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Abstract. We study the time-dependent Schrödinger equation ı ∂u
∂t

= − 1
2
∆u, on a compact

riemannian manifold on which the geodesic flow has the Anosov property. Using the notion
of semiclassical measures, we prove various results related to the dispersive properties of the
Schrödinger propagator, and to controllability.

1. Introduction

Let M be a smooth compact riemannian manifold of dimension d (without boundary).
We denote by ∆ the laplacian on M . We are interested in understanding the regularizing
properties of the Schrödinger equation

ı
∂u

∂t
= −1

2
∆u, uet=0 ∈ L2(M).

More precisely, given a sequence of initial conditions un ∈ L2(M), we investigate the asymp-
totic behaviour of the family of probability measures

(1) νn(dx) =

(∫ T

0
|eıt∆/2un(x)|2dt

)
dVol(x)

(where Vol denotes the riemannian volume measure on M).
We want to relate this question to the behaviour of the geodesic flow, using results on prop-

agation of singularities. For that purpose, we reformulate the question using the semiclassical
formalism, and more specifically the notion of semiclassical measures. We consider a sequence
of states (u~)~→0+ normalized in L2(M) (indexed by a parameter ~ > 0 going to 0, which
plays the role of Planck’s constant in quantum mechanics), and for every t ∈ R we define the
following family of distributions on the cotangent bundle T ∗M :

(2) ∀a ∈ C∞o (T ∗M), µ~(t)(a) =

∫
T ∗M

a(x, ξ)dµ~(x, ξ) := 〈eıt∆/2u~|Op~(a)|eıt∆/2u~〉L2(M),

where Op~(a) is a ~-pseudodifferential operator of principal symbol a (see [9], or appendix A
for a brief reminder). This construction gives a description of a state in terms of position
and impulsion variables. Throughout the paper, we will denote by U t := eıt∆/2 the quantum
propagator.

By standard estimates on the norm of Op~(a) (the Calderón-Vaillancourt theorem), the map
t 7→ µ~(t) belongs to L∞(R;D′ (T ∗M)), and is uniformly bounded in that space as ~ −→ 0+.
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Thus, one can extract subsequences that converge in the weak-∗ topology of L∞(R;D′ (T ∗M)).
In other words, after possibly extracting a subsequence, we have

(3) µ~(θ ⊗ a) :=

∫
R
θ(t)a(x, ξ)µ~(t)(dx, dξ)dt −→

~−→0

∫
R
θ(t)a(x, ξ)µ(t)(dx, dξ)dt

for all θ ∈ L1(R) and a ∈ C∞o (T ∗M). The main example to keep in mind is the case when θ
is the characteristic function of some interval [0, T ]. In that case we can write

µ~(θ ⊗ a) =

∫ T

0
〈eıt∆/2u~|Op~(a)|eıt∆/2u~〉dt = ~

∫ T/~

0
〈eıτ~∆/2u~|Op~(a)|eıτ~∆/2u~〉dτ.

In the last term we have used the change of variable t = ~τ to express everything in terms
of the flow eıt~∆/2, which solves the equation −~2

2 ∆v = ı~∂v∂t with the time-parametrization
of quantum mechanics. Thus, in the time-scale of quantum mechanics, we are averaging over
time intervals of order ~−1.

It follows from standard properties of Op~(a) that the limit µ has the following properties :
• for almost all t, µ(t) is a positive measure on T ∗M .
• the unitarity of U t implies that

∫
T ∗M µ(t)(dx, dξ) does not depend on t; from the

normalization of u~, we have
∫
T ∗M µ(t)(dx, dξ) ≤ 1, the inequality coming from the

fact that T ∗M is not compact, and that there may be an escape of mass to infinity.
• define the geodesic flow gs : T ∗M −→ T ∗M as the hamiltonian flow associated with
the energy p(x, ξ) = ||ξ||2x

2 . From the Egorov theorem, we have

∀τ ∈ R, e−iτ~∆/2Op~(a)eiτ~∆/2 = Oph(a ◦ gτ ) +Oτ,a(~)

for a ∈ C∞o (T ∗M). At the limit ~ −→ 0+, this implies that µ(t) is invariant under gτ ,
for almost all t and all τ .

These sequences of distributions were already studied by Macià [23]; we refer to that paper
for details about the facts mentioned above. Macià was mostly interested in describing the
properties of the measures µ(t) in the case where the geodesic flow on the manifold M was
not chaotic (Zoll manifolds for instance, or the flat torus [24, 3]).

In this paper, we are interested in a completely different situation where the geodesic flow
has the Anosov property (manifolds of negative curvature are the main example). In this
setting, the case where the initial states u~ are eigenfunctions of the laplacian, satisfying
−~2∆u~ = u~, has been much studied; in this particular situation µ~(t) does not depend on
t. The Shnirelman theorem (also called quantum ergodicity theorem) says that for a “typical”
sequence of eigenfunctions u~, the limit µ is the Liouville measure on the unit cotangent bundle
S∗M ; see [35, 38, 8] for the precise statement. It is also known, by the work of Anantharaman
and Nonnenmacher, that for any sequence of eigenfunctions the limit µ has positive entropy
[1, 4, 5]. The aim of this paper is twofold: extend the Shnirelman theorem to the setting of the
time dependent equation and prove lower bounds on the metric entropy of the measures µ(t).
We shall also show how these results apply to the controllability problem for the Schrödinger
equation.

2. Statement of the results

2.1. Semiclassical large deviations. Our first result is a generalization (and a reinforce-
ment in the case of Anosov geodesic flows) of the quantum ergodicity theorem. Recall that the
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Shnirelman theorem is originally a result on orthonormal bases of eigenfunctions of the lapla-
cian. In order to state an analogue for solutions of the time dependent Schrödinger equation,
we introduce a notion of generalized orthonormal families.

2.1.1. Generalized orthonormal family. We fix α > 0 and a sequence I(~) := [a(~), b(~)]
of subintervals that are of length at least 2α~ for every ~ > 0. We also assume that
lim~→0+ a(~) = lim~→0+ b(~) = 1. We denote by N(I(~)) the number of eigenvalues λ2

j of
∆ (counted with their multiplicities) satisfying ~2λ2

j ∈ I(~). We assume that

(4) N(I(~)) =
Vol(M)

(2π~)d
Vol(Bd(0, 1))(b(~)− a(~))(1 + o(1))

(where Vol(M) is the riemannian volume of M , and Vol(Bd(0, 1)) is the volume of the unit
ball in Rd). According to [10], we know that the Weyl law (4) holds in the case where
b(~) − a(~) = 2α~ if we suppose that the set of closed geodesics is of zero Liouville measure
on S∗M (this is the case for Anosov geodesic flows).

We introduce the notion of generalized orthonormal family localized in the “energy window”
I(~):

Definition 2.1. For ~ > 0, let (Ω~,P~) be a probability space and u~ : Ω~ → L2(M) a
measurable map. We say that (u~(ω))ω∈(Ω~,P~) is a generalized orthonormal family (G.O.F.)
in the spectral window I(~) if

• ‖u~(ω)‖L2(M) = 1 + o(1) as ~ tends to 0 (uniformly for ω in Ω~);
•
∥∥(IdL2(M) − 1lI(~)

(
−~2∆

))
u~(ω)

∥∥
L2(M)

= o(1) as ~ tends to 0 (uniformly for ω in Ω~);
• for every B in L(L2(M)),

(5)
∫

Ω~

〈u~(ω)|B|u~(ω)〉L2(M)dP~(ω) =
1

N(I(~))
Tr
(
B1lI(~)(−~2∆)

)
.

We stress the fact that if (u~(ω))ω∈(Ω~,P~) is a G.O.F., then (U tu~(ω))ω∈(Ω~,P~) is also one
for every t. This is a strong requirement which is crucial in the sequel. In section 4, we will
provide two examples of G.O.F.

We will denote by µ~,ω(t) the (time-dependent) distribution associated to u~(ω) by for-
mula (2).

2.1.2. Semiclassical large deviations. The quantum ergodicity theorem says that, for a given
orthonormal basis of eigenvectors of ∆, “most of” the associated distributions on T ∗M converge
to the Liouville measure on the unit cotangent bundle S∗M := {p = 1/2} (we recall that
p(x, ξ) = ||ξ||2x

2 is the classical energy). This holds under the assumption that the geodesic flow
acts ergodically on S∗M endowed with the Liouville measure. Here we aim for a more precise
statement, and will assume that the geodesic flow has the Anosov property. Our result will,
in particular, imply a reinforced version of the usual Shnirelman theorem.

We recall that the Liouville measure on T ∗M is the measure given by dL = dxdξ in local
coordinates. In a region where the hamiltonian p has no critical point, one can find local
symplectic coordinates (x1, . . . , xd, ξ1, . . . , ξd) such that x1 = p, and the Liouville measure
can be decomposed into dL = dx1dLx1(x, ξ), where Lx1 is a smooth positive measure carried
by the energy layer {p = x1}. We shall restrict our attention to the unit cotangent bundle,
S∗M = {p = 1

2}, and will denote by L = L 1
2
. This is the Liouville measure on S∗M .
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Given a G.O.F. (u~(ω))ω∈(Ω~,P~), our result says that for “most” ω (in the sense of P~) the
distributions µ~,ω(t) are close to the Liouville measure L. We will use a large deviations result
due to Kifer [19] to give an estimate on the proportion of ω for which µ~,ω(t) is far away from
L. To state our result, we need to introduce two dynamical quantities. First, we define the
maximal expansion rate of the geodesic flow on S∗M as

χmax := lim
τ→±∞

1

τ
log sup

ρ∈S∗M
‖dρgτ‖.

This quantity gives an upper bound on the Lyapunov exponents over S∗M and it is linked to
the range of validity of the semiclassical approximation in the Egorov theorem [6]. We also
introduce, for every δ in R and every a in C∞o (T ∗M,R) such that L(a) = 0,

H(δ) := inf
s∈R
{−sδ + P (sa+ ϕu)} ,

where f 7→ P (f) is the topological pressure of the continuous map f and ϕu is the infinitesimal
unstable jacobian (see section 3 for details). The map δ 7→ −H(δ) is the Legendre transform
of s 7→ P (sa+ϕu) which is a smooth and convex function on R. In particular, −H is a convex
map on R and it satisfies H(0) = 0 and H(δ) < 0 for all δ 6= 0 (see 3.3).

Theorem 2.2. Suppose (S∗M, (gt)) has the Anosov property. We fix a generalized orthonor-
mal families (u~(ω))ω∈(Ω~,P~) (with ~→ 0+). We fix two observables,

• an element θ in L1(R,R+) such that
∫
θ(t)dt = 1,

• an element a in C∞o (T ∗M,R) such that
∫
S∗M adL = 0.

Then, we have, for any δ > 0,

lim sup
~→0

logP~ ({ω ∈ Ω~ : µ~,ω(θ ⊗ a) ≥ δ})
| log ~|

≤ H(δ)

χmax
.

From this theorem and the properties of H(δ), one can deduce the following corollary :

Corollary 2.3. Suppose (S∗M, (gt)) has the Anosov property. We fix a G.O.F. (u~(ω))ω∈(Ω~,P~)

(with ~ → 0+). Then, for every δ > 0, for every a ∈ C∞o (T ∗M,C), and for every function θ
in L1(R,R+), we have

(6) P~

({
ω ∈ Ω~ :

∣∣∣∣µ~,ω(θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣ ≥ δ}) = Oa,δ,θ
(
~H̃(δ)

)
,

where H̃(δ) > 0 depends on a, θ and δ.

2.1.3. Comments. As already mentioned, this result reinforces the Shnirelman theorem in
the case of Anosov geodesic flows. The Shnirelman theorem (suitably adapted to the time
dependent Schrödinger equation) would simply assert that for an ergodic geodesic flow, and
for every δ > 0,

P~

({
ω ∈ Ω~ :

∣∣∣∣µ~,ω(θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣ ≥ δ}) = oa,δ,θ (1) .

The algebraic rate of corollary 2.3 can be compared with a classical conjecture in quantum
chaos, known as the quantum variance conjecture [13, 11]. This conjecture is usually formu-
lated for eigenfunctions of the laplacian and states that the quantum variance behaves (modulo
a prefactor related to a classical variance) like 1/TH(~), where TH(~) is the Heisenberg time.
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Recall that the Heisenberg time is defined as ~ρ(~), where ρ(~) is the mean density of states
(which is proportional to ~−d in our case). Translated in our context, it would predict that∫

Ω~

∣∣∣∣µ~,ω (θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣2 dP~(ω) ∼ V (a, θ)~d−1,

where V (a, θ) would be a classical dynamical variance. If this conjecture is true, it implies

P~

({
ω ∈ Ω~ :

∣∣∣∣µ~,ω(θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣ ≥ δ}) = O
(
~d−1

)
,

which is stronger than our result.
Related to this kind of questions, Zelditch proved in [39] that∫

Ω~

∣∣∣∣µ~,ω (θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣p dP~(ω) = O(| log ~|−p/2)

for all p ≥ 1 (see also [34]). Again, his proof is written for the eigenfunction problem, but
could easily be transposed to the time-dependent Schrödinger equation (see [31] – and note
that we have to make the extra assumption ‖u~(ω)‖L2 = 1 + O(| log ~|−1) uniformly in ω).
Using the Bienaymé-Chebyshev inequality, Zelditch’s result implies that

P~

({
ω ∈ Ω~ :

∣∣∣∣µ~,ω(θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣ ≥ δ}) = O(| log ~|−∞).

Our theorem – although it does not say anything about the quantum variance – improves this
aspect of Zelditch’s result, as we can replace O(| log ~|−∞) by O

(
~H̃(δ)

)
.

2.2. Entropy of semiclassical measures. Our second result is a lower bound on the Kolmogorov-
Sinai entropy of the measures µ(t). We will consider a sequence of normalized states (u~)~→0+

in L2(M). We fix two energy levels 0 ≤ E1 < E2 and we suppose that the family of states is
localized in the energy window [E1, E2]. Precisely, we make the assumption that

(7) lim
~→0+

∥∥(IdL2(M) − 1l[E1,E2]

(
−~2∆

))
u~
∥∥
L2(M)

= 0.

This assumption implies that each µ(t) is a probability measure carried by the set {E1 ≤
‖ξ‖2x ≤ E2} (it prevents escape of mass in the fibers of T ∗M). In addition, we recall that µ(t)
is invariant under the geodesic flow. Using the invariance of the energy under the geodesic
flow, we see that for Lebesgue a.e. t, µ(t)(dx, dξ) is of the form

∫
µt,E(dx, dξ)ν(dE), where ν

is a positive measure on the interval [E1, E2] and µt,E is a probability measure on {‖ξ‖2x = E}
invariant under the geodesic flow.

Remark 1. We underline the fact that the measure ν is independent of t. It is the weak
limit (after extraction of a subsequence) of the measures ν~ defined on R by ν~([E,E′]) =∥∥1l[E,E′]

(
−~2∆

)
u~
∥∥2.

In the following theorem, hKS(µ, (gτ )) denotes the entropy of the invariant probability
measure µ for the geodesic flow gτ (its definition is recalled in section 3).

Theorem 2.4. Let M be a compact riemannian manifold of dimension d and constant cur-
vature ≡ −1. We fix two energy levels 0 ≤ E1 < E2 and we consider a sequence (u~)~→0+ in
L2(M) that satisfies:

• the energy localization lim~→0

∥∥(IdL2(M) − 1l[E1,E2](−~2∆)
)
u~
∥∥
L2(M)

= 0,
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• lim~→0 ‖u~‖L2(M) = 1.

Consider µ(t)(dx, dξ) =
∫
µt,E(dx, dξ)ν(dE) a weak-∗ limit in L∞(R;D′ (T ∗M)) of the se-

quence of distributions µ~(t) defined in (2). Then, one has, Leb⊗ ν almost everywhere,

hKS(µt,E , (g
τ )) ≥ d− 1

2

√
E.

Remark 2. For the sake of simplicity, we only state and prove the results in the case of constant
curvature. In principle the methods from [4, 5] for general Anosov manifolds or from [30] for
Anosov surfaces could be adapted in this setting. However, one step requires a non-trivial
adaptation : see Remark 8. Modulo this extra work, the result in variable curvature would
read :

hKS(µt,E , (g
τ )) ≥

(∫
|ϕu|dµt,E −

d− 1

2
χmax(E)

)
where ϕu is the unstable jacobian and χmax(E) is the maximal expansion rate of the geodesic
flow on the energy layer {p = E

2 } (see §3). This lower bound may be negative (and thus
trivial) if χmax is too large compared to the average of ϕu. For surfaces, the adaptation of the
ideas of [30] would lead to the better result

hKS(µt,E , (g
τ )) ≥ 1

2

∫
|ϕu|dµt,E > 0.

Remark 3. We note that
√
E is the speed of trajectories of gτ on the energy layer {p = E

2 }.
It is also natural to consider the geodesic flow φτ = gτ/

√
E parametrized to have speed 1 on

any energy layer, and our result then reads hKS(µt,E , (φ
τ )) ≥ d−1

2 .
If one wants, one can avoid assumption (7) and deal with the issue of escape of mass in a

different manner : consider the space S0 of smooth functions a on T ∗M that are 0-homogeneous
outside a compact set. The distributions µ~(t) are bounded in L∞(R,S ′0), and one can consider
convergent subsequences in the corresponding weak-∗ topology. The corresponding limits
µ ∈ L∞(R,S ′0) are actually positive for almost all t, and each µ(t) defines a probability measure
on T̂ ∗M , the cotangent bundle compactified by spheres at infinity. We note that the flow φt

can be extended to the spheres at infinity. We can then write µ(t) =
∫
µt,E(dx, dξ)ν(dE) where

now ν is a probability measure on [0,+∞]. Our result reads : hKS(µt,E , (g
τ )) ≥ d−1

2

√
E for

0 ≤ E < +∞, and hKS(µt,E , (φ
τ )) ≥ d−1

2 for 0 < E ≤ +∞.

Remark 4. u~ vs. un. Let (un) be a normalized sequence in L2(M), and suppose we want to
study the sequence of probability measures (1). No scale ~n is given a priori. We can always
choose ~n such that (7) is satisfied, and apply Theorem 2.4. However, the statement of the
theorem is trivial for the part of the limit measure carried on {ξ = 0} : it just says that
hKS(µt,0, g

t) ≥ 0. Thus, it is preferable to choose ~n such that none of the limit mass goes
to {ξ = 0}. If un converges weakly to 0 in L2, this is also possible but in general (7) will no
longer be satisfied (some of the mass will escape to infinity) and one must in this case use the
version of the theorem stated in Remark 3. If un converges weakly to 0 in L2 and if one is
ready to have all the mass escape to infinity (thus losing some information about the rate of
escape), one can even let ~n = 1. This means that one considers the “distribution”

µn(t)(b) := 〈un|e−ıt
∆
2 Op1(b)eıt

∆
2 un〉L2(M),

defined for all b ∈ S0. This is the analogue of (2) in the microlocal setting [14]. The map
t 7→ µn(t) belongs to L∞(R,S ′0). Thus, there exists a subsequence (unk)k and µ in L∞(R,S ′0)
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such that∫
R×T̂ ∗M

θ(t)b(x, ξ)µnk(t)(dx, dξ)dt −→
k−→+∞

∫
R×T̂ ∗M

θ(t)b(x, ξ)µ(t)(dx, dξ)dt

for all θ ∈ L1(R) and b ∈ S0. Besides, as above, µ(t) is a probability measure on the com-
pactified cotangent bundle T̂ ∗M , and is invariant under the normalized geodesic flow. As
un(t) = eıt

∆
2 un converges weakly to 0 for every t in R, each µ(t) is actually supported at

infinity, and may thus be identified with a probability measure on the unit sphere bundle
S∗M , invariant under the geodesic flow.

Theorem 2.4 adapted to this setting says that hKS(µ(t), (gτ )) ≥ d−1
2 for every t in R.

2.3. Application to controllability. Theorem 2.4, in the form given in Remark 4, implies
the following observability inequality :

Theorem 2.5. Let M be a compact riemannian manifold of dimension d and constant cur-
vature ≡ −1. Let a be a smooth function on M , and define the closed gτ -invariant subset of
S∗M ,

Ka = {ρ ∈ S∗M,a2(gτ (ρ)) = 0 ∀τ ∈ R}.
Assume that the topological entropy of Ka is < d−1

2 . Then, for all T > 0, there exists CT,a > 0
such that, for all u :

(8) ‖u‖2L2(M) ≤ CT,a
∫ T

0
‖aeıt

∆
2 u‖2L2(M)dt.

Remark 5. Note that the topological entropy of a (gτ )-invariant compact subset K of S∗M is
related to the Kolmogorov-Sinai entropy by the variational principle [37]

htop(K, (g
τ )) := sup

µ∈M(S∗M,gτ )
{hKS(µ, (gτ )) : µ(K) = 1} ,

where M(S∗M, gτ ) is the set of probability measures on S∗M invariant under the geodesic
flow. Thanks to Theorem 5.2 in [28], our assumption on the topological entropy of Ka is
satisfied when the Hausdorff dimension of Ka is < d. The converse is also true if Ka is locally
maximal subset (Theorem 4.1 in [28]), i.e. there exists an open neighborhood U of Ka such
that Ka = ∩τ∈RgτU .

The proof that Theorem 2.4 implies Theorem 2.5 is given in §7. This follows a classical
argument due to Lebeau [20], who used it to prove the following fact : if M is an arbitrary
riemannian manifold, and if Ka = ∅ (“geometric control condition”), then (8) holds.

We can give an example where our assumption on the topological entropy of Ka is satisfied.
Consider a closed geodesic γ and a small tubular neighborhood of this geodesic in M that
does not contain another complete geodesic. We take a to be nonzero on the complementary
of this neighborhood and 0 near the closed geodesic. In this case, one has Ka = γ so that our
condition holds. Another example, in dimension d = 2, goes as follows : take a decomposition
of the hyperbolic surface M into “hyperbolic pairs of pants” (there are 2g − 2 pairs of pants
if M has genus g). The boundary of each pair of pants consists of 3 simple closed geodesics.
Take a function a supported in a neighborhood of the union of these 3g − 3 simple closed
geodesics, and assume that a does not vanish on the union of these curves. Thus, any geodesic
that avoids the support of a must stay inside one of the pairs of pants. If the length of each
of the 3g − 3 boundary components is large enough, this will imply that Ka has dimension
< d, and our condition will be satisfied. The existence of a hyperbolic pants decomposition
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with boundary components of arbitrary large lengths follows, for instance, from Proposition
2.2 in [29]. It would be interesting to find a larger variety of geometric situations in which our
assumption on Ka holds.

Following the Hilbert uniqueness method, one knowns that inequality (8) implies the fol-
lowing : for any u0, uT ∈ L2(M), for any T > 0, there exists f(t, x) ∈ L2([0, T ] ×M) such
that the solutions of

ı
∂u

∂t
+

∆

2
u = a(x)f(t, x)

with initial condition u|t=0 = u0 satisfies u|t=T = uT . This is called the controllability problem.

Remark 6. As already mentioned, this application to the controllability problem relies on the
entropic estimate of Theorem 2.4 which is proved for manifolds of constant negative curvature.
In Remark 2, we indicated what should be (modulo extra work) the extension of Theorem 2.4
in the case of manifolds of variable negative curvature. Let us mention what would then be
the consequences for controllability. In the case of manifolds of variable negative curvature,
controllability would hold under the condition that

Ptop(Ka, (g
τ ), ϕu) < −d− 1

2
χmax,

where Ptop(Ka, (g
τ ), ϕu) is the topological pressure of Ka with respect to ϕu [27] (appendix

II). If M is of variable curvature, there is no precise relation between such a condition and
the Hausdorff dimension of Ka. In the case of surfaces of variable negative curvature, the
entropic estimate of Remark 2 would imply that controllability holds under the more general
condition

Ptop

(
Ka, (g

τ ),
1

2
ϕu
)
< 0.

This condition is satisfied when the Hausdorff dimension of Ka is < 2 (Theorem 5.2 in [28]).

Organization of the paper. In section 3, we describe some background in dynamical sys-
tems that we will need at different points of the article. In section 4, we give two examples of
G.O.F. and apply Theorem 2.2 to them. In sections 5 and 6, we prove Theorems 2.2 and 2.4.
Finally, in section 7, we show how to derive an observability result from Theorem 2.4. In the
appendix, we give a brief reminder on semiclassical calculus on a manifold (appendix A).

3. Dynamical systems background

3.1. Anosov property. In this paper, we suppose thatM is a smooth, compact, riemannian
manifold M of dimension d (without boundary). The geodesic flow (gτ ) on T ∗M is the
hamiltonian flow associated to the hamiltonian p(x, ξ) = ‖ξ‖2x

2 . We also assume that, for
any E > 0, the geodesic flow gτ is Anosov on the energy layer p−1({E2 }) ⊂ T ∗M : for all
ρ ∈ p−1({E2 }), we have a decomposition

Tρp
−1 ({E/2}) = Eu(ρ)⊕ Es(ρ)⊕ RXp(ρ),

where Xp is the hamiltonian vector field associated to p, Eu the unstable space and Es the
stable space [16]. We can introduce the infinitesimal unstable Jacobian as follows [7]:

ϕu(ρ) := − d

dτ

(
det
(
dρg

τ
|Eu(ρ)

))
τ=0

.
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3.2. Kolmogorov-Sinai entropy. Let us recall a few facts about Kolmogorov-Sinai (or met-
ric) entropy that can be found for example in [37]. Let (X,B, T, µ) be a measurable dynamical
system, and P := (Pα)α∈I a finite measurable partition of X, i.e. a finite collection of mea-
surable subsets that forms a partition. Each Pα is called an atom of the partition. With the
convention 0 log 0 = 0, one defines

(9) Hn(µ, T,P) = −
∑
|α|=n

µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) logµ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1).

This quantity satisfies a subadditivity property

(10) Hn+m(µ, T,P) ≤ Hn(µ, T,P) +Hm

(
µ, T, T−nP

)
= Hn(µ, T,P) +Hm(µ, T,P).

The first inequality is true even if the probability measure µ is not T -invariant, while the last
equality holds for T -invariant measures. A classical argument for subadditive sequences allows
to define the following quantity:

(11) hKS(µ, T,P) := lim
n→∞

Hn (µ, T,P)

n
.

It is called the Kolmogorov-Sinai entropy of (T, µ) with respect to the partition P. The
Kolmogorov-Sinai entropy hKS(µ, T ) of (µ, T ) is then defined as the supremum of hKS(µ, T,P)
over all finite partitions P of X. In the case of a flow (for instance the dynamical system
(S∗M, gτ , µ)), we define the entropy hKS(µ, (gτ )) := hKS(µ, g1). Entropy can a priori be
infinite. However, for a smooth flow on a compact finite dimensional manifold, entropy is
bounded thanks to the Ruelle inequality [33]. In the case of the geodesic flow on a negatively
curved manifold, it reads

hKS(µ, (gτ )) ≤ −
∫
S∗M

ϕu(ρ)dµ(ρ),

and equality holds if and only if µ is the desintegration L of the Liouville measure on S∗M
(defined in §2.1.2) [26, 21].
Notation : In the rest of this paper, we will write hKS(µ) for hKS(µ, (gτ )), unless we want

to consider a flow different from (gτ ).

3.3. Topological pressure. To conclude this section, we introduce the topological pressure
of the dynamical system (S∗M, gt) as the Legendre transform of the Kolmogorov-Sinai en-
tropy [37, 25, 27]:

∀f ∈ C0(S∗M,R), P (f) = P (S∗M, (gτ ), f) := sup

{
hKS(µ) +

∫
S∗M

fdµ : µ ∈M(S∗M, gτ )

}
,

where M(S∗M, gτ ) is the set of probability measures on S∗M invariant under the geodesic
flow. This defines a continuous and convex function on C0(S∗M,R) [37].

We shall be particularly interested in the behaviour of P (f) near f = ϕu. By the Ruelle
inequality, we have P (ϕu) = 0 (the sup defining P (ϕu) is achieved at µ = L, see paragraph 3.2).
Moreover, it can be proved that for any real-valued Hölder function f on S∗M , the function
s 7→ P (ϕu + sf) is real analytic on R [7, 32] and its derivatives of order 1 and 2 can be
computed explicitly [25].
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We have d
ds (P (ϕu + sf))|s=0 =

∫
S∗M fdL. If

∫
S∗M fdL = 0, the convex function s 7→

P (ϕu + sf) achieves its minimum at 0. Moreover, if
∫
S∗M fdL = 0, then we have:

d2

ds2
(P (ϕu + sf))|s=0 = σ2(f),

where σ2(f) := lim
T→+∞

1

T

∫
S∗M

(∫ T

0
f ◦ gτ (ρ)dτ

)2

dL(ρ) is called the dynamical variance of

the function f . It is known that σ2(f) vanishes if and only if f is of the form f = d
dτ (h◦gτ )|τ=0

for some function h. In this case, one says that f is a coboundary.

3.4. Kifer’s large deviation upper bound. We shall use the following result, due to Kifer
[19], and valid for more general Anosov flows :

(12) lim
T→∞

1

T
log

∫
S∗M

exp

(∫ T

0
a ◦ gτ (ρ)dτ

)
dL(ρ) = P (a+ ϕu),

for all continuous a. In fact, we will only use the fact that the lim sup is uniform for a running
over compact sets in the C1 topology (this property can be derived from the proof of Theorem
3.2 in [19]).

Remark 7. This result implies the following strengthened version of the Birkhoff ergodic the-
orem. Fix a such that

∫
S∗M adL = 0, and fix δ > 0. Then,

lim sup
1

T
logL

({
ρ ∈ S∗M :

1

T

∫ T

0
a ◦ gτ (ρ)dτ > δ

})
≤ inf

s≥0
{−sδ + P (sa+ ϕu)}

= inf
s∈R
{−sδ + P (sa+ ϕu)} = H(δ).

Similarly, for δ < 0, one has lim sup 1
T logL({ρ ∈ S∗M : 1

T

∫ T
0 a ◦ gτ (ρ)dτ < δ}) ≤ H(δ).

The function −H, which is the Legendre transform of s 7→ P (ϕu + sa), satisfies H(δ) = 0, is
convex and is positive for δ 6= 0 (it is infinite for δ 6= 0 if a is a coboundary).

4. Examples of generalized orthonormal families

In this section, we provide two examples of G.O.F. and show how Theorem 2.2 applies to
them. Our examples are of distinct types: basis of eigenvectors of ∆ and truncated Dirac dis-
tributions. In the first example, Theorem 2.2 provides a strengthened version of Shnirelman’s
theorem for Anosov flows.

4.1. Orthonormal basis of eigenvectors. Consider (ψn)n∈N an orthonormal basis of L2(M)
made of eigenfunctions of ∆, i.e. there exists a sequence 0 = λ0 < λ1 ≤ · · · ≤ λn ≤ · · · such
that for every n in N,

∆ψn = −λ2
nψn.

For ~ > 0,we take Ω~ := {n ∈ N : ~2λ2
n ∈ [1 − α~, 1 + α~]}, where α is some fixed positive

number. In this case, the probability measure is given by P~ := 1
|Ω~|

∑
n∈Ω~

δn and the mea-
surable map is given by u~(n) := ψn. Applying corollary 2.3 to this example, we find that for
every a in C∞o (T ∗M), and for every δ > 0, there exists H̃(δ) > 0 such that

1

|Ω~|

∣∣∣∣{n ∈ Ω~ :

∣∣∣∣µ~,n(a)−
∫
S∗M

adL

∣∣∣∣ ≥ δ}∣∣∣∣ = Oa,δ(~H̃(δ)).
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Shnirelman theorem provides a oa,δ(1) and using the results from [39] on eigenfunctions of ∆,
one would obtain a Oa,δ,p(| log ~|−p) for arbitrarily large p.

4.2. Truncated Dirac distributions. The second class of examples we will consider is given
by families of vectors constructed from the Dirac distributions. For y inM , we denote by δy the
Dirac distribution given by 〈δy, f〉 := f(y) (where f is in C∞(M)). To construct our G.O.F.,
we will project δy on L2(M). To do this, recall that we have defined I(~) := [a(~), b(~)], where
b(~) − a(~) ≥ 2α~ and that we have denoted by N(I(~)) := |{n : ~2λ2

n ∈ I(~)}|. Using this
notation, we can introduce a truncated Dirac distribution as follows:

δ~y :=

(
VolM (M)

N(I(~))

) 1
2

1lI(~)

(
−~2∆

)
δy.

According to (global and local) Weyl laws from [10] and from [36] (Theorem 1.2), we know
that in the Anosov case,(

M,
VolM

VolM (M)
, δ~y

)
is a G.O.F. in the spectral window I(~).

Applying Corollary 2.3 to this example, we find that for every a in C∞o (T ∗M,C), for every θ
in L1(R,R+) and for every δ > 0, there exists H̃(δ) > 0 such that

VolM
({

y ∈M :

∣∣∣∣µ~,y(θ ⊗ a)−
∫
S∗M

adL

∫
R
θ(t)dt

∣∣∣∣ ≥ δ}) := Oa,θ,δ(~H̃(δ)).

Thus, if we choose y randomly on M according to the volume measure, and consider the
solution of the Schrödinger equation eıt

∆
2 δ~y , our result says that we have convergence of the

associated semiclassical measure to the uniform measure, for most y (in the probability sense,
and with an explicit bound) as ~ tends to 0. Taking a subsequence (~n)n that tends to 0
fast enough, we can apply the Borel-Cantelli lemma and derive convergence for almost every
y [31]. An interesting question would be to understand more precisely for which subsequences
(~n) we have convergence for almost every y.

4.3. Coherent states. Similar results could, in principle, apply to bases of coherent states
(e.g. gaussian states). Such bases can be constructed easily in euclidean situations; see [31]
for an application of Theorem 2.2 to the “cat-map” toy model. However, on an arbitrary
manifold, it seems difficult to construct bases of coherent states meeting all the requirements
of the definition of a G.O.F, which are actually quite strong.

5. Proof of theorem 2.2

In this section, we give a proof of Theorem 2.2: there are two steps. To begin with, we
combine the Bienaymé-Chebyshev inequality and the Egorov theorem to obtain a first bound
(§5.2). Then we apply a large deviations estimate due to Kifer [19] to obtain a bound in terms
of the topological pressure. This proof follows the steps of Zelditch [39], the new input being :
– the use of the exponential function x 7→ ex in §5.2, instead of the power functions x 7→ xp;
– the use of Kifer’s large deviation result for the geodesic flow, instead of the central-limit
theorem1;

1Rigorously speaking, one cannot say that the LDP is stronger than the CLT. When the large deviation
principle holds with a rate function that is C2 and strictly convex, one usually expects to have a central limit
theorem; the variance of the limiting gaussian being the second derivative of the rate function at its minimum.
Formally, one makes a Taylor expansion of order 2 of the LDP near the minimum of the rate function to derive
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– a more careful treatment of the trace asymptotics (Lemma 5.3) in order to make sure that
the remainder term is not larger than the leading term for the symbols we consider.

We fix θ an element of L1(R,R+) such that
∫
θ(t)dt = 1. Let a be an element in C∞o (T ∗M,R)

that satisfies
∫
S∗M adL = 0. Recall that we defined

χmax := lim
τ→±∞

1

τ
log sup

ρ∈S∗M
‖dρgτ‖.

As the states u~(ω) are uniformly microlocalized in a thin neighborhood of S∗M , we can
assume that a is compactly supported in a tubular neighborhood p−1

(
[1
2 − η,

1
2 + η]

)
of S∗M

(with η > 0 arbitrarily small). Letting χη = χmax
√

1 + 2η, we have

∀τ ∈ R, ∀ρ ∈ T ∗M, ∀α, ‖∂α(a ◦ gτ )(ρ)‖ ≤ Ca,αeχη |α||τ |.

5.1. Long-time Egorov theorem. We fix c such that cχη < 1
2 . The positive quantization

Op+
~ procedure described in Appendix A satisfies the following “long time Egorov property” :

(13) ∀|τ | ≤ c| log ~|, ‖U−τ~Op+
~ (a)U τ~ −Op+

~ (a ◦ gτ )‖L2(M)→L2(M) = Oa(~
1
2
−ν),

where ν := cχη (see [4]).
Lemma 5.1. For every δ0 > 0, there exists ~0 (depending on a, θ and δ0) such that for every
~ < ~0, we have for every |T | ≤ c| log ~|:∥∥∥∥∫ θ(t)U−t

(
Op+

~ (a)− 1

2T

∫ T

−T
Op+

~ (a ◦ gτ )dτ

)
U tdt

∥∥∥∥
L2(M)→L2(M)

≤ δ0.

Proof. The proof of this lemma relies on the application of the Egorov property (13). For
T a real number such that |T | ≤ c| log ~|, we have∫
θ(t)U−t

(
1

2T

∫ T

−T
Op+

~ (a ◦ gs)ds
)
U tdt =

1

2T

∫ T

−T

∫
θ(t)U−t−τ~Op+

~ (a)U t+τ~dtds+Oa(~
1
2
−ν).

We make the change of variables t′ = t+ τ~ and use the fact that ‖θ(.)− θ(.− τ))‖L1 −→
τ−→0

0

to conclude.�

5.2. Bienaymé-Chebyshev and Jensen’s inequality. For simplicity of notation, we will
denote the quantity we want to bound as follows:

P~(θ ⊗ a, δ) := P~ ({ω ∈ Ω~ : µ~,ω(θ ⊗ a) ≥ δ}) .
The first step is to combine the previous lemma to the Bienaymé-Chebyshev inequality in

order to obtain a bound on P~(θ ⊗ a, δ).
Lemma 5.2. Let δ, δ0 > 0 be arbitrary positive numbers. For s ∈ R, denote

as(T (~), ρ) := exp

(
s

∫ T (~)

−T (~)
a ◦ gτ (ρ)dτ

)
,

where T (~) = c| log ~| (and c is such that cχη < 1/2). Then, given s > 0 and for ~ small
enough, one has

(14) P~(θ ⊗ a, δ) ≤ 2
e(−2δ+4δ0)sT (~)

N(I(~))
Tr
[
1lI(~)(−~2∆)Op+

~ (as(T (~), •))
]
.

a gaussian behaviour. However, the implementation of this idea requires a very precise and strong version of
the LDP, and in practice one prefers to prove the CLT independently.
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Proof. Let s > 0. A direct application of the Bienaymé-Chebyshev inequality allows us to
write

P~(θ⊗a, δ) := P~ ({ω ∈ Ω~ : µ~,ω(θ ⊗ a) ≥ δ}) ≤ e−2sδT (~)

∫
Ω~

exp (2sT (~)µ~,ω(θ ⊗ a)) dP~(ω).

We can now use Lemma 5.1 and deduce that, for ~ small enough,

P~(θ⊗a, δ) ≤ e−2sδT (~)

∫
Ω~

exp

(
sµ~,ω

(
θ ⊗

(∫ T (~)

−T (~)
a ◦ gτdτ

))
+ 2sδ0T (~)‖u~(ω)‖2

)
dP~(ω).

Using the fact that ‖u~(ω)‖ = 1 + o(1) uniformly for ω in Ω~, the quantity e2sδ0T (~)‖u~(ω)‖2 is
uniformly bounded by e3sδ0T (~) for ~ small enough. The map x 7→ esx is convex and we can
use Jensen’s inequality to write

P~(θ⊗a, δ) ≤ es(−2δ+3δ0)T (~)

∫
Ω~

µ~,ω

(
exp

(
sµ~,ω(θ ⊗ 1)

(∫ T (~)

−T (~)
a ◦ gτdτ

))
⊗ θ

)
dP~(ω)

µ~,ω(θ ⊗ 1)
.

Using again that ‖u~(ω)‖ = 1 + o(1) uniformly for ω in Ω~ and that θ is nonnegative and∫
θ(t)dt = 1, one has

µ~,ω(θ ⊗ 1) = 1 + o(1),

uniformly in ω for ~ small enough. All this can be summarized as follows:

P~(θ ⊗ a, δ) ≤ 2es(−2δ+4δ0)T (~)

∫
Ω~

µ~,ω (θ ⊗ as(T (~), •)) dP~(ω).

Note that the function as(T (~), •) belongs to the class of symbols S0,k0
ν (T ∗M) where ν :=

cχη < 1/2 and k0 := 2cs‖a‖∞ (appendix A); moreover as(T (~), •) is constant in a neighbor-
hood of infinity. The previous inequality can be rewritten as :

P~(θ ⊗ a, δ) ≤ 2e(−2δ+4δ0)sT (~)

∫
θ(t)

∫
Ω~

〈u~(ω)|U−tOp+
~ (as(T (~), •))U t|u~(ω)〉dP~(ω)dt.

We recall that if (u~(ω))ω∈(Ω~,P~) is a G.O.F. then for every t in R, (U tu~(ω))ω∈(Ω~,P~) is also
a G.O.F. Using point 3 of the definition of a G.O.F, we get the following bound for ~ small
enough:

(15) P~(θ ⊗ a, δ) ≤ 2e(−2δ+4δ0)sT (~)

N(I(~))
Tr
[
1lI(~)(−~2∆)Op+

~ (as(T (~), •))
]
.

�

5.3. Trace asymptotics. We now have to estimate (from above) the trace

(16) Tr
[
1lI(~)(−~2∆)Op+

~ (as(T (~), •))
]
.

We first underline that, for every ~ > 0, there exist energy levels E1 < · · · < EP (depending
on ~) such that

I(~) = [a(~), b(~)] ⊂
P⊔
p=1

[Ep − α~, Ep + α~) ⊂ [a(~)− α~, b(~) + α~],
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for some fixed positive α. Note that P = O((b(~)− a(~))/~). We decompose (16) into
P∑
p=1

Tr
[
1l[Ep−α~,Ep+α~)(−~2∆)Op+

~ (as(T (~), •))
]
.

We shall bound each term of the previous sum (uniformly with respect to p), using standard
trace estimates, and then sum over p. We consider for instance the interval [1− α~, 1 + α~),
and recall how to determine the asymptotic behaviour of

Tr
[
1l[1−α~,1+α~)(−~2∆)Op+

~ (as(T (~), •))
]
.

Introduce a function f which is C∞, compactly supported in a small neighborhood of 1, equal
to 1 in a neighbourhood of 1 and taking values in [0, 1]. We shall also use a function χ in S(Rd)
whose Fourier transform is compactly supported in a small neighborhood of 0, containing no
period of the closed geodesics of (gt) on S∗M . We assume that χ ≥ 0 and that it is greater
than 1 on [−α, α]. Using the fact that the quantization is positive, we can bound the previous
quantity as follows:

(17) Tr
[
1l[1−α~,1+α~)(−~2∆)Op+

~ (as(T (~), •))
]

≤ Tr

[
f(−~2∆)χ

(
−~2∆− 1

~

)
Op+

~ (as(T (~), •))
]
.

The study of this last quantity now follows well known lines. We use the Fourier inversion

formula, 2πχ

(
E − 1

~

)
=

∫
R
e
ı(E−1)

~ tχ̂(t)dt. As a consequence, the right-hand side of (17) can

be written as
1

2π

∫
R
e−

ı
~ tTr

(
Op+

~ (as(T (~), •))U2t~f(−~2∆)
)
χ̂(t)dt.

The asymptotic behaviour of the trace comes from an asymptotic expansion of the kernel of
the operator Op+

~ (as(T (~), •))U2t~f(−~2∆). This expansion is given by the theory of Fourier
integral operators [9, Chapter 11], [12, Chapter 10]. The trace is then expressed as the integral
of the kernel over the diagonal, and the asymptotic behaviour of this integral is determined
thanks to the method of stationary phase [9, Chapter11].

Lemma 5.3. For every integer N ≥ 1, we have

Tr

[
f(−~2∆)χ

(
−~2∆− 1

~

)
Op+

~ (as(T (~), •))
]

=

1

(2π~)d−1

(
N−1∑
n=0

~n
∫
S∗M

D2nas(T (~), ρ)dL(ρ) +Oa,χ,θ,N (~N(1−2ν)−βν−k0)

)
,

where β > 0 depends only on the dimension of M , and where D2n is a differential operator
of order 2n on T ∗M (depending on the cutoff functions and on the choice of the quantization
Op+

~ ).

There are many references for this kind of estimates. For instance, a very similar calculation
is done by Schubert in [34] (proposition 1; he stops at N = 1 but the stationary phase method
actually provides asymptotic expansions at any order).

Recall that ν = cχη <
1
2 . It is important here to note that as(T (~), •) belongs to the

class S0,k0
ν (T ∗M). We also underline the fact that the observable as(T (~), x, ξ) satisfies the
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particular property that D2nas(T (~), ρ) is of the form as(T (~), x, ξ)b2n(x, ξ), with ‖b2n‖∞ =
O(|s|2n~−2nν) as ~ −→ 0 and s −→ ∞. If s stays in a bounded interval, and if we choose N
large enough accordingly, this implies that

Tr

[
f(−~2∆)χ

(
−~2∆− 1

~

)
Op+

~ (as(T (~), •))
]
≤

1

(2π~)d−1

(∫
S∗M

as(T (~), ρ)dL(ρ)

)
(1 +O(~1−2ν)).

Combing this with Lemma 5.2, using the Weyl law (4), we finally have, for every N ≥ 1
and ~ small enough,

(18) P~(θ ⊗ a, δ) ≤ Ce(−2δ+4δ0)sT (~)

(∫
S∗M

as(T (~), ρ)dL(ρ)

)
(1 +O(~1−2ν)),

for some constant C that does not depend on ~.

5.4. A large deviations bound. To conclude, we use Kifer’s large deviations result (12).
For our proof, we only need an upper bound on the quantity∫

S∗M
exp

(
s

∫ T

−T
a ◦ gt(ρ)

)
dL(ρ).

Compared with (12), there is a parameter s in the exponential that stays in a bounded
interval I. Following the proof of the upper bound (12) in [19] (section 3), one can say that
for every δ′ > 0 and any bounded interval I in R+, there exists cδ′ > 0 and n(δ′, I) ∈ N such
that for every T ≥ n(δ′, I) and every s in I:

(19)
∫
S∗M

exp

(
s

∫ T

−T
a ◦ gt(ρ)

)
dL(ρ) ≤ cδ′eTδ

′
e2TP (sa+ϕu).

This last bound will allow us to conclude. In fact, combining this inequality to the bound (18)
on P~(θ ⊗ a, δ), we find that:

P~(θ ⊗ a, δ) ≤ Ce(−2δ+4δ0)sT (~)eT (~)δ′e2T (~)P (sa+ϕu),

where the constant C depends on the different parameters but not on ~. This implies

lim sup
~→0

log (P~(θ ⊗ a, δ))
c| log ~|

≤ δ′ + (−2δ + 4δ0)s+ 2P (sa+ ϕu) .

This last inequality holds for any δ0 > 0 and any δ′ > 0. It implies that for every s > 0 in the
interval I:

∀c ∈
(

0,
1

2χmax

)
, lim sup

~→0

log (P~(θ ⊗ a, δ))
c| log ~|

≤ −2sδ + 2P (sa+ ϕu) .

In particular, we find that

∀δ ∈ R, lim sup
~→0

log (P~(θ ⊗ a, δ))
| log ~|
2χmax

≤ 2 inf
s∈R+

{−sδ + P (sa+ ϕu)} .

Since δ > 0, we have infs∈R+ {−sδ + P (sa+ ϕu)} = infs∈R {−sδ + P (sa+ ϕu)} . This con-
cludes the proof of Theorem 2.2.�
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6. Proof of Theorem 2.4

In this section, we fix two energy levels 0 ≤ E1 < E2 and consider a sequence (u~)~→0+ in
L2(M) that satisfies

lim
~→0

∥∥(IdL2(M) − 1l[E1,E2](−~2∆)
)
u~
∥∥
L2(M)

= 0.

Moreover, we suppose that ‖u~‖L2(M) = 1. The proof follows essentially the same lines as
in [4], and we refer the reader to that paper for a detailed account.

6.1. Quantum partitions. As usual when computing the Kolmogorov–Sinai entropy, we
start by decomposing the manifold M into finitely many pieces (of small diameter). Let
(Pk)k=1,...,K be a family of smooth real functions on M , with suppPk b Ωk, such that

(20) ∀x ∈M,

K∑
k=1

P 2
k (x) = 1 .

Later on we will assume that the diameters of the supports of the Pk are small enough. We
shall denote by P̂k the operator of multiplication by Pk(x) on the Hilbert space L2(M). We
denote the Schrödinger flow by U t = exp( ıt∆2 ). With no loss of generality, we will assume that
the injectivity radius of M is greater than 2, and work with this propagator at time ~, U~.
This unitary operator is a Fourier integral operator associated with the geodesic flow taken at
time t = 1, g1. As one does to compute the Kolmogorov-Sinai entropy of an invariant measure,
we define a new quantum partition of unity by evolving and refining the initial partition under
the quantum evolution. For each time n ∈ N and any sequence of symbols α = (α0, · · · , αn−1),
αi ∈ [1,K] (we say that the sequence α is of length |α| = n), we define the operators

(21) πα = P̂αn−1(n− 1)P̂αn−2(n− 2) . . . P̂α0 .

Throughout the paper we use the notation Â(t) = U−t~ÂU t~ for the quantum evolution of an
operator Â. From (20) and the unitarity of U , the family of operators {πα : |α| = n} obviously
satisfies the resolution of identity

∑
|α|=n παπ

∗
α = IdL2(M). We also have

∑
|α|=n π

∗
απα =

IdL2(M).

6.2. Quantum entropy, and entropic uncertainty principle. For each time n, and each
normalized φ ∈ L2(M), we define two quantities that are noncommutative analogues of the
entropy (9) :

h−n (φ) = −
∑
|α|=n

‖π∗αφ‖
2 log

(
‖π∗αφ‖

2
)
,(22)

h+
n (φ) = −

∑
|α|=n

‖παφ‖2 log
(
‖παφ‖2

)
(23)

In all that follows, the integer n is of order c̃| log ~| (with c̃ > 0 to be chosen later), and thus
the number of terms in the sum

∑
|α|=n is of order ~−K0 for some K0 > 0. The following is

proved in [4], using the entropic uncertainty principle of [22].

Proposition 6.1. Let χ be real-valued, smooth, compactly supported function on R. Define

(24) c(χ, n) := max
|α|=|α′|=n

(
‖πα′(n)πα χ(−~2∆)‖

)
.
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Then for any ~ > 0, L > 0, for any normalized state φ satisfying ,

(25) sup
|α|=n

‖(I − χ(−~2∆))π∗αφ‖ ≤ ~L,

we have
h+
n (Un~φ) + h−n (φ) ≥ −2 log

(
c(χ, n) + hL−K0

)
.

Finally everything boils down to the main estimate :

Theorem 6.2. [1, 2, 4] If the diameters of the supports of the functions Pk are small enough
(compared with the injectivity radius), the following holds.

For E > 0 and ε < E, choose χ smooth, compactly supported in [E − ε, E + ε], and such
that ‖χ‖∞ ≤ 1. For any c̃ > 0, there exists ~c̃ > 0 such that, for all ~ < ~c̃, for n ≤ c̃| log ~|,
and any pair of sequences α, α′ of length n,

(26)
∥∥πα′(n)πα χ(−~2∆)

∥∥ ≤ C~−(d−1)/2 e−n(d−1)
√
E−ε.

(The constant C is an absolute constant).

Remark 8. We note that this result is an improvement of the estimate of [1] (where the
prefactor was only ~−d/2) and [4] (where the support of χ was assumed to shrink with ~).
Proving Theorem 2.4 using the weaker results of [1] and [4] turned out to be more painful
than reproving Theorem 6.2 directly. This proof is provided in [2], section 5. Unfortunately,
the arguments of [2] are specific to constant curvature, although we believe the result should
also hold in variable negative curvature (parts of the proof rely on the fact that the stable and
unstable foliations of the geodesic flow are smooth). Thus, if we wanted to extend Theorem 2.4
so as to get the results claimed in Remark 2, we would have to use the hyperbolic dispersive
estimate in the form used in [4], which would need a rather different, and more technical,
presentation.

In what follows, the integer n will always be taken equal to bc̃| log ~|c, where c̃ will be
fixed in the next section. We assume that L is large enough so that ~L−K0 is negligible in
comparison with ~−(d−1)/2 e−n(d−1)

√
E−ε. As a corollary of Theorem 6.2 and Proposition 6.1,

we have :

Corollary 6.3. Let (φ~)~→0 be a sequence of normalized states satisfying the assumptions of
proposition 6.1 with L large enough so that ~L−K0 is negligible in comparison with ~−(d−1)/2 e−n(d−1)

√
E−ε

for n = bc̃| log ~|c. Then, in the semiclassical limit, the entropies of φ~ at time n = bc̃| log ~|c
satisfy

(27)
h+
n (Un~φ~) + h−n (φ~)

2n
≥ (d− 1)

√
E − ε− (d− 1)

2c̃
+O(n−1).

6.3. Subadditivity until the Ehrenfest time. In this paragraph, we fix a sequence of
normalized states (φ~)~→0 satisfying (25) (χ is always assumed to be supported in [E− ε, E+
ε]). We fix some arbitrary δ > 0, and introduce the Ehrenfest time,

(28) nEhr(~, E, ε) :=

⌊
(1− δ)| log ~|√

E + ε

⌋
.

Remark 9. The Ehrenfest time is the largest time interval on which the (non-commutative)
dynamical system formed by the flow (U t~) acting on pseudodifferential operators (supported
in {‖ξ‖2 ∈ [E − ε, E + ε]}) is commutative, up to small errors going to 0 with ~.
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We take n = nEhr(~, E, ε) (in other words, we take c̃ = (1−δ)√
E+ε

), and we use a subadditivity
property of the entropies h+

n and h−n to go from (27) for n = nEhr(~, E, ε) to a fixed, arbitrary,
integer n0. The proof of the next proposition is given in [4] in the case when φ~ is an
eigenfunction of ∆. It can easily be adapted to the case of an arbitrary φ~ and yields :

Proposition 6.4 (Subadditivity). Let E ≥ 0 and ε > 0. For δ > 0 arbitrary, define the
Ehrenfest time nEhr(~, E, ε) as in (28). Let (φ~)~→0 be a normalized family satisfying (25),
where χ is supported in [E − ε, E + ε], and L is chosen large enough.

For any n0 ∈ N, there exists a positive Rn0(~), with Rn0(~) → 0 as ~ → 0, such that for
any ~ ∈ (0, 1], any n0,m ∈ N with n0 +m ≤ nEhr(~), we have

h+
n0+m(φ~) ≤ h+

m(φ~) + h+
n0

(Um~φ~) +Rn0(~) ,

h−n0+m(φ~) ≤ h−n0
(φ~) + h−m(Un0~φ~) +Rn0(~).

Let n0 ∈ N be fixed and n = nEhr(~, E, ε). Using the Euclidean division n = qn0 + r, with
r < n0, Proposition 6.4 implies that for ~ small enough,

h+
n (φ~)

n
≤
∑q−1

k=0 h
+
n0

(Ukn0~φ~)

qn0
+
h+
r (U qn0~φ~)

n
+
Rn0(~)

n0

and
h−n (φ~)

n
≤
∑q−1

k=0 h
−
n0

(U (r+kn0)~φ~)

qn0
+
h−r (U r~φ~)

n
+
Rn0(~)

n0
.

Note that h+
r (U qn0~φ~) + h−r (U r~φ~) stays uniformly bounded (by log n0) when ~→ 0. Com-

bining the subadditivity property with Proposition 6.3, we find that
(29)∑q−1

k=0

(
h+
n0

(Ukn0~Un~φ~) + h−n0
(U (r+kn0)~φ~)

)
2qn0

≥ (d−1)
√
E − ε−(d− 1)

√
E + ε

2(1− δ)
−Rn0(~)

n0
+On0(1/n),

for n = nEhr(~, E, ε).

6.4. The conclusion. The interval [E1, E2] is fixed. Consider E in [E1, E2] and a se-
quence of normalized states (u~)~→0 that satisfies (7). We may assume without loss of gen-
erality that 1l[E1,E2]

(
−~2∆

)
u~ = u~ (since the semiclassical limits associated with u~ and

1l[E1,E2]

(
−~2∆

)
u~ will be the same). We fix a function χ ∈ C∞o (R), supported in [−1, 1]

such that
∑

k∈Z χ
2(x − k) ≡ 1. For N ∈ N, we write ε = E2−E1

N , and χj(x) = χ
(
x−E1−jε

ε

)
(j = 0, . . . , N). We have u~ =

∑N
j=0 χ

2
j

(
−~2∆

)
u~ and thus ‖u~‖2 =

∑N
j=0 ‖χj

(
−~2∆

)
u~‖2.

We will write uj = χj
(
−~2∆

)
u~ and ũj =

uj
‖uj‖ . For t ∈ R, we apply (29) to φ~ = U tũj and

obtain

(30)
∑q−1

k=0

(
h+
n0

(Ukn0~Un~U tũj) + h−n0
(U (r+kn0)~U tũj)

)
2qn0

≥ (d− 1)
√
E1 + (j − 1)ε− (d− 1)

2(1− δ)
√
E1 + (j + 1)ε− Rn0(~)

n0
+On0(1/| log ~|),
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If we multiply by θ(t) (satisfying θ ∈ L1(R,R+) and
∫
θ = 1), integrate with respect to t, and

take into account the fact that (kn0 + r)~ −→ 0 and n~ −→ 0, we find that

(31)
∫
θ(t)

h+
n0

(U tũj) + h−n0
(U tũj)

2n0
dt

≥ (d− 1)
√
E1 + (j − 1)ε− (d− 1)

2(1− δ)
√
E1 + (j + 1)ε+ on0(1).

This yields that

(32)
N∑
j=0

‖uj‖2
∫
θ(t)

h+
n0

(U tũj) + h−n0
(U tũj)

2n0
dt

≥
N∑
j=0

‖uj‖2
[
(d− 1)

√
E1 + (j − 1)ε− (d− 1)

2(1− δ)
√
E1 + (j + 1)ε

]
+ on0(1).

We define the following averaged entropy

h−n (φ, θ) = −
∑
|α|=n

(∫
θ(t)

∥∥π∗αU tφ∥∥2
dt

)
log

(∫
θ(t)

∥∥π∗αU tφ∥∥2
dt

)
,(33)

h+
n (φ, θ) = −

∑
|α|=n

(∫
θ(t)

∥∥παU tφ∥∥2
dt

)
log

(∫
θ(t)

∥∥παU tφ∥∥2
dt

)
.(34)

Using the concavity of x 7→ −x log x, (32) implies

(35)
N∑
j=0

‖uj‖2
h+
n0

(ũj , θ) + h−n0
(ũj , θ)

2n0

≥
N∑
j=0

‖uj‖2
[
(d− 1)

√
E1 + (j − 1)ε− (d− 1)

2(1− δ)
√
E1 + (j + 1)ε

]
+ on0(1).

We can now take the limit ~ −→ 0. If the semiclassical measure associated with the family
(U tu~) decomposes as µt =

∫
µt,Edν(E), then ‖uj‖2 converges to

∫
χ2
j (E)dν(E). On the

left-hand side of (35), h+
n0

(ũj , θ) and h−n0
(ũj , θ) both converge to

∑
|α|=n0

η

(
1∫

χ2
j (E)dν(E)

∫
θ(t)χ2

j (E)µt,E((P 2
αn−1

◦ gn−1) . . . (P 2
α1
◦ g1)P 2

α0
)dν(E)dt

)
,

where η(x) = −x log x.
Then, we let n0 −→ +∞, which allows to go from the previous quantity to the Kolmogorov-

Sinai entropy hKS ; for this step, details can be found in [4] (paragraph 2.2.8). This gives us
the following inequality:
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(36)
N∑
j=0

∫
χ2
j (E)dν(E)hKS

(
1∫

χ2
j (E)dν(E)

∫
θ(t)χ2

j (E)µt,Edν(E)dt

)

≥
N∑
j=0

[
(d− 1)

√
E1 + (j − 1)ε− (d− 1)

2(1− δ)
√
E1 + (j + 1)ε

] ∫
χ2
j (E)dν(E).

At this stage, we use the fact that hKS is affine and we derive that∫
θ(t)

hKS (µt,E)−
N∑
j=0

χ2
j (E)

[
(d− 1)

√
E1 + (j − 1)ε− (d− 1)

2(1− δ)
√
E1 + (j + 1)ε

] dν(E)dt ≥ 0.

Finally, we can take the limit N −→ +∞ and we obtain∫
θ(t)

(
hKS (µt,E)− d− 1

2

√
E

)
dν(E)dt ≥ 0.

If we use the same argument, replacing u~ by f(−~2∆)u~ (where f is a smooth function on
[E1, E2] such that

∫
f2(E)dν(E) = 1), we obtain by the same argument∫
θ(t)f2(E)

(
hKS (µt,E)− d− 1

2

√
E

)
dν(E)dt ≥ 0;

this inequality holds for all θ in L1(R,R+) such that
∫
θ = 1 and f in C∞o (R+,R) such that∫

f2(E)dν(E) = 1. As a consequence, one has for Leb⊗ ν-almost every (t, E),

hKS(µt,E) ≥ d− 1

2

√
E.�

Remark 10. If one wants to consider the microlocal setting (see Remark 4) where one uses
Op1 instead of Op~, one introduces a partition of unity based on the Paley-Littlewood de-
composition. For a fixed ε > 0, arbitrarily small, one introduces a smooth function ψε on
R+ satisfying ψε(E) = 1 for 0 ≤ E ≤ 2−ε and ψε(E) = 0 for E ≥ 1. Then, one can define
ϕε(E) = ψε(E/2

ε)− ψε(E) and verify that

1 = ψε(E) +
∑
j≥0

ϕε(2
−jεE).

We underline that for every j ≥ 0, the cutoff function ϕε(2
−jεE) is compactly supported

in [2ε(j−1), 2ε(j+1)]. On the energy window E ∈ [2ε(j−1), 2ε(j+1)], one can adapt the proof
above, doing the change of variable ξ  2−εjξ, and using the relation Op1(a(x, 2−εjξ)) =
Op2−εj (a(x, ξ)). One then copies the steps of Section 6, using ~j = 2−εj as the effective

Planck constant, and taking χj(E) = ϕ
1
2
ε (2−jεE) in §6.4.

7. From entropy estimates to observability

In this section, we explain how we can go from the entropy estimates of Theorem 2.4 to the
observability estimate of Theorem 2.5. According to Lebeau [20], it is sufficient to prove the
following weak observability result to deduce Theorem 2.5:
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Theorem 7.1. Under the assumptions of Theorem 2.5, for all T > 0, there exists CT,a > 0
such that, for all u :

(37) ‖u‖2L2(M) ≤ CT,a
(∫ T

0
‖aeıt

∆
2 u‖2L2(M)dt+ ‖u‖2H−1(M)

)
.

For the sake of completeness, we briefly recall the argument of Lebeau to deduce observ-
ability from a weak observability estimate at time T . First, for T ′ > T , we introduce the
subspace

N(T ′) :=
{
ϕ ∈ L2(M) : ∀0 ≤ t ≤ T ′, a(x)(eıt∆ϕ)(x) = 0

}
.

From weak observability and the compactness of the injection L2 ⊂ H−1, we can deduce that
for T ′ > T , this subspace is finite dimensional. One can also verify that for every T < T ′′ < T ′

and for every ϕ in N(T ′), ∆ϕ belongs to N(T ′′) (by taking the limit of the sequence eıε∆ϕ−ϕ
ε ,

which belongs to N(T ′′) for ε small enough, and is bounded in H−2(M)).
This implies that ∆ is an operator from the finite dimensional subspace N(T ′) into itself.

As a is nontrivial, one can deduce the existence of an eigenfunction of the laplacian which is
equal to 0 on a nonempty open set. By Aronszajn-Cordes’ theorem [18] (section 17.2), this
eigenfunction is necessarly 0 and the subspace N(T ′) is reduced to {0}. By contradiction, we
can finally deduce that observability holds for T ′ > T .

In order to prove Theorem 7.1, we proceed by contradiction and make the assumption that
there exist a sequence of normalized vectors (un)n∈N in L2(M) and T > 0 such that

(38) lim
n→+∞

(∫ T

0
‖aeıt

∆
2 un‖2L2(M)dt+ ‖un‖2H−1(M)

)
= 0.

This implies that un converges to 0, weakly in L2. For every t in R, we introduce the “distri-
bution”

µn(t)(b) := 〈un|e−ıt
∆
2 Op1(b)eıt

∆
2 un〉L2(M),

defined for all b ∈ S0. The map t 7→ µn(t) belongs to L∞(R,S ′0). Thus, there exists a
subsequence (unk)k and µ in L∞(R,S ′0) such that∫

R×T̂ ∗M
θ(t)b(x, ξ)µnk(t)(dx, dξ)dt −→

k−→+∞

∫
R×T̂ ∗M

θ(t)b(x, ξ)µ(t)(dx, dξ)dt

for all θ ∈ L1(R) and b ∈ S0. As un converges weakly to 0, each µ(t) is actually supported
at infinity, and may thus be identified with a probability measure on the unit sphere bundle
S∗M , invariant under the geodesic flow (see Remark 4).

From Theorem 2.4 and Remark 4, we know that for almost every t in R, hKS(µ(t)) ≥ d−1
2 .

We will now use the fact that the topological entropy of Ka is less than d−1
2 , i.e.

htop(Ka, (g
τ )) := sup

µ∈M(S∗M,gτ )
{hKS(µ) : µ(Ka) = 1} < d− 1

2
.

Using property (38), we know that
∫
S∗M×[0,T ] a

2(x, ξ)µ(t)(dx, dξ)dt = 0. In particular, this
implies that µ(t)(S∗M\Ka) = 0 for almost every t in [0, T ] (as µ(t) is gτ -invariant) and it
leads to a contradiction.�
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Appendix A. Pseudo-differential calculus on a manifold

In this section, we recall some facts of pseudodifferential calculus; details can be found
in [12]. We define on R2d the following class of (semiclassical) symbols:

Sm,k(R2d) := {a = a~ ∈ C∞(R2d) : ∀K ⊂ Rd compact,

∀α, β, ∃Cα,β, ∀(x, ξ) ∈ K × Rd, |∂αx ∂
β
ξ a| ≤ Cα,β~

−k〈ξ〉m−|β|}.

Let M be a smooth compact riemannian d-manifold without boundary. Consider a finite
smooth atlas (fl, Vl) of M , where each fl is a smooth diffeomorphism from the open subset
Vl ⊂ M to a bounded open set Wl ⊂ Rd. To each fl correspond a pull back f∗l : C∞(Wl) →
C∞(Vl) and a canonical map f̃l from T ∗Vl to T ∗Wl:

f̃l : (x, ξ) 7→
(
fl(x), (Dfl(x)−1)T ξ

)
.

Consider now a smooth locally finite partition of identity (φl) adapted to the previous atlas
(fl, Vl). That means

∑
l φl = 1 and φl ∈ C∞o (Vl). Then, any observable a in C∞(T ∗M) can

be decomposed as follows: a =
∑

l al, where al = aφl. Each al belongs to C∞(T ∗Vl) and can
be pushed to a function ãl = (f̃−1

l )∗al ∈ C∞(T ∗Wl). As in [12], define the class of symbols of
order m and index k:

(39) Sm,k(T ∗M) :=
{
a = a~ ∈ C∞(T ∗M) : ∀α, β, ∃Cα,β, |∂αx ∂

β
ξ a| ≤ Cα,β~

−k〈ξ〉m−|β|
}
.

Then, for a ∈ Sm,k(T ∗M) and for each l, one can associate to the symbol ãl ∈ Sm,k(R2d) the
standard Weyl quantization:

Opw~ (ãl)u(x) :=
1

(2π~)d

∫
R2d

e
ı
~ 〈x−y,ξ〉ãl

(
x+ y

2
, ξ; ~

)
u(y)dydξ,

where u ∈ C∞o (Rd). Consider now a smooth cutoff ψl ∈ C∞c (Vl) such that ψl = 1 close to the
support of φl. A quantization of a ∈ Sm,k(T ∗M) is then defined in the following way:

(40) Op~(a)(u) :=
∑
l

ψl ×
(
f∗l Opw~ (ãl)(f

−1
l )∗

)
(ψl × u) ,

where u ∈ C∞(M). According to the appendix of [12], the quantization procedure Op~ sends
Sm,k(T ∗M) onto the space of pseudodifferential operators of order m and of index k, denoted
Ψm,k(M). It can be shown that the dependence in the cutoffs φl and ψl only appears at order
2 in ~ and the principal symbol map σ0 : Ψm,k(M)→ Sm,k/Sm,k−1(T ∗M) is then intrinsically
defined.

At various places in this paper, a larger class of symbols should be considered, as in [9]
or [12]. For 0 ≤ ν < 1/2:
(41)
Sm,kν (T ∗M) =

{
a = a~ ∈ C∞(T ∗M) : ∀α, β, ∃Cα,β, |∂αx ∂

β
ξ a| ≤ Cα,β~

−k−ν|α+β|〈ξ〉m−|β|
}
.

Results of [9] can be applied to this new class of symbols. For example, if M is compact, a
symbol of S0,0

ν gives a bounded operator on L2(M) (with norm independent of ~ ≤ 1).
Even if the Weyl procedure is a natural choice to quantize an observable a on R2d, it is

sometimes preferrable to use a quantization that satisfies the additional property : Op~(a) ≥ 0
if a ≥ 0 (such a quantization procedure is said to be positive). This can be achieved thanks
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to the anti-Wick procedure, see [17]. For a in S0,0
ν (R2d), that coincides with a function on Rd

outside a compact subset of T ∗Rd, one has

(42) ‖Opw~ (a)−OpAW~ (a)‖L2 ≤ C
∑
|α|≤D

~
|α|+1

2 ‖∂αa‖∞,

where C and D are some positive constants that depend only on the dimension d. To get a
positive procedure of quantization on a manifold, one can replace the Weyl quantization by the
anti-Wick one in definition (40). We will denote Op+

~ (a) this new choice of quantization, well
defined for every element in S0,0

ν (T ∗M) of the form b(x)+c(x, ξ) where b belongs to S0,0
ν (T ∗M)

and c belongs to C∞o (T ∗M) ∩ S0,0
ν (T ∗M). We underline the fact that Op+

~ (1) = IdL2(M).
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