h ≤ 1, we have

Nh(N, θ) ≥ (1− θ)(2πh)d/2eN( χ
2−η−Ch)

[
1 + R(n, h)

]−1
.

Proof. Let W be a (h, (1− θ), N)-cover of Σ. We have

|
∑

C∈W c

〈Ĉhψh, ψh〉| ≤ ||
∑

C∈W c

Ĉhψh|| ||ψh|| ≤ θ,

so that
|
∑

C∈W

〈Ĉhψh, ψh〉| ≥ 1− θ.

Thus,

1− θ ≤
∑

C∈W

|〈Ĉhψh, ψh〉| ≤ ]W
e−N( χ

2−η−Ch)

(2πh)d/2

[
1 + R(n, h)

]
,

where the last line comes from Theorem 1.3.3.

This immediately implies:
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Lemma 2.2.5. Given any δ > 0, we may choose ϑ large enough, and η small
enough, so that, for N = ϑ| log h|, we have

Nh(N, θ) ≥ (
1− θ

)
eN( χ

2−δ).

We will choose δ later in the proof of Theorem 1.1.1 (actually, at the beginning
of the next paragraph). It will depend on the set F appearing in the theorems.

As we said, semi-classical analysis is usually only valid until a certain time
κ̄| log h|, and in general κ̄ < ϑ. Lemma 2.2.3 is precisely the tool that will al-
low us to reduce the time scale: starting from Lemma 2.2.5, it tells us that, for
N = κ̄| log h|, 0 ≤ κ̄ ≤ ϑ,

Nh(N,
κ̄

ϑ
θ) ≥ (1− θ)κ̄/ϑeN( χ

2−δ).(2.2.3)

Note that the σ-invariance of µh was absolutely crucial to prove Lemma 2.2.3
and hence (2.2.3).

2.3. Covering sets of small topological entropy. The aim of this paragraph
is to put a precise statement behind observation (b). Lemma 2.3.2 belowsays that,
if F is a set of small topological entropy, then the set of orbits spending a lot of
time near F also has a small rate of exponential growth.

We denote htop(S1M) the topological entropy of the action of (gt) on S1M . More
generally, if F ⊂ S1M is closed and invariant under (gt), we denote htop(F ) the
topological entropy of the flow restricted to F (see the definition in [KH], Chapter
3).

To prove Theorem 1.1.1, let us consider an invariant subset F ⊂ S1M of topo-
logical entropy htop(F ) < χ

2 ; let δ > 0 be such that htop(F ) + 11 δ ≤ χ
2 . It is for

this real number δ > 0 that we will later apply Lemma 2.2.5 and (2.2.3).
Let us now denote Nn(P , F ): the minimal number of cylinders

[α0, α1, ..., αn−1] ∈ Σn

such that the corresponding sets Pα0 ∩ ... ∩ g−n+1Pαn−1 cover F . Without loss of
generality, we may assume

lim sup
log Nn(P , F )

n
≤ htop(F ) + 2δ.(2.3.1)

Remark 2.3.1. Here is why: We know from the definition of topological entropy
that, for ε > 0 small enough and every N large enough, there exists a set {ξ1, ..., ξexp(N(htop(F )+δ))}
of geodesic arcs [0, N ] −→ M , lying in F , and which is (ε,N)-spanning for F in the
following sense:

For every geodesic arc ξ : [0, N ] −→ M , in F , there exists j ∈ [
1, exp

(
N(htop(F )+

δ)
)]

such that dM

(
ξ(t), ξj(t)

) ≤ ε for all t ∈ [0, N ].
Fix T ≥ 1 such that 82d < eTδ, and replace the alphabet {1, ..., l} by a new

alphabet A, whose letters are triples

(α0, αT−1, γ) = ∪α1,...αT−2 [α0, ..., αT−1],

where
– αj ∈ {1, ..., l}.
– γ : [0, T ] −→ M is a given geodesic (parametrized with arc-length) with

γ(0) ∈ Pα0 , γ(T − 1) ∈ PαT−1 .
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– α1, ..., αT−2 run over the set of letters such that: there exists γ′ : [0, T −1] −→
M , a geodesic path, with γ(j) ∈ Pαj (j = 0, ..., T − 1) and γ′ is homotopic to γ
with endpoints staying in Pα0 , PαT

.
We claim that the minimum number of sequences of length n in this new alpha-

bet, such that the corresponding cylinders cover F , is less than

exp
(
nT (htop(F ) + δ)

)× 82dn ≤ exp(nT (htop(F ) + 2δ)).(2.3.2)

In fact, take N = nT in the choice of the (ε,N)-spanning set above. Let ξ :
[0, nT ] −→ M be a geodesic in F . There exists j ∈ [

1, exp
(
nT (htop(F ) + δ)

)]
such

that ξ stays ε-close to ξj . In particular, ξ(kT ) and ξ(kT −1) are respectively ε-close
to ξj(kT ) and ξj(kT − 1) (for k = 0, 1, ..., n).

Because each Pi has volume greater than (ε/4)d, at most (8ε)d can fit into a ball
a radius 2ε. We see thus that, given ξj (j ∈ [

1, exp
(
nT (htop(F ) + δ)

)]
), we need

at most (8ε)2dn words in the new alphabet A to describe the cylinders of length n,
covering the geodesics ξ in F staying ε-close to ξj in [0, nT ]. This shows (2.3.2).
If T = 1 we get exactly what we claimed, (2.3.1). If T > 1, we could work on
a different symbolic space Σ defined with the new alphabet A instead of {1, ..., l},
and have (2.3.1). Thus we may assume without loss of generality that (2.3.1) holds.

In particular, there exists n0 such that

Nn(P , F ) ≤ en(htop(F )+3δ),

for all n ≥ n0. We denote Wn a cover of minimal cardinality of F by sets of the
form Pα0∩...∩g−n+1Pαn−1 , and Σ(Wn) ⊂ Σn the set of the corresponding cylinders
[α0, ..., αn−1].

Given N ∈ N, n ≤ N and µ ∈ [0, 1], we denote ΣN (Wn, µ): the set of N -cylinders
[α0, ..., αN−1] such that

]
{
j ∈ [0, N − n], [αj , ..., αj+n−1] ∈ Σ(Wn)

}

N − n + 1
≥ µ.

They correspond to orbits that spend too much time in the neighbourhood of F .
The next lemma bounds the cardinality of ΣN (Wn, µ).

Lemma 2.3.2. (Counting cylinder sets) There exist n1 ≥ n0, and N0 such that,
for every N ≥ N0 and for every µ ∈ [0, 1],

]ΣN (Wn, µ) ≤ e8δNeNhtop(F )e(1−µ)N(1+n1) log l.

Proof. Take n1 ≥ n0 large enough so that

lim
N−→+∞

1
N

log
(
b N

n1
c

N

)
≤ δ

10

(we denote
(
k
N

)
the binomial coefficients); n1 is now fixed.

Given a sequence [α0..., αN−1] ∈ ΣN , define a sequence of “stopping times”:

τ0 = inf
{
0 ≤ j ≤ N − n1, [αj , ..., αj+n1−1] ∈ Σ(Wn1)

}
,

τ ′0 = inf
{
τ0 ≤ j ≤ N − n1, [αj , ..., αj+n1−1] 6∈ Σ(Wn1)

}
,

τ1 = inf
{
τ ′0 − 1 + n1 ≤ j ≤ N − n1, [αj , ..., αj+n1−1] ∈ Σ(Wn1)

}
,



17

and so on:

τk+1 = inf
{
τ ′k − 1 + n1 ≤ j ≤ N − n1, [αj , ..., αj+n1−1] ∈ Σ(Wn1)

}
,

τ ′k+1 = inf
{
τk ≤ j ≤ N − n1, [αj , ..., αj+n1−1] 6∈ Σ(Wn1)

}
.

The sequence (τk) becomes stationary, equal to N−n1, for k ≥
⌊

N
n1

⌋
. Define the

intervals I0 = [τ0, τ
′
0−1+n1−1],...,Ik = [τk, τ ′k−1+n1−1]. If C = [α0, ..., αN−1] is

in ΣN (Wn1 , µ), then the complement of ∪Ik has cardinality less than (1− µ)(N −
n1 + 1) + n1 ≤ (1− µ)N + n1.

A cylinder C = [α0, ..., αN−1] ∈ ΣN (Wn1 , µ) is completely determined by the
following data:

(i) the intervals (Ik)0≤k≤bN/n1c
(ii) the restriction of C to the union of the Iks.
(iii) the values of C outside the Iks.

Let us count in each case the number of possibilities:

(i) There are at most
(bN/n1c

N

)2

possibilities, corresponding to the choices of the
endpoints of the intervals Ik; by our choice of n1, for N large enough this is less
than eδN .

(ii) Each Ik can be split into a disjoint union of intervals of length n1 and at most
one interval of length less than n1. The intervals of length (exactly) n1 thus obtained
are at most N/n1, and they correspond to cylinders covering F : there are at most
(]Σ(Wn1))

N/n1 possibilities. If n1 ≥ n0 this is less than
(
en1(htop(F )+3δ)

)N/n1 =
eN(htop(F )+3δ) by (2.3.1). For the remaining intervals, of length strictly less than
n1, there can be at most (1− µ)N of them; this gives l(1−µ)Nn1 possibilities.

(iii) For the values of α outside the Iks, the number of possible choices is bounded
by l(1−µ)N+n1 . Choose N0 such that ln1 ≤ eN0δ/2.

This ends the proof of the lemma. Note that our estimates are very rough, since
we argued as if all choices in (i), (ii) and (iii) were independent.

In particular, if we choose µ ∈ (0, 1) close enough to 1 so that

htop(F ) + (1− µ)N(1 + n1) log l + 8δ ≤ χ

2
− 2δ,

we have

]ΣN (Wn, µ) ≤ e( χ
2−2δ)N ,(2.3.3)

for all N large enough.

Now, comparing (2.3.3) with (2.2.3), for h small enough and N = κ̄| log h|, we
have necessarily:

||
∑

C∈ΣN (Wn1 ,µ)c

Ĉhψh||L2 ≥ κ̄

ϑ
θ.(2.3.4)

This says, in a certain sense, that the measure of the complement of ΣN (Wn1 , µ)
cannot be too small. There remains to relate (2.3.4) with

|µh(ΣN (Wn1 , µ)c)| = |
∑

C∈ΣN (Wn1 ,µ)c

〈Ĉhψh, ψh〉|.
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This is done in the next two paragraphs, and goes roughly as follows:
Imagine that the operators Ĉh were orthogonal projectors, with orthogonal im-

ages for distinct cylinders C. Ideally, this would be the case if:
– the operators Ai were a family of orthogonal projectors (that is, if the Ais were

characteristic functions of disjoint sets);
– the operators Ai(t) commuted with one another for all t.
If that was the case, we could write

(2.3.5)
∑

C∈ΣN (Wn1 ,µ)c

〈Ĉhψh, ψh〉 =
∑

C∈ΣN (Wn1 ,µ)c

||Ĉhψh||2L2 = ||
∑

C∈ΣN (Wn1 ,µ)c

Ĉhψh||2L2

so that (2.3.4) would imply the lower bound

|µh(ΣN (Wn1 , µ)c)| ≥
( κ̄

ϑ
θ
)2

.

Unfortunately, the Ais are not characteristic functions of disjoint sets, they form
a smooth partition of unity; and the operators Ai(t) do not commute.

However,
– we have constructed the Ai so that they act on ψh almost as an orthogonal

family of projectors.
– there exists κ̄ > 0 such that the operators Ai(t) almost commute for |t| ≤

κ̄| log h|:
Proposition 2.3.3. There exists κ̄ > 0 such that, for every N ≤ 2κ̄| log h|, for
every permutation τ of {0, ..., N}, for every sequence t0, ..., tN such that |ti| ≤
κ̄| log h|, for every sequence α0, ..., αN ,

||AαN (tN ).....Aα1(t1)Aα0(t0)ψh

−AατN (tτN ).....Aατ1(tτ1)Aατ0(tτ0)ψh||L2(M) = O(hκ̄)

The proof is given in Appendix A1.
So, there is hope to prove (2.3.5), at least up to a negligible remainder term.

That is the object of the next paragraph.

2.4. Relating ||∑ Ĉhψh|| and
∑〈Ĉhψh, ψh〉.

Remember that we constructed the partition of unity (Ah
i ) in such a way that:

There exists p > 0 such that

||(A2
i −Ai)ψh||L2(M) = O(hp/2)

and
||AiAjψh||L2(M) = O(hp/2),

for all i and all j 6= i.

Let us choose the parameter κ̄ so that the conclusion of Proposition 2.3.3 holds.
This ensures that there is no harm in treating the Ĉh as orthogonal projectors

in (2.3.4).
Using Proposition 2.3.3, which allows commutation of the operators Ai(t) for

|t| ≤ κ̄| log h| (up to O(hκ̄)), we find that, for N ≤ κ̄| log h|, for C, C′ ∈ ΣN , C 6= C′,
|〈Ĉhψh, Ĉ′hψh〉| = O(hκ̄) + O(hp/2),

and
|〈Ĉhψh, ψh〉 − 〈Ĉhψh, Ĉhψh〉| = N

(
O(hκ̄) + O(hp/2)

)
.
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Then, for N ≤ κ̄| log h|,
∑

C,C′∈ΣN ,C 6=C′
|〈Ĉhψh, Ĉ′hψh〉| =

(
O(hκ̄) + O(hp/2)

)
(]Σn)2

and
∑

C∈ΣN

|〈Ĉhψh, ψh〉 − 〈Ĉhψh, Ĉhψh〉| = N
(
O(hκ̄) + O(hp/2)

)
]ΣN .

Since the cardinality of ΣN grows exponentially, we can adjust κ̄ so that, for N ≤
κ̄| log h|,

∑

C,C′∈ΣN ,C 6=C′
|〈Ĉhψh, Ĉ′hψh〉| = O(hκ̄)

and
∑

C∈ΣN

|〈Ĉhψh, ψh〉 − 〈Ĉhψh, Ĉhψh〉| = O(hκ̄).

The two properties above imply that, for N ≤ κ̄| log h|, for every subset S ⊂ ΣN ,
∑

C∈S

|µh(C)| = |
∑

C∈S

µh(C)|+ O(hκ̄)(2.4.1)

=
∑

C∈S

||Ĉhψh||2 + O(hκ̄)(2.4.2)

= ||
∑

C∈S

Ĉhψh||2 + O(hκ̄).(2.4.3)

The point is that, when working on cylinders of size κ̄| log h|, the measure µh is
non-negative, up to a negligible remainder term. The first line implies in particular
that

∑

C∈ΣN

|µh(C)| = 1 + O(hκ̄)(2.4.4)

Now, coming back to (2.3.4), we get for N = κ̄| log h|, and n1 as in Lemma 2.3.2,

∑

C∈ΣN (Wn1 ,µ)c

|µh(C)| ≥
( κ̄

ϑ
θ
)2

+ O(hκ̄)

and, because of (2.4.4),

∑

C∈ΣN (Wn1 ,µ)

|µh(C)| ≤ 1−
( κ̄

ϑ
θ
)2

+ O(hκ̄)(2.4.5)

2.5. End of the proof. We can now conclude the proof, following the strategy
given at the beginning of this section.
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We use again the σ-invariance of µh (Proposition 1.3.1 (ii), and we get, for
N = κ̄| log h|,

|µh(Σ(Wn1))| = | 1
N − n1

N−n1−1∑

k=0

µh(σ−kΣ(Wn1))|+ O(h∞)(2.5.1)

= |µh

( 1
N − n1

N−n1−1∑

k=0

1Iσ−kΣ(Wn1 )

)
| + O(h∞)(2.5.2)

≤
∑

C∈ΣN (Wn1 ,µ)

|µh(C)|+ µ
∑

C6∈ΣN (Wn1 ,µ)

|µh(C)| + O(h∞)(2.5.3)

≤ (1− µ)
∑

C∈ΣN (Wn1 ,µ)

|µh(C)|+ µ + O(hκ̄)(2.5.4)

≤ (1− µ)
(

1−
( κ̄

ϑ
θ
)2

)
+ µ + O(hκ̄).(2.5.5)

For (2.5.3), we have used the fact that

1
N − n1

N−n1−1∑

k=0

1Iσ−kΣ(Wn1 ) ≤ 1,

in general, and that

1
N − n1

N−n1−1∑

k=0

1Iσ−kΣ(Wn1 ) ≤ µ

on ΣN (Wn1 , µ)c. In the next line, we have used (2.4.4); and we conclude thanks to
(2.4.5).

Passing to the limit in (2.5.5) (and using 1.3.2), we obtain

ν0

( ∪Σ(Wn1 ) Pα0 ∩ g−1Pα1 ... ∩ g−n1+1Pαn1−1

) ≤ (1− µ)
(

1−
( κ̄

ϑ
θ
)2

)
+ µ < 1.

By definition of Wn1 , one has F ⊂ ∪Σ(Wn1 )Pα0 ∩ g−1Pα1 ... ∩ g−n1+1Pαn1−1 : we
obtain finally

ν0(F ) ≤ (1− µ)
(
1−

( κ̄

ϑ
θ
)2 )

+ µ < 1.

Noting that this last estimate holds for every θ < 1, we get

ν0(F ) ≤ (1− µ)
(
1−

( κ̄

ϑ

)2 )
+ µ,

which proves Theorem 1.1.1

Remark 2.5.1. The method gives a uniform estimate for all F such that htop(F ) ≤
χ
2 − 11δ.

The rest of the paper is devoted to the proof of the technical estimate, Theo-
rem 1.3.3. First we need to recall a few facts about hyperbolic dynamics, and to
introduce some notations.
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3. About Anosov geodesic flows

3.1. What does an Anosov geodesic flow look like ? The action of the geo-
desic flow (gt)t∈R on an energy layer SλM is said to be Anosov if there is a splitting
of the tangent bundle T (SλM) into three sub-bundles, T (SλM) = Es ⊕ E0 ⊕ Eu,
invariant under the flow, and such that:

– E0 is 1-dimensional and is generated by the tangent to the orbits of the geodesic
flow;

– there exist C > 0, θ ∈ [0, 1) such that, for all v ∈ SλM , for all v ∈ Es
v ⊂

Tv(SλM), for all t ≥ 0,
||dgt(v).v|| ≤ Cθt||v||;

and, for all v ∈ SλM , for all v ∈ Eu
v ⊂ Tv(SλM), for all t ≥ 0,

||dg−t(v).v|| ≤ Cθt||v||.
For a geodesic flow, the distributions Es and Eu, called stable and unstable

distributions, are both (d−1)-dimensional. They are automatically integrable, and
we denote respectively W s and Wu the integral foliations. The leaves are called
stable and unstable manifolds of the flow. Each energy layer SλM in TM is also
foliated into (d− 1)-dimensional spheres

Sλ
xM = {v ∈ SλM,π(v) = x}.

Any two of these three foliations are transverse in SλM . In fact, the sphere foliation
is transverse, not only to the strong stable and unstable foliations W s, Wu, but
also to the weak stable and unstable foliation W 0s, W 0u, whose leaves are the
orbits under the geodesic flow of the leaves of W s, Wu: a proof of this fact will be
provided at the end of this section.

We will also need the following properties of Anosov geodesic flows, proved in
[Eb73], [Kl74], [An85], [Ru91]:

– the injectivity radius of M̃ , the universal cover of M , is infinite; M̃ is diffeo-
morphic to Rd, via the exponential map.

– there are no conjugate points; in M̃ , every geodesic achieves the infimum of
the distance between any two points.

Finally, we will use the Shadowing Lemma in the following form:
For θ ≥ 0 and T ≥ 1, we will call “(θ, T )-pseudogeodesic” (parametrized by

[0, nT ]) any piecewise C1 curve ξ : [0, nT ] −→ M such that, on every interval
[kT, (k + 1)T ], ξ is a geodesic, parametrized with constant speed in [1− θ, 1 + θ] ,
and such that, for all k = 1, 2, ..., n− 1, dTM

(
ξ̇−(kT ), ξ̇+(kT )

) ≤ θ (these notations
mean the left- and right-hand side derivatives with respect to time). Note that a
(θ, mT )-pseudogeodesic is, in particular, a (θ, T )-pseudogeodesic, if m is an integer.

The Shadowing Lemma says that there exists θ0 and J > 0 such that, for every
θ ∈ (0, θ0], if ξ : [0, nT ] −→ M is a (θ, T )-pseudogeodesic for some T ≥ 1, then
there exists a geodesic ξS : [0, nT ] −→ M such that

dTM

(
ξ̇S(t), ξ̇(t)

) ≤ Jθ

for all t ∈ [0, nT ].

3.2. A theorem of Aubry-McKay-Baesens . The main theorem in [AMB92]
translates the uniform hyperbolicity of a trajectory of a twist map, in terms of the
hessian of the generating function. Here is a way to reformulate the result:
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Let Ω be an open subset of Rd, containing 0, and, for all k ∈ Z, a function of
class C2:

Lk : Ω× Ω −→ R.

For i, j ∈ {1, 2}, we denote DiLk the derivative of Lk with respect to the variable
i, and, similarly, DijLk is the derivative of order 2 with respect to the variables
i, j. We assume that the second derivatives of the Lks are bounded uniformly in k;
we also assume that, for all y ∈ Ω, for all k, D1Lk(y, .) is a diffeomorphism onto its
image, that D2Lk(0, 0) + D2Lk+1(0, 0) = 0, and that ||D12Lk(0, 0)−1|| is bounded
uniformly in k.

By the implicit functions theorem, there exists for all k a diffeomorphism Tk,
defined in a neighbourhood of (0, 0) ∈ Ω× Ω such that:

Tk(0, 0) = (0, 0)

and
∂

∂y
(Lk(x, y) + Lk+1(y, z)) = 0 ⇐⇒ (y, z) = Tk(x, y).

We say that the sequence of functions (Lk) are generating functions for the
diffeomorphisms Tk.

Let H(0) be the hessian at (0, ...0, ...) of the (formal) sum

(xk)k∈Z ∈ ΩZ 7→
∑

k

Lk(xk, xk+1).

In other words, H(0) is the infinite symmetric matrix, tridiagonal by blocks of size
d× d, these blocks being given by

H(0)k,k = D2
22Lk−1(0, 0) + D2

11Lk(0, 0),

H(0)k,k+1 = D2
21Lk(0, 0),

H(0)k,j = 0 if j > k + 1.

The space Rd is endowed with its canonical euclidean structure denoted 〈., .〉 and
the corresponding euclidean norm ||.||. The space l2(Z,Rd) is the space of sequences
(vn) ∈ (Rd)Z such that

∑ ||vn||2 < +∞, endowed with the corresponding euclidean
norm, denoted ||.||2. Similarly, the space l∞(Z,Rd) is the space of sequences (vn) ∈
(Rd)Z such that sup ||vn|| < +∞, endowed with the corresponding norm ||.||∞. The
notations ||.||2 and ||.||∞ will also be used to denote the norms of bounded linear
operators, respectively from l2 to l2 and from l∞ to l∞.

Theorem 3.2.1. ([AMB92]) The operator H(0) is invertible in l2(Z,Rd) (or l∞(Z,Rd))
if and only if the family of diffeomorphisms Tk satisfies the following “uniform hy-
perbolicity” condition:

There exist C > 0, 0 < λ < 1, and, for all k, a decomposition Rd×Rd = Es
k⊕Eu

k

such that

for all v ∈ Es
k, l ≥ 0, |DTk+l(0, 0).DTk+l−1(0, 0)...DTk(0, 0).v| ≤ Cλl|v|

and

for all v ∈ Eu
k , l ≥ 0, |DTk−l(0, 0).DTk−l+1(0, 0)...DTk(0, 0).v| ≤ Cλl|v|

with, in addition, a uniform lower bound on the angles between the spaces Es
k and

Eu
k .
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The constants C, λ, as well as the uniform lower bound on the angles between Es
k

et Eu
k , can be expressed explicitly in function of the norm of the inverse ‖ H(0)−1 ‖2,

and vice-versa.
A crucial remark in the proof of this result is that there is an isomorphism

between Rd × Rd (the tangent space of Ω × Ω at (0, 0)) and the kernel of H(0) in
(Rd)Z. This isomorphism identifies (x0, x1) ∈ Rd × Rd with the sequence (xk)k∈Z
defined by

(xk, xk+1) = DTk−1(0)...DT1(0).DT0(0).(x0, x1).

System of charts adapted to a geodesic:
Back to the setting of this paper, let us consider a geodesic ξ in M , parametrized

with constant speed in [1− ε, 1 + ε], say for instance 1. Let η > 0 be small enough,
and Ω = B(0, η) ⊂ Rd.

For all k ∈ Z, let us choose a real analytic chart Φk sending Ω to a neighbourhood
of ξ(k), mapping 0 to ξ(k), and such that Φk(Ω) contains the ball of center ξ(k)
and of radius η in M . This charts should in addition be chosen so as to map the
segment ] − η, η[×{0}d−1 to the geodesic segment ξ|]k−η,k+η[ (the parametrization
being preserved), and, finally, so that, for all t ∈]− η, η[, DΦk(t, 0, ..., 0) maps the
hyperplane {0} × Rd−1 to the orthogonal of ξ̇(k + t) in Tξ(k+t)M .

For later purposes, let us note that this can be done so that

||DnΦk|| ≤ CRnn!

and

||DnΦ−1
k || ≤ CRnn!,

with constants C,R independent of the geodesic ξ (parametrized with constant
speed in [1− ε, 1 + ε]) and of the integer k. To be more precise, let us work with a
given, finite system of charts on M , and say that all the estimates on the derivatives
of the Φks, Φ−1

k s, as well as other functions, will be performed in this system of
charts.

We define

Lk(x, y) =
1
2
d2

M (Φk(x),Φk+1(y))

and

L̃k(x, y) = dM (Φk(x),Φk+1(y)).

Let V = {0} × Rd−1 ⊂ Rd. Theorem 3.2.1 says here that the hessian matrix
H̃(0) of the formal sum

∑
k L̃k(xk, xk+1) restricted to V Z, is invertible in l2(Z, V ).

In fact, the functions L̃k, restricted to (V ∩Ω)× (V ∩Ω), generate diffeomorphisms
T̃k that can be naturally interpreted as the first return maps on transversals to
the direction of the geodesic flow at ξ̇(k) ∈ S1M ; the Anosov property of the flow
precisely means that these first return maps on transversals satisfy the uniform
hyperbolicity condition of Theorem 3.2.1.

It follows also that the hessian matrix H(0) of the formal sum
∑

k Lk(xk, xk+1)
restricted to V Z, is invertible in l2(Z, V ). Actually, H(0) = H̃(0) thanks to our
choice of local coordinates that send the hypersurfaces t + V to hypersurfaces or-
thogonal to ξ in M .
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3.3. A variant of Theorem 3.2.1. For later purposes, we will need a variant of
the main result of [AMB92]: for all n, let Hn(0) be the hessian matrix corresponding
to the second variation at 0 of the energy

∑
Lk(xk, xk+1) on V [1,n−1] = V n−1. In

other words, Hn(0) represents, in the local coordinates, the second variation of
the energy 1

2

∑
d2

M (ζk, ζk+1) at ζ1 = ξ(1), ..., ζn−1 = ξ(n− 1), when the endpoints
ζ0 = ξ(0), ζn = ξ(n) are fixed, and ζ1, ..., ζn−1 vary in the orthogonal direction to
the geodesic ξ. The matrix Hn(0) is of size (n− 1)(d− 1)× (n− 1)(d− 1), it is the
restriction of H(0) to the space V n−1.

Proposition 3.3.1. The norms ||Hn(0)−1||2 and ‖ Hn(0)−1 ‖∞ are bounded uni-
formly in n.

Remark 3.3.2. Now, we work on l2([1, n− 1], V ) and l∞([1, n− 1], V ), defined like
l2(Z, V ), l∞(Z, V ) except that the sequences are indexed by [1, n− 1] instead of Z.
For all n, we will use the notation 〈., .〉 for the scalar product in l2 spaces, and ||.||2
and ||.||∞ for the norms on l2 or l∞ spaces. As previously, the notations ||.||2 and
||.||∞ will also stand for the corresponding operator norms.

Proof. The fact that Hn(0) is invertible for all n follows from the fact that an
Anosov geodesic flow has no conjugate points.

We start with l2 norms. Since every geodesic has index 0, the symmetric matrix
H(0) is nonnegative, and we already know that it is invertible in l2(Z, V ). Thus,
the spectrum of H(0) is contained in an interval [ε, 1/ε], where 0 < ε < 1. This
implies that

〈H(0)v, v〉 ≥ ε〈v, v〉
for all v ∈ l2(Z, V ).

Now, if v ∈ V [1,n−1] is seen as a vector in l2(Z, V ) with only n − 1 non-zero
coordinates, this can be written as

〈Hn(0)v, v〉 ≥ ε〈v, v〉,
which proves Proposition 3.3.1 for the l2 norm.

In the l∞ norm, the boundedness of Hn(0)−1 does not follow in such a straight-
forward manner from Theorem 3.2.1. But one only has to do a slight modification
in the original proof given in [AMB92].

First note that the action of Hn(0) on V [1,n−1] is the same as the action of H(0)
on {(vj)j∈Z ∈ V Z, v0 = 0, vn = 0}, restricted to the coordinates 1, ..., n− 1. Then,
the proof of Proposition 2 in [AMB92] can be transcripted word by word, replacing
the spaces l2 or l∞ by {(vj)j∈Z ∈ V Z, v0 = 0, vn = 0}, and their decomposition
(2.44) of KerH(0) into unstable and stable manifold, by another decomposition:

KerH(0) =
{

(vj)j∈Z ∈ KerH(0), v0 = 0
} ⊕ {

(vj)j∈Z ∈ KerH(0), vn = 0
}

.

(3.3.1)

In other words, every v = (vk) ∈ KerH(0) can be decomposed into v = s(n) + u(n)

with s(n) = (s(n)
k )k∈Z ∈ KerH(0), u(n) = (u(n)

k )k∈Z ∈ KerH(0), u
(n)
0 = 0 and

s
(n)
n = 0. The fact that the decomposition is unique follows from the property that

the flow has no conjugate point.
Now, if v ∈ V [1,n−1] has only one non-vanishing coordinate, namely the i-th

where i ∈ [1, n−1], then Hn(0)−1v may be constructed by the following procedure:
– let v∗ ∈ V Z be the unique vector such that v∗i = 0, v∗i+1 =

(
H(0)i,i+1

)−1
vi and

v∗ ∈ KerH(0).
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– decompose as above v∗ = s(n) + u(n) with s(n) = (s(n)
k )k∈Z ∈ KerH(0), u(n) =

(u(n)
k )k∈Z ∈ KerH(0), u

(n)
0 = 0 and s

(n)
n = 0. Let ζ ∈ V Z be defined by ζk = −u

(n)
k

(k ≤ i) and ζk = s
(n)
k (k ≥ i+1). Then ζ0 = ζn = 0 and H(0).ζ coincides with v on

the coordinates 1, ..., n − 1. In other words, the restriction of ζ to the coordinates
1, ..., n− 1 is exactly Hn(0)−1v.

For a general v = (v1, ..., vn−1) ∈ V [1,n−1], Hn(0)−1v is the superposition of the
Hn(0)−1(0, 0, ..., vj , 0, ..., 0) (j ∈ [1, n− 1]) constructed above.

Finally, we will check in the next paragraph that the weak stable and unstable
foliations are transverse to the sphere foliation, which implies estimates analogous
to inequalities (2.46) and (2.49) of [AMB92]: there exists C > 0 and λ ∈ (0, 1) such
that, for every n ∈ N, every i ∈ [1, n− 1], if v ∈ V [1,n−1] has only the i-th non-zero
coordinate and v∗, s(n) and u(n) are defined as above, then

(
||s(n)

i ||2 + ||s(n)
i+1||2

)1/2

≤ C||v||,
(
||u(n)

i ||2 + ||u(n)
i+1||2

)1/2

≤ C||v||,
(this expresses the fact that, in the splitting (3.3.1) the angle is bounded away from
0),

||s(n)
n+k||2 + ||s(n)

n−1+k||2 ≥ C−2λ2k
(
||s(n)

n ||2 + ||s(n)
n−1||2

)

for k ≤ 0, and

||u(n)
k ||2 + ||u(n)

k+1||2 ≥ C−2λ−2k
(
||u(n)

0 ||2 + ||u(n)
1 ||2

)

for k ≥ 0 (this expresses the fact that a tangent vector to the sphere foliation, when
evolved under the linearized flow, grows exponentially).

As proved in [AMB92] (Proposition 3), these estimates imply that

||Hn(0)−1||∞ ≤ 2C2

λ−1 − 1
.

3.4. The sphere foliation is transverse to the weak stable foliation. We
prove that the kernel of H(0), acting on V Z, cannot contain a non-zero vector
v = (vk)k∈Z such that v0 = 0 and ||vn||2 decays exponentially fast as n −→ +∞.

Let v be such a vector and let v+ := (..., 0, 0, v0, v1, ...): it belongs to l2(Z, V ).
Because the flow has no conjugate points, the matrix H(0) is non-negative, as
an operator on the Hilbert space l2(Z, V ). One has 〈H(0)v+, v+〉 = 0, since the
only non-zero coordinate of H̃(0)v+ is the 0-th coordinate, whereas (v+)0 = 0 by
assumption.

The function 〈H(0)., .〉, defined on l2(Z,Rd) has a minimum at v+, which implies
that its derivative vanishes: H(0)v+ = 0. Hence, v+ = 0, and v = 0, since an
element of KerH(0) is entirely determined by two successive coordinates.

4. Proof of Theorem 1.3.3.

This section is devoted to proving the estimates on the decay of the measures of
cylinder sets, given by Theorem 1.3.3.

Let, as above, χh be a pseudo-differential operators with compactly supported
symbol χ, localized in a neighbourhood of the energy layer S1M (say, on S[1−ε,1+ε] :=
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{v ∈ TM, ||v|| ∈ [1 − ε, 1 + ε]}). We also use ε for an upper bound on the diam-
eter of the sets P̂α, containing the supports of the functions Aα in their interiors.
Assume that the injectivity radius of M is much larger than 1. Consider two func-
tions Ai, Aj in our partition of unity. If all points ξj ∈ suppAj and ξj+1 ∈ supp Ai

satisfy |d(ξj , ξj+1)−1| > ε, then ||Aj exp( ih∆
2 )χhAi||L2(M) = O(h∞). Otherwise, it

follows from the general theory of Fourier integral operators ([Ho71], [DH72]) that
Aj exp( ih∆

2 )χhAi can be written as AjEh.χhAi (up to O(h∞)), where the kernel of
Eh takes the form

e(h)(x, y, 1) =
1

(2πh)d/2
ei

d2
M (x,y)

2h a(h)(x, y),(4.0.1)

where a is a symbol of order 0. This means that a(h) is a C∞ function with an
asymptotic expansion of the form

a(h)(x, y) =
+∞∑

j=0

hjaj(x, y).

This expansion is valid in all the Ck norms. The Van Vleck formula says that
a0(x, y) = e−

iπ
4 dJac[exp1](v(x, y))−1/2: this means the jacobian of the exponential

map exp1
x at the unique vector v(x, y) ∈ S

[1−ε,1+ε]
x M such that exp1

x(v(x, y)) = y.
In Assumption (I) we ask that the family (a(h)) be uniformly analytic.

Consider a cylinder [α0, ..., αn] ∈ Σn+1. In Theorem 1.3.3 we wish to estimate
Aα0 exp( ih∆

2 )Aα1 ... exp( ih∆
2 )Aαnψh. Since ψh is microlocalized on the energy layer

S1M , this is the same, up to O(h∞), as Aα0 exp( ih∆
2 )Aα1 ... exp( ih∆

2 )Aαnχhψh, also
the same as Aα0 exp( ih∆

2 )χhAα1 ... exp( ih∆
2 )χhAαnχhψh. Since the localization in

energy is preserved by mulitplication by Aj and exp(ih∆/2), we may take χh freely
in or out of the operator. It suffices to restrict our attention to the case when,
for all j, there is a vector in the support of χ joining a point in supp Aαj to a
point in suppAαj+1 ; otherwise ||Aα0 exp( ih∆

2 )Aα1 ... exp( ih∆
2 )Aαnχhψh|| = O(h∞),

and the estimate of Theorem 1.3.3 is trivial. Finally, what we need to estimate is
Aα0EhAα1 ...EhAαnψh, always up to O(h∞). Note that terms of order O(h∞) do
not bother us, since they remain negligible with respect to the right-hand side of
(1.3.7) as long as n is of order | log h|.

What we actually estimate is the kernel of the operator Aα0EhAα1 ...EhAαn .
Consider some given ξ0 and ξn in the supports, respectively, of Aα0 and Aαn .

The full expression of the kernel at (ξ0, ξn) is

(4.0.2)
Aα0(ξ0)Aαn(ξn)
(2πh)(n−1)d/2

∫
Aα1(ξ1)...Aαn−1(ξn−1)e

i
2h

Pn−1
k=0 d2(ξk,ξk+1)

a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)dV ol(ξ1)...dV ol(ξn−1);

According to the principle of the stationary phase method, to estimate such an
integral we have to look for critical points of the function

Fn−1((ξ1, ..., ξn−1)) =
1
2

n−1∑

k=0

d2(ξk, ξk+1),

the endpoints ξ0 and ξn being fixed.
Suppose that, for some j, and for all ξj−1 ∈ suppAj−1, ξj ∈ suppAj , ξj+1 ∈

suppAj+1, the angle between the two geodesic segments (ξj−1, ξj) and (ξj , ξj+1) is
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greater than ε. Then (4.0.2) is O(h∞) and the estimate of Theorem 1.3.3 is again
trivial.

Finally, we have to prove Theorem 1.3.3 in the case of a cylinder [α0, ..., αn] such
that:

(A) for all j, for all ξj ∈ suppAj , ξj+1 ∈ suppAj+1, |d(ξj , ξj+1)− 1| ≤ 3ε.
(B) for all j, and for all ξj−1 ∈ suppAj−1, ξj ∈ suppAj , ξj+1 ∈ suppAj+1, the

angle between the two geodesic segments (ξj−1, ξj) and (ξj , ξj+1) is less than 3ε.

Theorem 4.0.1. For every β > 0, there exists C = C(β, d) ≥ 0 such that:
For every η > 0, there exists ε0 > 0 such that, if 0 < ε ≤ ε0, one has an upper

bound of the form:

(4.0.3)
1

(2πh)d(n−1)/2
|
∫

Mn−1
Aα0(ξ0)Aα1(ξ1)...Aαn−1(ξn−1)Aγn

αn
(ξn)

n−1∏

j=0

e(h)(ξj , ξj+1, 1)dV ol(ξ1)dV ol(ξ2)...dV ol(ξn−1) |

≤ Aα0(ξ0)Aγn
αn

(ξn)
(
1 + C(η + h)

)n−1

Jac[expn](vα(ξ0, ξn))−1/2.
[
exp(Chn2s+3Gs(A)2) + Cnη(n−1)dn(n−1)d/2hβn n((2β+d)n+5)sGs(A)(2β+d)n+3

]

for every n, for h ∈ (0, 1], for every cylinder [α0, ..., αn] satisfying (A), (B), for
every ξ0, ξn ∈ M .

The notation Jac[expn](vα(ξ0, ξn)) stands for the Jacobian of the exponential
map expn : Tξ0M −→ M , taken at the unique vector vα(ξ0, ξn) such that

– expn(vα(ξ0, ξn)) = ξn;
– the geodesic from ξ0 to ξn, generated by vα, is homotopic (with fixed end-

points) to a piecewise geodesic path going successively through the supports of
Aα1 ,...,Aαn−1 .

Remark 4.0.2. More generally, let M , N be two Riemannian manifolds of the same
dimension, and Φ a differentiable map from M to N . Then for all x ∈ M , the
jacobian of Φ at x, denoted Jac[Φ](x), is defined as the determinant of the derivative
DΦ(x) (that is to say, the determinant of the matrix of DΦ(x) with respect to two
arbitrary orthonormal bases of TxM , TΦ(x)N). If L ⊂ M is a submanifold, and Φ
restricted to L is an immersion at x ∈ L, we will denote JacL[Φ](x) the jacobian
at x of the restricted map, Φ : L −→ Φ(L).

To prove Theorem 4.0.1, we follow the principle of the stationary phase method,
and look for critical points of the function

Fn−1((ξ1, ..., ξn−1)) =
1
2

n−1∑

k=0

d2(ξk, ξk+1),

the endpoints ξ0 and ξn being fixed. There is a unique geodesic ξc joining ξ0 and ξn,
homotopic to any of the polygonal paths (ξ0, ξ1, ..., ξn) with ξj ∈ suppAj . Then the
sequence (ξc

1, ..., ξ
c
n−1) ∈ Mn−1, corresponding to the positions at times 1, 2, ..., n−1

of ξc, gives a non-degenerate critical point of Fn−1.
This critical point may not belong to the support of Aα1(ξ1)...Aαn−1(ξn−1). Re-

member, however, the Shadowing Lemma: given η > 0, there exists θ > 0 such
that, if ζ is a (θ, 1)-pseudogeodesic, then the unique geodesic in M joining ζ(0) to
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ζ(n) in time n, and homotopic to ζ, stays at distance at most η from ζ in TM ;
its (constant) speed lying in the interval [1 − η, 1 + η]. Now, given θ > 0, we
can take ε small enough so that, if [α0, ..., αn] satisfies (A) and (B), then every
(ξ0, ..., ξn) ∈ P̂α0 × ...× P̂αn defines a (θ, 1)-pseudogeodesic: namely, the piecewise
geodesic curve joining, for all j, the points ξj and ξj+1 in the time interval [j, j +1]
by a geodesic of constant speed. It follows that the unique geodesic ξc in M going
from ξ0 to ξn in time n – homotopic to any of the polygonal paths (ξ0, ξ1, ..., ξn)
with ξj ∈ supp Aj – has speed in [1 − η, 1 + η] and satisfies dM (ξc(k), ξk) < η for
k = 0, 1, ..., n.

Thus, if ε is well chosen, the support of the function Aα1(ξ1)...Aαn−1(ξn−1) is
included in a uniform neighbourhood of (ξc

1, ..., ξ
c
n−1) of radius η, that is to say:

Aα1(ξ1)...Aαn−1(ξn−1) 6= 0 =⇒ d(ξk, ξc
k) < η, for k = 1, ..., n− 1.

Then, the integral (4.0.2) runs over B(ξc
1, η)× ...× B(ξc

n, η), where B(x, η) stands
for the ball of center x and radius η in M .

The parameter η will be chosen in paragraph 4.2, depending on the parameters
controlling the uniform hyperbolicity of the flow; ε should then be chosen accord-
ingly.

4.1. Generalities on the stationary phase method: dependence on the
dimension. In this paragraph, we describe the stationary phase method and its
dependence on the dimension, with the aim of applying our discussion to the study
of integral (4.0.2).

Suppose we want to use the stationary phase method to study the asymptotic
behaviour of the family of integrals

1
(2πh)n/2

∫

Rn

Gn(ξ)e
iFn(ξ)

h dξ(4.1.1)

in the limit h −→ 0. The integrals run over ξ = (ξ1, ..., ξn) ∈ Rn, and we also
want to control the dependence of the estimates with respect to the dimension n;
we would like to get estimates that are significant for n of the order | log h| at least
(the Ehrenfest time-scale). The families of functions (Gn) and (Fn) are of class
C∞. For all n, Gn is supported in B(0, η)n, where B(0, η) stands for the ball of
center 0 and radius η in R. We assume that Fn has a unique critical point at 0,
which is non-degenerate.

We follow Hörmander’s approach of the stationary phase method.
The first step is to perform a change of coordinates in which Fn becomes qua-

dratic, using the Morse lemma. If one wants to perform this change of coordinates
on B(0, η)n, for all n, keeping control of the derivatives of the change of coordi-
nates, one needs some additional knowledge on the family (Fn). For instance, in
the case Fn(ξ) =

∑n
j=0 d2(ξj , ξj+1), the hyperbolicity of the geodesic flow and the

discussion of Section 2 will have to come into play: see paragraph 4.2.
Suppose now that we have managed to transform (4.1.1), by a suitable change

of coordinates, into

1
(2πh)n/2

∫

Rn

G̃n(ξ)e
i
Pn

j=1 εjξ2
j

2h dξ(4.1.2)

where εj = ±1 and G̃n is of class C∞, supported in B(0, η̃)n for some η̃ > 0.
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Using the fact that the Fourier tranform of the distribution 1
hn/2 e

i
Pn

j=1 εjξ2
j

2h is

e
iπ
4

Pn
j=1 εj e−

ih
2

Pn
j=1 εjx2

j , we can rewrite (4.1.2) in the form

(4.1.3)
e

iπ
4

Pn
j=1 εj

(2π)n/2

∫
dx1...dxne−

ih
2

Pn
j=1 εjx2

jF(G̃n)(x1, ..., xn)

Remark 4.1.1. We used the notation F for the Fourier transform, defined on Rn

by:

Fu(x) =
1

(2π)n/2

∫

Rn

e−i〈x,ξ〉u(ξ)dξ.

With this convention, the Fourier transform F is an isometry of L2(Rn, dξ). The
Fourier inversion formula reads:

1
(2π)n/2

∫

Rn

Fu(x)ei〈x,ξ〉dx = Fu(ξ).(4.1.4)

The next step in the study of (4.1.3) is to expand e−
ih
2

Pn
j=1 εjx2

j in powers of h:

e−
ih
2

Pn
j=1 εjx2

j = 1−

 ih

2

n∑

j=1

εjx
2
j


 +

1
2


 ih

2

n∑

j=1

εjx
2
j




2

+ · · ·

Usually, if one wants an expansion of (4.1.3) in powers of h up to order K, one
just needs the expansion of e−

ih
2

Pn
j=1 εjx2

j up to order K. Suppose, for instance,
that one wants to find the term of order 0 in the expansion of (4.1.2) or (4.1.3) in
powers of h, and to control the error term of order 1; one may try to write

e−
ih
2

Pn
j=1 εjx2

j = 1 + hfh(x1, ..., xn)(4.1.5)

where (fh) is a family of functions such that, for all h,

|fh(x1, ..., xn)| ≤
n∑

j=1

x2
j = ||x||22.

Doing so, one gets

(4.1.6)
1

(2π)n/2

∫
dx1...dxne−

ih
2

Pn
j=1 εjx2

jF(G̃n)(x1, ..., xn)

=
1

(2π)n/2

(∫
dx1...dxnF(G̃n)(x1, ..., xn) + h

∫
dx1...dxnfh(x1, ..., xn)F(G̃n)(x1, ..., xn)

)

By the Fourier inversion formula, the first term is G̃n(0), which is, up to the phase
factor e

iπ
4

Pn
j=1 εj , the leading term in the expansion of (4.1.2). To bound the

remainder term, we use

|
∫

dx1...dxn fh(x1, ..., xn)F(G̃n)(x1, ..., xn)| ≤
∫

dx1...dxn||x||22 |F(G̃n)(x1, ..., xn)|

and the following estimate:
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Lemma 4.1.2. For all n ∈ N, for every smooth compactly supported function G
on Rn, for all k ∈ N,

1
(2π)n/2

∫

Rn

dx1...dxn(|x1|2 + ... + |xn|2)k|F(G̃)(x1, ..., xn)|

≤ 2Un

(
||(

n∑

j=1

∂2

∂x2
j

)kG̃||L2(Rn,dx)

+ ||(
n∑

j=1

∂2

∂x2
j

)k+bn+1
4 c+1G̃||L2(Rn,dx)

)

where the constant Un is

Un =

(
2πn/2

(
n
2 − 1

)
!

)1/2

,

that is, the square-root of the area of the unit (n− 1)-dimensional sphere.

Proof. By the Cauchy-Schwarz inequality, we have for all δ > 0 (and denoting
||x||22 = |x1|2 + ... + |xn|2 for x = (x1, ..., xn) ∈ Rn)

∫
dx1...dxn||x||2k

2 |F(G̃)(x1, ..., xn)|

≤
(∫

Rn

dx1...dxn||x||4k
2 min(1, ||x||−δ

2 )−2|F(G̃)(x1, ..., xn)|2
)1/2

(
∫

Rn

dx1...dxn min(1, ||x||−δ
2 )2)1/2.

For 2δ ≥ n + 1, we have
∫

Rn

dx1...dxn min(1, ||x||−δ
2 )2 ≤

∫

R
min(1, r−n−1)rn−1dr × 2πn/2

(
n
2 − 1

)
!
≤ 2U2

n

The other term
∫
Rn dx1...dxn||x||4k

2 min(1, ||x||−δ
2 )−2|F(G̃)(x1, ..., xn)|2 can be bounded

by∫

Rn

dx1...dxn||x||4k
2 |F(G̃)(x1, ..., xn)|2 +

∫

Rn

dx1...dxn||x||4k+2δ
2 |F(G̃)(x1, ..., xn)|2.

If δ/2 is an integer (δ = 2bn+1
4 c+ 2) then

∫
Rn dx1...dxn||x||4k+2δ

2 |F(G̃)(x1, ..., xn)|2
is the L2 norm of (

∑n
j=1

∂2

∂x2
j
)k+δ/2G̃, and

∫
Rn dx1...dxn||x||4k

2 |F(G̃)(x1, ..., xn)|2 is

the L2 norm of (
∑n

j=1
∂2

∂x2
j
)kG̃.

Let us denote ||G||0 = supζ |G(ζ)|, and

||DlG||0 = sup
ζ
||DlG(ζ)||∞

= sup
ζ

sup
{ |DlG(ζ).(v(1), ..., v(l))|

||v(1)||∞...||v(l)||∞
, (v(1), ..., v(l)) ∈ (Rn \ {0})l

}
,

where ||v||∞ = maxn
j=1 |vj | for v ∈ Rn. If G is a smooth function supported in

B(0, η̃)n, we have

||(
n∑

j=1

∂2

∂x2
j

)kG̃||L2(Rn,dx) ≤ V ol(B(0, η̃))nnk 2k
max
j=0

||DjG||0.
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Thus, applying Lemma 4.1.2 for k = 1, we find that for a smooth function G̃n

supported in B(0, η̃)n,
∫

dx1...dxn||x||22|F(G̃n)(x1, ..., xn)| ≤ 4Unnb
n+1

4 c+2V olB(0, η̃)n
2bn+1

4 c+4
max
l=0

||DlG̃n||0

Thus, to control the remainder term in (4.1.6), one needs to control n/2 deriva-
tives of G̃n.

Assume, for instance, that the functions G̃n are uniformly Gevrey, that is, there
exist C > 0 such that

||DkG̃n||0 ≤ Ck(k!)s,

for all k, n ∈ N. This is certainly the best one can hope, and it gives an estimate
of the form hCn

(
n
2 !

)s for the remainder term, which grows much too fast in n to
be interesting.

To get estimates that take into account the dependence on n, more care is needed.
In turns out more judicious to develop e−

ih
2

Pn
j=1 εjx2

j to the order n (or a multiple
of n):

e−
ih
2

Pn
j=1 εjx2

j =
βn−1∑

k=0

(−ih

2

)k 1
k!




n∑

j=1

εjx
2
j




k

+ O




(
h

2

)βn 1
(βn)!




n∑

j=1

x2
j




βn



where β is a fixed positive parameter (we should actually have the integer part bβnc
in the formulas, instead of βn). One obtains the following estimates:

Proposition 4.1.3.

1
(2πh)n/2

∫

Rn

G̃n(ξ)e
i
Pn

j=1 εjξ2
j

2h dξ

=
e

iπ
4

Pn
j=1 εj

(2π)n/2

βn−1∑

k=0

(−ih

2

)k 1
k!

∫

Rn

(
n∑

j=1

εjx
2
j )

kF(G̃n)(x)dx1...dxn

+ O




(
h

2

)βn 1
(βn)!

∫

Rn

(
n∑

j=1

x2
j )

βn|F(G̃n)(x)|dx1...dxn




For k ≤ βn− 1, the term of order k is equal to

1
k!

(
ih

2

)k

(
n∑

j=1

εj
∂2

∂x2
j

)kG̃n(0),

and thus is bounded in modulus by

1
k!

(
h

2

)k

nk 2k
max
j=0

||DjG̃n||0.

The remainder term is

O




(
h

2

)βn 1
(βn)!

∫

Rn

(
n∑

j=1

x2
j )

βn|F(G̃n)(x)|dx1...dxn



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and can be bounded, as in Lemma 4.1.2, by

2Un
1

(βn)!

(
h

2

)βn (
||(

n∑

j=1

∂2

∂x2
j

)βnG̃n||L2(Rn,dx)

+ ||(
n∑

j=1

∂2

∂x2
j

)βn+bn+1
4 c+1G̃n||L2(Rn,dx)

)
.

If G̃n is supported in B(0, η̃)n, this is bounded by

4UnV ol(B(0, η̃))n 1
(βn)!

(
h

2

)βn

nβn+bn+1
4 c+1 (2β+1)n+3

max
j=0

||DjG̃n||0.

The interest of this bounds depends, of course, of the a priori estimates on the
derivatives of G̃n.

In our case (see (4.0.2)), the function G̃n will be a product

G̃n(ξ) = A1(ξ)...An(ξ)

where the Ais are in the Gevrey class, and, more precisely, satisfy

||DkAi||0 ≤ JiGs(A)k(k!)s

for all i, for all k, for some common Gevrey constant Gs(A), and some real numbers
Ji.

Lemma 4.1.4. Let G̃n(ξ) = A1(ξ)...An(ξ), where the Ais satisfy

||DkAi||0 ≤ JiGs(A)k(k!)s

for all i, for all k, for some common Gevrey constant Gs(A), and some real numbers
Ji. Then the following estimate holds for the derivatives of G̃n:

||DkG̃n||0 ≤ J1...JnGs(A)knkksk

for every k ≥ 0.
In particular, if k ≤ βn,

||DkG̃n||0 ≤ J1...JnGs(A)knk(s+1)βsk

Proof.

|DkG̃n(ξ)| = |
∑

l1+...+ln=k

k!
l1!...ln!

Dl1A1(ξ)...DlnAn(ξ)|

≤ J1...JnGs(A)k
∑

l1+...+ln=k

k!
l1!...ln!

(l1!)s...(ln!)s

≤ J1...JnGs(A)k
∑

l1+...+ln=k

k!
l1!...ln!

ksk ≤ J1...JnGs(A)knkksk

As a consequence, we obtain the final estimates:
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Proposition 4.1.5. (1) For all n, for all G̃n that is compactly supported in B(0, η̃)n,

| 1
(2πh)n/2

∫

Rn

G̃n(ξ)e
i
Pn

j=1 εjξ2
j

2h dξ−e
iπ
4

Pn
j=1 εj G̃n(0)| ≤

βn−1∑

k=1

hk

2kk!
nk 2k

max
l=0

||DlG̃n||0

+ 4UnV ol(B(0, η̃))n hβn

2βn(βn)!
nβn+bn+1

4 c+1 (2β+1)n+3
max
l=0

||DlG̃n||0

(2) Let G̃n(ξ) = A1(ξ)...An(ξ), where the Ais satisfy

||DkAi||0 ≤ JiGs(A)k(k!)s

for all i, for all k, for some common Gevrey constant Gs(A), and some real numbers
Ji. Assume that, for all n, G̃n is compactly supported in B(0, η̃)n. Then, for all n,

| 1
(2πh)n/2

∫

Rn

G̃n(ξ)e
i
Pn

j=1 εjξ2
j

2h dξ − e
iπ
4

Pn
j=1 εj G̃n(0)|

≤ J1...Jn

[ βn−1∑

k=1

hk

2kk!
nkβ2skGs(A)2kn2k(s+1) + 4UnV ol(B(0, η̃))n hβn

2βn(βn)!
.

nβn+bn+1
4 c+1βs((2β+1)n+3)Gs(A)(2β+1)n+3n((2β+1)n+3)(s+1)

]

and

| 1
(2πh)n/2

∫

Rn

G̃n(ξ)e
i
Pn

j=1 εjξ2
j

2h dξ|

≤ J1...Jn

[ βn−1∑

k=0

hk

2kk!
nkβ2skGs(A)2kn2k(s+1) + 4UnV ol(B(0, η̃))n hβn

2βn(βn)!
.

nβn+bn+1
4 c+1βs((2β+1)n+3)Gs(A)(2β+1)n+3n((2β+1)n+3)(s+1)

]

≤ J1...Jn

[
exp(β2shn2s+3Gs(A)2) + 4UnV ol(B(0, η̃))n hβn

2βn(βn)!
.

nβn+bn+1
4 c+1βs((2β+1)n+3)Gs(A)(2β+1)n+3n((2β+1)n+3)(s+1)

]

The estimate is not interesting for all values of n, but only at most for

V ol(B(0, η̃))hβGs(A)(2β+1)n(2β+1)(s+1)+1 < 1;

(so that the remainder term has a chance to be negligible). Note also that this
estimate is not necessarily adapted for all purposes, in particular if the product
J1...Jn grows too fast. In fact, the result of Proposition 4.1.3 is particularly well
adapted for studying the quantity

(
| 1
(2πh)n/2

∫

Rn

G̃n(ξ)e
i
Pn

j=1 εjξ2
j

2h dξ|
)1/n

,

which is the one we will be concerned with in Section 4, when discussing entropy.
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Application to integral (4.0.2): We will now apply the discussion of paragraph
4.1 to study the behaviour of integral (4.0.2):

1
(2πh)(n−1)d/2

∫
Aα1(ξ1)...Aαn−1(ξn−1)e

i
2h

Pn−1
k=0 d2(ξk,ξk+1)

a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)dV ol(ξ1)...dV ol(ξn−1).

We work in local coordinates: denoting Ω = B(0, η) ∈ Rd the open ball centered
at 0 and of radius η, let us choose a family of charts Φk : B(0, η) −→ M , “adapted”
to the geodesic ξc as defined in paragraph 3.2. With this choice of coordinates,
we can treat integral (4.0.2) as an integral over B(0, η)n−1 ⊂ R(n−1)d. The vol-
ume element on M , d V ol(ξk), is equivalent to the Lebesgue measure in the local
coordinates:

d V ol(ξk) = Jac[Φk](Φ−1
k ξk)d(Φ−1

k ξk).

We use the notation Jac[Φ](x) to denote the jacobian of a map Φ at a point x.
We will denote jk the function jk(x) = Jac[Φk](x), defined on B(0, η) ⊂ Rd.
In local coordinates, the integral takes the form:

1
(2πh)(n−1)d/2

∫

B(0,η)n−1⊂(Rd)n−1
dξ1...dξn−1e

i
2h

Pn−1
k=0 d2(Φk(ξk),Φk+1(ξk+1))

Aα1(Φ1(ξ1))...Aαn−1(Φn−1(ξn−1))a(h)(Φ0(ξ0), Φ1(ξ1))...a(h)(Φn−1(ξn−1),Φn(ξn))j1(ξ1)...jk(ξk);

Remark 4.1.6. Since the charts Φk are analytic, Assumption (I) implies the exis-
tence of R and C, independent of k and on h, such that, for all l,

||Dl
(
a(h) ◦ (Φk,Φk+1)

)|| ≤ CRll!(4.1.7)

||Dl
(
d ◦ (Φk, Φk+1)

)|| ≤ CRll!

||Dljk|| ≤ CRll!.

Recall also that ||Dl(Aα ◦ Φk)|| ≤ Gs(A)l(l!)s for all l.

From now on, all the calculations are going to be performed in local coordinates;
but to keep the notations reasonable, the charts Φk will no longer appear explic-
itly, and we will simply write d(x, y), a(h)(x, y)... instead of d(Φk(x), Φk+1(y)),
a(h)(Φk(x), Φk+1(y)), etc...

In these local charts, Rd, as well as (Rd)n−1, are endowed with their usual scalar
product and the associated norm, denoted respectively 〈., .〉 and ||.||2 independently
of n, in accordance with the notations introduced in Remark 3.3.2.

In the local coordinates, the phase function

Fn−1((ξ1, ..., ξn−1)) =
1
2

n−1∑

k=0

d2(ξk, ξk+1)

has a unique (and non-degenerate) critical point (0, ..., 0) ∈ (Rd)n−1.

In order to apply the results of paragraph 4.1 to integral (4.0.2), we must first
put it in the form (4.1.2); we have to choose coordinates in which Fn−1 is quadratic.
This can be done, as usual, thanks to the Morse lemma, but we will need to control
uniformly in n the size of the domain where the lemma applies, and the growth of
the derivatives of the change of coordinates:
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4.2. The Morse Lemma.

Proposition 4.2.1. If η is small enough, there exists, for all n, a diffeomorphism
w from B(0, η)n−1 onto its image, mapping 0 = (0, .., 0) to itself, and tangent to
identity at this point, such that

Fn−1(ξ1, ..., ξn−1)− Fn−1(0, ..., 0) =
1
2
〈H̄n(0).w(ξ1, ..., ξn−1), w(ξ1, ..., ξn−1)〉,

where H̄n(0) is the hessian matrix of Fn−1 at 0.

Of course the diffeomorphism w depends on n, although this does not appear in
the notations.

Keeping the notations of Section 2, we decompose (Rd)n−1 into V n−1 ⊕ V n−1
⊥ ,

where V = {0} × Rd−1 ⊂ Rd, and V⊥ = R × {0}d−1 is its orthogonal. The space
V corresponds to the orthogonal hyperplane to the geodesic ξc, and V⊥, to the
direction of the geodesic.

The matrix H̄n(0) is made up, on the one hand, of the block Hn(0) studied
in Paragraph 3.3, corresponding to variations in the direction V n−1, on the other
hand, of a block of size (n−1)× (n−1) corresponding to variations in the direction
of the geodesics, in other words, along the space V n−1

⊥ . This last block takes the
form:

A =




2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2




To prove Proposition 4.2.1 we follow the steps of a classical proof of the Morse
lemma, but we keep under control the size of the domain of definition of the diffeo-
morphism w, conjugating Fn−1 to its hessian at 0. We show that the diameter of
this domain does not depend on the length n.

Proof. For ξ = (ξ1, ..., ξn−1) ∈ (Rd)n−1, let us denote ξV n−1 (respectively ξV n−1
⊥

)

the projection of ξ to the space V n−1 (respectively, to its orthogonal V n−1
⊥ ) in

(Rd)n−1. Thanks to our choice of coordinates, ξV n−1
⊥

is a critical point of Fn−1

restricted to ξ + V n−1, and we can write:

Fn−1(ξ) = Fn−1(ξV n−1
⊥

) +
∫ 1

0

∫ 1

0

D2Fn−1(ξV n−1
⊥

+ stξV n−1).tξV n−1 .ξV n−1dsdt

= Fn−1(ξV n−1
⊥

) +
1
2
〈Hn(ξ)ξV n−1 , ξV n−1〉

where Hn(ξ) is the tridiagonal matrix of size (n − 1)(d − 1) × (n − 1)(d − 1),
representing the bilinear form 2

∫ 1

0

∫ 1

0
D2Fn−1(ξV n−1

⊥
+stξV n−1)tdsdt on V n−1, with

respect to the scalar product 〈., .〉.
Note that

〈Hn(0)ξV n−1 , ξV n−1〉 = D2Fn−1(0).ξ2
V n−1 .

For ξ ∈ B(0, η)n−1, we will define

w(ξ) =
(
ξV n−1
⊥

, W (ξ).ξV n−1

)
∈ V n−1

⊥ × V n−1 = (Rd)n−1,(4.2.1)
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where W (ξ) is a square root (to be determined below) of the matrix Hn(0)−1Hn(ξ).
Note that w preserves the decomposition (Rd)n−1 = V n−1⊕V n−1

⊥ . Then w will be
a local diffeomorphism in a neighbourhood of 0, tangent to identity at 0, and such
that

Fn−1(ξ) = Fn−1(ξV n−1
⊥

) +
1
2
〈Hn(0).w(ξ)V n−1 , w(ξ)V n−1〉.(4.2.2)

Besides, Fn−1 is already quadratic on V n−1
⊥ , since it is nothing but the variation

of energy along the geodesic. This way, Fn−1 will be conjugated to its hessian at 0
by the diffeomorphism w.

Let us make this more explicit. We have seen in paragraph 3.3 that Hn(0) is
invertible, and that there exists K > 0 such that ‖ Hn(0)−1 ‖∞≤ K, for all n.

Note that there exists C > 0 such that, for all n, for all ξ ∈ B(0, η)n−1,

‖ Hn(ξ)−Hn(0) ‖∞≤ C ‖ ξ ‖∞≤ Cη.

This simply follows from the fact that the matrix Hn(ξ) is tridiagonal, and that its
coefficients have bounded derivatives. Hence, ||I −Hn(0)−1Hn(ξ)||∞ ≤ KCη.

So, if η is small enough, W (ξ) may be defined as the convergent series :

W (ξ) =
+∞∑

k=0

ck

(
I −Hn(0)−1Hn(ξ)

)k
,(4.2.3)

the cks being the coefficients of the expansion of (1−x)1/2 near x = 0. By definition,
W (ξ)2 = Hn(0)−1Hn(ξ); note also that W ∗(ξ) = Hn(0)W (ξ)Hn(0)−1, so that
W ∗(ξ)Hn(0)W (ξ) = Hn(ξ). Thus, if we define the diffeomorphism w as in (4.2.1),
we have indeed (4.2.2).

There remains to control the size of the region on which w acts as a diffeomor-
phism: we will show that w is a diffeomorphism from B(0, η)n−1 onto its image,
that is to say, it is injective and its derivative is invertible at every point – for η
small enough, but independent of n. We prove the second point, the proof of the
injectivity of w goes along similar lines.

The differential of ξ 7→ W (ξ).ξV n−1 at ξ is the map

ζ ∈ (Rd)n−1 7→ W (ξ).ζV n−1 + DW (ξ).ζV n−1 .ξV n−1 .

There exists C > 0, independent of n, such that, for all ξ ∈ B(0, η)n−1, ‖
W (ξ).ζV n−1 − ζV n−1 ‖∞≤ Cη||ζ||∞, and

‖ DW (ξ).ζV n−1 .ξV n−1 ‖∞

≤‖ Hn(0)−1.DHn(ξ).ζV n−1 ‖∞
(

+∞∑

k=1

(k − 1) | ck | ‖ I −Hn(0)−1Hn(ξ) ‖k−1
∞

)
||ξV n−1 ||∞

≤ C ‖ ξ ‖∞ ||ζ||∞ ≤ Cη||ζ||∞
Thus, there exists C such that

||Dw(ξ)|V n−1 − I||∞ ≤ Cη,(4.2.4)

therefore Dw is invertible if η is small enough.
It follows, in particular, that the image of w is included in B(0, Cη)n, for some

constant C independent of n.
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Remark 4.2.2. For later purposes, we will also need to estimate the norms of
H̄n(0)1/2 and H̄n(0)−1/2 in l∞. Remember that H̄n(0) is made up of two blocks,
namely Hn(0) and the matrix A defined by (4.2).

For λ = (λ1, ..., λn−1) ∈ Rn−1, 〈Aλ, λ〉 = λ2
1 +

∑n−2
j=1 (λj+1 − λj)2 + λ2

n−1. Thus,
using the Cauchy-Schwarz inequality and the fact that ||λ||∞ ≤ ||λ||2 ≤

√
n||λ||∞,

||λ||22 ≤ n||λ||2∞ ≤ n
(
|λ1|+

n−2∑

j=1

|λj+1 − λj |
)2

≤ n2〈Aλ, λ〉,

which implies that ||A−1/2||2 ≤ n and that ||A−1/2||∞ ≤ n3/2. We know that the
inverse of the block Hn(0) is bounded, uniformly in n: it follows that the inverse
of H̄n(0)−1/2 is bounded in l∞ by n3/2.

In addition, since H̄n(0) is positive and uniformly bounded in l2-norm, H̄n(0)1/2

is also uniformly bounded in l2-norm, and hence H̄n(0)1/2 is bounded, in l∞-norm,
by
√

n.

To finish this section, we investigate the growth of the derivatives of w. We prove
that the diffeomorphisms w and w−1 are in the set G1(R, C) with respect to the
||.||∞ norm, for some R, C not depending on n. In the three following lemmas, we
recall some basic properties of the class of Gevrey functions (see [Ho], Proposition
8.4.1 for 4.2.3 and 4.2.4, and [Ca], Chapter 1, for 4.2.5).

Of course we assume that the functions f, g are such that their product (Lemma
4.2.3) or composition (Lemma 4.2.4) is well defined.

Lemma 4.2.3. For all s ≥ 1, there exists c such that, if f and g take values in a
same normed algebra, and if f ∈ G1(1, 1) and g ∈ Gs(1, 1), then the product f.g is
in Gs(c, c).

If f ∈ G1(R, C) and g ∈ Gs(R,C), the lemma applied to x 7→ 1
C2 f( x

R )g( x
R ) yields

that f.g is in Gs(cR, cC2).

Lemma 4.2.4. For all s ≥ 1, for there exists c such that, if f ∈ G1(1, 1) and
g ∈ Gs(1, 1), then the composition g ◦ f is in Gs(c, c).

If f ∈ G1(C, C) and g ∈ Gs(R, C) for R,C ≥ 1, the lemma applied to x 7→
1
C g( 1

R .Rf(x/RC2)) yields that g ◦ f is in Gs(cC2R, cC).

Lemma 4.2.5. For all R,C ≥ 0, there exists R′, C ′ such that, for all n, for every
norm ||.|| on Rn:

if f is a diffeomorphism between two open subsets of Rn, if f ∈ G1(R, C), and if
||(Df)−1|| ≤ C then its inverse f−1 is in G1(R′, C ′) with respect to the norm ||.||.
Corollary 4.2.6. There exists C such that, for all n, w ∈ G1(C, C) with respect to
the ||.||∞-norm on (Rd)n−1.

Corollary 4.2.7. There exists C such that, for all n, w−1 ∈ G1(R,C) with respect
to the ||.||∞-norm on (Rd)n−1.

Proof. (of the corollaries). It follows from the analyticity of the metric and from
the definition of Hn (paragraph 4.2) that Hn ∈ G1(C,C) for some C independent
of n. Since W = (Hn(0)−1Hn)1/2, Corollary 4.2.6 follows from Lemma 4.2.4, and
the formula (4.2.1) defining w. Corollary 4.2.7 follows from Lemma 4.2.5, Corollary
4.2.6 and the estimate (4.2.4).
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4.3. Proof of Theorem 4.0.1. We now start applying the stationary phase method
to (4.0.2), following the scheme described in paragraph 4.1. We perform the change
of variable ζ = H̄n(0)1/2w(ξ) that makes the phase function Fn−1 quadratic:

(4.3.1)
1

(2πh)(n−1)d/2

∫
d V ol(ξ1)...d V ol(ξn−1)e

i
2h

Pn−1
k=0 d2(ξk,ξk+1)

a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)Aα1(ξ1)...Aαn−1(ξn−1)

=
1

(2πh)(n−1)d/2detH̄n(0)1/2

∫
dζ1...dζn−1e

i
2h 〈ζ,ζ〉

b(h)(w−1H̄n(0)−1/2ζ)Jac[w−1](H̄n(0)−1/2ζ)

We have introduced the notation

b(h)(ξ) = Aα1(ξ1)...Aαn−1(ξn−1)a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)j1(ξ1)...jn−1(ξn−1).
(4.3.2)

Remark 4.2.2 shows that the new integral takes place in B(0, η
√

n)n−1.

Applying Proposition 4.1.3 to the second term of (4.3.1), we obtain:

Proposition 4.3.1. For any β > 0,

1
(2πh)(n−1)d/2

∫
d V ol(ξ1)...d V ol(ξn−1)e

i
2h

Pn−1
k=0 d2(ξk,ξk+1)

a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)Aα1(ξ1)...Aαn−1(ξn−1) =
e

iπ
4 (n−1)d

detH̄n(0)1/2
×

[ βn−1∑

k=0

1
k!

(
ih

2

)k ( n−1∑

j=1

d∑

i=1

∂2

∂xi
j
2

)k(
b(h) ◦w−1 ◦ H̄n(0)−1/2.Jac[w−1] ◦ H̄n(0)−1/2

)
(0)

+ O
(
4U(n−1)dV ol(B(0, η

√
n))n−1 1

(βn)!
(h

2
)βn

((n−1)d)βn+b (n−1)d+1
4 c+1 (2β+d)n+3

max
j=0

||(b(h)◦w−1◦H̄n(0)−1/2.Jac[w−1]◦H̄n(0)−1/2
)||0

) ]
.

The notation xi
j ∈ R (i = 1, ..., d) stands for the coordinates of the vector

xj ∈ Rd.
For a function g on (Rd)n−1, we have denoted ||g||0 = supζ |g(ζ)|, and

||Dlg||0 = sup
ζ
||Dlg(ζ)||∞

= sup
ζ

sup
{ |Dlg(ζ).(v(1), ..., v(l))|

||v(1)||∞...||v(l)||∞
, (v(1), ..., v(l)) ∈ (Rd(n−1) \ {0})l

}
.
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In Proposition 4.3.1, the coefficient of h0 is

(4.3.3)
e

iπ
4 (n−1)d

detH̄n(0)1/2
b(h) ◦ w−1(0, ..., 0).Jac[w−1](0, ..., 0) =

e
iπ
4 (n−1)d

detH̄n(0)1/2
b(h)(0, ..., 0)

=
e

iπ
4 (n−1)d

detH̄n(0)1/2
Aα1(ξ

c
1)...Aαn−1(ξ

c
n−1)a

(h)(ξc
0, ξ

c
1)...a

(h)(ξc
n−1, ξ

c
n)j1(ξc

1)...jn−1(ξc
n−1)

(coming back to M in the last line).
This is bounded in modulus by

1
detH̄n(0)1/2

|a0(ξc
0, ξ

c
1)...a0(ξc

n−1, ξ
c
n)j1(ξc

1)...jn−1(ξc
n−1)|(1 + Ch)n−1,

since |Aα| ≤ 1 and, on the set {(x, y) ∈ M2, 1 − 2ε ≤ d(x, y) ≤ 1 + 2ε}, one has
|a(h)(x, y)| ≤ |a0(x, y)|(1 + Ch) for some constant C.

The calculation also shows that, for fixed n,

e
iπ
4 (n−1)d

det H̄n(0)1/2
a0(ξc

0, ξ
c
1)...a0(ξc

n−1, ξ
c
n)j1(ξc

1)...jn−1(ξc
n−1)

is the leading term in the asymptotic expansion in powers of h of the integral

1
(2πh)(n−1)d/2

∫
dξ1...dξn−1χ(ξ1, ...ξn−1)e

i
2h

Pn−1
k=0 d2(ξk,ξk+1)a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)

whenever χ is a C∞ function, with compact support, such that χ(ξc
1, ...ξ

c
n−1) = 1.

The Van Vleck formula says that this leading term is e−
iπ
4 dJac[expn](vα(ξ0, ξn))−1/2;

where vα(ξ0, ξn) is the vector in TxM that generates a geodesic joining ξ0 to ξn in
time n, homotopic to any piecewise geodesic path going throught the supports of
Aα1 ,..., Aαn−1 .

In other words,

e
iπ
4 (n−1)d

det H̄n(0)1/2
a0(ξc

0, ξ
c
1)...a0(ξc

n−1, ξ
c
n)j1(ξc

1)...jn−1(ξc
n−1) = e−

iπ
4 dJac[expn](x, y)−1/2,

and thus we can bound the coefficient of h0 by

(4.3.4)
1

det H̄n(0)1/2
|a(h)(ξc

0, ξ
c
1)...a

(h)(ξc
n−1, ξ

c
n)j1(ξc

1)...jn−1(ξc
n−1)|

≤ Jac[expn](vα(ξ0, ξn))−1/2(1 + Ch)n.

In order to bound the other terms of the expansion, we have to bound

||Dl
(
b(h) ◦ w−1 ◦ H̄n(0)−1/2.Jac[w−1] ◦ H̄n(0)−1/2

)
||0

for all l.

We begin with l = 0.
On the one hand, for all ξ ∈ B(0, η)n−1 we have

|b(h)(ξ)| ≤ (1 + Cη)n|a(h)(ξc
0, ξ

c
1)|...|a(h)(ξc

n−1, ξ
c
n)| j1(ξc

1)...jn−1(ξc
n−1)
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for some C: this comes from the expression (4.3.2) of b(h), and the fact that the
functions |a(h)| and jk are positive, with derivatives bounded uniformly in h.

In order to bound |Jac[w−1](ξ)|, we need a simple lemma that will serve several
times:

Lemma 4.3.2. For any n, for any n× n matrix M = (Mi,j)1≤i,j≤n,

|detM | ≤
n∏

i=1

(
n∑

j=1

|Mi,j |).

This is proved by induction on n, using the development of the determinant with
respect to one line of the matrix.

We know that ||(Dw)−1(ξ) − I||∞ ≤ Cη. The norm of a matrix acting on
l∞([1, n− 1],Rd) is given by the max of the l1-norms of its lines:

||M ||∞ = max
i

∑

j

|Mi,j | = max
i
||Mi||1,

where Mi stands for the i-th line of M . Thus, the lines of the matrix (Dw)−1(ξ)
are bounded, in l1-norm, by 1 + Cη, for some C that does not depend on n. By
Lemma 4.3.2,

|Jac[w−1](ξ)| ≤ (1 + Cη)n.

So, there exists a constant C (always independent of n), such that

||b(h) ◦ w−1 ◦ H̄n(0)−1/2.Jac[w−1] ◦ H̄n(0)−1/2||0
≤ (1 + Cη)n|a(h)(ξc

0, ξ
c
1)|...|a(h)(ξc

n−1, ξ
c
n)| j1(ξc

1)...jn−1(ξc
n−1)

on (Hn(0)1/2 ◦ w)B(0, η)n−1; the last term can be estimated by (4.3.4).

We now bound the higher order derivatives

||Dl
(
b(h) ◦ w−1 ◦ H̄n(0)−1/2.Jac[w−1] ◦ H̄n(0)−1/2

)
||0.

First write

||Dl
(
b(h) ◦ w−1 ◦ H̄n(0)−1/2.Jac[w−1] ◦ H̄n(0)−1/2

)
||0

≤ ||Dl
(
b(h) ◦ w−1.Jac[w−1]

)
||0.||H̄n(0)−1/2||l∞

≤ ||Dl
(
b(h) ◦ w−1.Jac[w−1]

)
||n3l/2,

the last inequality comes from Remark 4.2.2.
The analyticity properties of w and w−1 were described in Corollaries 4.2.6 and

4.2.7.
Note that b(h) is in the product form

b(h)(ξ) = Aα1(ξ1)...Aαn−1(ξn−1)a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)j1(ξ1)...jn−1(ξn−1),

so that its derivatives can be estimated by Lemma 4.1.4. Due to the initial change
of variable, we also have to deal with the term Jac[w−1], which is not exactly in
the product form treated in Lemma 4.1.4. However, the determinant of a square
matrix is nothing but the exterior product of its line-vectors; Lemma 4.1.4 applies
with a slight technical modification:
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Proposition 4.3.3. There exists C > 0 such that, for all n ∈ N, for all k,

||Dk
(
b(h) ◦ w−1.Jac[w−1]

)
||0

≤ (1 + Cη)n−1 |a(h)(ξc
0, ξ

c
1)...a

(h)(ξc
n−1, ξ

c
n)|j1(ξc

1)...jn−1(ξc
n−1) nkkks(CGs(A))k,

where Gs(A) denotes a common Gevrey constant for all the Aα.

Proof. First write

b(h) ◦ w−1(ζ).Jac[w−1](ζ) = det[L1(ζ), ..., Ln−1(ζ)],

where, for all ζ and for all l = 1, ..., n− 1, Ll(ζ) is the d× d(n− 1) matrix

Ll(ζ) = Aαl

(
(w−1)l(ζ)

)
jl

(
(w−1)l(ζ)

)
a(h)

(
(w−1)l−1(ζ), (w−1)l(ζ)

)
(Dw−1)l(ζ).

We have denoted (w−1)l(ζ) the l-th component, in (Rd)n−1, of (w−1)(ζ), and
(Dw−1)l(ζ) the l-th d×d(n−1) submatrix of (Dw−1)(ζ) (that is, the l-th “line” of
the matrix (Dw−1)(ζ), decomposed into d× d blocks). From the estimates (4.1.7)
and Lemmas 4.2.3– 4.2.7, we know that there exists C such that, for all l, the
function

Ll : ((Rd)n−1, ||.||∞) −→ (Rd×d(n−1), ||.||1)
is in Gs(CGs(A), C); the norm on the initial space (Rd)n−1 is still the l∞ norm,
whereas the norm on the target space Rd×d(n−1) is the l1 norm:

||M ||1 = max
i=1,...,d

d(n−1)∑

j=1

|Mi,j |,

which is the l∞ operator norm.
Moreover, we have already seen that there exists C > 0 such that

||Dw−1 − I||∞ ≤ Cη

and

|Aαl

(
(w−1)l(ζ)

)
a(h)

(
(w−1)l−1(ζ), (w−1)l(ζ)

)
jl(ζl)| ≤ (1+Cη)|a(h)(ξc

l−1, ξ
c
l )| jl(ξc

l ),

for all n and for all ζ ∈ w(B(0, η)n−1). Thus, there exists C > 0 such that

||Ll(ζ)||1 ≤ (1 + Cη)|a(h)(ξc
l−1, ξ

c
l )| jl(ξc

l ).

Possibly adjusting C, we then have

||DkLl||l∞−→l1 ≤ (1 + Cη)|a(h)(ξc
l−1, ξ

c
l )| jl(ξc

l ) (CGs(A))k(k!)s,

for all k.
Finally, applying Lemma 4.3.2,

|Dk (det[L1(ζ), ..., Ln−1(ζ)]) | = |
∑

l1+...+ln−1=k

k!
l1!...ln−1!

det[Dl1L1(ζ), ...Dln−1Ln−1(ζ)]|

≤ (1 + Cη)n−1|a(h)(ξc
0, ξ

c
1)...a

(h)(ξc
n−1, ξ

c
n)| j1(ξc

1)...jn−1(ξc
n−1)

∑

l1+...+ln−1=k

k!
l1!...ln−1!

(l1!)s...(ln−1!)s(CGs(A))l1 ...(CGs(A))ln−1

≤ (1 + Cη)n−1|a(h)(ξc
0, ξ

c
1)...a

(h)(ξc
n−1, ξ

c
n)| j1(ξc

1)...jn−1(ξc
n−1)n

kkks(CGs(A))k



42 NALINI ANANTHARAMAN

And again, the last term can be estimated by (4.3.4):

1
det H̄n(0)1/2

|a(h)(ξc
0, ξ

c
1)...a

(h)(ξc
n−1, ξ

c
n)j1(ξc

1)...jn−1(ξc
n−1)| ≤ Jac[expn](x, y)−1/2(1+Ch)n.

Injecting these estimates in Proposition 4.3.1, we finally obtain Theorem 4.0.1:

(4.3.5) | 1
(2πh)(n−1)d/2

∫
d V ol(ξ1)...d V ol(ξn−1)e

i
2h

Pn−1
k=0 d2(ξk,ξk+1)

a(h)(ξ0, ξ1)...a(h)(ξn−1, ξn)Aα1(ξ1)...Aαn−1(ξn−1)| ≤ 1
detH̄n(0)1/2

×

[ βn−1∑

k=0

1
k!

(h

2

)k

((n−1)d)k 2k
max
j=0

||Dj
(
b(h) ◦w−1 ◦ H̄n(0)−1/2.Jac[w−1]◦ H̄n(0)−1/2

)||0

+ 4U(n−1)dV ol(B(0, η
√

n))n−1 1
(βn)!

(h

2
)βn((n− 1)d)βn+b (n−1)d+1

4 c+1.

(2β+d)n+3
max
j=0

||Dj
(
b(h) ◦ w−1 ◦ H̄n(0)−1/2.Jac[w−1] ◦ H̄n(0)−1/2

)||0
]

≤ (1 + Ch)n−1(1 + Cη)n−1Jac[expn](ξ0, ξn)−1/2 ×
[ βn−1∑

k=0

1
k!

(h

2

)k

(nd)kn2k(2k)2ks(CGs(A))2k +4U(n−1)dV ol(B(0, η
√

n))n−1 1
(βn)!

(h

2

)βn

.

(nd)βn+b (n−1)d+1
4 c+1((2β + d)n + 3)((2β+d)n+3)s(CGs(A))(2β+d)n+3

]

≤ (1 + Ch)n−1(1 + Cη)n−1Jac[expn](ξ0, ξn)−1/2 ×
[
exp

(
Chn2s+3Gs(A)2

)
+ Cnη(n−1)dn(n−1)d/2hβnn((2β+d)n+5)sGs(A)(2β+d)n+3

]

for some C depending on d and β, but not on h nor on n. In the last line, we used
the inequality n! ≥ Cnnn to bound U(n−1)d and 1

(βn)! .

4.4. Jacobians. To prove Theorem 1.3.3, there remains to express Jac[expn](vα(ξ0, ξn))
in terms of the unstable jacobian.

Let us introduce the functions

J (k)(v) =
Jac[expk]

(
g−kv

)

Jac[expk+1]
(
g−kv

) ,

defined on TM ; one can write

log Jac[expn](vα(ξ0, ξn)) =
n−1∑

k=0

log
Jac[expk+1](vα(ξ0, ξ

c
k+1))

Jac[expk](vα(ξ0,ξc
k))

(4.4.1)

= −
n−1∑

k=0

log J (k)(ξ̇c
k)(4.4.2)

if ξc is the geodesic joining ξ0 to ξn in time n.
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Lemma 4.4.1. There exists a continuous, positive function ϕ on TM \ {0}, such
that, on every compact subset of TM \ {0}, the sequence J (k) converges uniformly
to Ju. ϕ

ϕ◦g1 , where Ju is the unstable jacobian.

Proof. Let x ∈ M and v ∈ TxM . Assume, for instance, that v has norm 1. Let us
denote π the natural projection TM −→ M . The jacobian of expk

π(g−kv) at g−kv,
in the direction orthogonal to the energy layer S1

π(g−kv)M in Tπ(g−kv)M , is exactly
k. Thus, we may write

J (k)(v) =
k

k + 1

JacS1
π(g−kv)

M [expk](g−kv)

JacS1
π(g−kv)

M [expk+1](g−kv)
,

and since expk = π ◦ gk, this is equal to

k

k + 1

JacS1
π(g−kv)

M [gk](g−kv)

JacS1
π(g−kv)

M [gk+1](g−kv)
×

JacgkS1
π(g−kv)

M [π](v)

Jacgk+1S1
π(g−kv)

M [π](g1v)

=
k

k + 1
Jacgk+1S1

π(g−kv)
M [g−1](g1v)×

JacgkS1
π(g−kv)

M [π](v)

Jacgk+1S1
π(g−kv)

M [π](g1v)
.

(We refer to Remark 4.0.2 for the notations concerning Jacobians).
But the spheres S1

xM are transverse, in TM , to the weak stable foliation. This
implies that the tangent space to gkS1

π(g−kv)M , in S1M , converges (uniformly in
v) to the strong unstable space at v. Recall that the unstable jacobian Ju(v) is
defined by

Ju(v) = JacW u(g.v)[g−1](g1v),

where Wu(v) denotes the unstable leaf at v. Consequently, the sequence J (k)(v)
converges, uniformly in v, to

Ju(v)× JacW u(v)[π](v)
JacW u(g.v)[π](gv)

Since the unstable leaves are transverse to the spheres in S1M , the projection
π : S1M −→ M , restricted to the unstable leaves, is an immersion.

The function ϕ we are looking for is

ϕ(v) = JacW u(v)π(v)

As a consequence of Lemma 4.4.1 and the expression (4.4.2), given η > 0, there
exists N1 such that we have

1
n
| log Jac[expn](vα(ξ0, ξn)) +

n∑

k=0

log Ju(ξ̇c
k)| ≤ η

for all n ≥ N1, and for all ξ0, ξn ∈ M such that d(ξ0, ξn) ∈ [n(1− η), n(1 + η)].
Thus,

Jac[expn](vα(ξ0, ξn)) ≥ e−nη−Pn−1
k=0 log Ju(ξ̇c

k)(4.4.3)

if n ≥ N1.
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By continuity, if ε is small, we also have

Jac[expn](ξ0, ξn) ≥ e−2nη−Pn−1
k=0 log Ju(vk)(4.4.4)

for every sequence (v0, ..., vn−1) ∈ (S[1−ε,1+ε]M)n such that Aαk
(vk)Aαk+1(g

1vk) >
0 for all k. And finally, denoting χ = − supv∈S1M log Ju(v), one can also choose ε
so that

Jac[expn](ξ0, ξn) ≥ en(χ−2η).(4.4.5)

4.5. Proof of Theorem 1.3.3. The explicit integral expression for µh is

(4.5.1) µh

(
[α0, ..., αn]

)
=

e
−in
2h

∫

Mn+1
dV ol(ξ0)dV ol(ξ1)...dV ol(ξn)ψ̄h(ξn)Aα0(ξ0)....Aαn

(ξn)

e(h)(ξn, ξn−1, 1)e(h)(ξn−1, ξn−2, 1)...e(h)(ξ1, ξ0, 1)ψh(ξ0),

where e(h)(., ., 1) is the kernel of the Fourier Integral Operator exp
(

ih∆
2

)
localized

near the layer of energy 1.
Theorem 1.3.3 follows directly from Theorem 4.0.1 and the estimate (4.4.4),

together with the classical inequality:∫
φ(z)K(z, u)φ̄(u)dzdu ≤ ||φ||2L2 sup

z
(
∫
|K(z, u)|du,

∫
|K(u, z)|du).

In Theorem 1.3.3 the coefficient 1 + R(n, h) has the explicit expression:

1 + R(n, h) =
[
exp

(
Chn2s+3Gs(A)2

)
+ Cnη(n−1)dn(n−1)d/2hβnn((2β+d)n+5)sGs(A)(2β+d)n+3

]
.

(4.5.2)

If hGs(A)2 goes to 0 like a power of h, we see that R(n, h) goes to 0 as h −→ 0,
uniformly for n ≤ K|logh| (for any arbitrary K).

4.6. Checking Assumption (I) for a surface of constant negative curva-
ture. If the injectivity radius of M is much larger than 1, and if dM (x, y) ≤ 1+2ε,
only one geodesic joining x to y will contribute to the asymptotic development of
e(h)(x, y, 1); thus we may use for e(h)(x, y, 1) the expression for the propagator in
the universal cover, if we know it.

In the hyperbolic upper half-plane, the paper [McK72] provides an explicit ex-
pression of the propagator e(h)(x, y, 1), as a function of D = d(x, y):

e(h)(x, y, 1) =
e−ih/8

√
2

(2iπh)3/2

∫ +∞

D

beib2/2hdb√
cosh b− cosh D

=
eiD2/2he−ih/8

√
2

(2iπh)3/2

∫ +∞

0

ueiu2/2hdu√
cosh(

√
D2 + u2)− cosh D

With the notations of the previous sections, we have

a(h)(x, y) =
−ie−ih/8

√
2

(2iπh)1/2

∫ +∞

0

ueiu2/2hdu√
cosh(

√
D2 + u2)− coshD

This defines a family of analytic functions of D = d(x, y), indexed by h. It
admits a continuation to the complex domain {D ∈ C, |D − 1| ≤ 1/2}, which is
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uniformly bounded for h ∈ (0, 1], as can be seen by an application of the stationary
phase method in the limit h −→ 0.

Since the derivatives of an analytic function on a ball are controlled by its supre-
mum norm, the fact that the family (a(h)) continued to {D ∈ C, |D − 1| ≤ 1/2} is
uniformly bounded implies that it is uniformly analytic: Assumption (I) is satisfied.

5. Appendix A1: Small scale differential calculus

Usual pseudo-differential calculus uses symbols whose derivatives behave nicely
as h −→ 0. However, as is well known to anyone having worked out the details of
the stationary phase formula, it is still valid if the derivatives of the symbols do not
explode too fast:

Lemma 5.0.1. Let (a(h))h∈(0,1] be a family of C∞ functions on Rd × Rd, with a
fixed compact support, and satisfying the following estimates on the derivatives:

||Dna(h)||0 ≤ Cnh−nκ

for all n ∈ N, for some κ ∈ [0, 1/2) and some sequence of real numbers (Cn).Then
the integral

∫
Rd×Rd a(h)(x, ξ)e

i〈ξ,x〉
2h dxdξ obeys the following asymptotics as h −→ 0:

1
(2πh)d

∫

Rd×Rd

a(h)(x, ξ)e
i〈ξ,x〉

2h dxdξ = a(h)(0, 0) + O(h1−2κ).

It follows that the main results of pseudo-differential calculus still hold if the
derivatives of the symbols do not explode faster than powers of h−κ (κ < 1/2). For
instance:

Theorem 5.0.2. (Calderon-Vaillancourt Theorem)
On a d-dimensional compact manifold, that there exists an integer Kd such that,

for all a ∈ C∞c (TM),

||Oph(a)||L2(M) ≤ Kd(||a||0 + h1/2||Da||0 + ... + hKd/2||DKda||0).
In particular, if a(h) depends on h in a way that

||Dna(h)||0 ≤ Cnh−nκ

for all n ∈ N, for some κ ∈ [0, 1/2) and some sequence of real numbers (Cn), then
the operators Oph(a(h)) are uniformly bounded in L2(M).

One can then show:

Theorem 5.0.3. Let (a(h)) and (b(h)) be two families of C∞ functions on TM ,
with a common compact support, and satisfying estimates of the form

||Dna(h)||0 ≤ Cnh−nκ

and
||Dnb(h)||0 ≤ Cnh−nκ.

Then
(i)

||Oph(a(h))Oph(b(h))]−Oph(a(h)b(h))||L2(M) = O(h1−2κ).
(ii)

|| [Oph(a(h)), Oph(b(h))] ||L2(M) = O(h1−2κ).
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(iii) (Egorov Theorem) For any given t,

||Oph(a(h))(t)−Oph(a(h) ◦ gt)||L2(M) = O(h1−2κ).

Remember the notation: A(t) = e
−ith∆

2 Ae
ith∆

2 , for any operator A.
We will also need a result about the range of validity of the Egorov theorem.

Theorem 5.0.4. (Ehrenfest time for the evolution of observables, from [BR02])
For every κ ∈ [0, 1/2), there exists κ̄ > 0 such that, if (a(h)) is a family of C∞

functions on T ∗M , with a common compact support, satisfying estimates of the
form

||Dna(h)||0 ≤ Cnh−nκ,

then
sup

|t|≤κ̄| log h|
||Oph(a(h))(t)−Oph(a(h) ◦ gt)||L2(M) = O(hκ̄),

for all h ∈ (0, 1].

This follows almost directly from the arguments in [BR02]; the assumptions that
the symbol a(h) and its derivatives are bounded can be relaxed to ||Dna(h)||0 ≤
Cnh−nκ. Of course, the larger κ, the smaller κ̄.

Gathering the results of Theorem 5.0.3 and Theorem 5.0.4, we obtain:

Corollary 5.0.5. For every κ ∈ [0, 1/2), there exists κ̄ > 0 such that: If (a(h)),
(b(h)) are families of C∞ functions on TM , with a common compact support, and
satisfying estimates of the form

||Dna(h)||0 ≤ Cnh−nκ,

||Dnb(h)||0 ≤ Cnh−nκ,

then there exists a constant C such that

|| [Oph(a(h))(t), Oph(b(h))] ||L2(M) ≤ Chκ̄

for all |t| ≤ κ̄| log h|.
We can prove Lemma 2.3.3:

Corollary 5.0.6. Let χh be a pseudo-differential operator, whose symbol is an en-
ergy cut-off, supported in a neighbourhood of the energy layer ||v|| = 1. There exists
κ̄ > 0 such that, for every N ≤ 2κ̄| log h|, for every permutation τ of {0, ..., N}, for
every sequence t0, ..., tN such that |ti| ≤ κ̄| log h|, for every sequence α0, ..., αN ,

||AαN
(tN ).....Aα1(t1)Aα0(t0)χh

−AατN (tτN ).....Aατ1(tτ1)Aατ0(tτ0)χh||L2(M) = O(hκ̄)

Proof. In the case when τ is a transposition of two consecutive integers, the proposi-
tion follows directly from Corollary 5.0.5, since the functions Aα satisfy ||DnAα||0 ≤
(n!)sh−κn.

Otherwise, the result can be proved noting that one can write any permutation
of {0, ..., N} as the product of at most (N + 1)2 such transpositions.

As a corollary we can prove Lemma 2.2.2:
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Corollary 5.0.7. Let χh be a pseudo-differential operator, whose symbol is an en-
ergy cut-off, supported in a neighbourhood of the energy layer ||v|| = 1. There exist
κ and α > 0 such that, for all n ≤ κ| log h|, for every subset W ⊂ Σn,

||χ∗h
∑

C∈W

Ĉhχh||L2(M) ≤ 1 + O(hα).

Proof. Define Bi =
√

Ai. By Corollary 5.0.6, we have
∑

C∈W

〈Ĉχhψ, χhψ〉 =
∑

[α0,...,αn]∈W

||Bαn
(n)...Bα0χhψ||2L2(M) + ]W.O(hκ̄).

Since ]W grows exponentially with n, we may choose κ small enough so that
]W.O(hκ̄) = O(hα).

6. Appendix A2: construction of the partition of unity (Ah
i ).

The purpose of this Appendix is to show how to construct the Ai so as to satisfy
the requirements of paragraph 2.1.

Of course, this holds if we have the property: There exists p > 0 such that

∫

B

|ψh(x)|2d V ol(x) = O(hp).

where B is the tubular neighbourhood of size hκ of the boundary of the partition

P . Thus, one may try to modify the partition P so that its boundary is piecewise
smooth, and the smooth hypersurfaces (Sk)k=1,...,L forming the boundary satisfy

∫

Vk(hκ)

|ψh(x)|2d V ol(x) = O(hp)(6.0.1)

where Vk(hκ) is a tubular neighbourhood of Sk of size hκ.

We show here how to do so; starting with an initial partition P (0) = P whose
boundary consists of a finite number of smooth hypersurfaces (Sk(0))k=1,...,L, we
will deform it slightly to a partition P (h), with boundary components (Sk(h))k=1,...,L

that satisfy (6.0.1). The new partition will depend on h, but in a way that does
not affect the proof of Theorem 1.1.1: in our construction the boundary component
(Sk(h))k=1,...,L will converge to the original (Sk(0))k=1,...,L.

We start with a simple remark. Consider an open subset U ⊂ M equipped with
a chart Φ : U −→ Rd that sends U to the cube (−2, 2)d. Let S̃ ⊂ [−1, 1]d−1,
S̃(0) = S̃ × {0} ⊂ (−2, 2)d, and S(0) = Φ−1(S̃). And more generally, given
0 < ε < 1 and 0 < s < 1/4, we define

S̃ε = {x, d(x, B̃) ≤ ε} ⊂ (−2, 2)d−1

S̃ε(m,h) = S̃ε × {mh1/2−s}
Ṽε(m,h) = S̃ε × [(m− 1/2)h1/2−s, (m + 1/2)h1/2−s

and, finally,
Sε(m,h) = Φ−1(S̃ε(m,h))

Vε(m,h) = Φ−1(Ṽε(m,h))
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(the latter is a tubular neighbourhood of size h1/2−s of the former); m is an integer
in [−h−1/2+2s, h−1/2+2s]. Since

∑

m∈[−h−1/2+2s,h−1/2+2s]

∫

Vε(m,h)

|ψh(x)|2d V ol(x) ≤ 1

there must exist an m0 ∈ [−h−1/2+2s, h−1/2+2s] (depending on h) such that∫

Vε(m0,h)

|ψh(x)|2d V ol(x) ≤ h1/2−2s.

This means that Sε(m0, h) satisfies (6.0.1) with κ = 1/2−s and p = 1/2−2s (which
is even better than what we need). Besides, Sε(m0, h) is at distance hs from Sε(0).

We conclude that, even if S(0) did not satisfy (6.0.1), there is a hypersurface
hs-close to it that satisfies it.

Let us now consider a partition P (0), with boundary components (Sk(0))k=1,...,L.
For every k, we know that there exists a hypersurface Sk

ε (h) hs-close to Sk
ε (0)

thatsatisfies (6.0.1) with p = 1/2 − 2s. The problem is to show, in addition, that
for each k, there exists Sk(h) ∈ Sk

ε (h) such that the Sk(h)s form the boundary of
a new partition.

Although this is probably always true for general partitions with piecewise
smooth boundary, we will avoid a tedious combinatorial argument by considering
only special “cubic” partitions, that we describe below:

In the universal cover M , consider a polyhedral fundamental domain D(0) for
the action of Γ = π1(M), whose boundary is piecewise smooth; consider also an
open, relatively compact subset U ⊂ M , containing D(0), and equipped with a chart
Φ : U −→ Rd that sends U to the cube (−2, 2)d. Given α > 0, one has a partition of
(−2, 2)d into cubes of size ε, delimited by the hypersurfaces S̃k,m(0) = {xk = mα}
(k = 1, ..., d, m ∈ Z, |m| ≤ 2/α). This partition gives a partition of U which,
restricted to the fundamental domain D(0), gives our partition P (0) of M . More
precisely, the boundary of P (0) is formed by the image in M of

– parts of the Sk,m(0) = Φ−1(S̃k,m(0);
– the boundary of D(0).
Most elements of P (0) are sent to cubes by the chart Φ, except for those inter-

secting the boundary of the fundamental domain.
The boundary of the “polyhedra” D(0) consists in a finite number of smooth

hypersurfaces Sk(0); applying the previous procedure, we can find some Sk
ε (h)

satisfying (6.0.1) and such that
– for each k, we can find a subset Sk(h) ⊂ Sk

ε (h) such that the Sk(h)s form the
boundary of a new fundamental domain D(h).

– Sk(h) is at distance hs from Sk(0).
In the cube (−2, 2)d, always by the same procedure, we can move the S̃k,m(0)s

to
S̃k,m(h) = {xk = mα + m0(k, m)h1/2−s}

(m0(k,m) ∈ [−h−1/2+2s, h−1/2+2s] as previously) so that

Sk,m(h) := Φ−1(S̃k,m(h))

satisfies (6.0.1), for every k, m. Besides, the S̃k,m(h) still delimit a partition of
(−2, 2)d into cubes (parallelepipedes) and thus the Sk,m(h) delimit a partition of
the open set U ∈ M .
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This partition of U , restricted to the fundamental domain D(h), gives our par-
tition P (h) of M . More precisely, the boundary of P (h) is formed by the image in
M of

– parts of the Sk,m(h) = Φ−1(S̃k,m(0);
– the boundary of D(h).
The boundary of the new partition P (h) satisfies (6.0.1) and converges to the

boundary of P (0). The characteristic function of Pi(h) converges to the character-
istic function of Pi(0), uniformly on every compact subset of the interior of Pi(0)
(for every i = 1, ..., l).

We construct Ah
i by applying the convolution (2.1.1) to Pi(h) instead of Pi.
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