
INTERTWINING THE GEODESIC FLOW AND THE SCHRÖDINGER
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Abstract. We construct an explicit intertwining operator L between the Schrödinger

group eit
4
2 and the geodesic flow on certain Hilbert spaces of symbols on the cotangent

bundle T ∗XΓ of a compact hyperbolic surface XΓ = Γ\D. We also define Γ-invariant
eigendistributions of the geodesic flow PSj,k,νj ,−νk (Patterson-Sullivan distributions) out of
pairs of4-eigenfunctions, generalizing the diagonal case j = k treated in [AZ]. The operator
L maps PSj,k,νj ,−νk to the Wigner distribution WΓ

j,k studied in quantum chaos. We define

Hilbert spaces HPS (whose dual is spanned by {PSj,k,νj ,−νk}), resp. HW (whose dual is

spanned by {WΓ
j,k}), and show that L is a unitary isomorphism from HW → HPS .

1. Introduction

On a hyperbolic surface XΓ = Γ\D, there is an intimate relation between the spectral
properties of the laplacian 4 and those of the geodesic flow gt on the unit tangent bundle
SXΓ. The Selberg trace formula gives an exact formula for the trace of the Schrödinger

flow eit
4
2 as a sum over closed geodesics, and it may be interpreted as a twisted trace of the

pull-back operator by gt [G]. Equivalently, eigenvalues of 4 are (re-parameterizations of)
the resonances of gt (see [B] for background); see also [Bis, Po2, M] for some of the many
different perspectives on this relation. In this article, we give a yet stronger relation between
the two flows : we construct an explicit intertwining operator L (Definition 2) between the
Schrödinger flow and the geodesic flow, which induces a similar intertwining operator LΓ on
the quotient. Our main result, Theorem 3, is that there exist Hilbert spaces of symbols on
which LΓ is a unitary intertwining operator between the classical and quantum flow. Much
of the problem is to construct the appropriate Hilbert spaces, which we denote by HW ,HPS

(see Definitions 6.1-6.2). In fact, the definition is quite flexible and one can construct many
weighted Hilbert spaces for which LΓ is unitary (as well as some Banach spaces). These
Hilbert spaces cannot be the standard Hilbert spaces, L2(SXΓ) for gt, resp. Hilbert-Schmidt

operators for eit
4
2 , since the spectrum of gt is continuous, while that of eit

4
2 is discrete; and

both the Hilbert and Banach spaces we define are also quite different from the Banach spaces
constructed in [BT, BKL, BL, FRS, GL] in the theory of resonances of gt.

The construction of LΓ,HW ,HPS and the proof of the intertwining property grew out of
our previous work [AZ], where we introduced and studied a family of distributions (that we
called Patterson-Sullivan distributions) on the unit tangent bundle of a hyperbolic surface.
These distributions are invariant under the geodesic flow, and we showed that they are closely
related to the Wigner distributions appearing in the theory of quantum ergodicity. The
Patterson-Sullivan distributions are naturally constructed from the family of eigenfunctions
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of the laplacian, and we showed that they also arise as residues of dynamical zeta-functions
at the poles located on the critical line.

In this paper, we introduce the family of off-diagonal Patterson-Sullivan distributions,
and show how they are related to the off-diagonal Wigner distributions (appearing in the
study of quantum mixing). This construction is a rather straightforward generalization of
the work done in [AZ]. More importantly, we show that these formulae directly lead to an
operator intertwining the geodesic flow and the Schrödinger flow on the hyperbolic plane
(or a compact quotient XΓ). Roughly speaking, the dual Hilbert spaces H∗W , resp. H∗PS,
intertwined by L are spanned by the Wigner, resp. Patterson-Sullivan, distributions. The
main goal of this paper is to construct explicitly this intertwining operator, first on the
hyperbolic plane, then on a compact quotient, and to investigate some of its properties. The
existence of this operator opens the way to the construction of a quantization procedure
a 7→ Op(L−1

Γ a) satisfying the Egorov theorem in its exact form (without remainder term).
We refer to §5.7 (see especially (5.27)) for further discussion.

We have to explain in what sense one can find an intertwining operator between the
geodesic flow and the Schrödinger flow. The former acts on functions on the (co)tangent
bundle TXΓ whereas the latter acts on functions on the base manifold XΓ. In fact, we let
the Schrödinger group act on the space of operators, by conjugation (as in the Heisenberg
picture of quantum mechanics). Operators have a Schwartz kernel, which is a distribution on
the product XΓ×XΓ. By taking the local Fourier transform of the kernel with respect to the
second component, we get a distribution on the cotangent bundle T ∗XΓ, called the symbol
of the operator. This way, we see that the Schrödinger group acts naturally on the space of
distributions on T ∗XΓ (in the paper we will always identify the tangent and the cotangent
bundles by means of the riemannian metric). With this formulation, the Schrödinger flow
acts on the same space as the geodesic flow, and it is in this sense that we shall intertwine
their actions.

1.1. Notation. To state our results, we need to introduce some notation (see §2 for more
details). We will denote G = PSU(1, 1) ' PSL(2,R), K = PSO(2,R) a maximal compact
subgroup, and G/K the corresponding symmetric space, for which we will in general use the
picture of the hyperbolic disc D = {z ∈ C, |z| < 1}, endowed with the riemannian metric

ds2 =
4|dz|2

(1− |z|2)2
.

This is a standard normalization in hyperbolic geometry, but we caution that it differs by
a constant factor from the normalization used by Helgason [He]; for us, the L2-spectrum of
the laplacian on D is (−∞,−1

4
]. Hence some discrepancies between some of our formulae

and Helgason’s.
It is well-known that G can be identified with the unit tangent bundle SD of the hyperbolic

disc D (when using the theory of pseudodifferential operators, it is more natural to work on
the cotangent bundle, but we will always identify both). We will be particularly interested in
the geodesic flow, which acts on G by right multiplication as follows : for all g ∈ PSL(2,R),
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for all t ∈ R, gt(g) = gat where at =

 et/2 0

0 e−t/2

 ∈ SL(2,R). We will also use the action

of the horocycle flow (hu)u∈R, acting by hu(g) = gnu where nu =

 1 u

0 1

 ∈ SL(2,R).

We will work with two special parameterizations of the unit tangent bundle, identified
with G. The first one is obtained by writing G ∼ (G/K) × K ∼ D × B where B is the
boundary at infinity of D, identified with the unit circle S1 in the Poincaré disc model. The
group K and the boundary at infinity S1 are identified by the map cos θ − sin θ

sin θ cos θ

 7→ e2iθ.

This way, a point in G can be parameterized by the coordinates (z, b), where z ∈ D and
b ∈ B. In geometric terms, if (z, b) is identified with a unit tangent vector in SD, then b
represents the (forward) limit point of the geodesic generated by (z, b). The action of G on
itself by left-multiplication yields an action of G on B (Section 3).

We shall also use the following parameterization: denote B(2) = {(b′, b) ∈ B × B, b 6= b′}
the set of pairs of distinct points in the boundary. Each oriented geodesic in D is completely
determined by its (unique) forward limit point b in B and its (unique) backward limit point
b′ 6= b in B : we will denote γb′,b the geodesic going from b′ ∈ B to b ∈ B. Thus, B(2) can
be naturally identified with the set of oriented geodesics of D. The elements of G can be
parameterized by (b′, b, τ) with (b′, b) ∈ B(2) and τ ∈ R. We identify (b′, b, τ) with the point
(z, b) ∈ D × B, where z is on the geodesic γb′,b, situated τ units from the point zb,b′ ∈ γb,b′
closest to the origin o

def
= eK ∈ D.

Our final goal is to obtain formulae that are valid on a compact quotient of D; that is, we
consider a co-compact discrete subgroup Γ ⊂ G. We assume it has no torsion1 and contains
only hyperbolic elements. Then the quotient XΓ = Γ\D is a compact hyperbolic surface.

1.2. Quantization, Wigner distributions and Patterson-Sullivan distributions. A
quantization procedure adapted to the hyperbolic disc was defined in [Z3], using Helgason’s
version of the Fourier transform [He]. For (z, b) ∈ D × B, define the Busemann function
〈z, b〉 as the signed distance to o of the horocycle going through the points z ∈ D, b ∈ B. The

family of functions z 7→ e( 1
2

+ir)〈z,b〉 (r > 0, b ∈ B) forms a basis of generalized eigenfunctions
of the laplacian on L2(D) [He]. The hyperbolic pseudodifferential operators introduced by
[Z3] are defined by

(1.1) Op(a)e( 1
2

+ir)〈•,b〉 = a(•, b, r)e( 1
2

+ir)〈•,b〉,

if a = a(z, b, r) is a function on D×B ×R ' SD×R which must have “reasonable” decay
and smoothness properties (section 4). The function a is called the symbol of the operator.
We note that by choosing r < 0 instead of r > 0 we obtain another basis of generalized

1This assumption is probably not necessary.
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eigenfunctions of the laplacian. We also note that the Schwartz-kernel of the operator is
formally given by

(1.2) Ka(z, w) =

∫
B

∫
r∈R+

a(z, b′, r)e( 1
2

+ir)〈z,b′〉e( 1
2
−ir)〈w,b′〉dp(r)db′,

where dp(r) is the Plancherel measure defined in §3.1. Paley-Wiener type theorems relating
the decay and regularity of a and those of Ka will be recalled in §4.2. In most formulae we
assume that Ka(z, w) decays sufficiently fast away from the diagonal {z = w}. This implies
in particular that the corresponding symbol a has a holomorphic extension to r ∈ C. In
[Z3], it is often assumed that Op(a) is a properly supported pseudo-differential operator, i.e.
that Ka(z, w) is supported in a fixed tube d(z, w) < R around the diagonal (where d is the
hyperbolic distance between points).

Let XΓ be a compact quotient of D as above, and fix an orthonormal basis (φk) of L2(XΓ)
formed of eigenfunctions of the laplacian. We use the standard notations in hyperbolic
spectral theory : the eigenfunctions φk satisfy

4φk = −
(

1

4
− ν2

k

)
φk = −

(
1

4
+ r2

k

)
φk,

where νk = irk ∈ R ∪ iR is called the spectral parameter (on a compact surface, only a
finite number of rks are imaginary). For each eigenvalue there are two possible choices for
the spectral parameter.

The “Wigner distributions2” Wj,k are defined on SD×R ' G×R by the formula

(1.3)

∫
SD×R

a dWj,k
def
= 〈Op(a)φj, φk〉D,

for a a function on SD×R, with appropriate growth and smoothness properties with respect
to (z, b) ∈ SD. For instance, the matrix element is well-defined if a is smooth, and compactly
supported with respect to (z, b) ∈ SD; or if a belongs to the space S 0

0 defined in §4.2. The
distribution Wj,k is invariant by the action of Γ on SD, and thus can be used to define
a distribution W Γ

j,k on the quotient SXΓ × R ' Γ\G × R : if a is a smooth function on
Γ\G×R, in other words a Γ-invariant function on G×R, we define∫

SXΓ×R
a dW Γ

j,k =

∫
SD×R

χa dWj,k,

where χ is a smooth fundamental cut-off function for the action of Γ (see §3.3 for the def-
inition). It can easily be seen (§3.3) that this definition does not depend on the choice of
χ. To rephrase this definition, if a is a Γ-invariant symbol, and Op(a) is a properly sup-
ported pseudo-differential operator, it was shown in [Z3, Z1] that Op(a) preserves the space
of Γ-invariant functions. We denote by OpΓ(a) the operator Op(a) acting on Γ-invariant
functions. Then

(1.4)

∫
SXΓ×R

a dW Γ
j,k = 〈OpΓ(a)φj, φk〉L2(XΓ),

2This terminology is normally used in a euclidean context, but here we use it in also for non-euclidean
geometries; we use quotation marks since the terminology is somewhat non-standard in the setting of hy-
perbolic geometry.
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Growth and smoothness properties of a will be discussed in detail in Section 4.
The Wigner distribution W Γ

j,k may also be expressed in terms of the boundary values of
the eigenfunctions φj, φk. The boundary values Tk,νk of φk is a distribution on the boundary
B, with the property that

φk(z) =

∫
B

e( 1
2

+νk)〈z,b〉Tk,νk(db),

for all z ∈ D. It depends on the choice of a spectral parameter νk, and is unique if we pick
νk such that 1

2
+ νk 6= 0,−1,−2, · · · ([He, Theorems 4.3 and 4.29]; see also [He2]). With a

slight abuse of notation we sometimes denote Tk,νk more simply by Tνk . Using the definition
of Op, we have∫

SXΓ×R
a dW Γ

j,k =

∫
D×B

χ(z, b)a(z, b, rj)φk(z)e( 1
2

+νj)〈z,b〉Tνj(db) Vol(dz)

where as above χ is a smooth fundamental cut-off (see §3.3).
It follows from its definition that W Γ

j,k is an eigendistribution of the quantum evolution.
Define

(1.5) αt(Op(a)) = e−it
4
2 Op(a)eit

4
2 .

We then have

(1.6) 〈αt(OpΓ(a))φj, φk〉 = eit
(ν2
j−νk

2)

2 〈OpΓ(a)φj, φk〉 = eit
(r2k−r

2
j )

2 〈OpΓ(a)φj, φk〉

where the last identity holds only for real values of rj, rk.
We henceforth denote by V t the operator on symbols, defined formally by

(1.7) αt(Op(a)) = Op(V t(a)).

As we shall see, V ta is well defined when a is smooth and compactly supported on D, and
then V ta belongs to the space S 0

0 defined in §4.2. Besides, V t extends to a unitary operator
on the Hilbert space L2

W (G×R, dg× dp(r)) of Weyl-group invariant L2 functions defined in
§4.1. On the quotient, V t induces an operator V t

Γ acting on ΠS 0
0 , defined in Definition 4.1

as the space of Γ-invariant symbols obtained by periodizing elements of S 0
0 . The operator

V t
Γ is unitary on L2

W (Γ\G×R, dg × dp(r)) (see Definition 4.2).

Remark 1.1. The quantization of the geodesic flow (i.e. the quantum evolution) should

be a Fourier integral operator, and it may be objected that eit
4
2 is not a Fourier integral

operator. To make it one, it suffices to rescale in time t → ~t to obtain the semi-classical

Schrödinger group eit~
4
2 . We do not do this because our intertwining relations are exact and

apply with no essential difference to either group.

However, in §5.7 we discuss the re-scaling to eit~
4
2 and the relation between the semi-

classical Egorov theorem and the exact intertwining. For background on the semi-classical
Schrödinger group we refer to [AN].

The homogeneous quantization of the geodesic flow is the wave group eit
√
4. Our methods

can be modified to intertwine this group as well with the geodesic flow but that is technically

somewhat more complicated and we prefer to use eit
4
2 ; we discuss this further in §5.4.
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The Wigner distributions have been studied a lot in the theory of quantum ergodicity and
quantum mixing. In the context of a homogeneous space Γ\G, the Wigner distributions of
this article are studied in [Z1, Z3, W, SV, SV2] as well as in [AZ]. In this paper we introduce
the family of (off-diagonal) Patterson-Sullivan distributions. They are also constructed from
pairs of eigenfunctions φj, φk, after taking their boundary values Tj,νj(db) and Tk,−νk(db).

Definition 1. PSj,k,νj ,−νk(db
′, db, dτ) is the Γ-invariant distribution on B(2)×R ∼ G defined

by

PS(j,νj),(k,−νk)(db
′, db, dτ) =

Tj,νj(db)Tk,−νk(db
′)

|b− b′|1+νj−νk
e(νj+νk)τdτ.

We note that the Patterson-Sullivan distributions depend on the eigenfunctions φj, φk,
but also on the choice of the spectral parameters νj,−νk (in contrast with the Wigner
distributions, which depend only on the eigenfunctions); hence the notation PS(j,νj),(k,−νk).
It is crucial to take opposite sign conventions for the choice of the spectral parameters
associated with φj, φk (νj vs. −νk) if we want the Patterson-Sullivan to be invariant under
the geodesic flow in the diagonal principal series case, νj = νk ∈ iR. This remark was
generalized to higher-rank Lie groups by M. Schröder in his dissertation [SchDiss]. Hilgert
and Schröder have extended the definition and properties of off-diagonal Patterson-Sullivan
distributions to more general symmetric spaces [HilSc, SchDiss].

In the sequel, we will in general use the shorter notation PSνj ,−νk , although it is slightly
abusive. In Proposition 6.1, we check that the distributions PSνj ,−νk are (right)-Γ-invariant

distributions on B(2) ×R ∼ G. Besides, since the geodesic flow reads

gt(b′, b, τ) = (b′, b, τ + t),

they are eigendistributions for the geodesic flow in the sense that

(1.8) gt]PSνj ,−νk = e−t(νj+νk)PSνj ,−νk = eit(rk−rj)PSνj ,−νk

(the last identity holds only for real values of rj, rk). As a result, PSνj ,−νk induces an
eigendistribution PSΓ

νj ,−νk of the geodesic flow on Γ\G = SXΓ, defined by

(1.9)

∫
Γ\G

a dPSΓ
νj ,−νk =

∫
G

(χa) dPSνj ,−νk ,

for every smooth Γ-invariant function a. Once again χ is a smooth fundamental domain
cutoff, see §3.3.

It was pointed out in [Z1] that the distribution

(1.10) ενj(z, b)e
〈z,b〉Vol(dz)db

def
= e( 1

2
+νj)〈z,b〉Tνj(db) Vol(dz)

on SXΓ is a joint eigendistribution of the horocycle and geodesic flows, contained in the
(spherical) irreducible representation of G generated by φj. The PS-distributions are new
objects, and it is illuminating to express them in terms of these more familiar ones.

Proposition 1.1. The Patterson-Sullivan distributions are given by the (well-defined) prod-
ucts

(
ενj · ιε−νk

)
:

PSνj ,−νk(db
′, db, dτ) =

2−(νj−νk)

2π

(
ενj · ιε−νk

)
(z, b) e〈z,b〉Vol(dz)db,
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with (z, b) ' (b′, b, τ) and where ι is the involution (b′, b, τ) 7→ (b, b′,−τ), corresponding
to (x, ξ) 7→ (x,−ξ) on SD, or to the action of the non-trivial element of the Weyl group,

g 7→ gw on G, with w =

 0 −1

1 0

.

Remark 1.2. We note that the Wigner distributions are naturally defined on SXΓ × R,
whereas the Patterson-Sullivan distributions were only defined on SXΓ. In order to relate
both, we need to extend the latter to SXΓ ×R. We do so by identifying SXΓ with SXΓ ×
{ rj+rk

2
}. In other words, we extend the PS-distributions to SXΓ ×R by considering

(1.11) PSΓ
νj ,−νk ⊗ δ rj+rk

2

for real values of rj, rk. We must pay special attention, and treat separately, the case of low
laplacian eigenvalues, when r is imaginary. When rj or rk is imaginary, the formula above
will be generalized to

(1.12) PSΓ
νj ,−νk ⊗ δ νj−νk

2i

,

and our results will have to be restricted to functions a(z, b, r) that have a holomorphic
extension to r ∈ C, so that it makes sense to pair them with a functional such as (1.12).
The Paley-Wiener theorems of §4.2 show that this is the case if the kernel Ka(z, w) is smooth
and rapidly decaying away from the diagonal. The functional is (1.12), strictly speaking, no
longer a distribution on SXΓ ×R.

The extension (1.12) of formula (1.11) is somewhat arbitrary; however, in view of the
sesquilinearity of the scalar product on L2, it seemed rather natural to use an extension
which is holomorphic w.r.t. νj and antiholomorphic w.r.t. νk.

1.3. Definition of the intertwining operator.

Definition 2. The intertwining operator

L : C∞c (G×R)→ C(G×R)

is defined by

(1.13) La(g,R) =

∫ ∫ ∫
(1 + u2)−( 1

2
+iR)a(ga

τ− log(1+u2)
2

nu, r)e
−2i(R−r)τdrdudτ.

Here, nu ∈ N is the one-parameter unipotent subgroup whose right-orbits define the horo-
cycle flow and at ∈ A is the one parameter subgroup whose right-orbits define the geodesic
flow (see §2.1).

Extend the geodesic flow to G×R by the formula

(1.14) Gt(g, r) = (gart, r).

We denote by Gt
Γ the induced flow on Γ\G×R.

We will also consider the geodesic flow as an operator acting on functions, by composition :

for a function a on G, we denote gta
def
= a ◦ gt, and for a function on G×R, Gta

def
= a ◦Gt.



8 NALINI ANANTHARAMAN AND STEVE ZELDITCH

1.4. Statement of results. The main result of this paper is the intertwining relation

(1.15) L ◦ V t = Gt ◦ L.
We prove (1.15) in several levels. In Section 5, we work on the universal cover, and prove
that

L ◦ V ta = Gt ◦ La
for a belonging to a space of smooth and rapidly decaying symbols on SD×R, denoted by
S 0

0 and defined in §4.2. Theorem 7 (i) says that both sides are continuous functions and
the equality holds pointwise. It is then natural to ask for an extension of L to the Hilbert
space of square integrable symbols a ∈ L2(G×R+, dg×dp(r)), which is in bijection with the
space L2

W (G×R, dg×dp(r)) of §4.1, and isometric to the space of Hilbert-Schmidt operators
(Proposition 4.1). However, L is not bounded on L2

W (G × R, dg × dp(r)). Theorem 7 (ii)
characterizes the image L(L2

W (G×R, dg × dp(r))), it is a Hilbert space called HPS(D).
We then pursue the study of L on the quotient XΓ, following the same steps as on the uni-

versal cover. In Section 6.1, we define Hilbert spaces HW = HW (XΓ) and HPS = HPS(XΓ)
of Γ-invariant symbols (in other words, symbols on the quotient XΓ) and their dual spaces,
H∗W and H∗PS. The Wigner distributions W Γ

j,k (1.4) form an orthonormal basis of H∗W , while
the Patterson-Sullivan distributions (1.12) form an orthonormal basis of H∗PS. Both are
modelled on the Hilbert space of Hilbert-Schmidt pseudo-differential operators. As men-
tioned above, the definitions are flexible and allow for choices of weights in the r variable; by
choosing the weight appropriately, it suffices that (I −4)−sA is a Hilbert-Schmidt operator
for some s. The geodesic flow Gt

Γ induces an isometry of HPS and V t
Γ an isometry of HW .

The intertwining operator L induces an operator

LΓ] : H∗PS(XΓ)→ H∗W (XΓ), LΓ]PSνj ,−νk = Wj,k

on Γ-invariant distributions. We then define

LΓ : HW (XΓ)→ HPS(XΓ)

by duality (6.10).

Theorem 3. The operator LΓ] : H∗PS → H∗W is an isometric isomorphism, and LΓ] sends
PSνj ,−νk to Wj,k. Dually, we have

LΓ ◦ V t
Γ = Gt

Γ ◦ LΓ,

as an equality between operators from HW to HPS.

The Hilbert spaces HPS,HW are defined ad hoc so that the theorem holds. Nevertheless,
in Section 7 we show that they contain large classes of symbols, characterized by their
smoothness and growth in the r-variable (Propositions 7.3 and 7.5).

Remark 1.3. It might seem more natural to first define LΓ on symbols, but in fact this is a
subtle issue that is clarified by first defining the adjoint on the distributions. One might try
at first to define LΓ directly on Γ-invariant symbols. But one finds that this is problematic
due to the fact that the kernel of L is not smooth and does not decay fast enough away
from the diagonal. By comparison, the adjoint intertwining operator is naturally defined on
PSνj ,−νk . We then define LΓ by duality and find that the dual intertwining operator only
uses the cutoff of a Γ-invariant symbol to a fundamental domain and does not require a
definition of L on automorphic symbols.
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The intertwining relation comes from an exact relation between the Wigner and Patterson-
Sullivan families of distributions. If a is a function on G, decaying fast enough, and ν ∈ C,
define

Lνa(g) =

∫
R

(1 + u2)−( 1
2

+ν)a(gnu)du.

If a is a function on G×C, and ν ∈ C, define the function aν on G by aν(g) = a(g, ν).

Theorem 4. Let a = a(z, b, r) be a Γ-invariant function, with

a(z, b, r) =
∑
γ∈Γ

ã(γ · z, γ · b, r),

with ã satisfying adequate decay and smoothness properties (i.e. that ã ∈ S 0
0 ; see §6.4 for

the definition). Then we have

W Γ
j,k(a) = 21+νj−νkPSνj ,−νk(L−νk ãνj) = PSνj ,−νk(Lã).

1.5. Asymptotic equivalence of Wigner and Patterson-Sullivan distributions. In
[AZ], it is proved that, after suitable normalization, the diagonal Wigner distributions and
Patterson-Sullivan distributions are asymptotically the same in the semi-classical limit. The
same is true for the off-diagonal elements:

Theorem 5. Let a ∈ C∞(Γ\G). Given a sequence of pairs (νjn , νkn) of spectral parameters
with −iνjn → +∞ and |νjn − νkn| ≤ τ0 for some τ0 ≥ 0, we have the asymptotic formula∫

SXΓ

a(g)W Γ
jn,kn(dg) = 21+νjn−νkn

(
π

rkn

)1/2

e−
iπ
4

∫
SXΓ

a(g)PSΓ
νjn ,−νkn (dg) +O(ν−1

kn
).

The proof is very similar to that in the diagonal case in [AZ], starting from Theorem 4.
Hence we only sketch the key points in §8. This result has been extended to more general
symmetric spaces by Hilgert and Schröder [HilSc].

In [Z2], it is shown that the off-diagonal Wigner distributions Wjn,kn with jn 6= kn and
with a limiting spectral gap rjn − rkn −→ τ0 tend to zero when the geodesic flow is mixing,
at least after the removal of a subsequence of spectral density zero. It then follows from
Theorem 5 that:

Corollary 6. Take a sequence of pairs (jn, kn), with jn 6= kn and rjn−rkn −→ τ0. Assume
that this sequence has positive density, in the sense that

lim inf
λ→+∞

]{n, |rjn| ≤ λ}
]{j, |rj| ≤ λ}

> 0.

Then there exists a subsequence of full density such that r
−1/2
kn

PSνjn ,−νkn −→ 0.

1.6. Relations to other work. The existence of the intertwining operator is rather unex-
pected from the viewpoint of microlocal analysis and quantum chaos, but is quite natural
from the viewpoint of automorphic distributions and invariant triple products [BR, BR2,
MS, D, SV, SV2], where it may be interpreted as intertwining the family of Wigner triple
products `W (a, φj, φk) = 〈Op(a)φj, φk〉 and the family of Patterson-Sullivan triple products
`PS(a, φj, φk) = 〈a, dPSνj ,−νk〉. It follows from general principles that there exist constants
Crj ,rk `

PS(a, φj, φk) = Crj ,rk`
W (a, φj, φk) and essentially L is an integral operator with ma-

trix elements Crj ,rk . This will be explained in detail in [Z4] and explicit formulae relating
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Wigner and Patterson-Sullivan distributions on generating symbols are given there and in
[AZ]. L might have an independent interest in representation theory as the intertwining
operator between these two families of triple products.

The relations between Wigner and Patterson-Sullivan distributions, and the exact formulae
relating them in [AZ, Z4], shed some light on the limit formula for quantum variances of
Wigner distributions of Hecke eigenfunctions, proved by Luo-Sarnak [LS], Zhao [Zh] and
Sarnak-Zhao [SZ]. The quantum variance for a zeroth order pseudo-differential operator A
is defined as

(1.16) VA(λ)
def
=

1

N(λ)

∑
j:λj≤λ

|〈Aφj, φj〉 −
∫
a0dω|2, (N(λ) = #{j : λj ≤ λ})

where
∫
a0dω is the Liouville average of the principal symbol a0 of A. It was suggested by

Feingold and Peres [FP] that the quantum variance should tend to 0 the following way :

VA(λ) ∼ B(a0, a0)√
λ

.

The bilinear form B should be proportional to ρ̂a0,a0(0), where

(1.17) ρφ,ψ(t) =

∫
SXΓ

φ(x)ψ(gtx)dω(x)−
∫
φdω

∫
ψdω

is the “dynamical correlation function”, and ρ̂φ,ψ(τ) =
∫∞
−∞ e

−iτtρφ,ψ(t)dt is its Fourier trans-
form. In [LS, Zh, SZ] a version of this conjecture (with additional arithmetic factors) was
proved for the basis of Hecke eigenfunctions.

Since Patterson-Sullivan distributions are defined independently on the choice of a quan-
tization procedure, it is natural to consider the classical variances for the diagonal PS-
distributions:

(1.18) PSa(λ)
def
=

1

N(λ)

∑
j:λj≤λ

|〈a, P̂Sνj ,−νj〉 −
∫
adω|2.

Here, P̂Sνj ,−νj
def
= 1

〈1I,PSνj,−νj 〉SXΓ

PSνj ,−νj are normalized PS-distributions (see [AZ]) so that

the statement is correct for constant functions.
By Theorem 5 (or the explicit relations in [AZ, Z4]), we have

VOp(a)(λ) ' PSa(λ),

hence the Luo-Sarnak-Zhao results also imply that

(1.19) PSa(λ) ∼ Const. ρ̂a0,a0(0)√
λ

,

for a certain constant Const. Since Patterson-Sullivan variances are sums of gt-invariant
bilinear forms, they should have a closer relation to dynamical correlation functions than
variances for Wigner distributions. Hence it seems reasonable to ask whether (1.19) holds
for any basis of eigenfunctions on any compact hyperbolic surface.

Finally, we point out a possibly tenuous relation of our intertwining problem to the one
studied by Bismut on locally symmetric spaces of non-compact type in Chapter 10 of [Bis].
On the infinitesimal level, we are intertwining the generator of the geodesic flow to the
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operator P taking a symbol a to the symbol of [Op(a),4]. As discussed in [Z3] the latter

operator P has the form H2

4
+X2

+ + irH, where H2

4
+X2

+ is elliptic along the stable foliation
and irH is the semi-classical operator of order 2 where H generates the geodesic flow.
By comparison, Bismut’s hypoelliptic laplacian LXb is essentially the weighted sum of the
harmonic oscillator on the fiber of T ∗XΓ and bH. We note that the H terms are identical if
we set b = r, while the other terms are in a sense orthogonal (Bismut’s is vertical while ours
is horizontal). But both have the essential property that as the semi-classical parameter
b = r →∞, the operators converge to the generator of the geodesic flow. There is a possible
parallel of our conjugation problem to the conjugation between the hypoelliptic laplacian and
a certain elliptic operator in [Bis] (Chapter 10). We encounter similar problems in defining
the domain of L and its inverse.

Notational issue : In what follows we have to face the issue that we are sometimes
using the sesquilinear pairing between two L2 functions (or more generally, two elements
of a complex Hilbert space), and sometimes the bilinear pairing between a distribution and
a test function (more generally, an element of a vector space and a linear form). We will
try to keep distinct notations to avoid confusion, denoting by 〈a, b〉 the scalar product of
two L2 functions (linear w.r.t. a, antilinear w.r.t. b), and by T (a) the pairing between a
distribution T and a test function a. More generally, we shall restrict the bracket notation
〈., .〉 to sesquilinear pairings 3.

If L is a linear operator on a space endowed with a sesquilinear form, we shall denote by
L† its adjoint in the hermitian sense, that is, 〈a, Lb〉 = 〈L†a, b〉.

We will denote L] the adjoint of L in the usual sense of duality : if T is a linear form,

then L]T is the linear form defined by (L]T )(a)
def
= T (La). Thus, L 7→ L] is linear whereas

L 7→ L† is antilinear.
If T is a distribution and Φ a diffeomorphism, we shall also denote by Φ]T the pushforward

of T by Φ : (Φ]T )(a)
def
= T (a ◦ Φ). The two notations should not interfere.

2. Coordinates on SD.

2.1. Dynamics and group theory of G = PSL(2,R). We recall that PSL(2,R) acts on

the upper half plane H = {z ∈ C,=m(z) > 0} by g(z) = az+b
cz+d

, if g =

 a b

c d

.

We recall the expression of the hyperbolic distance in the upper half plane model :

(2.1) cosh d(z, w) = 1 +
|z − w|2

2=m(z)=m(w)
.

The action of PSL(2,R) is by isometries, and PSL(2,R) can be identified with the unit
tangent bundle SH via the map g 7→ (g(i), ig′(i)) (i =

√
−1).

The upper half plane is isometric to the hyperbolic disc via the map

z 7→ z − i
z + i

.

3We also use the 〈., .〉 notation for the Busemann function, but that should not cause confusion
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To define the Patterson-Sullivan and Wigner distributions it will be more convenient to
work with the disc model. However, some computations are easier with the upper half plane
model.

A set of generators of the Lie algebra sl(2,R) is given by

(2.2) H =

 1 0

0 −1

 , X+ =

 0 1

0 0

 , Y =

 0 −1

1 0

 .

The subgroups they generate are denoted by A,N,K respectively. We also put X− = 0 0

1 0

 , and denote the associated subgroup by N . In the identification SD ≡ PSL(2,R)

the geodesic flow (gt)t∈R is given by the right action of the group A of diagonal matrices

with positive entries : g 7→ gat where at =

 et/2 0

0 e−t/2

 . The action of the horocycle

flow (hu)u∈R is defined by the right action of N , in other words by g 7→ gnu where nu = 1 u

0 1

 . We shall also denote n̄u =

 1 0

u 1

 .

2.2. Adapted coordinates. As explained in the introduction, the identification G ∼
(G/K)× (G/NA) ∼ (G/K)×K leads to the coordinates (z, b) (where z ∈ D, b ∈ G/NA ∼
K ∼ S1) to parameterize points in G ∼ SD. The identification G ∼ (G/K)× (G/NA) is G-
equivariant, and thus the action of g on itself by left-multiplication reads g ·(z, b) = (g ·z, g ·b),
where on the first component G acts by isometry on the symmetric space G/K, and on the
second coordinate G acts on the boundary G/NA ∼ K.

We denote by o the origin eK in G/K, and by 〈z, b〉 the signed distance to o of the
horocycle through the points z ∈ D, b ∈ B. This notation follows [He], but we warn again
that our normalization of the metric differs by a factor 2 from Helgason’s.

We also use the identification G ≡ SD ≡ B(2) × R. It is based on the identification of
B(2) == {(b′, b) ∈ B ×B, b 6= b′} with the space of oriented geodesics of D. To (b′, b) ∈ B(2)

there corresponds a geodesic γb′,b whose forward endpoint at infinity equals b and whose
backward endpoint equals b′. The choice of time parameter is defined so that (b′, b, 0) is the
closest point zb′,b to the origin o on γb′,b, and (b′, b, t) denotes the point t units from (b′, b, 0) in
signed distance towards b. We note that 〈zb,b′ , b〉 = 〈zb,b′ , b′〉. We define g(b′, b) ∈ PSU(1, 1)
to be the unique element satisfying

g(b′, b) · 1 = b,
g(b′, b) · (−1) = b′,
g(b′, b) · o = zb′,b,

where 1,−1, b, b′ are points of the boundary B = S1, seen as the unit circle in C in the disc
model. We thus identify B(2) × R ' G by (b′, b, t) 7→ g(b′, b)at. In these coordinates, the
action of g ∈ G by left-multiplication is expressed by

(2.3) g · (b′, b, t) =

(
g · b′, g · b, t+

〈g · o, g · b〉 − 〈g · o, g · b′〉
2

)
.
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We will need the following formula :

Lemma 2.1.

log
|b− b′|

2
+ 〈g(b′, b)aτnu · o, b〉 = τ,

where b, b′ are seen as elements of S1 ⊂ C, and |b− b′| is their usual distance in C.

Proof. To prove this, we use the identity

〈gatnu · o, g · 1〉 = 〈atnu · o, 1〉+ 〈g · o, g · 1〉 = t+ 〈g · o, g · 1〉

to reduce the lemma to the claim that

(2.4) 〈g(b′, b) · o, g(b′, b) · 1〉 = − log
|b− b′|

2
.

However, a basic identity gives

(2.5) |g · β − g · β′|2e〈g·o,g·β〉+〈g·o,g·β′〉 = |β − β′|2.

If we let β = 1, β′ = −1 (so that g(b′, b) · 1 = b, g(b′, b) · (−1) = b′) and recall that 〈g(b′, b) ·
o, b〉 = 〈g(b′, b) · o, b′〉, then (2.5) implies

(2.6) 4 = |b− b′|2e[〈zb′,b,b〉+〈zb,b′ ,b′〉] = |b− b′|2e2〈zb′,b,b〉,

which completes the proof of (2.4) and hence of the lemma.
�

2.3. Time reversal. Time reversal is the map ι : (x, ξ)→ (x,−ξ) on the tangent bundle.
In the coordinates (b′, b, t) it takes the form,

(2.7) ι(b′, b, t) = (b, b′,−t).

That is, it reverses the endpoints of the oriented geodesic γb,b′ and preserves the point zb,b′
closest to o. In the group theoretic picture, time reversal is given by the action of the

non-trivial element of the Weyl group, g 7→ gw on G, where w =

 0 −1

1 0

.

2.4. A coordinate change. The formulae below are useful at several places in the paper.

(2.8) nu = kua− log(1+u2)n̄f(u),

where f(u) = u
1+u2 and where

ku =

 1√
1+u2

u√
1+u2

− u√
1+u2

1√
1+u2

 .

This comes from the explicit calculation,

(2.9)

1 u

0 1

 =

 1√
1+u2

u√
1+u2

− u√
1+u2

1√
1+u2

 1√
1+u2 0

0
√

1 + u2

 1 0

u
1+u2 1

 .
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This formula implies that the element g = nuat ∈ G corresponds to the endpoints b = 1,
b′ = kuw ∈ K, in other words, using the S1 model,

b′ = e2iθ, where eiθ =
u√

1 + u2
+

i√
1 + u2

.

By calculation, we find |b′− b|2 = 4
1+u2 and db′ = 1

π
du

1+u2 . These calculations also show that

〈nuat, 1〉 = t

and
〈nuat, b′〉 = −t+ log(1 + u2).

For t = log(1+u2)
2

, we see that 〈nuat, 1〉 = 〈nuat, b′〉, and thus nua log(1+u2)
2

= gb′,b (with b =

1, b′ = e2iθ as above). It follows that g = nuat ∈ G has the coordinates (b′, b, τ) = (e2iθ, 1, t−
log(1+u2)

2
).

3. Harmonic analysis on the hyperbolic disc and its compact quotients

3.1. Poisson 1-form, Haar measure and Plancherel measure. We shall denote by
db the normalized Haar measure on K, identified with the boundary B or with S1. The
Poisson 1-form is defined by

(3.1) P (z, b)db = e〈z,b〉db.

Using the identities

(3.2) 〈g · z, g · b〉 = 〈z, b〉+ 〈g · o, g · b〉,
and

(3.3)
d

db
g · b = e−〈g·o,g·b〉,

it follows that

(3.4) P (g · z, g · b)d(g · b) = P (z, b)db.

Haar measure on G is denoted dg. In terms of z, b coordinates it is given by

(3.5) dg = P (z, b) Vol(dz)db,

where Vol(dz) is the hyperbolic area form. Under the identification G ∼ SD, the Haar
measure on G is the same as Liouville measure on SD. In the (b′, b, t) coordinates, Haar
measure reads as follows:

Lemma 3.1. Under the identifications (b, b′, t) ' g = g(b, b′)at ' (z, b), we have

dg = P (z, b) Vol(dz)db = 4π
db⊗ db′

|b− b′|2
⊗ dt.

The fact that the measure db⊗db′
|b−b′|2 ⊗ dt is invariant under the action of G follows from

formulae (2.3), (2.5), (3.3). We leave aside the calculation of the normalization factor, which
can be done thanks to the formulae in §2.4, but does not play a very important role.

Non-euclidean Fourier analysis is based on the family of non-euclidean “plane waves”

eν,b(z)
def
= e( 1

2
+ν)〈z,b〉,
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ν ∈ C, b ∈ B. They are complex-valued eigenfunctions of the laplacian :

4eν,b = −
(

1

4
− ν2

)
eν,b.

The L2 spectral decomposition of the laplacian on D only requires the tempered spectrum,
that is, the case ν = ir where r ∈ R (corresponding to a laplacian eigenvalue 1

4
− ν2 ≥ 1

4
).

The Helgason-Fourier transform of a function f on D is defined by

Ff(b, r) =

∫
D

e( 1
2
−ir)〈z,b〉f(z) Vol(dz),

b ∈ B, r ∈ R. The Fourier transform automatically has the following symmetry :

(3.6)

∫
B

Ff(b, r)e( 1
2

+ir)〈z,b〉db =

∫
B

Ff(b,−r)e( 1
2
−ir)〈z,b〉db,

for all z ∈ D and r ∈ R. Plancherel measure is the measure on R defined by

(3.7) dp(r) =
1

2π
r tanh(πr)dr,

and the Fourier inversion formula reads

f(z) =
1

2

∫
R

∫
B

Ff(b, r)e( 1
2

+ir)〈z,b〉dp(r)db =

∫
R+

∫
B

Ff(b, r)e( 1
2

+ir)〈z,b〉dp(r)db,

see [He]. We have the Plancherel formula for f ∈ L2(D), ‖f‖L2(D,Vol) = ‖Ff‖L2(B×R+,db×dp(r)).

3.2. Integral representation of eigenfunctions. We now consider Fourier analysis on
the quotient XΓ of D by a discrete co-compact subgroup Γ ⊂ G.

Theorem 3.2. ([He], Theorems 4.3 and 4.29; see also [He2]) Let φ be an eigenfunction with
exponential growth, for the eigenvalue λ = −

(
1
4
− ν2

)
∈ C. Then there exists a distribution

Tν,φ ∈ D′(B) such that

φ(z) =

∫
B

e( 1
2

+ν)〈z,b〉Tν,φ(db),

for all z ∈ D. The distribution is unique if 1
2

+ ν 6= 0,−1,−2, · · · .

The distribution Tν,φ is usually called the boundary values of φ (for the spectral parameter
ν), in analogy with the theory of boundary values of harmonic functions. This theorem
applies, in particular, to a Γ-invariant eigenfunction of the laplacian, since such a function
is bounded. By uniqueness of Tν,φ, we see that φ being Γ-invariant is equivalent to

(3.8) γ−1
] Tν,φ(db) = e−( 1

2
+ν)〈γ·o,γ·b〉Tν,φ(db)

for γ ∈ Γ and b ∈ B.
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3.3. Fundamental domains and cutoffs for Γ\G. We denote by D a fundamental
domain for the action of Γ on D = G/K. We use the same notation for the fundamental
domain D lifted to G.

When dealing with integrals against irregular distributions, it is convenient to replace the
characteristic function of a fundamental domain by a smooth (compactly supported) cutoff
χ on G satisfying

Πχ = 1,

where we define the periodization operator Π by

(3.9) Πχ(g) =
∑
γ∈Γ

χ(γg).

Existence of such functions χ is obvious. We will call such a function χ a smooth fundamental
cutoff for the action of Γ on G. When needed, we may assume that χ is a right-K-invariant
function, that is, χ(z, b) = χ(z).

Let χ, χ′ be two smooth fundamental cutoffs. We will use repeatedly the following : if T
is a Γ-invariant distribution on G, then T (χf) = T (χ′f), for any f ∈ C∞(Γ\G) (seen as a
Γ-invariant function on G). To see this, write

(3.10) T (χf) = T (χf.(Πχ′)) = T (Π(χf).χ′) = T (fχ′).

4. Pseudo-differential calculus on the Poincaré disc

Throughout this article, we use a special hyperbolic calculus of pseudodifferential operators
introduced in [Z3]. In the hyperbolic calculus, a complete symbol a(z, b, r) ((z, b) ∈ D×B, r ∈
R) is quantized by the operator Op(a) on D defined by

Op(a)eir,b(z) = a(z, b, r)e( 1
2

+ir)〈z,b〉

for z ∈ D, b ∈ B and r ∈ R+. By the non-euclidean Fourier inversion formula, we define
Op(a) on C∞c (D):

(4.1) Op(a)u(z) =

∫
B

∫
R+

a(z, b, r)e( 1
2

+ir)〈z,b〉Fu(b, r)dp(r)db.

We recall that the measure dp(r) = 1
2π
r tanh(πr)dr is the Plancherel measure for G (3.7).

At the formal level, the kernel of Op(a) is thus given by

(4.2) Ka(z, w) =

∫
B

∫
R+

a(z, b, r)e( 1
2

+ir)〈z,b〉e( 1
2
−ir)〈w,b〉dp(r)db.

Both integrals are well-defined, and (4.2) holds, as long as a is smooth and compactly
supported w.r.t. (b, r) (with a support possibly depending on z). See §4.2 for more general
conditions on a.

Now assume that a has the following symmetry w.r.t. the transformation (z, b, r) 7→
(z, b,−r):

(4.3)

∫
a(z, b, r)e(1/2+ir)〈z,b〉e(1/2−ir)〈w,b〉db =

∫
a(z, b,−r)e(1/2−ir)〈z,b〉e(1/2+ir)〈w,b〉db
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for all z, w ∈ D and r ∈ R. It then follows from the Plancherel formula for the hyperbolic
Fourier transform that we can recover the symbol from the kernel by

(4.4) a(z, b, r) = e−( 1
2

+ir)〈z,b〉
∫
D

Ka(z, w)e( 1
2

+ir)〈w,b〉Vol(dw)

for all r ∈ R. In this case, formula (4.2) holds with
∫
R+

replaced by
∫
R−

. We now discuss

several particular classes of symbols a.

4.1. Hilbert-Schmidt operators on D and L2 symbols. We recall that if H is a Hilbert
space, the algebra of Hilbert-Schmidt operators on H is the algebra of operators A for which

the trace TrAA† is finite; it is endowed with the inner product 〈A,B〉HS
def
= TrAB†. It is

well known that the Hilbert-Schmidt operators on H = L2(M,dν) for any measure space
form a Hilbert space isomorphic to L2(M ×M,dν × dν). In the case M = D and ν = Vol,
we will denote HS(D) the space of Hilbert-Schmidt operators on L2(D,Vol(dz)). We denote
L2
W (G×R, dg×dp(r)) the space of functions in L2(G×R, dg×dp(r)) that have the symmetry

(4.3) with respect to the Weyl group. We endow it with the norm

‖a‖2
L2
W

=
1

2

∫
D

∫
B

∫
R

|a(z, b, r)|2P (z, b) Vol(dz)dbdp(r)

=

∫
D

∫
B

∫
R+

|a(z, b, r)|2P (z, b) Vol(dz)dbdp(r).

The following is a consequence of the Plancherel formula :

Proposition 4.1. The quantization map a 7→ Op(a) defines a unitary equivalence

L2
W (G×R, dg × dp) ' HS(D).

In other words

||Op(a)||2HS(D) =
1

2

∫
D

∫
B

∫
R

|a(z, b, r)|2P (z, b) Vol(dz)dbdp(r).

Proof. It suffices to prove the identity for a which is smooth compactly supported w.r.t.
(z, b, r). By (4.2),

||Op(a)||2HS(D) =
∫
D×D |Ka(z, w)|2 Vol(dz) Vol(dw)

=
∫
D×D

∫
B×R+

∫
B×R+ a(z, b, r)a(z, b′, r′)dp(r)dbdp(r′)db′Vol(dz)(∫

D
e( 1

2
+ir)〈z,b〉e( 1

2
−ir)〈w,b〉e( 1

2
−ir′)〈z,b′〉e( 1

2
+ir′)〈w,b′〉Vol(dw)

)
=

∫
D

∫
B×R+ |a(z, b, r)|2P (z, b)dp(r)dbVol(dz)

by the Fourier inversion formula. �
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4.2. Schwartz class and associated symbols. Schwartz functions on G were first defined
by Harish-Chandra [HC66]; the definition was extended to G/K by Eguchi and his collabo-
rators [Eg74, Eg79]. Writing the hyperbolic disc as G/K, f belongs to the Schwartz space
Cp(G/K) (for 0 < p ≤ 2) if and only if f is a smooth function on G which is right-K-invariant,
and

sup
g∈G

ϕo(gK)−2/p(1 + d(gK, o))q|LRf(g)| < +∞,

for any q > 0, and for any differential operators L,R on G which are respectively left- and
right-invariant. Here ϕo stands for the spherical function on G/K, ϕo(z) =

∫
e

1
2
〈z,b〉db. It

satisfies ϕo(z) � d(z, o)e−d(z,o)/2 as the hyperbolic distance d(z, o) −→ +∞. Functions on
Cp(G/K) are, in particular, in Lp (they are sometimes called Schwartz functions of Lp-type).

The Fourier transforms of Schwartz functions of Lp-type were characterized by Eguchi
[Eg74, Eg79] : letting ε = ε(p) = 2

p
− 1, F (Cp(G/K)) coincides with the space C(B ×Rε)W

of functions u on B ×R such that
– u extends holomorphically to the strip Rε = {|=m(r)| < ε

2
} (this condition is empty for

ε = 0);
– on this strip (or, in the case ε = 0, on the real axis), we have a bound

(4.5) sup
(b,r)

(1 + |r|)q
∣∣∣∣ ∂α∂rαDu(b, r)

∣∣∣∣ < +∞,

for all q > 0, every integer α, and every K-left-invariant differential operator D acting on B
(here we use the identification B ∼ K);
– besides, u must satisfy the symmetry (3.6) (this symmetry condition with respect to the
Weyl group is indicated by the subscript W ).

We now define the space Kp,q(G/K ×G/K) (resp. Kp,q(G/K ×G/K), Kpq(G/K ×G/K),
K q
p (G/K ×G/K)) of kernels of operators sending Cp(G/K) continuously to Cq(G/K) (resp.

(Cp(G/K))′ to (Cq(G/K))′, Cp(G/K) to (Cq(G/K))′, (Cp(G/K))′ to Cq(G/K)). We denote
the corresponding symbol classes by Sp,q(G/K×B×R)W , Sp,q(G/K×B×R)W , Spq(G/K×
B ×R)W and so on. On each of these spaces, we can use formula (4.2) to relate the kernel
to the Fourier transform of the symbol.

We will in particular consider the space K 0
0 (G/K × G/K) of “smoothing” operators,

sending (
⋂
Cp(G/K))′ to

⋂
Cp(G/K). A kernel K(z, w) is in K 0

0 (G/K×G/K) if and only if
it is a smooth function on G×G, satisfying K(gk, g′k′) = K(g, g′) for all g, g′ ∈ G, k, k′ ∈ K,
and

(4.6) sup
g,g′∈G

ϕo(gK)−2/p(1 + d(gK, o))qϕo(g
′K)−2/p(1 + d(g′K, o))q|LRK(g, g′)| < +∞,

for any p, q > 0, and for any differential operators L,R on G×G which are respectively left-
and right-invariant.

Corresponding symbols a(z, b, r) are characterized by the fact that a(z, b, r)e( 1
2

+ir)〈z,b〉 be-
longs to

⋂
ε

⋂
p C(B×Rε; Cp(G/K))W (i.e. functions a(z, b, r) with the C(B×Rε)-regularity

in the (b, r) variables, taking values in Cp(G/K)). We will denote this space of “smoothing”
symbols by

(4.7) S 0
0 := S 0

0 (G/K ×B ×R)W :=
⋂
ε

⋂
p

C(B ×Rε; Cp(G/K))W .



GEODESIC FLOW AND SCHRÖDINGER FLOW ON HYPERBOLIC SURFACES 19

For a ∈ S 0
0 and ν ∈ C, it follows from the definition that

(4.8) Op(a)e( 1
2

+ν)〈•,b〉(z) = a(z, b,−iν)e( 1
2

+ν)〈z,b〉

for any ν ∈ C.

4.3. Op(a) and OpΓ(a). A key point of the non-euclidean pseudo-differential algebra is that
it is automatically left invariant [Z3]. We say that a symbol a is Γ-invariant if a(γ ·z, γ ·b, r) =
a(z, b, r). Denote tg the action of g ∈ G on functions on G/K, defined by tgf(z) = f(g−1z).
We recall from [Z3] that a being Γ-invariant is equivalent to having [tγ,Op(a)] = 0 for all
γ ∈ Γ. This commutation relation is also equivalent to the fact that Ka(γ·z, γ·w) = Ka(z, w).

By the decay properties of the spherical function ϕo, we see that L2(XΓ) can be continu-
ously embedded in (Cp(G/K))′ if p ≤ 1. As a result, if a kernel K(z, w) is Γ-invariant, and
is such that χ(z)K(z, w) ∈ K p

p (G/K ×G/K), then K defines naturally a bounded operator

on the quotient, KΓ : L2(XΓ) −→ L2(XΓ) : for φ ∈ L2(XΓ), one can define KΓφ by the
identity

(4.9) 〈KΓφ, ψ〉XΓ

def
= 〈χKφ, ψ〉D,

for all ψ ∈ L2(XΓ), and where χ is our smooth fundamental cut-off of §3.3. Besides, this
definition does not depend on the choice of the fundamental cut-off χ; this can be checked
the same way as in §3.3.

We can rephrase this in terms of symbols. Assume that a(z, b, r) is a Γ-invariant symbol,
and that χ(z)a(z, b, r) belongs to S pp for p ≤ 1. In accordance with (4.9) we define the

bounded operator OpΓ(a) : L2(XΓ) −→ L2(XΓ) by

〈OpΓ(a)φ, ψ〉XΓ

def
= 〈χOp(a)φ, ψ〉D
= 〈Op(χa)φ, ψ〉D.

We extend the definition of the periodization operator (3.9) to functions of (z, b, r):

Πã(z, b, r) =
∑
γ∈Γ

ã(γ · z, γ · b, r).

Using the fact that the growth of Γ is exponential, and that elements of S 0
0 decay superex-

ponentially fast in z, we see that the series defining Πã converges absolutely if ã is in S 0
0 .

The class of symbols in Theorem 3 is given in:

Definition 4.1. We denote by ΠS 0
0 the image of S 0

0 under Π, where S 0
0 is defined in (4.7).

If a(z, b, r) is Γ-invariant and if a(z, b, r) =
∑

γ∈Γ ã(γ · z, γ · b, r) where ã ∈ S 0
0 , we have

〈OpΓ(a)φ, ψ〉XΓ
= 〈Op(ã)φ, ψ〉D,

for φ, ψ ∈ L2(XΓ) – and in particular this does not depend on the choice of ã.
For a ∈ ΠS 0

0 , we can use Helgason’s integral representation theorem 3.2, together with
(4.8), to have an alternative formula for the action of a pseudodifferential operator on the
laplacian eigenfunctions φj :

(4.10) OpΓ(a)φj(z) =

∫
B

a(z, b,−iνj)e( 1
2

+νj)〈z,b〉Tνj(db).
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There is a standard relation between the Schwartz kernel Ka(z, w) of Op(a) on D and the
Schwartz kernel KΓ

a (z, w) of OpΓ(a) on XΓ. If Ka(z, ·) decays fast enough – say, a ∈ ΠS 0
0 –

then the series

(4.11)
∑
γ∈Γ

Ka(z, γw),

converges absolutely. Besides, the sum (4.11) yields KΓ
a , which can be checked by noting

that

(4.12)

∫
XΓ

KΓ
a (z, w)f(w) Vol(dw) =

∫
D

Ka(z, w)f(w) Vol(dw)

for any f Γ-automorphic and locally L2.

4.4. V t and V t
Γ. The laplacian induces a unitary 1-parameter group (eit

4
2 ) on the Hilbert

space L2(D). The Schwartz spaces Cp(G/K) are stable under eit
4
2 .

We define V ta by e−it
4
2 Op(a)eit

4
2 = Op(V ta). The Hilbert-Schmidt norm of operators

is preserved under conjugacy by a unitary operator, and Proposition 4.1 implies that V t

defines a unitary 1-parameter group on L2
W (G×R, dg × dp(r)). Each of the symbol spaces

defined in §4.2 : Sp,q(G/K × B ×R)W , Sp,q(G/K × B ×R)W , Spq(G/K × B ×R)W ... are
also preserved by V t.

The explicit expression of V t is
(4.13)

V ta(z, b, r) = e−( 1
2

+ir)〈z,b〉
∫
e( 1

2
+ir)〈w,b〉e( 1

2
−ir′)〈w,b′〉e( 1

2
+ir′)〈z,b′〉a(w, b, r)e

it
2

(r′2−r2) Vol(dw)db′dp(r′).

The generator DV of V t is a skew-adjoint diffential operator on L2(G×R+, dg × dp(r)),
which satisfies Op(DV a) =

[
Op(a), i4

2

]
. An explicit computation yields

(4.14) DV = − i
2

(
H2

4
+X2

+

)
+ r

H

2

where H and X+ are the elements of the Lie algebra defined in §2.1. The differential operator
DV on G×R is left-invariant; it thus defines a differential operator DV

Γ on Γ\G×R, which
is skew-adjoint on L2(Γ\G ×R, dg × dp(r)). The definition of V t goes to the quotient XΓ,
as follows.

Definition 4.2. We denote by V t
Γ the unitary flow on L2(Γ\G ×R, dg × dp(r)) generated

by DV
Γ (4.14).

Lemma 4.2. On ΠS 0
0 , V t

Γ acts as follows : if a = Πã with ã ∈ S 0
0 , we have

V t
Γa = ΠV tã.
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The main thing to check is that this expression does not depend on the choice of ã, by the
following computation :
(4.15)

(ΠV tã)(z, b, r)e( 1
2

+ir)〈z,b〉 =
∑

γ∈Γ

∫
KV tã(γ · z, γ · w)e( 1

2
+ir)〈w,b〉Vol(dw)

=
∑

γ∈Γ e
−it4z

2 e−
it
2 ( 1

4
+r2) ∫ Kã(γ · z, γ · w)e( 1

2
+ir)〈w,b〉Vol(dw)

= e−it
4z
2 e−

it
2 ( 1

4
+r2)∑

γ∈Γ

∫
Kã(γ · z, γ · w)e( 1

2
+ir)〈w,b〉Vol(dw)

= e−it
4z
2 e−

it
2 ( 1

4
+r2)(Πã)(z, b, r)e( 1

2
+ir)〈z,b〉.

Since the kernels Kã and KV tã satisfy the decay condition (4.6), all these manipulations are
legitimate, for all r ∈ C. Once we know that ΠV tã does not depend on the choice ã, it is
easily checked that the generator of this flow is a 7→ ΠDV ã = DV

Γ a.

5. Intertwining the geodesic flow and the Schrödinger group on the
universal cover

In this section, we prove the intertwining formula (1.15) on the universal cover D. This
is done by defining analogues of Wigner and Patterson-Sullivan distributions on D and by
finding an explicit relation between both.

5.1. Wigner distributions on D.

Definition 5.1. For b, b′ ∈ B and ν, ν ′ ∈ iR, the “Wigner distributions”4 W(ν,b),(ν′,b′) ∈
D′(SD×R) are defined formally by:∫

SD×R
a(z, b̃, r)W(ν,b),(ν′,b′)(dz, db̃, dr) = 〈Op(a)eν,b, eν′,b′〉

for a having the symmetry (4.3).

For b ∈ B, we denote δb(db̃) the distribution density on B corresponding to the Dirac mass

at b, defined by
∫
B
f(b̃)δb(db̃) = f(b) for every smooth f .

Proposition 5.1. We have: W(ν,b),(ν′,b′)(dz, db̃, dr) = eν,b(z)eν′,b′(z)δb(db̃)δ−iν(dr) Vol(dz).

Proof. If ν = ir, it is immediate from the definitions that

(5.1) 〈Op(a)eν,b, eν′,b′) =

∫
D

a(z, b, r)eir,b(z)eν′,b′(z) Vol(dz).

�

From this explicit formula (5.1), we see immediately that suppW(ν,b),(ν′,b′) ⊂ SD×{−iν},
so W(ν,b),(ν′,b′) can be extended to functions a(z, b, r) depending continuously on r, with values
in C∞c (SD) (in particular, functions a that do not depend on r and are C∞c with respect to
(z, b)). The definition also extends, in a straightforward manner, to ν, ν ′ ∈ C and a ∈ S 0

0 .

4As in the introduction, the quotation marks indicate that the term ordinarily refers to the euclidean
situation, and that our terminology is not completely standard.
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We define the Wigner transform of a function a ∈ C∞c (G×R) obeying the symmetry (4.3)
by

W : C∞c (G×R) → L2 (B × iR×B × iR, db⊗ p(dr)⊗ db′ ⊗ p(dr′)) ,
Wa(ν, b, ν ′, b′) = W(ν,b),(−ν′,b′)(a).

Note the “minus” sign in front of ν ′. The reason for this choice will appear when we introduce
the Patterson-Sullivan distributions. The following proposition proves completeness of the
Wigner distributions.

Proposition 5.2. The Wigner transform extends to L2
W (G×R, dg× dp(r)) as an isometry

and satisfies the inversion formula,

a(z, b, r) =
1

2
e−( 1

2
+ir)〈z,b〉

∫
B

∫
R

e( 1
2
−ir′)〈z,b′〉Wa(ir, b, ir′, b′)db′dp(r′).

Proof. For r, r′ ∈ R, the Wigner transform is given by

Wa(ir, b, ir′, b′) =

∫
D

a(z, b, r)e( 1
2

+ir)〈z,b〉e( 1
2

+ir′)〈z,b′〉Vol(dz),

it is the Fourier transform of a(z, b, r)e( 1
2

+ir)〈z,b〉 with respect to z, evalutated at (b′,−r′).
The inversion formula and the isometry

||a||L2
W (G×R,dg×dp(r)) = ||Wa(ir, b, ir′, b′)||L2(B×iR+×B×iR+,db⊗p(dr)⊗db′⊗p(dr′))(5.2)

=
1

2
||Wa(ir, b, ir′, b′)||L2(B×iR×B×iR,db⊗p(dr)⊗db′⊗p(dr′)).(5.3)

follow from the Plancherel and inversion formulae for F . �

5.2. Patterson-Sullivan distributions on D.

Definition 5.2. For ν, ν ′ ∈ iR, the Patterson-Sullivan distribution PS(ν,b),(−ν′,b′)
def
= PSe(ν,b),e(−ν′,b′)

associated to the two eigenfunctions e(ν,b)(z) = e( 1
2

+ν)〈z,b〉 and e(−ν′,b′)(z) = e( 1
2
−ν′)〈z,b′〉 is the

distribution on SD = B(2) ×R defined by

(5.4) PSe(ν,b),e(−ν′,b′)(db̃, db̃
′, dτ) =

δb(db̃)δb′(db̃
′)

|b̃− b̃′|1+ν−ν′
e(ν+ν′)τdτ.

We use the coordinates defined in §2.2. We note that PSe(ν,b),e(−ν′,b′) is undefined if b = b′.

We chose this somewhat awkward notation (writing ν ′ instead of −ν ′) so that the defini-
tion can be straightforwardly extended to ν ∈ C when needed. The choice of opposite sign
conventions for ν and ν ′ is motivated by the fact that we want the Patterson-Sullivan distri-
butions to be geodesic flow invariant in the “diagonal” case (ν = ν ′ ∈ iR). For higher rank
symmetric spaces, this formula was generalized by Schröder [SchDiss]. He pointed out the
fact that ν ′ has to be replaced by −w.ν ′ (where w is the longest element of the Weyl group) if
one wants the “diagonal” Patterson-Sullivan distributions (ν = ν ′ ∈ ia∗) to be A-invariant.

We now prove an analogue of Proposition 1.1 on the universal cover. Recall that SD is
naturally endowed with the density e〈z,b〉Vol(dz)db, corresponding to the Liouville measure
on the unit tangent bundle, or to the Haar measure in the group theoretic picture SD = G.
Here we have to distinguish between distributions and distribution densities on a manifold,
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see [Ho I, Ch. VI]5. On the boundary B (endowed with the density db) we will denote
δbo(b) the distribution defined by the Dirac mass at a point bo, and δbo(db) = δbo(b)db the
corresponding distribution density, defining the linear form f 7→ f(bo) on C∞(B). We recall
that distributions can be multiplied under certain assumptions on their wavefront sets [Ho I,
Thm 8.2.10].

Proposition 5.3. On SD, define the distribution εν,b(z, b̃) = e(− 1
2

+ν)〈z,b̃〉δb(b̃), corresponding

to the distribution density εν,b(z, b̃)e
〈z,b̃〉Vol(dz)db̃ = e( 1

2
+ν)〈z,b̃〉δb(b̃)db̃Vol(dz).

We have

(εν,b.ιε−ν′,b′) (z, b̃)e〈z,b̃〉Vol(dz)db̃ = 2π.2(ν−ν′)PSe(ν,b),e(−ν′,b′)(dz, db̃)

where ι denotes time-reversal. The product on the left-hand side is well-defined for b 6= b′.

Proof. Writing εν,b in (b, b′, t) coordinates, we have

(5.5) εν,b(b̃, b̃
′, t) = e(− 1

2
+ν)〈g(b̃,b̃′)at·0,b̃〉δb(b̃).

Its time reversal is thus

(5.6) ιεν,b(b̃, b̃
′, t) = e(− 1

2
+ν)〈g(b̃′,b̃)a−t·0,b̃′〉δb(b̃′).

By the identity of Lemma 2.1 of §2.2, we have

(5.7) 〈g(b̃′, b̃)at · o, b〉 = t− log
|b̃− b̃′|

2
.

Multiplying the two distributions gives

(5.8) (εν,b.ιε−ν′,b′) (b̃, b̃′, t) = 2−1+ν−ν′ et(ν+ν′)

|b− b′|−1+ν−ν′
δb(b̃)δb′(b̃′).

Multiplying by e〈z,b〉Vol(dz)db = 4π db⊗db
′

|b−b′|2dt, we find

(εν,b.ιε−ν′,b′) (b̃, b̃′, t)4π
db⊗ db′

|b− b′|2
dt = 2π.2ν−ν

′ et(ν+ν′)

|b− b′|1+ν−ν′
δb(b̃)δb′(b̃′)db db

′ dt.

�

Remark 5.1. As in [AZ], we observe that Patterson-Sullivan distributions are eigendistribu-
tions of the geodesic flow. For a distribution density on SD we define gt] as the pushforward

by gt. For g = (z, b̃) ∈ G, we have εν,b(gat) = e(− 1
2

+ν)tεir,b(g). This implies that

gt](εν,b(z, b̃)e
〈z,b̃〉Vol(dz)db̃) = e( 1

2
−ν)tεν,b(z, b̃)e

〈z,b̃〉Vol(dz)db̃.

Proposition 5.4. For ν, ν ′ ∈ iR, we have:

gt]PSe(ν,b),e(−ν′,b′) = e−t(ν+ν′)PSe(ν,b),e(−ν′,b′) .

5The choice of a preferred density allows to identify both, and this is the only place of paper where we
have to be careful about this distinction. The Patterson-Sullivan and Wigner distributions are actually
distribution densities.
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The proof is immediate. If we extend PSe(ν,b),e(−ν′,b′) to SD×R by taking PSe(ν,b),e(−ν′,b′)⊗
δ ν−ν′

2i

, and if we extend the geodesic flow to SD×R by letting

Gt(z, b, r) = (grt(z, b), r),

we have

Gt
]

(
PSe(ν,b),e(−ν′,b′) ⊗ δ ν−ν′

2i

)
= ei

(ν2−ν′2)t
2 PSe(ν,b),e(−ν′,b′) ⊗ δ ν−ν′

2i

.

In other words, for ν = ir, ν ′ = ir′,

Gt
]

(
PSe(ir,b),e(−ir′,b′) ⊗ δ r+r′

2

)
= e−i

(r2−r
′2)t

2 PSe(ir,b),e(−ir′,b′) ⊗ δ r+r′
2
.

When working on compact quotients we will have to worry about a possible extension of
these formulae to the case of complex r, and this is why we pay attention to write formulae
that can be adapted in a straightforward manner to r ∈ C.

One remarks that PSe(ν,b),e(−ν′,b′) is a distribution on SD for any ν, ν ′ ∈ C, and that

Proposition 5.3 still holds. Also, PSe(ν,b),e(−ν′,b′) ⊗ δ ν−ν′
2i

(a) is well-defined for a test function

a ∈ S 0
0 .

5.3. Radon-Fourier transform along geodesics. PS-distributions are closely connected
to the Radon transform along geodesics. As reviewed in §2.2, the unit tangent bundle SD
can be identified with B(2) × R: the set B(2) represents the set of oriented geodesics, and
R gives the time parameter along geodesics. We denote by γb′,b the oriented geodesic with
endpoints b′, b.

Definition 5.3. The geodesic Fourier-Radon transform is defined by

R : Cc(SD)→ Cc(B
(2) ×R), by Rf(b′, b, r) =

∫
R

f(g(b′, b)at)e
−irtdt.

It is clear that R intertwines composition with gt and multiplication by eirt, i.e.

(5.9) R(f ◦ gt)(b′, b, r) = eirtRf(b′, b, r).

By the Fourier inversion formula,

(5.10) f(g(b′, b)at) =
1

2π

∫
R

Rf(b′, b, r)eirtdr.

We call “Patterson-Sullivan transform” the pairing of the family of PS-distributions with
a test function.

Definition 5.4. The PS-transform is defined as follows:
PS : C∞c (G×R)→ C∞(B(2) × iR× iR) on G by

PSa(ν, b, ν ′, b′)
def
= PS(ν,b),(−ν′,b′)

(
a ν−ν′

2i

)
=

1

|b− b′|1+ν−ν′

∫
R

a

(
g(b′, b)aτ ,

ν − ν ′
2i

)
e(ν+ν′)τdτ

The PS-transform is related to the Fourier-Radon transform as follows:

(5.11) PSa(ν, b, ν ′, b′) =
1

|b− b′|1+ν−ν′
Ra ν−ν′

2i

(b′, b, i(ν + ν ′)).

Using the inversion formula for R, one gets the inversion formula for the PS-transform :
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Lemma 5.5. The function a is determined from its PS-transform PSa(ir, b, ir′, b′) by

a(b′, b, t, R) =
1

π
e2iRt|b− b′|1+2iR

∫
R

PSa(ir, b, i(2R− r), b′)e−2irtdr.

Using the Parseval identity for the 1-dimensional Fourier transform, as well as Lemma 3.1
expressing the Haar measure in the (b′, b, t)-coordinates, one gets

Lemma 5.6.

‖a‖2
L2(G×R,dg⊗dp) =

1

π

∫
b,b′∈B,r,r′∈R

|PSa(ir, b, ir′, b′)|2dbdb′
(
r + r′

2

)
tanh

(
π
r + r′

2

)
drdr′.

This formula can be compared to that obtained for the Wigner transform (5.2). Note,
however, that the drdr′-density is different in the two formulae. We also stress the fact that
we do not ask a to have the symmetry (4.3) here.

5.4. Operator sending the Patterson-Sullivan distributions to the Wigner distri-
butions. If a is a function on SD ' G, and ν ∈ C, we define the function Lνa on G
by

Lνa(g) =

∫
R

a(gnu)(1 + u2)−( 1
2

+ν)du.

In this section, we prove the following :

Proposition 5.7. Let a ∈ C∞c (G), ν, ν ′ ∈ iR and (b′, b) ∈ B(2). Then L−ν′(a) ∈ C∞(SD).

Although L−ν′(a) is not compactly supported, the pairing PS(ν,b)(−ν′,b′)
(
L−ν′(a)

)
is well de-

fined, and we have

PS(ν,b)(−ν′,b′)
(
L−ν′(a)

)
= 2−(1+ν−ν′)W(ν,b)(−ν′,b′)(a).

The right side is well-defined by the remark following Proposition 5.1. A proof of Propo-
sition 5.7 by direct computation was given in [AZ], in the “diagonal” case ν = ν ′ ∈ iR.
We now give two proofs of the Proposition, one by adpating the argument of [AZ] in the
diagonal case ν = ν ′ ∈ R, and a novel one based on Proposition 5.3 and on the invariance
properties of the distributions εν,b. We begin with the first proof:

Proof. By definition,

(5.12) W(ν,b),(−ν′,b′)(a) =

∫
D

a(z, b)e( 1
2

+ν)〈z,b〉e( 1
2
−ν̄′)〈z,b′〉Vol(dz)

=

∫
D

a(z, b)e( 1
2
−ν̄′)〈z,b〉e( 1

2
−ν̄′)〈z,b′〉e(ν+ν̄′)〈z,b〉Vol(dz)

= 2(1−2ν̄′)

(∫
D

a(z, b)[cosh sb′,b(z)]−(1−2ν̄′)e(ν+ν̄′)〈z,b〉Vol(dz)

)
1

|b− b′|1−2ν̄′

= 2(1−2ν̄′)

(∫
D

a(z, b)[cosh sb′,b(z)]−(1−2ν̄′) e(ν+ν̄′)〈z,b〉

|b− b′|−(ν+ν̄′)
Vol(dz)

)
1

|b− b′|1+ν−ν̄′

Here, sb1,b2(z) denotes the hyperbolic distance from z to the geodesic γb1,b2 defined by
(b1, b2), and we use the identity (see [AZ], §4)

(5.13) e〈z,b〉e〈z,b
′〉 = 4[cosh sb′,b(z)]−2|b− b′|−2.
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As in [AZ], we now write (z, b) = g(b′, b)aτnu, Vol(dz) = dτdu and cosh sb′,b(z) =
√

1 + u2.
We also use formula (2.1) to write e〈g(b

′,b)aτnu,b〉|b− b′| = 2eτ .
We thus obtain

(5.14) W(ν,b),(−ν′,b′)(a) =
2(1+ν−ν̄′)

|b− b′|1+ν−ν̄′

∫
R×R

(1 + u2)−( 1
2
−ν̄′)a(g(b, b′)aτnu)e

(ν+ν̄′)τdudτ

= 2(1+ν−ν̄′)PS(ν,b)(−ν′,b′)
(
L−ν′(a)

)
.

�

We now give a second proof, using the action of L−ν′ on the product (εν,b.ιε−ν′,b′) (we note

that the Poisson density e〈z,b̃〉Vol(dz)db̃ is nu-invariant, so can be taken out of the integral
defining L−ν′). We use that atnu = nuetat and the KAN (Iwasawa) decomposition,

(5.15) nu = kua− log(1+u2)n̄f(u),

as in (2.8).

Proposition 5.8. (1) εν,b is nu-invariant;

(2) Lν(ιεν,b)(z, b̃) = πe(ν,b)(z) (it does not depend on b̃, in other words, it is a right-K-
invariant function);

(3) we have L−ν′ (εν,b.ιε−ν′,b′) = πεν,be(−ν′,b′).

Proof. (1) is obvious, and (3) follows from (2), so we just have to prove (2).

(5.16) Lν(ιεν,b)(g) =
∫
R

(1 + u2)−( 1
2

+ν)ιεr,b(gnu)du.

We rewrite nu using (2.9). Then we:

• remove the right N factor since ιεν,b is right-N -invariant;

• replace the A factor inside ιεν,b by a factor e(− 1
2

+ν) log(1+u2) outside, since ιεν,b is an
A-eigendistribution of eigenvalue = 1

2
− ν which is evaluated for a− log(1+u2).

• then change variables to K with θ = arctanu.

We then have,

(5.17)
Lν(ιεν,b)(g) =

∫
R

(1 + u2)−1(ιεν,b)(g)(gku)du = π
∫
K

(ιεν,b)(gk)dk

= π
∫
K
εν,b(gk)dk = π

∫
εν,b(z, b

′)e〈z,b
′〉db′ = πe( 1

2
+ν)〈z,b〉

for g = (z, b̃). �

Multiplying by the Poisson density, we finally get

L−ν′ (εν,b.ιε−ν′,b′) e
〈z,b̃〉Vol(dz)db̃ = πe(ν,b)(z)e(−ν′,b′)(z) Vol(dz)δb(b̃)db̃.

We recognize from Proposition 5.1 the expression of the Wigner distribution, for a test
function a that does not depend on the r-parameter. Comparing with Proposition 5.3
completes the second proof of Proposition 5.7.

Proposition 5.7 was proven for a function a defined on SD, in other words a function on
SD×R that does not depend on the last variable. In the sequel, we will apply Proposition
5.7 to an arbitrary function on SD × R, using it in the following form. If a is a function
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on SD×R ' G×R, and r ∈ R, we define the function ar on SD ' G by ar(g) = a(g, r).
Proposition 5.7 implies that

2−(1+ν−ν′)W(ν,b)(−ν′,b′)(a) = PS(ν,b)(−ν′,b′)
(
L−ν′(ar)

)
,

for ν = ir ∈ iR, and ν ′ ∈ iR.
Again, one sees that these formulae also hold for all ν, ν ′ ∈ C and test functions a ∈ S 0

0 .

5.5. The operator L. Recall that we have extended the PS-distribution PS(ir,b),(−ir′,b′)
(r, r′ ∈ R), originally defined on SD, to SD×R, by tensoring it by δ r+r′

2
on the R-variable.

We now look for an operator L that acts on functions (distributions) defined on SD×R,
with the property that PSLa(ir, b, ir′, b′) =Wa(ir, b, ir′, b′) (r, r′ ∈ R). This means that we
must have PSLa(ir, b, ir′, b′) = 21+ir+ir′PS(ir,b)(−ir′,b′) (Lir′(ar)).

By the PS-inversion formula (Lemma 5.5), we have for all (b′, b) ∈ B(2), t ∈ R, R ∈ R,

(5.18) La(b′, b, t, R) =
21+2iR

π
e2iRt|b− b′|1+2iR

∫
R

PS(La)(ir, b, i(2R− r), b′)e−2irtdr

=
21+2iR

π

∫
R

(1 + u2)−( 1
2

+iR)ar ◦ hu(b′, b, τ)e2i(R−r)(t−τ− log(1+u2)
2

)drdudτ

In other words, letting g = (b′, b, t),

(5.19) La(g,R) =
21+2iR

π

∫
(1 + u2)−( 1

2
+iR)a(ga

τ− log(1+u2)
2

nu, r)e
2i(r−R)τdrdudτ.

5.6. Intertwining. In this section, we prove that the operator L intertwines V t and Gt on
D. We recall the Hilbert space L2

W in Proposition 5.2.

Theorem 7. (i) For a ∈ S 0
0 , La is a continuous function, and we have the pointwise equality

L ◦ V ta = Gt ◦ La.
(ii) The intertwining operator L extends to an isometry from L2

W (G ×R, dg × dp(r)) to
the space HPS(D) of functions such that

1

4

∫
|PSa(ir, b, ir′, b′)|2dbdb′p(dr)p(dr′) < +∞.

and we have

(5.20) L ◦ V t = Gt ◦ L,
where both sides are bounded operators from L2

W (G×R, dg × dp(r)) to HPS(D).

Proof. First, we consider the action of both sides on a ∈ S 0
0 . We know that the space S 0

0

is preserved by V t. We shall first check that La is a continuous function when a ∈ S 0
0 , and

that (5.20) then holds as a pointwise equality between L(V ta) and Gt(La).
For g = (z, b), we see that

(5.21)

La(z, b, R) = 21+2iR

π

∫
(1 + u2)−( 1

2
+iR)a ◦ hu ◦ gτ−

log(1+u2)
2 (z, b, r)e2i(r−R)τdrdudτ

= 21+2iR

π

∫
(1 + u2)−( 1

2
+iR)â ◦ hu ◦ gτ−

log(1+u2)
2 (z, b, 2τ)e−2iRτdudτ,
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where we define â(z, b, τ) =
∫
a(z, b, r)eirτdr. It follows from the definition of S 0

0 that

|â(z, b, τ)| ≤ CN,M,x0e
−N |τ |e−Md(z,xo) for any N,M > 0 and any given xo.

If z stays in a fixed compact set, denoting (z̃, b) = hu ◦ gτ−
log(1+u2)

2 (z, b), one can check by
hand that exp d(z̃, xo) ≥ C(1 + |u|)e|τ |, with C > 0. For instance for (z, b) = e ∈ G, we
compute explicitly

a
τ− log(1+u2)

2

nu =

 eτ/2

(1+u2)1/4
ueτ/2

(1+u2)1/4

0 e−τ/2(1 + u2)1/4

 .

In the Poincaré upper half-plane model, identified with PSL(2,R)/K, this element repre-
sents a unit tangent vector based at

z̃ =
eτ

(1 + u2)1/2
i+

ueτ

(1 + u2)1/2
.

Using (2.1), the hyperbolic distance of this point to the origin xo = i is given by

cosh d(z̃, i) = 1 +
1

2

[(
eτ

(1 + u2)1/2
− 1

)2

+
u2e2τ

(1 + u2)

]
(1 + u2)1/2e−τ ≥ 1

2
(1 + u2)1/2e|τ |.

It follows that

(5.22) |â(z̃, b, 2τ)| ≤ CN,M(1 + u2)−M/2e−(N+M)|τ |

(with CN,M uniform as z stays in a compact set), so that the integral (5.21) does make sense,
and defines a continuous function of the variables (z, b, R). To keep this paper reasonably
short, we do not investigate the additional regularity properties of La.

To end the proof of the theorem, we keep the same notation and use the fact that

|â ◦ gt(z̃, b, 2τ)| ≤ CN,M(1 + u2)−M/2e−N |τ |−M |t+τ |

to see that, for fixed (z, b, R), we have |(La) ◦ gt(z, b, R)| ≤ Cz,b,R,Me
−M |t| (for M > 0

arbitrary). It follows that PSLa(ir, b, ir′, b′) is perfectly well defined for any r, r′ ∈ C,
(b′, b) ∈ B(2). The Wigner transform Wa(ir, b, ir′, b′) is also perfectly well defined, and L
has been constructed so that PSLa(ir, b, ir′, b′) =Wa(ir, b, ir′, b′). We see that

PS(GtLa)(ir, b, ir′, b′) = e−i
(r2−r

′2)t
2 PS(La)(ir, b, ir′, b′)

= e−i
(r2−r

′2)t
2 Wa(ir, b, ir′, b′) =W(V ta)(ir, b, ir′, b′) = PS(LV ta)(ir, b, ir′, b′),

and inverting this formula we get that GtLa = LV ta, for all a ∈ S 0
0 (and this equality holds

pointwise).
We can now easily extend the intertwining formula to a ∈ L2

W (G×R, dg × dp(r)). Using
formula (5.2), we see (in a tautological way) that L is an isometry from L2

W (G×R, dg×dp(r))
to HPS(D), and we have Gt ◦ L = L ◦ V t, where both sides are bounded operators from
L2
W (G×R, dg × dp(r)) to HPS(D).

�
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Comparing with Lemma 5.6, we note that the norm on HPS(D) is not equivalent to the
norm on L2

W (G×R, dg× dp(r)) (the ratio of the drdr′-densities is unbounded), so that L is
unbounded on L2(G×R, dg × dp(r)).

In the Section 6, we will mimick this construction to build two Hilbert spaces HW (XΓ)
and HPS(XΓ) formed of Γ-invariant symbols, such that L sends HW (XΓ) isometrically
to HPS(XΓ), and such that the intertwining formula Gt ◦ L = L ◦ V t holds between
these two spaces. On the quotient, HW (XΓ) will be naturally identified with the space
of Hilbert-Schmidt operators via the quantization procedure OpΓ, but will not be equivalent
to L2 ((Γ\G)×R).

Remark 5.2. Since Gt preserves the variable r, Proposition 5.20 still holds if we modify
the definition of La(g,R) by a constant depending only on R. Thus, we have the choice of
a normalization factor for L. We note that Gt1 = 1 and V t1 = 1, so that it is quite natural

to renormalize L to have formally L̂1 = 1. This means dividing La(g,R) by∫
(1 + u2)−( 1

2
+iR)e−2i(R−r)τdrdudτ = π

∫
(1 + u2)−( 1

2
+iR)du.

The function µ0(s) =
∫ +∞
−∞ (1 + u2)−sdu (<e(s) > 1

2
) extends meromorphically to the whole

complex plane by µ0(s) =
Γ( 1

2
)Γ(s− 1

2
)

Γ(s)
(see p. 65-66 in [He]).

The renormalized L̂ now satisfies P̂S(ir,b),(−ir′,b′)(L̂a) = W(ir,b),(−ir′,b′)(a) if we define the

normalized P̂S-distributions by

(5.23) P̂S(ir,b),(−ir′,b′) = πµ0

(
1

2
+ i

r + r′

2

)
PS(ir,b),(−ir′,b′).

Remark 5.3. When working on the quotient, we will need the following properties of L,
obtained from its explicit expression (5.19).

First note that, if a ∈ S 0
0 , then La(g,R) has a holomorphic extension to R ∈ C

Assume that a(z, b, r) ∈ S 0
0 satisfies in addition, for every ε > 0, p, all q > 0, every non-

negative integer n, and every K-left-invariant differential operator D acting on B, a bound
of the form

(5.24) sup
(r,b)

eq|r|
∣∣∣∣ ∂n∂rnDa(•, b, r)

∣∣∣∣
Cp(G/K)

< +∞,

in {|=m(r)| < ε
2
}. In other words, we strenghthen the definition of S 0

0 by asking that a
decay superexponentially fast in r, instead of superpolynomially fast. We will denote by S 0

α

the space of such symbols.
Then, for any fixed g ∈ G and R ∈ C, the map t 7→ La(gat, R), originally defined for

t ∈ R, has a holomorphic extension to t ∈ C. In particular, (GtLa)(g,R) is well defined for
R ∈ C.

Remark 5.4. Let us briefly discuss the case of the wave flow, eit
√
−4−1/4. The corresponding

quantum evolution is

(5.25) βt(Op(a)) = e−it
√
−4−1/4 Op(a)eit

√
−4−1/4 =: Op(U ta).

The explicit expression of U t is given in [Z1, Z3].



30 NALINI ANANTHARAMAN AND STEVE ZELDITCH

Since eit
√
−4−1/4e(ir,b) = eitre(ir,b) and eit

√
−4−1/4e(−ir,b) = eitre(−ir,b) for r > 0, we see

that U t defines a unitary operator on L2
W (G ×R, dg × dp(r)), and that U t

]We(ir,b),e(−ir′,b′)
=

eit(r−r
′)We(ir,b),e(−ir′,b′)

for r, r′ > 0.

We also have gt]PSe(ir,b),e(−ir′,b′) = eit(r−r
′)PSe(ir,b),e(−ir′,b′) (where gt is the unit-speed geodesic

flow).
It follows that (L ◦ U t)]PSe(ir,b),e(−ir′,b′) = (gt ◦ L)]PSe(ir,b),e(−ir′,b′) for r, r′ > 0. So in this

sense, L also intertwines the wave group and the unit-speed geodesic flow. But because we
restricted to positive values of r, the result is not apriori as strong as for the Schrödinger
flow.

A further defect is that eit
√
−4−1/4 does not preserve the Schwartz spaces Cp(D), because√

. is not a holomorphic function on the complex plane. On a compact quotient, there is

also a problem with the definition of eit
√
−4−1/4 for low eigenvalues : in particular, it is not

unitary. The latter problem may be circumvented by using eit
√
−4. But these difficulties

explain why we prefer in this article to work with the Schrödinger group eit4. We discuss
the intertwining of the wave group and geodesic flow further in [Z4], where the intertwining
involves a modification of L.

5.7. Remarks and questions about an “exact” Egorov theorem. In the study of

quantum chaos in the semiclassical régime, one works with the flow (eit~
4
2 ), in the limit

~ −→ 0. In this case, one considers “semiclassical symbols” also depending on ~ > 0 : usually
one considers smooth functions a~ depending on ~ > 0, having an asymptotic expansion

(5.26) a~ ∼
+∞∑
k=0

~kak,

the expansion being valid in all the C`–seminorms on compact sets. In this setting, one

works with the operators Op~(a)
def
= Op(a(z, b, ~r)).

Introducing the operator M~a(z, b, r)
def
= a(z, b, ~r), it is natural in this context to introduce

the notations L̂~ = M−1
~ ◦ L̂◦M~, and V t

~ = M−1
~ ◦V t~ ◦M~. Note that M−1

~ ◦G~t ◦M~ = Gt.

In the semiclassical setting, the intertwining relation reads L̂~ ◦ V t
~ a~ = Gt ◦ L̂~a~ if we

assume, say, that a~ ∈ S 0
0 (4.7) and that the expansion (5.26) holds in all the S 0

0 –seminorms.

Using the stationary phase method, both sides of the equality L̂~ ◦ V t
~ a~ = Gt ◦ L̂~a~ can

be expanded into powers of ~, and on both sides the coefficient of ~0 is Gta0 : this is an
expression of the so-called “Egorov theorem”, which says that V t

~ a~ has an expansion starting

with Gta0 +O(~), combined with the fact that L̂~ = I +O(~).
The intertwining relation of Theorem 7 at least formally defines a quantization procedure

of a~ ∈ S 0
0 (4.7) on D for which the Egorov theorem is exact : if we know that L̂~ is invertible,

and have an explicit expression for its inverse, we can then define

(5.27) Õp~(a) = Op~(L̂−1
~ a),

and this new quantization procedure will have the property that

(5.28) e−it~
4
2 Õp~(a)eit~

4
2 = Õp~(G

ta).
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Such an exact intertwining relation is often called the “exact” Egorov property, and is so
far only known in the euclidean case, where the Weyl quantization OpW~ has the property

that e−it~
4
2 OpW~ (a)eit~

4
2 = Op~(G

ta) (where a is a function on T ∗Rd = Rd × Rd with
reasonable smoothness and decay properties, 4 is the euclidean laplacian on Rd, and Gt is
the euclidean geodesic flow).

But in our case the exact Egorov theorem (5.28) is only ‘formal’ unless we can invert L̂
to define the quantization (5.27) and determine the properties of the inverse. Being able to

compute L̂−1 amounts to computing L−1, and this can be done as follows : we must have
W(ir,b),(−ir′,b′)(L−1a) = PS(ir,b),(−ir′,b′)(a), and we can recover the expression of L−1a using
the inversion formula Proposition 5.2. We find

L−1a(z, b, r) = e−( 1
2

+ir)〈z,b〉
∫
b′∈B,r′>0,τ∈R

a(b′, b, τ ; r+r
′

2
)

|b− b′|1+ir+ir′
e(ir−ir′)τe( 1

2
−ir′)〈z,b′〉db′dp(r′)dτ.

To express this in group theoretic terms, let us consider the special case z = 0, b = 1 (in the
disc model), corresponding to g = e ∈ G. Using the calculations of §2.4, we find

L−1a(e, r) =

∫
a

(
nuaτ+

log(1+u2)
2

;
r + r′

2

)(
1 + u2

)−1+ir+ir′
2 e(ir−ir′)τ 2−(1+ir+ir′)

π
dudp(r′)dτ.

More generally, using G-equivariance of the formulae,

L−1a(g, r) =

∫
a

(
gnuaτ+

log(1+u2)
2

;
r + r′

2

)(
1 + u2

)−1+ir+ir′
2 e(ir−ir′)τ 2−(1+ir+ir′)

π
dudp(r′)dτ.

Then (5.27) defines a new quantization procedure satisfying the exact Egorov property.
Open questions :

(1) The problem in making this more precise is that the regularity properties of L−1 are not
well understood due to the fact that L smoothes along the stable foliation and so its inverse
must make certain smooth functions very rough. A further complication is that, contrary to

what is usually expected from a quantization procedure, Õp~(a) is not the multiplication by
a if a = a(z) is a function on G/K.

(2) The operator L̂~ has a formal expansion into powers of ~,

(5.29) L̂~ ∼
+∞∑
k=0

~kLk,

obtained by applying formally the stationary phase method in the integral defining L̂~ (see
(5.19)).

Note that we have normalized L̂~ so that L0 is the identity. The higher order term Lk
is a polynomial of degree 2k in H,X+ and ∂

∂r
, with coefficients depending on r. In the

form (5.29), L̂~ acts naturally on the space of semiclassical symbols (5.26) modulo ~∞. It
preserves the space of Γ-invariant semiclassical symbols.

The derivative at t = 0 of intertwining relation reads

rHL̂~ = L̂~

(
rH − i~

(
H2

4
+X2

+

))
,
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in other words

(5.30) [rH,Lk] = −i~Lk−1

(
H2

4
+X2

+

)
for k ≥ 1, and

[rH,L0] = 0.

Our argument proves existence of a solution to this family of equations (with Lk polynomial
of degree 2k in H,X+ and ∂

∂r
), and allows in theory to compute explicitly the Lks. The

calculation, however, seems tedious, and leave it as an open question to give the explicit
expression of Lk. We also leave it open to prove uniqueness of the solution, assuming the
normalization L0 = I.

6. Intertwining the geodesic flow and the Schrödinger group on a
compact quotient

In this section, we define the Hilbert spaces HW = HW (XΓ) and HPS = HPS(XΓ) and
the quotient intertwining operator LΓ (and its adjoint), and prove the main results of this
article: Theorems 3 and 4.

We begin with some orienting remarks that are intended to clarify the introduction of the
Hilbert spaces HW (XΓ) and HPS(XΓ) below. In Theorem 7, we proved the intertwining
relation

(6.1) L ◦ V t = Gt ◦ L
as a pointwise equality for a ∈ S 0

0 . Ideally, one would like to generalize formula (6.1) to
Γ-invariant symbols : one would like such a formula to hold as a pointwise equality for
a ∈ ΠS 0

0 , or as an almost-everywhere equality for a ∈ L2(Γ\G × R, dg × dp(r)). But it is
difficult even to define L on such automorphic symbols: if ã ∈ S 0

0 , Lã does not seem to
decay and the periodization ΠLã is problematic. On L2(G×R, dg × dp(r)), we saw that L
was unbounded, and its action on L2(Γ\G×R, dg × dp(r)) is likely to be worse. Moreover,
as discussed in the introduction, there is a spectral obstruction to interwining V t

Γ and Gt

on the quotient, since the spectrum of gt on L2(Γ\G) is continuous (a manifestation of the
mixing of the geodesic flow), whereas the spectrum of the quantum evolution αt on the
space of Hilbert-Schmidt operators is discrete. We circumvent the spectral obstruction by
intertwining the flows on different kinds of Hilbert spaces. As is well known, the spectrum
of an operator depends on the space where it acts : our intertwining formula on the quotient
will hold on a Hilbert space HPS where the geodesic flow has discrete spectrum. And L will
not be bounded on HPS, it will send HPS to another Hilbert space HW on which V t has also
discrete spectrum.

Circumventing the spectral obstruction is not new, but our particular way of doing it
is new. In the theory of resonances for the geodesic flow, it is now standard to consider
spectrum of the geodesic flow on spaces other than L2. Instead, one finds some Banach spaces
of distributions where the geodesic flow has some discrete spectrum (see the work of Ruelle
and others, e.g. [BT, BKL, BL, FRS, GL, Liv, Ru87, Rugh92, Rugh96]). This approach was
especially developed to describe the correlation spectrum of the geodesic flow for smooth (or
Hölder) functions. The Hilbert spaces we construct are not the ones arising in the resonance
theory, although they have some common elements : as recalled in [AZ], the distributions ενj
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(1.10) are the generalized eigenfunctions arising in the resonance expansion of the geodesic
flow, and they are also precisely the off-diagonal Patterson-Sullivan distributions PSνj , i2

,

associated with the pairs of eigenfunctions φj and the constant function ≡ 1, with spectral
parameters, respectively, νj and i

2
. However, as far as the other off-diagonal Patterson-

Sullivan distributions PSνj ,−νk are concerned, we saw they are also generalized eigenfunctions
of the geodesic flow, but they do not appear in the usual resonance theory.

In the next section, we shall construct a Hilbert space of distributions HPS, on which the
geodesic flow acts, with dual eigenbasis the whole family PSνj ,−νk . In Definition 1, we in-
troduced the Patterson-Sullivan distributions PSνj ,−νk = PS(j,νj),(k,−νk) associated with the
pair of eigenfunctions (φj, φk) and the choice of spectral parameters (νj,−νk). The space
HPS will be constructed by transposing the analysis done in §5, replacing the distributions
PSe(ν,b),e(−ν′,b′) by the family PSνj ,−νk . A drawback is that elements of HPS cannot be char-

acterized in a simple way in terms of their regularity/growth properties (for instance, HPS

does not coincide with one of the known Sobolev spaces). However, we will give sufficient
conditions for a distribution to belong to HPS in Section 7.

As mentioned in the introduction, there is some flexibility in the definitions of HW , resp.
HPS. In essence our norms are defined by the countable family of semi-norms {|W Γ

j,k(a)|},
resp. {|PSνj ,−νk(a)|}. The interwining operator L takes one family to the other. Hence it
is norm preserving if we define the Hilbert space norms or Banach space norms in terms of
these semi-norms.

Remark 6.1. Although we prefer Hilbert spaces here, from the point of view of dynamics
it might be of interest to consider the distributions

psνj ,−νk :=
Tj,νj(db)Tk,−νk(db

′)

|b− b′|1+νj−νk
on B(2),

and to define a Banach space by completing C∞0 (B(2)) under the norm

(6.2) ||a||ps = sup
(νj ,νk)

|PSνj ,−νk(a)| = sup
νj ,νk

∣∣∣∣∫
B×B

a(b, b′)

|b− b′|1+νj−νk
Tj,νj(db)Tk,−νk(db

′)

∣∣∣∣ .
The semi-norms thus resemble ‘Riesz norms’ with respect to the distributions Tj,νj(db)Tk,−νk(db

′).

6.1. HW and Hilbert-Schmidt symbols. The aim of the section is to present an ad hoc
construction of two Hilbert spaces HW and HPS, having respectively the families (Wνj ,−νk)
and (PSνj ,−νk) as dual orthonormal bases, with the following properties : V t acts unitarily
on HW , Gt acts unitarily on HPS, L sends HW isometrically to HPS, and the intertwining
relation (6.1) holds on these spaces. The two Hilbert space are modelled on the space of
Hilbert-Schmidt symbols on the quotient, and the constructions mimicks what was done at
the end of §5.6.

We start with the Hilbert space HS(XΓ) ' L2(XΓ × XΓ) of Hilbert-Schmidt operators
on the compact quotient XΓ = Γ\G/K. On this space, the quantum evolution αt has the
orthonormal spectral expansion

(6.3) αt =
∑
j,k

eit
(ν2
j−νk

2)

2 (φj ⊗ φ∗k)⊗ (φj ⊗ φ∗k)
∗
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(here, ν2
k ∈ R, but we wrote νk

2 to underline the fact that the dependence of the expression
is antiholomorphic w.r.t. φk, νk). The Hilbert-Schmidt norm is defined by ‖A‖2

HS(XΓ) =

TrL2(XΓ)(AA
†), associated with the scalar product 〈A,B〉HS(XΓ) = Tr(AB†). Starting with

a Γ-invariant symbol a belonging to ΠS 0
0 , we obtain a Hilbert-Schmidt operator OpΓ(a) ∈

HS(XΓ), with norm

‖OpΓ(a)‖2
HS(XΓ) = TrL2(XΓ) OpΓ(a) OpΓ(a)†

=
∑
j,k

|TrL2(XΓ) OpΓ(a)φj ⊗ φ∗k|2 =
∑
j,k

|W Γ
j,k(a)|2.

Here, TrL2(XΓ) denotes the trace of a trace-class operator on L2(XΓ).
This suggests to define the Hilbert space HW as follows:

Definition 6.1. HW (XΓ) is the completion of the symbol space ΠS 0
0 with respect to the

semi-norm

‖a‖2
W =

∑
|W Γ

j,k(a)|2.

Proposition 7.3 shows that indeed this series converges for a ∈ ΠS 0
0 . The scalar product on

HW is defined by

〈a, b〉W =
∑

W Γ
j,k(a)W Γ

j,k(b).

More generally, we may introduce a positive weight ρ(νj, νk) ≥ 0 and define the weighted
Hilbert space with inner product

(6.4) 〈a, b〉W,ρ =
∑

ρ(νj, νk)W
Γ
j,k(a)W Γ

j,k(b).

Since the proofs of the results are essentially the same in the weighted and unweighted cases,
we only write them in the unweighted case for notational simplicity.

Here we have to stress two important facts :

• ‖.‖W is only a semi-norm, because we can have OpΓ(a) = 0 although a 6= 0. The
reader should not be too surprised by this fact, which already occurs in the euclidean
case when one wants to study the Weyl quantization OpW (a) of a symbol a(x, ξ)
(where (x, ξ) ∈ T ∗Rd), 2πZd-periodic in the x-variable. If a 6= 0, then OpW (a) defines
a non-vanishing operator on L2(Rd), but the periodization of this operator may vanish
when acting on the torus L2(Rd/2πZd). Actually, this happens if a(x, ξ) vanishes
when ξ is a half-integer. In the hyperbolic setting, a similar phenomenon occurs.
Although the operator Op(a) is non-zero on L2(D), its periodization OpΓ(a) can
vanish when acting on L2(XΓ). The difficulty is that there no easy characterization
of the symbols a such that OpΓ(a) = 0.
• Another related issue is the following. On the universal cover D, we have seen that

the Hilbert-Schmidt norm of Op(a) coincides with the L2-norm of a, seen as a function
on SD ×R endowed with the measure e〈z,b〉dzdb × dp(r). This is no longer true on
the quotient. In other words, for a Γ-invariant symbol a, ‖a‖W is not the L2-norm
of a on SXΓ × R (see §7.2). Again, the same phenomenon already occurs in the
euclidean case.

By definition of HW , W Γ
j,k is a bounded linear functional on HW for all j, k, in other words

W Γ
j,k ∈ H∗W , where H∗W is the dual Hilbert space to HW . The Riesz theorem endows H∗W
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with a dual inner product, and the W Γ
j,k form an orthonormal basis of H∗W . For b ∈ HW , the

series

(6.5)
∑

j,kW
Γ
j,k(b)W

Γ
j,k

converges in H∗W . In fact, the operator
∑

j,kW
Γ
j,k(•)W Γ

j,k : HW → H∗W is just the standard

(antilinear, unitary) isomorphism b→ 〈•, b〉W from HW → H∗W .
As described earlier, we can define V t

Γ acting on ΠS 0
0 by V t

Γa = ΠV tã, if a = Πã and ã ∈ S 0
0 .

We then note that the evolution V t
Γ can be extended to HW , and is obviously unitary, since

we have W Γ
j,k(V

t
Γa) = eit

ν2
j−νk

2

2 W Γ
j,k(a) for ΠS 0

0 (this comes from (4.10) and (4.15) and holds
as well for low eigenvalues, i.e. real νk or νj). The Wigner distributions form an orthonormal

basis of eigenfunctions of the adjoint V t
Γ] in H∗W : we have V t

Γ](W
Γ
j,k) = eit

ν2
j−νk

2

2 W Γ
j,k.

It is difficult to find a full characterization of elements in HW in terms of usual Sobolev
spaces. However, in §7, we shall give a sufficient condition for a function to belong to HW ,
in terms of its regularity and decay rate at infinity (in the r variable).

6.2. HPS. Next we define another Hilbert space HPS involving Patterson-Sullivan distribu-
tions. Before we proceed to the construction, let us check the Γ-invariance of the Patterson-
Sullivan distributions :

Proposition 6.1. The distribution PSνj ,−νk is Γ-invariant.

Proof. Recall that

PSνj ,−νk(db
′, db, dτ) =

Tνj(db)T−νk(db
′)

|b− b′|1+νj−νk
e(νj+νk)τdτ.

We use the formulae of Section 3, and the fact that γ−1
] Tνj(db) = e−( 1

2
+νj)〈γ·o,γ·b〉Tνj(db) for

γ ∈ Γ.

γ−1
] PSνj ,−νk(db

′, db, dτ) =
γ−1
] Tνj(db)γ

−1
] T−νk(b

′)

|γ.b− γ.b′|1+νj−νk
e(νj+νk)(τ+

〈γo,γb〉−〈γ·o,γ·b′〉
2

)dτ

= e−( 1
2

+νj)〈γ·o,γ·b〉e−( 1
2
−νk)〈γ·o,γ·b′〉Tνj(db)T−νk(db

′)

|b− b′|1+νj−νk
e

1
2

(1+νj−νk)(〈γ·o,γ·b〉+〈γo·,γ·b′〉)e(νj+νk)(τ+
〈γ·o,γ·b〉−〈γ·o,γ·b′〉

2
)dτ

=
Tνj(db)T−νk(db

′)

|b− b′|1+νj−νk
e(νj+νk)τdτ = PSνj ,−νk(db

′, db, dτ).

�

Definition 6.2. We define HPS(XΓ) as the closure of ΠS 0
0 under the seminorm

(6.6) ‖f‖2
PS

def
=
∑
j,k

|PSΓ
νj ,−νk(f)|2.

Proposition 7.5 shows that indeed this series converges for a ∈ ΠS 0
0 . The associated scalar

product is

(6.7) 〈f, g〉PS
def
=
∑
j,k

PSΓ
νj ,−νk(f)PSΓ

νj ,−νk(g).
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More generally, we introduce a weight ρ(νj, νk) as in (6.4) and define

(6.8) 〈f, g〉PS,ρ
def
=
∑
j,k

ρ(νj, νk) PS
Γ
νj ,−νk(f)PSΓ

νj ,−νk(g).

Here we have to choose a value of the spectral parameter νj for each j, and we make
the standard choice : νj ∈ [0, 1

2
] ∪ iR+. Unlike our construction of HW , the definition of

HPS depends on the choice of spectral parameters. We then have PSΓ
νj ,−νk ∈ H

∗
PS, and∑

j,k PS
Γ
νj ,−νk(•)PS

Γ
νj ,−νk : HPS → H∗PS is the standard (antilinear, unitary) isomorphism

from HPS → H∗PS.

6.3. Proof of Theorem 4. The theorem will be proved from Proposition 5.7 (we already
mentioned that it holds as well for ν, ν ′ ∈ C and test functions in S 0

0 ) and from the relations

W Γ
j,k(a) = Wj,k(ã) =

∫
We(νj,b),e(−νk,b′)

(ã)dTνj(db)dT−νk(db
′),

(6.9) PSΓ
νj ,−νk(a) = PSνj ,−νk(ã) =

∫
PSe(νj,b),e(−νk,b′)

(ã)dTνj(db)dT−νk(db
′),

which are valid for any smooth and Γ-invariant a, and any ã such that a = Πã, provided ã
is smooth and decays fast enough so that all terms are well-defined. Take a ∈ ΠS 0

0 , and any
ã such that a = Πã. We know from the calculations in §5 that

PSνj ,−νk(Lã) =

∫
PSe(νj,b),e(−νk,b′)

(Lã)dTνj(db)dT−νk(db
′)

=

∫
We(νj,b),e(−νk,b′)

(ã)dTνj(db)dT−νk(db
′) = W Γ

j,k(a).

This proves Theorem 4. Proposition 1.1 is proved the same way, by combining Proposition
5.3 on the universal cover, with formula (6.9).

6.4. Proof of Theorem 3 .

Definition 6.3. Define the operator LΓ] : H∗PS(XΓ)→ H∗W (XΓ) by stipulating that it takes
PSΓ

νj ,−νk to W Γ
j,k. Define the operator LΓ : HW (XΓ) → HPS(XΓ) to be the adjoint of LΓ].

More generally, we define the operator and its adjoint with respect to the weighted Hilbert
spaces H∗PS,ρ(XΓ)→ H∗W,ρ(XΓ).

To be precise, we describe the adjoint of LΓ] explicitly. Let a ∈ ΠS 0
α , that is, a = Πã with

ã ∈ S 0
α (see Remark 5.3). Then by definition,

(6.10) PSΓ
νj ,−νk(LΓa) = PSνj ,−νk(Lã),

and this definition does depend on the choice of ã.

Remark 6.2. Since the kernel of L is not smooth and not rapidly decaying away from the
diagonal, it seems difficult to define its action directly on Γ-invariant symbols. That explains
why we defined the adjoint LΓ] first. Our definition of LΓ(a) only used the action of L on ã;
we did not need to define the integral operator L directly on Γ-invariant symbols.
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To prove Theorem 3, we start from the fact proved in Proposition 7.5 that ΠS 0
α is dense

in ΠS 0
0 for the HPS-norm, hence is dense in HPS. From Remark 5.3, for ã ∈ S 0

α , GtLã(g,R)
is well-defined for all R ∈ C, and for all j, k,

PSνj ,−νk(G
tLã) = eit

ν2
j−νk

2

2 PSνj ,−νk(Lã)

= eit
ν2
j−νk

2

2 Wj,k(ã)

= Wj,k(V
tã) = PSνj ,−νk(L ◦ V tã).

We can deduce the following :

• the geodesic flow Gt
Γ induces an isometry of HPS;

• LΓ] is an isometry from H∗PS to H∗W , and LΓ is an isometry from HW to HPS.
• the family PSΓ

νj ,−νk forms an independent family in H∗PS : if
∑

j,k αjkPS
Γ
νj ,−νk = 0

with
∑
|αjk|2 < +∞, then αjk = 0. This comes from the fact that the Wj,k form

an independent family in H∗W , and LΓ]PS
Γ
νj ,−νk = W Γ

j,k. It follows that the family

PSΓ
νj ,−νk is an orthonormal basis of H∗PS.

By the Definition 6.3 and by (6.10), it follows then that

LΓ ◦ V t
Γ = Gt

Γ ◦ LΓ,

as an equality between operators from HW,ρ(XΓ) to HPS,ρ(XΓ). This completes the proof of
Theorem 3.

7. Further discussion about the Hilbert spaces HW,ρ and HPS,ρ

We now discuss the elements of the Hilbert spaces HW and HPS in more detail : we
describe sufficient conditions for a function to belong to HW and HPS, in terms of regularity
and decay. We use the regularity properties of the boundary values Tνj of eigenfunctions,
described by Otal [O]. In the automorphic case, the regularity properties can be read off
directly from the automorphy equation (see e.g. [MS, MS2]).

7.1. Hölder continuity of Tνj . Following Otal [O], we say that a function F defined on R
is 2π-periodic if there is a constant C such that F (x + 2π) = F (x) + C, for all x. If F is
locally integrable, its derivative DF yields a well-defined distribution on S1 = R/2πZ,

DF (ϕ) = −
∫ 2π

0

∂ϕ

∂θ
F (θ)dθ + ϕ(0) [F (2π)− F (0)] ,

for every smooth function ϕ on S1. For 0 ≤ δ ≤ 1 we say that a 2π-periodic function
F : R→ C is δ-Hölder if |F (θ)−F (θ′)| ≤ C|θ−θ′|δ. The smallest constant is denoted ||F ||δ.
We denote the Banach space of δ-Hölder functions with norm ||F ||δ by Λδ.

We recall:

Theorem 7.1. ([O]) Suppose that φ is a laplacian eigenfunction of eigenvalue −s(1− s) =
−
(

1
4

+ r2
)
, with s = 1

2
+ ir and <e(s) ≥ 0. Assume that ||φ||∞ < ∞ and ||∇φ||∞ < ∞.

Then its Helgason boundary value Ts,φ is the derivative of a <e(s)-Hölder periodic function
F .
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In addition, letting δ = <e(s), we have

‖F‖δ ≤
C

|Cs|
|s| (||φ||∞ + ||∇φ||∞) ,

where C > 0 is an absolute constant, and Cs =
∫ +∞

0

∫ 2π

0
e−(1+s)tP s(tanh t

2
, θ)dθdt; where P

is the Poisson kernel of the unit disc.

Outside of the finite number of “small eigenvalues” of XΓ, we have <e(s) = 1
2

and hence
Tνj is the derivative of a Hölder 1/2-continuous function. The upper bound on ‖F‖δ given
by Otal’s proof is quite crude, but will be sufficient for our purposes.

The behavior of Cs for s = 1
2

+ ir and r −→ ±∞ can be evaluated by the stationary phase
method. The calculation is routine but not completely straightforward because the domain
of integration is non-compact. However, for the sake of brevity we omit the details. One
finds that Cs ∼ Cr−1/2, with C 6= 0.

7.2. HW and L2
W (G×R, dg×dp(r)). In this section, we clarify the relation between Hilbert-

Schmidt inner product, which induces the inner product 〈, 〉W on symbols, and L2
W (G ×

R, dg× dp(r)). The second term in the following proposition is the discrepancy between the
|| · ||W and the L2 norm on symbols (again, we stress the fact that this discrepancy would
also appear in a euclidean situation). We denote D a fundamental domain for the action of
Γ on D.

Proposition 7.2. Let a ∈ ΠS 0
0 . Then ||a||2W (see Definition 6.1) is given by

||a||2W =
∫
D

∫
B

∫
R+
|a(z, b, r)|2e〈z,b〉Vol(dz)dp(r)db

+
∑

γ∈Γ\{e}
∫
z∈D,(b,r)∈B×R+

a(z, b, r)a(γ · z, b, r)e( 1
2

+ir)〈z,b〉e( 1
2
−ir)〈γ·z,b〉dp(r)dbVol(dz).

Proof. We recall that ||a||2W = OpΓ(a)||2HS(XΓ) and that KΓ
a (z, w) =

∑
γKa(z, γw). The

kernel Ka is invariant by the diagonal action of Γ : Ka(γz, γw) = Ka(z, w).
Unfolding the composition formula for the kernels, we have:

KΓ
a ◦KΓ

b (z, w) =

∫
D

Ka(z, v)KΓ
b (v, w) Vol(dv).

Hence KΓ
a ◦K

Γ†
b (z, w) =

∫
D
Ka(z, v)KΓ

b (w, v) Vol(dv). Taking the trace.

Tr(KΓ
a ◦K

Γ†
b ) =

∑
γ∈Γ

∫
z∈D

∫
v∈D

Ka(z, v)Kb(γ · z, v) Vol(dv) Vol(dz).

The rest of the calculation proceeds as in Proposition 4.1, using the Fourier inversion formula.
The first term corresponds to γ = e and the second term to γ 6= e.

�

7.3. HW . We now describe a large class of elements of the Hilbert space HW . That is, we
determine sufficient conditions on a so that OpΓ(a) is Hilbert-Schmidt, or in terms of Wigner
distributions, so that

(7.1) ||a||2W =
∑
j,k

|W Γ
j,k(a)|2 <∞.
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For brevity we restrict to the unity weight ρ ≡ 1. If we choose decaying weights such as
ρ(νj, νk) = max{νj, νk}−r then the Hilbert space becomes larger and simpler to describe.

In the following, 〈x〉 = (1 + |x|2)1/2. If C is an operator, we define ad(4)C = [4, C]. We
denote λj = −

(
1
4

+ r2
j

)
the laplacian eigenvalues. The following is of course not optimal, but

gives an adequate idea of a large class of elements in HW . In the following, ||ar||Ck denotes
the Ck norm of the function ar(z, b) = a(z, b, r) in the (z, b) variables.

Proposition 7.3. There exists C > 0 such that, for all a ∈ ΠS 0
0 ,

||a||W ≤ C sup
j
〈rj〉6||arj ||C6 .

Proof. It suffices to prove the following

Lemma 7.4. Let Y be as in (2.2) and let

|||a||| def
= sup

j
sup

(z,b)∈D
〈λj〉2

[
|(I − Y 2)42

za|+ rj|(I − Y 2)4z∇za|+ r2
j |(I − Y 2)∇2

za|+ r2
j |(I − Y 2)∇za|

]
.

Then there exists C > 0 such that, for all a ∈ ΠS 0
0 ,

||a||W ≤ C|||a|||.

To prove this, we first note that, by Weyl’s law,
∑

j,k〈λj〉−2〈λj − λk〉−2 <∞ in dimension
two.

We will also use the expansion of ενj (1.10) into K-Fourier series, which takes the form

ενj =
∑
m∈Z

φj,m,

with Y φj,m = 2imφj,m. We use the fact that ‖φj,m‖L2(Γ\G) = 1, proved in [Z1] (the full
definition of φj,m can be found in Proposition 2.2 of [Z1], in particular, φj,0 = φj).

Let us write B = Op(b)
def
= (ad(4)2 Op(a)) ◦ 42. Then,

W Γ
j,k(b) =

∑
m∈Z〈brj , φjφk,m〉

=
∑

m∈Z〈2m〉−2〈brj , (I − Y 2)φjφk,m〉

=
∑

m∈Z〈2m〉−2〈(I − Y 2)brj , φjφk,m〉

≤ sup |(I − Y 2)brj |
∑

m∈Z〈2m〉−2〈|φj|, |φk,m|〉

≤ C sup |(I − Y 2)brj |,

where C is a uniform constant. Here we use that 〈|φj|, |φk,m|〉 ≤ 1 by the Schwartz inequality
and the fact that ||φj||L2 = ||φk,m||L2 = 1.
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It follows that

|W Γ
j,k(b)| ≤ C 〈λj〉−2〈λj − λk〉−2 sup |(I − Y 2)brj |

≤ C 〈λj〉−2〈λj − λk〉−2

sup
(z,b)∈D

〈λj〉2[|(I − Y 2)42
zarj |+ rj|(I − Y 2)4z∇zarj |

+ r2
j |(I − Y 2)∇2

zarj |+ r2
j |(I − Y 2)∇zarj |]

Here, we use that the complete symbol of Op(a) ◦ 42 is (1
4

+ r2)2a(z, b, r). Further the

complete symbol of ad(4) Op(a) is given by 4za+ 2
(

1
2

+ ir
)
∇za.∇z〈z, b〉. �

7.4. The Hilbert space HPS. We now consider the analogous question of conditions on a
so that

(7.2) ||a||2PS
def
=
∑
j,k

|PSΓ
νj ,−νk(a)|2 <∞.

Again we restrict to weight ρ ≡ 1 for brevity. The discussion would be simpler again if we
used decaying weight.

Proposition 7.5. There exists C > 0 such that, for all a ∈ ΠS 0
0 ,

||a||PS ≤ C sup
r,|=m(r)|≤ 1

2

〈r〉12||ar||C3 .

This follows from

Lemma 7.6. We have, for any M ,

||a||2PS ≤
∑
j,k

|νj|3/2|νk|3/2(‖φj‖∞ + ‖∇φj‖∞)(‖φk‖∞ + ‖∇φk‖∞)〈νj + νk〉−M

sup
(b′,b)∈B×B

[
|b− b′|−(1+νj−νk))R〈∂t〉Ma νj−νk

2i

(b′, b, i(νj + νk)),

∂

∂b′
|b− b′|−(1+νj−νk))R〈∂t〉Ma νj−νk

2i

(b′, b, i(νj + νk)),

∂

∂b
|b− b′|−(1+νj−νk))R〈∂t〉Ma νj−νk

2i

(b′, b, i(νj + νk)),

∂2

∂b∂b′
|b− b′|−(1+νj−νk))R〈∂t〉Ma νj−νk

2i

(b′, b, i(νj + νk))

]
Proof. We use the relation

(7.3) PSΓ
νj ,−νk(a) =

∫
1

|b− b′|1+νj−νk
Rχa νj−νk

2i

(b′, b, i(νj + νk))Tνj(db)T−νk(db
′),

which is obtained from (5.11). Since χa νj−νk
2i

is compactly supported on G, then the Radon-

Fourier transform Ra is compactly supported in the variables (b′, b) ∈ B(2), so the singularity
of |b− b′| on the diagonal is not a problem. It follows by repeated integration by parts in ∂t
that if a ∈ CM

c (G), then Ra(b, b′, i(νj + νk)) = O(〈νj + νk〉−M).



GEODESIC FLOW AND SCHRÖDINGER FLOW ON HYPERBOLIC SURFACES 41

Let us call Fνj the Hölder function such that Tνj = F ′νj , in the sense of §7.1. We use the
formula∫

ϕ(b′, b)Tνj(db)T−νk(db
′) = ϕ(0, 0)[Fνj(2π)− Fνj(0)][F−νk(2π)− F−νk(0)]

−[Fνj(2π)− Fνj(0)]

∫
∂

∂b′
ϕ(b′, 0)F−νk(b

′)db′

−[F−νk(2π)− F−νk(0)]

∫
∂

∂b
ϕ(0, b)Fνj(b)db

+

∫
∂2

∂b∂b′
ϕ(b′, b)Fνj(b)F−νk(b

′)db db′,

valid for every smooth function ϕ on B ×B.
It follows that

|
∫
ϕ(b′, b)Tνj(db)T−νk(db

′)|

≤ ‖Fνj‖δj‖F−νk‖δk sup
(b′,b)∈B×B

(
|ϕ(b′, b)|, | ∂

∂b′
ϕ(b′, b)|, | ∂

∂b
ϕ(b′, b)|, | ∂

2

∂b∂b′
ϕ(b′, b)|

)
where δj = 1

2
+ <e(νj), and the Hölder norm ‖.‖δ is the one appearing in Theorem 7.1.

We can then write

|PSνj ,−νk(a)| ≤ 〈νj + νk〉−M‖Fνj‖δj‖F−νk‖δk

sup
(b′,b)∈B×B

[
|b− b′|−(1+νj−νk))R〈∂t〉Mχa νj−νk

2i

(b′, b, i(νj + νk)),

∂

∂b′
|b− b′|−(1+νj−νk))R〈∂t〉Mχa νj−νk

2i

(b′, b, i(νj + νk)),

∂

∂b
|b− b′|−(1+νj−νk))R〈∂t〉Mχa νj−νk

2i

(b′, b, i(νj + νk)),

∂2

∂b∂b′
|b− b′|−(1+νj−νk))R〈∂t〉Mχa νj−νk

2i

(b′, b, i(νj + νk))

]
By Theorem 7.1,

‖Fνj‖δj = O(|νj|3/2)(‖φj‖∞ + ‖∇φj‖∞).

Moreover, by the well-known local Weyl law estimates, ‖φj‖∞ = O(|νj|
1
2 ) and ‖∇φj‖∞ =

O(|νj|
3
2 ). We find

|PSνj ,−νk(a)| ≤ 〈νj + νk〉−M |νj|3|νk|3 max (|νj|, |νk|) ‖a νj−νk
2i

‖CM+1 .

Using the Weyl law in dimension 2, |λj| ∼ Cj, one sees that the series∑
j,k

〈rj − rk〉−M |rj|3|rk|3 max (|rj|, |rk|)
〈
rj + rk

2

〉−N
converges for M > 1 and N > 11. The result follows.

�
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We stress again the fact that there is nothing optimal in this upper bound.

8. Appendix

In this section we sketch the proof of Theorem 5. We closely follow the proof in Section 4
of [AZ].

By the generalized Poisson formula and the definition of Op(a),
(8.1)

〈OpΓ(a)φirj , φirk〉 =

∫
B×B

(∫
D

χa(z, b)e( 1
2

+irj)〈z,b〉e( 1
2

+irk)〈z,b′〉Vol(dz)

)
Tirj(db)T−irk(db

′).

Here we are only interested in real values of rj, rk, since we consider the asymptotics
rj → +∞ and |rj − rk| bounded. We apply stationary phase to the simplify the inner D
integral. More precisely, in [AZ] and in this article, we rewrite the integral in the form

〈OpΓ(a)φj, φk〉 = 2(1+irj+irk)

∫
Lirkχa(b′, b, τ)PSirj ,−irk(db

′, db, dτ),

as was shown in Theorem 4, and we then replace Lirkχa(b′, b, τ) by its expansion into powers
of r−1

k , obtained by the method of stationary phase.
There is one detail that we did not discuss in [AZ], and that was mentioned to us by

Michael Schröder (see [SchDiss]). The PS-distributions have a singularity of the form |b −
b′|−(1+irj+irk) on the diagonal (b′ = b), and thus can only be integrated along functions
that vanish on a neighbourhood of the diagonal. The function Lirkχa does not satisfy this
condition, and it is for a very special reason that its integral along PSirj ,−irk can be defined :

its singularity exactly cancels with |b− b′|−(1+irj+irk). However, when replacing Lirkχa by its
stationary phase expansion, one would have to justify the fact that each term, including the
remainder term, can be integrated along PSirj ,−irk . This is not easy and wasn’t discussed in
[AZ].

It is actually simpler to carry out the localization step away from the diagonal with the
original inner integral (8.1). We see that the function

(8.2)

∫
D

χa(z, b)e( 1
2

+irj)〈z,b〉e( 1
2

+irk)〈z,b′〉Vol(dz)

is integrated against Tirj(db)T−irk(db
′), and with the latter there is no issue on the diagonal.

The critical set in the oscillatory integral (8.2) occurs where ∇〈z, b〉 = −∇〈z, b′〉. So
z ∈ γb′,b. There is a neighbourhood V of the diagonal such that γb′,b does not intersect the
support of χa for (b′, b) ∈ V . We take a smooth function f on B ×B, supported in V , that
is identically 1 on a neighbourhood of the diagonal, and divide the integral (8.1) into∫

B×B
f(b′, b)

(∫
D

χa(z, b)e( 1
2

+irj)〈z,b〉e( 1
2

+irk)〈z,b′〉Vol(dz)

)
Tirj(db)T−irk(db

′)

+

∫
B×B

(1− f(b′, b))

(∫
D

χa(z, b)e( 1
2

+irj)〈z,b〉e( 1
2

+irk)〈z,b′〉Vol(dz)

)
Tirj(db)T−irk(db

′).

For the first term, the phase has no critical point, and we integrate by parts using

1

|∇z〈z, b〉 − ∇z〈z, b′〉|2
(∇z〈z, b〉 − ∇z〈z, b′〉) · ∇.
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Since Tirj , T−irk have polynomial bounds in rj, rk, repeated partial integration shows that
this first integral is O(〈rk〉−∞).

The second term, because of the cut-off (1− f(b′, b)), is now supported away from the di-
agonal, and can be rewritten as 2(1+irj+irk)

∫
(1− f(b′, b))Lirkχa(b′, b, τ)PSirj ,−irk(db

′, db, dτ).
The proof of Section 4 in [AZ] now applies without problem.
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