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Abstract. We consider a Lagrangian system on the d-dimensional
torus, and the associated Hamilton-Jacobi equation. Assuming
that the Aubry set of the system consists in a finite number of hy-
perbolic periodic orbits of the Euler-Lagrange flow, we study the
vanishing-viscosity limit, from the viscous equation to the inviscid
problem. Under suitable assumptions, we show that solutions of
the viscous Hamilton-Jacobi equation converge to a unique solution
of the inviscid problem.

1. Introduction

Let L be a strictly convex and superlinear Lagrangian of class C3 on
the d-dimensional torus Td, and let H be the associated Hamiltonian
via the Legendre transformation:

L : Td × Rd −→ R
and

H : Td × Rd −→ R,
H(x, p) = p.v − L(x, v)

with p = ∂L
∂v

(x, v) or equivalently v = ∂H
∂p

(x, p).

There is only one constant c such that the Hamilton-Jacobi equation

H(x,Dφ(x)) = c. (1)

has solutions φ : Td −→ R. The constant is called “Mañé’s critical
value” ([21], [22], [9]) or “the effective Hamiltonian” in [8] (see also
[5]). To get the existence of solutions, one should not consider classical
(that is, C1) solutions but “viscosity solutions”, a notion defined by
Crandall, Evans and Lions (see [6], and Section 2). However there
might, in general, be several such solutions: obviously, they are defined
up to additive constants, but there may also exist different solutions
which do not differ by a constant. Roughly speaking, the family of
solutions is parametrized by the values taken at the static classes (see
[3], and Section 2).
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Let us now consider the viscous Hamilton-Jacobi equation:

H(x,Dφ(x)) + ε4 φ(x) = c(ε) (2)

where the torus is equipped with a flat metric and 4 is the Laplacian.
The parameter ε is called the viscosity coefficient. As in the inviscid
case, there is only one constant, c(ε), such that the viscous Hamilton-
Jacobi equation admits solutions. However, in the viscous case, the
solution is unique, up to an additive constant; we denote it φε (see
[17]).

Remark 1. In the “mechanical case”, namely L(x, v) = |v|2
2
− F (x)

or equivalently H(x, p) = |p|2
2

+ F (x), this can be seen by using the
relation with the Schrödinger equation. In fact, if φε is a solution of

1

2
|Dφ(x)|2 + F (x) + ε4 φ(x) = c(ε), (3)

then exp(φε/2ε) is an eigenfunction of the Schrödinger operator 2ε2 4
+F (x) with eigenvalue c(ε) (note the unusual sign in front of the Lapla-
cian). Since the eigenfunction is positive, it has to be the ground state,
and the associated eigenvalue c(ε) is simple (see for example [7], Chap-
ter 6.5).

We study the behaviour of φε as ε tends to zero. It is a classical
fact that the family (φε)ε>0 is equilipschitz, so that we can extract sub-
sequences which converge uniformly (see Lemma 2). By the stability
theorem for viscosity solutions ([6]), limits as ε → 0 of such subse-
quences have to be solutions of the non-viscous equation (1). We call
such solutions of (1) “physical solutions”, because they are obtained
from the viscous equation by passing to the limit. It is then natural to
ask: in the case of non-uniqueness of solutions of (1), is there a unique
“physical solution” ?

We prove that this is the case, assuming that the “Aubry set” of the
Lagrangian system (defined in Section 2) consists in a finite number of
hyperbolic periodic orbits of the Euler-Lagrange flow, and a condition
on the second derivative to be precisely stated below. Under the name
“periodic orbits” we also allow fixed points of the flow. As a particular
example, the result applies to a mechanical Lagrangian L = 1

2
v2−F (x),

under the assumptions that:
– F reaches its global maximum at a finite number of points (xi)1≤i≤m,

and the maxima are non-degenerate;
– if we call (−kj(xi))1≤j≤d the eigenvalues of the Hessian of F at xi,

there is only one xI that minimizes
∑d

j=1

√
kj(xi).
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In fact, we find an expression of the limit of (φε) in terms of xI and
a function called the “Peierls barrier”.

Our result is a generalization from the one dimensional case to the
d-dimensional case of the results of Jauslin, Kreiss and Moser [20], as
well as of Bessi [2]. Our method is very close to the one in [2]: we
use a variational representation formula for φε, which is a stochastic
version of the “Lax-Oleinik formula” used to represent solutions of the
non-viscous equation. Then, using standard techniques in stochastic
calculus, we estimate the limiting behavior, which allows us to obtain
the same conclusion in higher dimensions. See Section 2 for a more
detailed comparison between our assumptions and those of [2].

In [1] a closely related problem is addressed, in the case of a mechan-
ical Lagrangian (possibly with a magnetic term): namely, the conver-
gence, as ε → 0, of the probability measure exp(φε/ε)dx defined by
the eigenfunction of the Schrödinger operator. This certainly implies
some restrictions on the behaviour of φε. Yet, these restrictions do not
allow to deduce the convergence of φε towards a single solution of the
inviscid equation.

In Section 2 we give the main definitions and assumptions, and a
more detailed statement of the result. The theorem is then proved in
Section 3.

2. Preliminaries and Statement

2.1. Viscosity Solutions. It is well known that there do not neces-
sarily exist global C1 solutions of equation (1). The appropriate sense
of a weak solution is the notion of viscosity solution, introduced in [6]:

Definition 1. A continuous function φ : Td → R is called a viscosity
solution of equation (1) if it satisfies the two properties:

(1) If v is a C1 function and φ− v has a local maximum at x then

H(x,Dv(x)) ≥ c,

(2) If v is a C1 function and φ− v has a local minimum at x then

H(x,Dv(x)) ≤ c.

Under our assumptions on H, viscosity solutions of (1) are lipschitz
(Lemma 2), and exist for a unique value of c ([9]). See also [5]. Besides,
a function v is a viscosity solution of (1) if and only if it solves the
following fixed point problem: for all x ∈ Td and for all t ≥ 0,

v(x) = sup
γ:[0,t]→Td,γ(0)=x

{v(γ(t))−
∫ t

0

L(γ(s), γ̇(s))ds} − ct, (4)
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where the sup is taken over all piecewise C1 curves γ : [0, t] −→ Td such
that γ(0) = x. This is called the Hopf-Lax or Lax-Oleinik formula ([9],
[7]).

Remark 2. One could also define the notion of viscosity solution for
the viscous equation (2), however, in this case, one would obtain noth-
ing more than the classical solution, which is unique up to an additive
constant. It is a classical fact that the family (φε)ε>0 is equilipschitz,
we will provide a proof in Section 2.3. (Lemma 2). A nice feature of
the notion of viscosity solution is the stability theorem ([6]), which says
that limits of (φε)ε−→0 in the uniform topology have to be solutions of
the non-viscous equation (1).

Remark 3. There are actually two types of viscosity solutions. In this
paper we consider forward viscosity solutions, defined above. These
solutions are semiconvex, can have non-differentiable minima but not
maxima. In the non-autonomous case they are solutions of the “fi-
nal value problem” (4). By regularizing the Hamilton-Jacobi equation
as in (2) and taking the vanishing-viscosity limit, one obtains forward
viscosity solutions of (1). More often, people consider backward viscos-
ity solutions. The latter are defined by reversing both inequalities in
Definition 1. This time the solutions are semiconcave, can have non-
differentiable maxima but not minima; they are solutions of the “initial
value problem”, that is, a variational characterization similar to (4),
but with γ(t) = x instead of γ(0). If we regularize the Hamilton-Jacobi
equation by subtracting (instead of adding) an elliptic operator term,
we obtain in the vanishing-viscosity limit backwards viscosity solutions.
We will state Theorem 1 in terms of forward solutions, but obviously
an analogous result holds with backwards solutions.

2.2. Aubry set and static classes. The constant c in equation (1)
can be characterized as α(0) where α is Mather’s function (see [23], [4],
[22]):

c = α(0) = − inf
ν
{
∫

Td×Rd

L(x, v)dν(x, v)},

where the inf is taken over the set of probability measures ν on Td×Rd

which are invariant under the Euler-Lagrange flow of L.
We recall the definition of the Peierls Barrier ([10]) h : Td×Td → R.

Define the action of a piecewise C1 curve γ : [0, T ] →M as

A(γ) =

∫ T

0

L(γ(s), γ̇(s))ds.
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Given a constant k ∈ R and x1, x2 ∈ Td let

hk
T (x1, x2) = inf{A(γ) + kT |γ : [0, T ] → Td joins x1 and x2},

and

hk(x1, x2) = lim inf
T→∞

hk
T (x1, x2).

Since time T is not bounded, there is only one possible value of k that
will make the function hk different from being identically −∞ or ∞,
this is again Mañé’s critical value c. We define hT = hc

T and h = hc (it
is shown in [12] that, in the case of an autonomous system, hT actually
converges uniformly to h). Note that, given a fixed y ∈ Td, the function
x 7→ −h(x, y) is a forward viscosity solution of (1), whereas x 7→ h(y, x)
is a backward solution.

We now define as in [11] the Aubry set A ⊂ Td:

A = {x ∈ Td, h(x, x) = 0}.
(in the reference [11] it was called the Peierls set.)

Very related to Mather’s graph theorem ([23]), it is shown in [11],
that the set A can be lifted, in a unique way, to a set Ã ⊂ Td × Rd.
This set projects homeomorphically to A through the usual projection
from Td × Rd to Td, and is invariant under the Euler-Lagrange flow.
We also call the set Ã “Aubry set”. See also [4] for some other graph
properties.

An crucial property of viscosity solutions (both forward and back-
ward) with respect to the Aubry set is the following: if (x0, v0) is an
element of Ã, and (xt, vt)t∈R is its orbit under the Euler-Lagrange flow,
then

u(xT )− u(x0) =

∫ T

0

L(xt, vt)dt+ cT (5)

for all T , if u is a viscosity solution of (1) (see [9], [13]). Note also
that, because of (4), one always have the inequality u(xT ) − u(x0) ≤∫ T

0
L(xt, ẋt)dt+ cT for an arbitrary curve (xt).

The “static classes” form a partition of A, defined by the equivalence
relation on A: x ∼ y if and only if

h(x, y) + h(y, x) = 0.

In the paper we assume that the Aubry set Ã is made up of a finite
union of hyperbolic periodic orbits of the Euler-Lagrange flow. This
implies in particular that each static class is a periodic orbit.

Viscosity solutions are completely determined by one value taken in
each static class, as shown in [3]:
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Denote the static classes Si, 1 ≤ i ≤ m and choose one point xi in
each static class. For each i ∈ [1,m], assign a value φi ∈ R. Because of
the general properties recalled above, if there exists a viscosity solution
φ : Td −→ R of (1) such that φ(xi) = φi for all i ∈ [1,m], we must have
φj − φi ≤ h(xi, xj) for all i, j. Conversely, if this necessary condition is
satisfied, then there is a unique viscosity φ solution of the Hamilton-
Jacobi equation having these prescribed values. In fact it is given by

φ(x) = max
i
φi − h(x, xi). (6)

2.3. Main result. In the paper we assume that the Aubry set Ã is
made up of a finite union of hyperbolic periodic orbits of the Euler-
Lagrange flow. This implies in particular that each static class is the
projection of a periodic orbit, say, γi : [0, Ti] → Td, i = 1, . . . ,m. In all
the paper we use a slightly abusive notation: we use the same symbol
γi to denote the parametrized curve in Td, its image, which is a subset
of the torus, and its lift to the tangent bundle, which is a periodic orbit
of the Euler-Lagrange flow.

Fix a point xi in each static class, for instance xi = γi(0), and
let hi(x) = h(x, xi) (by the properties of viscosity solutions stated in
paragraph 2.2, replacing xi by another point in the same static class
would only modify hi by an additive constant). Because the periodic
orbits composing the Aubry set are hyperbolic, we prove below that hi

is C2 in a neighbourhood of γi, and so we may define

λi :=
1

Ti

∫ Ti

0

4hi(γi(t))dt

(In the case of a fixed point of the flow, that is, Ti = 0, we let λi :=
4hi(γi(xi)).) We assume that there is exactly one static class γI such
that

λI = min
1≤i≤m

λi (7)

Finally, we assume that ∂xH/|p|+ 1 or equivalently ∂xL/|∂vL|+ 1 is
uniformly bounded. This will be needed only in Lemma 2, and may in
fact not be necessary.

Theorem 1. Under the previous assumptions, the solution φε of (2),
normalized by φε(xI) = 0, converge uniformly to −hI as ε→ 0.

Remark 4. As already mentioned, this result is a generalization to
higher dimension (but in the autonomous case) of Theorem 1 in [2].
In that paper, the assumption that the Aubry set consists in a finite
union of hyperbolic periodic orbits is expressed in a slightly different
form, namely:
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– the rotation number is rational, and the periodic orbits forming
the Mather set are hyperbolic;

– there is no heteroclinic cycle “of zero action” between these pe-
riodic orbits (note that, in the low-dimensional case treated by Bessi,
the existence of such a cycle implies, anyway, the uniqueness of the so-
lution of (1), so that the problem is particularly easy if the assumption
is not satisfied. Such a phenomenon does no longer occur in higher
dimension).

To conclude, Bessi needs some combinatorial considerations only
valid in the one dimensional case. Instead, we use a characterization
of the solutions given in [3] in the inviscid case, and a result of Fathi
and Siconolfi [14].

Remark 5. The result in the non autonomous case should be very
similar.

Remark 6. The results of this paper can be proved, with minor
changes, in any riemannian compact manifold, or replacing the lapla-
cian 4 by any second-order elliptic operator (of course, the definition
of the λis has to be modified accordingly).

Remark 7. We have no idea on how to adapt the result to less restric-
tive assumptions on the nature of the Aubry set. All our arguments
break down when the Aubry set has some (transversally) non-isolated
points.

Example. Mechanical Lagrangian.

Let L = 1
2
v2 − F (x), where F has a finite number of maxima

(xi)1≤i≤m, which are all non-degenerate. In this case the static classes
are the points xi, and c = maxF . We will assume that there is one
I ∈ [1,m] such that

∑
j

√
kj(xi) >

∑
j

√
kj(xI), i 6= I, (8)

where −kj(xi), j = 1, . . . , d are the eigenvalues of the Hessian of F at
xi.

Lemma 1. If φ is a viscosity solution of the Hamilton Jacobi equation

1

2
|Dφ|2 + F (x) = c (9)

that has a local maximum at xi, then φ is C3 in a neighbourhood of xi

and the eigenvalues of Hessφ(xi) are −√
kj(xi), j = 1, . . . d.



8 ANANTHARAMAN, ITURRIAGA, PADILLA, AND SÁNCHEZ-MORGADO

Proof. Since φ has a maximum, using the constant function v = φ(xi)
we obtain from the viscosity inequality, 1

2
|Dv|2 +F (xi) ≥ c. Thus xi is

a maximum of F . As in Lemma 5 below, there exists a neighbourhood
V of xi such that for any x ∈ V , the point (x,Dφ(x)) belongs to
the stable manifold of (xi, 0) and so φ|V is as differentiable as F ; and
φ coincides with −h(., xi) on this neighbourhood. Differentiating (9)
twice and evaluating at xi

Hessφ ·Dφ = −DF
Hessφ(xi) Hessφ(xi) = −HessF (xi).

If the orthonormal basis {Yj} diagonalizes Hessφ(xi), also diagonalizes

HessF (xi) and the eigenvalues of Hessφ(xi) are −√
kj(xi). ¤

Corollary 1. Let φε be the solution of (3) such that φε(xI) = 0. Then
φε converges to −h(., xI), where xI is the point satisfying (8).

Remark 8. In the mechanical case, the problem has already been
widely studied, in relation with the tunneling effect, and usually with
WKB techniques ([18]). What is proved in [18], Chapter 4, is the
following: the normalized eigenfunction of the Schrödinger operator

exp(φε/2ε)
|| exp(φε/2ε)||L2

is exponentially close, in L2-norm, to χ exp(−h(.,xI)/2ε)
||χ exp(−h(.,xI)/2ε)||L2

where χ is a smooth function localized in a small neighbourhood of xI .
Our result is different in two aspects: the topology is not the same,
and we do not localize things in a neighbourhood of xI .

2.4. More Preliminaries: Stochastic Lax Formula and esti-
mates. The solution to the viscous equation (2) can be characterized
by a variational formula analogous to (4). In the viscous case, we need
to introduce a probability space (Ω,B,P) endowed with a brownian mo-
tion W (t) : Ω −→ Td on the flat d-torus. We denote E the expectation
with respect to the probability measure P.

The solution to equation (2) satisfies Lax’s formula

φε(x) = sup
v
E

(
φε(Xε(τ))−

∫ τ

0

L(Xε(s), v(s))ds− c(ε)τ
)
, (10)

where v is an admissible progressively measurable control process and
Xε is the solution to the stochastic differential equation{

dXε(t) = v(t)dt+
√

2ε dW (t)

Xε(0) = x.
(11)

and where τ is a bounded stopping time ([15], Lemma IV 3.1).
Moreover, the sup is achieved in (10), and we have a description of

the optimal v: if we introduce the vector field uε(x) = ∂H
∂p

(x,Dφε(x)),
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and if we consider the solution of the following stochastic differential
equation: {

dXε(t) = uε(Xε(t))dt+
√

2ε dW (t)

Xε(0) = x,
(12)

then the optimal control is given by the formula v(t) = uε(Xε(t)). See
for example [15], Theorem IV 11.1.

Although the following lemma is a well known property of the solu-
tions, we give an argument for convenience of the reader.

Lemma 2. The solutions φε of (2) are Lipschitz and semiconvex uni-
formly in ε. Therefore there are always subsequences converging in C0

norm.

Proof: We first need to know that |c(ε)| is bounded independentely
of ε, say, by a constant r > 0. In fact,

infH(x, 0) ≤ c(ε) ≤ supH(x, 0),

as may be checked by applying Definition 1 to v = 0 and x, successively,
a local maximum or minimum of a solution φε.

By hypothesis, |∂xH(x, p)| ≤ K(|p| + 1) for K > 0 constant. Since
H is superlinear, there is R > 0 such that

|p| ≥ R⇒ H(x, p) ≥ r +
√
dK(|p|+ 1) (13)

where d is the dimension.
We now use an argument we found in [19] originally due to Bernstein.

Let w = |Dφε|2 then

Dw = 2 HessφεDφε, (14)

4w = 2 Tr(Hessφε)
2 + 2D(4φε) ·Dφε (15)

Differentating (2), multiplying by Dφε and using (14)(15)

∂xH ·Dφε + ∂pH · HessφεDφε + εD(4φε) ·Dφε = 0

∂xH ·Dφε +
1

2
∂pH ·Dw +

ε

2
4 w − εTr(Hessφε)

2 = 0

Let x0 ∈ Td be a point where w attains its maximum, thenDw(x0) = 0,
4w(x0) ≤ 0. At the point x0, we have

ε(4φε)
2 ≤ dεTr(Hessφε)

2 ≤ d∂xH ·Dφε

(H(x0, Dφε)− c(ε))2 ≤ εdK(|Dφε|+ 1)|Dφε|.
Using (13), we then have sup

x∈Td

|Dφε(x)| ≤ R for 0 < ε ≤ 1.

Recall that the function φ is semiconvex with constant C means that

φ(x+ y)− 2φ(x) + φ(x− y) ≥ −C|y|2
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which implies that φ(x) +
C

2
|x|2 is convex.

Consider the optimal control v(t) = uε(Xε(t)) described above; this
means that, for all T > 0,

φε(x) = E
(
φε(Xε(T )) +

∫ T

0

L(Xε(s), uε(Xε(s)))ds
)− c(ε)T,

where Xε(t) is the solution to (12). Take T = 1, let |y| ≤ 1 be an
increment and define

χ(s) = (1− s)y

and
p(s) = Xε(s) + χ(s).

The control uε(Xε(s)) + χ̇ is an admissible control, then

φε(x+ y) ≥ E(
φε(p(1)) +

∫ 1

0

L(Xε(s) + χ(s), uε(Xε(s)) + χ̇)ds
)− c(ε)

where

dp = dXε + χ̇dt = (uε(Xε(s)) + χ̇)dt+
√

2εdW

clearly p(0) = x+ y and p(1) = Xε(1).
Similarly

φε(x−y) ≥ E
(
φε(Xε(1))+

∫ 1

0

L(Xε(s)−χ(s), uε(Xε(s))− χ̇)ds
)−c(ε).

Let
M = 1 + sup

ε∈(0,1]

|uε(x)|,

This is finite since we have that |uε(x)| = ∂H
∂p

(x,Dφε(x)) and by the

prevoius part of the lemma Dφε(x) is uniformly bounded. Define now

A = sup
|v|≤M

‖∂xxL(x, v)‖, B = sup
|v|≤M

‖∂xvL(x, v)‖.

Since ∂vvL is positive definite, an application of Taylor’s Theorem gives

L(x+ χ, v + χ̇)− 2L(x, v) + L(x− χ, v − χ̇) ≥ A|χ|2 + 2B|χ||χ̇|
for |v| ≤M − 1. Therefore

φε(x+ y)− 2φε(x) + φε(x− y) ≥ −
∫ 1

0

(A|χ(s)|2 +B|χ(s)||χ̇(s)|)ds

≥ −(A
3

+B
)|y|2.

¤
We will need the following
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Lemma 3. Suppose the sequence φεn of solutions of (2) converges C0

to φ0. Assume that φ0 is differentiable in an open set V . Then dφεn

converges to dφ0 uniformly in every compact subset of V .

This is an immediate consequence of Lemma 2 and

Theorem 2. [24], Theorem 25.7.
Let fn be a sequence of differentiable convex functions converging

pointwise to a differentiable function f . Then Dfn converges pointwise
to Df , and in fact uniformly on compact subsets.

3. Proof of the main result

We assume that the static classes consist in a finite number of hy-
perbolic periodic orbits, γi : [0, Ti] −→ Td, for 1 ≤ i ≤ m.

We recall the notation:

λi :=
1

Ti

∫ Ti

0

4hi(γi(t))dt 1 ≤ i ≤ m,

(which is well defined, see Lemma 5), and we assume that there is only
one i ∈ [1,m] for which λi is minimal: we denote it I.

A recent result of Fathi and Siconolfi [14] claims the existence of a
C1 critical subsolution f of the Hamilton-Jacobi equation, that is,

H(x,Df(x)) ≤ c.

Moreover, f can be constructed so that the inequality is strict outside
the Aubry set A (it has to be an equality on the Aubry set). The main
consequence for our purposes is that

L(x, v) + c−Df(x).v ≥ L(x, v) +H(x,Df(x))−Df(x).v ≥ 0. (16)

for all (x, v) ∈ Td×Rd, and it is zero if and only if (x, v) belongs to the
Aubry set, in other words, here, (x, v) = (γi(t), γ̇i(t)) for some i and t.

Lemma 4. Let φ be a viscosity solution of the Hamilton-Jacobi equa-
tion (1), and let ϕ = φ − f ; let also h(x, y) = h(x, y) + f(x) − f(y).
Then

(1) h(x, y) ≤ h(x, z) + h(z, y).
(2) h(x, y) ≥ 0, with equality if and only if x, y ∈ γi for some i.
(3) ϕ is constant on each γi.
(4) If x ∈ Td is a local maximum of ϕ, then there exists i such that

x ∈ γi.

Proof.
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Part (1) is straightforward, using the triangle inequality for h. For
(2) we have, from the definition of h given above,

h(x, y) = h(x, y) + f(x)− f(y))

= lim inf
T→∞

inf
γ;x−→y

∫ T

0

(L(γ(s), γ̇(s)) + c) ds+ f(x)− f(y)

= lim inf
T→∞

inf
γ;x−→y

∫ T

0

(L(γ(s), γ̇(s)) + c−Df(γ(s)).γ̇(s)) ds

It follows from inequality (16) that h(x, y) ≥ 0. If x and y are in
one γi, inequality (16) becomes an equality, so h(x, y) = 0. Finally if
x and y are not in the same static class, then all curves γ joining x
and y in time T will pass through a region where the inequality (16)
is strict. Besides, the curves γT : [0, T ] −→ Td, γT (0) = x, γT (T ) = y,
achieving the inf of the action, have uniformly bounded velocity, for
T ≥ 1 ([13]). Thus, the time spent by γT in a region where inequality
(16) is strict is bounded below, independently of T ≥ 1. This implies
that h(x, y) > 0.

Part (3): from the fact that

φ(γi(T ))− φ(γi(0)) =

∫ T

0

L(γi(t), γ̇i(t))dt+ cT (17)

(which is Equation (5)) it follows that

ϕ(γi(T ))−ϕ(γi(0)) =

∫ T

0

(L(γi(t), γ̇i(t))+ c−Df(γi(t)).γ̇i(t))dt (18)

Then, since L + c − Df is zero along the Aubry set, the conclusion
follows.

Part (4): It follows from the fact that φ is a viscosity solution of (1)
that, if x is a local maximum of ϕ, then

H(x,Df(x)) ≥ c,

but we know that this can happen only if x belongs to the Aubry
set. ¤
Lemma 5. If φ is a viscosity solution to the Hamilton Jacobi equa-
tion (1) and ϕ = φ − f has a local maximum at γi, then there is a
neighborhood V of γi such that

φ(x) = φ(xi)− h(x, xi)

for x ∈ V . This implies that (x,Dφ(x)) belongs to the stable manifold
of (γi(0), ∂L

∂v
(γ̇i(0))) under the Hamiltonian flow, and that φ is C3 on

V .
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Proof. Let us denote V a neighbourhood of xi on which xi is a local
maximum of ϕ.

For any j,

ϕ(xi) = ϕ(xi)− h(xi, xi) (19)

≥ ϕ(xj)− h(xi, xj). (20)

If the strict inequality holds for all j 6= i it follows from the continuity
of ϕ and h that there is a neighbourhood of γi where

ϕ(x) = max
j
ϕ(xj)− h(x, xj)

= ϕ(xi)− h(x, xi)

and hence φ(x) = φ(xi)− h(x, xi).
Let us now deal with the case when the equality occurs in (20) for

some j 6= i. We first construct some y ∈ ∂V such that h(xi, y) +
h(y, xj) = h(xi, xj) (and thus h(xi, y) + h(y, xj) = h(xi, xj)). To that
end, let γT : [0, T ] −→ Td be a curve joining xi to xj and achieving

hT (xi, xj) = inf{A(γ) + cT |γ : [0, T ] → Td joins xi and xj}.
Let TV ∈ [0, T ] be the first exit time of γT out of V , and yT = γT (TV ) ∈
∂V be the first point of intersection with ∂V .

We claim that, as T tends to infinity, TV as well as T − TV tend
to infinity; this follows directly from the fact that γ̇T (0) has to tend
to γ̇i(0), and γ̇T (T ) has to tend to γ̇j(0). To justify this last point,
consider v a limit point of γ̇T (0), and (γ(t), γ̇(t))t≥0 the trajectory of
(xi, v) under the Euler-Lagrange flow. From the fact that

hT (xi, xj)− hT−1(γT (1), xj) = A(γT |[0,1])

and taking the limit T −→ +∞, it follows that

h(xi, xj)− h(γ(1), xj) = A(γ|[0,1]).

We have also, by (5),

h(γi(−1), xj)− h(xi, xj) = A(γi|[−1,0])

so that

h(γi(−1), xj)− h(γ(1), xj) = A(γ|[0,1]) + A(γi|[−1,0])

which means that the curve obtained by gluing γi|[−1,0] with γ|[0,1] min-
imizes the action between its endpoints. In particular, it has to be
differentiable, thus v = γ̇(0) = γ̇i(0).

We know now that TV and T−TV tend to infinity. We have obviously

hTV
(xi, yT ) + hT−TV

(yT , xj) = hT (xi, xj).
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Taking for y a cluster point of (yT ), and using the uniform convergence
of hT to h, we obtain

h(xi, y) + h(y, xj) = h(xi, xj).

Finally, since xi is a maximum of ϕ on V , we have

ϕ(xi) ≥ ϕ(y)

≥ ϕ(xj)− h(y, xj)

= ϕ(xj) + h(xi, y)− h(xi, xj)

= ϕ(xi) + h(xi, y).

But h(xi, y) > 0, and this contradiction proves that the first alternative
holds.

We now come to the last part of the lemma. What we need to check
is that, in a neighbourhood of xi, if x is a point of differentiability
of h(x, xi), then (x,−Dh(x, xi)) is in the (weak) stable manifold of
∂L
∂v

(γi(0), γ̇i(0)) under the Hamiltonian flow.

Let γT : [0, T ] −→ Td be a curve joining x to xi and achieving

hT (x, xi) = inf{A(γ) + cT |γ : [0, T ] → Td joins x and xi}.
Consider a neighbourhood of the curve γi in Td × Rd:

Vκ = {(x, v), d((x, v), (γi(t), γ̇i(t)) ≤ κ for some t}.
If d(x, γi) ≤ δ then h(x, xi) ≤ Cδ, where C is the lipschitz constant of
h. Since the modified Lagrangian L+c−Df is strictly positive outside
the Aubry set, and since the velocity of the action-minimizers γT is
uniformly bounded for T ≥ 1, there exists an M(κ) > 0, independent
of T ≥ 1, such that, if γT goes out of Vκ then hT (x, xi) > M(κ). If δ
has been chosen small enough so that Cδ < M(κ), this implies that γT

has to stay inside Vκ as soon as d(x, γi) ≤ δ. Finally, the hyperbolicity
of γi implies that, if κ has been suitably chosen, (x, γ̇T (0)) converges
to a point (x, v) in the stable manifold of (γi(0), γ̇i(0)) as T tends to
infinity.

We call (xt, vt)t≥0 the trajectory of (x, v) under the Euler-Lagrange
flow: we have, for all t, s ≥ 0,

hT (γT (t), xi)− hT−s(γT (t+ s), xi) = A(γT |[t,t+s])

and, passing to the limit T −→ +∞,

h(xt, xi)− h(xt+s, xi) = A(x|[t,t+s]).

It is now a standard fact ([13]) that hi = h(., xi) is differentiable at
each xt for t > 0, and that −Dhi(xt) = ∂L

∂v
(xt, vt). ¤
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Lemma 6. If φ is a viscosity solution of the Hamilton-Jacobi equation
(1) such that ϕ = φ − f has only one local maximum at the orbit γI ,
then

φ(x) = φ(xI)− h(x, xI). (21)

Proof. Reordering the periodic orbits, let us assume without loss of
generality that I = 1, ϕ(x1) = 0 = −h(x1, x1) and ϕ(x1) ≥ ϕ(x2) ≥
. . . ≥ ϕ(xm).

As hypothesis of induction we assume that ϕ(xl) = −h(xl, x1) for
l ≤ i, and we prove that ϕ(xi+1) = −h(xi+1, x1). Suppose on the
contrary that ϕ(xi+1) > −h(xi+1, x1). From the domination condition
we have that ϕ(xl) ≤ ϕ(xi+1) + h(xi+1, xl) for any l, if we had an
equality for some l ≤ i,

ϕ(xi+1) = ϕ(xl)− h(xi+1, xl)

= −h(xl, x1)− h(xi+1, xl)

≤ −h(xi+1, x1)

in contradiction with our assumption. So we have the strict inequality
ϕ(xl) ≤ ϕ(xi+1) + h(xi+1, xl) for all l ≤ i. On the other hand, it is
obvious that ϕ(xl) < ϕ(xi+1) + h(xi+1, xl) for l ≥ i+ 2. It follows then
that there is a small neighbourhood Vi+1 of xi+1 such that that if x is
in Vi+1 then

ϕ(x) = ϕ(xi+1)− h(x, xi+1),

so that ϕ has a local maximum at xi+1, contradicting our assumption.
Therefore

ϕ(x) = ϕ(xI)− h(x, xI)

which is equivalent to (21). ¤

Lemma 7.

c′+(0) = lim inf
ε→0+

c(ε)− c(0)

ε
≥ −λI

Proof. We will prove that

lim inf
ε→0+

c(ε)− c(0)

ε
≥ −λI − r

for an arbitrary r > 0.
Let Φ be a C3 function that coincides with −hI = −h(., xI) in a

neighbourhood V of γI .
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Consider the vector field U(x) = ∂H
∂p

(x,DΦ(x)), which has γI as an

attractive periodic orbit. Let Xε be the solution to
{
dXε(t) = U(Xε(t))dt+

√
2ε dW (t)

Xε(0) = xI .
(22)

Let δ > 0 be sufficiently small to have δ‖Φ‖C3 ≤ r and Bδ(γI) :=
{x, d(x, γI) ≤ δ} ⊂ V , and define the stopping time

τ(ω) = min{s > 0 : d(Xε(s, ω), γI(s)) ≥ δ}. (23)

Since

L(x, U(x)) +H(x,DΦ(x)) = DΦ(x).U(x)

H(x,DΦ(x)) = c(0) for all x ∈ V,
we have from (10),

(c(ε)−c(0))E(τ∧κ) ≥ E
(
φε(Xε(τ∧κ))−φε(xI))−

∫ τ∧κ

0

DΦ(Xε(s)).U(Xε(s))ds
)
,

for all κ > 0 (we denote τ ∧ κ the bounded stopping time min(τ, κ)).
An application of Ito’s formula gives

E(Φ(Xε(τ ∧ κ))− Φ(xI))

= E
(∫ τ∧κ

0

DΦ(Xε(s))U(Xε(s))ds+ ε4 Φ(Xε(s))ds
)
.

Defining ψε = φε − Φ we get

(c(ε)−c(0))E(τ∧κ) ≥ E
(
ψε(Xε(τ∧κ))−ψε(xI))+ε

∫ τ∧κ

0

4Φ(Xε(s))ds
)
.

For s ∈ [0, τ(ω)],

| 4 Φ(Xε(s, ω)) +4hI(γI(s))| ≤ ‖Φ‖C3δ ≤ r

so that
∣∣∣∣E

(∫ τ∧κ

0

4Φ(Xε(s))ds
)

+ E
(∫ τ∧κ

0

4hI(γI(s), xi)ds
)∣∣∣∣ ≤ E(τ ∧ κ)r.

Let M = sup
x,ε
|ψε(x)| (which is finite by Lemma 2), then

c(ε)− c(0)

ε
≥ − 2M

εE(τ ∧ κ) −
1

E(τ ∧ κ)E
(∫ τ∧κ

0

4hI(γI(s))ds
)
−r.
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In the case when TI > 0, we can write

E
(∫ τ∧κ

0

4hI(γI(s))ds
)

=

∫ +∞

0

4hI(γI(s))P(τ ∧ κ > s)ds

=

∫ TI

0

4hI(γI(s))
(+∞∑

k=0

P(τ ∧ κ > s+ kTI)
)
ds

≤
∫ TI

0

4hI(γI(s))
(
1 +

∫ +∞

0

P(τ ∧ κ > s+ uTI)du
)
ds

=

∫ TI

0

4hI(γI(s))
(
1 + E(

τ ∧ κ− s

TI

)
)
ds

so that

1

E(τ ∧ κ)E
(∫ τ∧κ

0

4hI(γI(s))ds
)
≤ 1

TI

∫ TI

0

4hI(γI(s))ds+
TI ||hI ||C2(V )

E(τ ∧ κ)
and we can now let κ tend to infinity to obtain:

c(ε)− c(0)

ε
≥ − 2M

εE(τ)
− TI ||hI ||C2(V )

E(τ)
− 1

TI

∫ TI

0

4hI(γI(s))ds− r.

For TI = 0, the same argument would hold, with obvious modifications.
Freidlin and Wentzel ([16], Chapter 4.4) gave an estimate for E(τ),

for a stochastic perturbation of a vector field having a sink. Here the
vector field has a sink or an attractive periodic orbit γI , but, clearly,
the estimates of [16] apply also in the second situation:

m = lim inf
ε→0

ε logE(τ) > 0.

Letting now ε > 0 go to zero we obtain

c′+(0) ≥ −λI − r.

¤
Suppose that a sequence (φεn) of solutions of (2) converges to φ0.

Let ψ be a C3 function that coincides with φ0 on a neigbourhood Vi of
each γi that is a local maximun of φ0 − f (such a function ψ exists by
Lemma 5). Then ψε = φε − ψ is a solution to the equation

H(x,Dψε +Dψ) + ε4 ψε + ε4 ψ = c(ε)

which can be written as

H̃ε(x,Dψε) + ε4 ψε = c(ε), (24)

where the hamiltonian H̃ε has corresponding lagrangian

L̃ε(x, v) = L(x, v)−Dψ(x).v − ε4 ψ(x).
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As in (10), ψε satisfies the variational formulation of Equation (24):

ψε(x) = sup
u
E

(
ψε(Xε(τ))−

∫ τ

0

L̃(Xε(s), u(s))ds− c(ε)τ
)
, (25)

Lemma 8. Suppose that the function φ0 − f has a local maximum at
γi; then i = I and

lim
n→∞

c(εn)− c(0)

εn

= −λI

Proof. Let 2r = min
j 6=I

λj − λI , and consider the vector field

uε(x) =
∂H̃ε

∂p
(x,Dψε(x)) =

∂H

∂p
(x,Dφε(x)).

Given 1 ≤ i ≤ m, let Xε be the solution to
{
dXε(t) = uε(Xε(t))dt+

√
2ε dW (t)

Xε(0) = xi.
(26)

We know then that (uε(Xε(t))) is the optimal control associated to
the variational formulation (25), which means that, for all bounded
stopping time τ ,

ψε(x) = E
(
ψε(Xε(τ))−

∫ τ

0

(
L(Xε(s), uε(Xε(s))

− Dψ(Xε(s))uε(Xε(s))
)− ε

∫ τ

0

4ψ(Xε(s)))ds− c(ε)τ
)
.

Let δ > 0 be sufficiently small to have δ‖ψ‖C3 ≤ r and Bδ(γi) ⊂ Vi

and define

τ(ω) = min{s > 0 : d(Xε(s, ω), γi(s)) ≥ δ}. (27)

Since Dψ(x).uε(x) ≤ L(x, uε(x)) + H(x,Dψ(x)) and H(x,Dψ(x)) =
c(0) for x ∈ Vi.

((c(ε)−c(0))E(τ∧κ) ≤ E
(
ψε(Xε(τ∧κ))−ψε(xi)+ε

∫ τ∧κ

0

4ψ(Xε(s))ds
)

for all κ > 0.
For s ∈ [0, τ(ω)],

| 4 ψ(Xε(s, ω)) +4hi(γi(s), xi)| ≤ ‖ψ‖C3δ ≤ r

so that∣∣∣∣E
(∫ τ∧κ

0

4ψ(Xε(s))ds
)

+ E
(∫ τ∧κ

0

4hi(γi(s))ds
)∣∣∣∣ ≤ E(τ ∧ κ)r.
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Let M = sup
x,ε
|ψε(x)|, then

c(ε)− c(0)

ε
≤ 2M

εE(τ ∧ κ) −
1

E(τ ∧ κ)E
(∫ τ∧κ

0

4hi(γi(s))ds
)
+r.

Reasoning as in the proof of Lemma 7, we get

1

E(τ ∧ κ)E
(∫ τ∧κ

0

4hi(γi(s))ds
)
≥ 1

Ti

∫ Ti

0

4hi(γi(s))ds−
2Ti||hi||C2(Vi)

E(τ ∧ κ)
and we can now pass to the limit κ −→ +∞ to get

c(ε)− c(0)

ε
≤ 2M

εE(τ)
− 1

Ti

∫ Ti

0

4hi(γi(s))ds−
2Ti||hi||C2(Vi)

E(τ)
+ r.

By Lemma 3, (uεn) converges uniformly to ∂H
∂p

(x,Dφ0(x)) in the

neighborhood Vi; the estimate of Freidlin and Wentzell for E(τ) also
applies ([16], Chapter 5.3):

m = lim inf
n→∞

εn logE(τ) > 0,

and so, letting n grow we obtain

lim sup
n→∞

c(εn)− c(0)

εn

≤ −λi + r,

which, by our choice or r, is possible only if i = I. ¤
Proof of Theorem 1 . Let f be a C1 critical subsolution, strict outside

the static classes. Let φεn be any sequence of solutions of (1). By
Lemma 2 we know that there is a convergent subsequence φεnk

. Let φ0

be the limit. From Lemma 8, we know the only place where φ0−f can
have a local maximum is at γI . Finally from Lemma 6, we know that
φ0(x) = φ0(xI)− h(x, xI). Besides, φ0(xI) = limφεnk

(xI) = 0. ¤
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