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Abstract. We look at the long-time behaviour of solutions to a semi-classical Schrödinger
equation on the torus. We consider time scales which go to infinity when the semi-classical
parameter goes to zero and we associate with each time-scale the set of semi-classical mea-
sures associated with all possible choices of initial data. On each classical invariant torus,
the structure of semi-classical measures is described in terms of two-microlocal measures,
obeying explicit propagation laws.

We apply this construction in two directions. We first analyse the regularity of semi-
classical measures, and we emphasize the existence of a threshold : for time-scales below
this threshold, the set of semi-classical measures contains measures which are singular
with respect to Lebesgue measure in the “position” variable, while at (and beyond) the
threshold, all the semi-classical measures are absolutely continuous in the “position” vari-
able, reflecting the dispersive properties of the equation. Second, the techniques of two-
microlocal analysis introduced in the paper are used to prove semiclassical observability
estimates. The results apply as well to general quantum completely integrable systems.

1. Introduction

1.1. The Schrödinger equation in the large time and high frequency régime.
This article is concerned with the dynamics of the linear equation

(1)
{
ih∂tψh (t, x) = (H(hDx) + h2Vh(t)) ψh (t, x) , (t, x) ∈ R× Td,
ψh|t=0 = uh,

on the torus Td := (R/2πZ)d, with H a smooth, real-valued function on (Rd)∗ (the dual of
Rd), and h > 0. In other words, H is a function on the cotangent bundle T ∗Td = Td×(Rd)∗

that does not depend on the d first variables, and thus gives rise to a completely integrable
Hamiltonian flow. For the sake of simplicity, we shall assume that H ∈ C∞

(
Rd
)
. However

the smoothness assumption on H can be relaxed to Ck, where k large enough, in most
results of this article. The lower order term Vh(t) is a bounded self-adjoint operator
(possibly depending on t and h). We assume that the map t 7→ ‖Vh(t)‖L(L2(Td)) is in
L1
loc(R) ∩ L∞(R), uniformly with respect to h. This condition ensures the existence of

a semi-group associated with the operator H(hDx) + h2Vh(t) (see Appendice B in [15],
Proposition B.3.6).
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We are interested in the simultaneous limits h→ 0+ (high frequency limit) and t→ +∞
(large time evolution). Our results give a description of the limits of sequences of “position
densities” |ψh (th, x)|2 at times th that tend to infinity as h→ 0+.

Remark 1.1. In future applications, it will be interesting to note as of now that we may
allow H = Hh to depend on the parameter h, in such a way that Hh converges to some
limit H0 in the Ck topology on compact sets, for k sufficiently large. For instance, we allow
Hh(ξ) = H(ξ + hω), where ω ∈ (Rd)∗ is a fixed vector.

To be more specific, let us denote by Sh(t, s) the semigroup associated with the operator
H(hDx) + h2Vh(t) and set Sth = Sh(t, 0). Fix a time scale, that is, a function

τ : R∗+ −→ R∗+
h 7−→ τh,

such that lim infh→0+ τh > 0 (actually, we shall be mainly concerned in scales that go
to +∞ as h → 0+). Consider a family of initial conditions (uh), normalised in L2(Td):
‖uh‖L2(Td) = 1 for h > 0, and h-oscillating in the terminology of [20, 22], i.e.:

(2) lim sup
h→0+

∥∥1[R,+∞[

(
−h2∆

)
uh
∥∥
L2(Td) −→R−→∞

0,

where 1[R,+∞[ is the characteristic function of the interval [R,+∞[. Our main object of
interest is the density |Sthuh|

2, and we introduce the probability measures on Td:

νh (t, dx) :=
∣∣Sthuh(x)

∣∣2 dx;

the unitary character of Sth implies that νh ∈ C
(
R;P

(
Td
))

(in what follows, P (X) stands
for the set of probability measures on a Polish space X).

To study the long-time behavior of the dynamics, we rescale time by τh and look at the
time-scaled probability densities:

(3) νh (τht, dx) .

When t 6= 0 is fixed and τh grows too rapidly, it is a notoriously difficult problem to obtain
a description of the limit points (in the weak-∗ topology) of these probability measures as
h → 0+, for rich enough families of initial data uh. See for instance [40, 38] in the case
where the underlying classical dynamics is chaotic, the uh are a family of lagrangian states,
and τh = h−2+ε. In completely integrable situations, such as the one we consider here, the
problem is of a different nature, but rapidly leads to intricate number theoretical issues
[33, 32, 34].

We soften the problem by considering the family of probability measures (3) as elements
of L∞

(
R;P

(
Td
))
. Our goal will be to give a precise description of the setM (τ) of their

accumulation points in the weak-∗ topology for L∞
(
R;P

(
Td
))
, obtained as (uh) varies

among all possible sequences of initial data h-oscillating and normalised in L2
(
Td
)
.

The compactness of Td ensures thatM (τ) is non-empty. Having ν ∈M (τ) is equivalent
to the existence of a sequence (hn) going to 0 and of a normalised, hn-oscillating sequence
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(uhn) in L2
(
Td
)
such that:

(4) lim
n→+∞

1

τhn

∫ τhnb

τhna

∫
Td
χ (x)

∣∣Sthnuhn (x)
∣∣2 dxdt =

∫ b

a

∫
Td
χ (x) ν (t, dx) dt,

for every real numbers a < b and every χ ∈ C
(
Td
)
. In other words, we are averaging the

densities |Sthuh(x)|2 over time intervals of size τh. This averaging, as we shall see, makes
the study more tractable.

If case (4) occurs, we shall say that ν is obtained through the sequence (uhn). To simplify
the notation, when no confusion can arise, we shall simply write that h −→ 0+ to mean
that we are considering a discrete sequence hn going to 0+, and we shall denote by (uh)
(instead of (uhn)) the corresponding family of functions.

Remark 1.2. When the function τ is bounded, the convergence of νh (τht, ·) to an ac-
cumulation point ν (t, ·) is locally uniform in t. According to Egorov’s theorem (see, for
instance, [46]), ν can be completely described in terms of semiclassical defect measures of
the corresponding sequence of initial data (uh), transported by the classical Hamiltonian
flow φs : T ∗Td −→ T ∗Td generated by H, which in this case is completely integrable :

(5) φs(x, ξ) := (x+ sdH(ξ), ξ).

As an example, take τh = 1 and consider the case where the initial data uh are coherent
states : fix ρ ∈ C∞c

(
Rd
)
with ‖ρ‖L2(Rd) = 1, fix (x0, ξ0) ∈ Rd × Rd, and let uh (x) be the

2πZd-periodization of the following coherent state:
1

hd/4
ρ

(
x− x0√

h

)
ei
ξ0
h
·x.

Then νh (t, ·) converges, for every t ∈ R, to:
δx0+tdH(ξ0) (x) .

When the time scale τh is unbounded, the t-dependence of elements ν ∈ M (τ) is not
described by such a simple propagation law. From now on we shall only consider the case
where τh −→

h−→0
+∞.

The problem of describing the elements inM (τ) for some time scale (τh) is related to
several aspects of the dynamics of the flow Sth such as dispersive effects and unique con-
tinuation. In [4, 30] the reader will find a description of these issues in the case where
the operator Sth is the semiclassical Schrödinger propagator eiht∆ corresponding to the
Laplacian on an arbitrary compact Riemannian manifold. In that setting, the time scale
τh = 1/h appears in a natural way, since it transforms the semiclassical propagator into
the non-scaled flow eihτht∆ = eit∆. The possible accumulation points of sequences of prob-
ability densities of the form |eit∆uh|2 depend on the nature of the dynamics of the geodesic
flow. When the geodesic flow has the Anosov property (a very strong form of chaos, which
holds on negatively curved manifolds), the results in [5] rule out concentration on sets
of small dimensions, by proving lower bounds on the Kolmogorov-Sinai entropy of semi-
classical defect measures. Even in the apparently simpler case that the geodesic flow is
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completely integrable, different type of concentration phenomena may occur, depending
on fine geometrical issues (compare the situation in Zoll manifolds [28] and on flat tori
[29, 3]).

1.2. Semiclassical defect measures. Our results are more naturally described in terms
of Wigner distributions and semiclassical measures (these are the semiclassical version
of the microlocal defect measures [21, 41], and have also been called microlocal lifts in
the recent literature about quantum unique ergodicity, see for instance the celebrated
paper [27]). The Wigner distribution associated to uh (at scale h) is a distribution on the
cotangent bundle T ∗Td, defined by

(6)
∫
T ∗Td

a(x, ξ)whuh(dx, dξ) = 〈uh,Oph(a)uh〉L2(Td) , for all a ∈ C∞c (T ∗Td),

where Oph(a) is the operator on L2(Td) associated to a by the Weyl quantization. The
reader not familiar with these objects can consult the appendix of this article or the book
[46]. For the moment, just recall that whuh extends naturally to smooth functions χ on
T ∗Td = Td × (Rd)∗ that depend only on the first coordinate, and in this case we have

(7)
∫
T ∗Td

χ(x)whuh(dx, dξ) =

∫
Td
χ(x)|uh(x)|2dx.

The main object of our study will be the (time-scaled) Wigner distributions corresponding
to solutions to (1):

wh(t, ·) := wh
S
τht

h uh

The map t 7−→ wh(t, ·) belongs to L∞(R;D′
(
T ∗Td

)
), and is uniformly bounded in that

space as h −→ 0+ whenever (uh) is normalised in L2
(
Td
)
. Thus, one can extract subse-

quences that converge in the weak-∗ topology on L∞(R;D′
(
T ∗Td

)
). In other words, after

possibly extracting a subsequence, we have∫
R

∫
T ∗Td

ϕ(t)a(x, ξ)wh(t, dx, dξ)dt −→
h−→0

∫
R

∫
T ∗Td

ϕ(t)a(x, ξ)µ(t, dx, dξ)dt

for all ϕ ∈ L1(R) and a ∈ C∞c (T ∗Td), and the limit µ belongs to L∞
(
R;M+

(
T ∗Td

))
(here

M+ (X) denotes the set of positive Radon measures on a Polish space X).
The set of limit points thus obtained, as (uh) varies among normalised sequences, will

be denoted by M̃ (τ). We shall refer to its elements as (time-dependent) semiclassical
measures.

Moreover, if (uh) is h-oscillating (see (2)), it follows that µ ∈ L∞
(
R;P

(
T ∗Td

))
and

identity (7) is also verified in the limit :∫ b

a

∫
Td
χ (x) |Sτhth uh (x) |2dxdt −→

h−→0

∫ b

a

∫
T ∗Td

χ (x)µ (t, dx, dξ) dt,

for every a < b and every χ ∈ C∞
(
Td
)
. Therefore,M (τ) coincides with the set of projec-

tions onto x of semiclassical measures in M̃ (τ) corresponding to h-oscillating sequences
[20, 22].
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It is also shown in the appendix that the elements of M̃ (τ) are measures that are H-
invariant, by which we mean that they are invariant under the action of the hamiltonian
flow φs defined in (5).

1.3. Results on the regularity of semiclassical measures. The main results in this
article are aimed at obtaining a precise description of the elements in M̃ (τ) (and, as a
consequence, of those ofM (τ)). We first present a regularity result which emphasises the
critical character of the time scale τh = 1/h in situations in which the Hessian of H is
non-degenerate, definite (positive or negative).

Theorem 1.3. (1) If τh � 1/h then M (τ) contains elements that are singular with
respect to the Lebesgue measure dtdx. Actually, M̃ (τ) contains all measures invariant by
the flow φs defined in (5).

(2) Suppose τh ∼ 1/h or τh � 1/h. Assume that the Hessian d2H(ξ) is definite for all ξ.
Then

M (τ) ⊆ L∞
(
R;L1

(
Td
))
,

in other words the elements ofM (τ) are absolutely continuous with respect to dtdx.

The proof of (1) in Theorem 1.3 relies on the construction of examples, while the proof
of (2) is based on the forthcoming Theorem 1.10, which contains a careful analysis of the
case τh = 1/h (see section 1.4). A comparison argument between different time-scales
allows to treat the case τh � 1/h (see section 1.5).

Note also that the construction leading to Theorem 1.3 (2) also yields observability
results : see section 7 below. Finally, we point out in Section 1.7 that Theorem 1.3
extends to general quantum completely integrable systems. An interesting and immediate
by-product of Theorem 1.3 is the following corollary.

Corollary 1.4. Theorem 1.3(2) applies in particular when the data (uh) are eigenfunctions
of H(hDx), and shows (assuming the Hessian of H is definite) that the weak limits of the
probability measures |uh(x)|2dx are absolutely continuous.

Note that statement (2) of Theorem 1.3 has already been proved in the case H(ξ) = |ξ|2
in [8] and [3] with different proofs (the proof in the second reference extends to the x-
dependent Hamiltonian |ξ|2 + h2V (x)). However, the extension to more general H of the
method in [3] is not straightforward, even in the case where H(ξ) = ξ · Aξ, where A is a
symmetric linear map : (Rd)∗ −→ Rd (i.e. the Hessian of H is constant), the difficulty
arising when A has irrational coefficients.

Let us now comment on the assumptions of the theorem. We first want to emphasize
that the conclusion of Theorem 1.3(2) may fail if the condition on the Hessian of H is not
satisfied.

Example 1.5. Fix ω ∈ Rd and take H (ξ) = ξ ·ω and Vh(t) = 0. Let µ0 be an accumulation
point in D′

(
T ∗Td

)
of the Wigner distributions

(
whuh
)
defined in (6), associated to the initial

data (uh). Let µ ∈ M̃ (τ) be the limit of wh
S
τht

h uh
in L∞(R;D′

(
T ∗Td

)
). Then an application
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of Egorov’s theorem (actually, a particularly simple adaptation of the proof of Theorem 4
in [28]) gives the relation, valid for any time scale (τh) :∫

T ∗Td
a (x, ξ)µ (t, dx, dξ) =

∫
T ∗Td
〈a〉 (x, ξ)µ0 (dx, dξ) ,

for any a ∈ C∞c
(
T ∗Td

)
and a.e. t ∈ R. Here 〈a〉 stands for the average of a along the

Hamiltonian flow φs, that is in our case

〈a〉 (x, ξ) = lim
T→∞

1

T

∫ T

0

a (x+ sω, ξ) ds.

Hence, as soon as ω is resonant (in the sense of §2.1) and µ0 = δx0 ⊗ δξ0 for some
(x0, ξ0) ∈ T ∗Td, the measure µ will be singular with respect to dtdx.

It is also easy to provide counter-examples where the Hessian of H is non-degenerate, but
not definite.

Example 1.6. On the two-dimensional torus T2, consider H(ξ) = ξ2
1 − ξ2

2, where ξ =
(ξ1, ξ2). Take for (uh(x1, x2)) the periodization of

1

(2πh)1/2
ρ

(
x1 − x2

h

)
where ρ ∈ C∞c (R) satisfies ‖ρ‖L2(R) = 1. Then the functions uh are eigenfunctions of
H(hDx) for the eigenvalue 0 and the measures |uh(x1, x2)|2dx1 dx2 obviously concentrate
on the diagonal {x1 = x2}.

Note however that in this example the system is isoenergetically degenerate at ξ = 0. Recall
the definition of isoenergetic non-degeneracy : the Hamiltonian H is isoenergetically non-
degenerate at ξ if for all η ∈ (Rd)∗, and λ ∈ R,

dH(ξ) · η = 0 and d2H(ξ) · η = λdH(ξ) =⇒ (η, λ) = (0, 0).

Definiteness of the Hessian implies isoenergetic non-degeneracy at all ξ such that dH(ξ) 6=
0. In view of the previous example, one may wonder whether isoenergetic non-degeneracy is
a sufficient assumption for our results. In Section 4.5 we give a sufficient set of assumptions
for our results which is weaker than definiteness, but is not implied by isoenergetic non-
degeneracy except in dimension d = 2. As a conclusion, isoenergetic non-degeneracy is
sufficient for all our results in dimension d = 2, but not in dimensions d ≥ 3, as is finally
shown by the following counter-example :

Example 1.7. Take d = 3. On (R3)∗ consider H(ξ) = ξ2
1 + ξ2

2 − ξ3
3, and let uh(x1, x2, x3)

be the periodization of
1

(2πε)1/2
ρ

(
x2 + x3

ε

)
ei
αx1+x2+x3

h ,

where ρ ∈ C∞c (R) , ‖ρ‖L2(R) = 1, and ε = ε(h) tends to 0 with ε(h) � h. Note that
uh is an eigenfunction of H(hDx). The Wigner measures of (uh) concentrate on the set
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{ξ1 = α, ξ2 = ξ3 = 1} where the system is isoenergetically non-degenerate if α 6= 0. Its
projection on T3 is supported on the hyperplane {x2 + x3 = 0}.

In Section 5 we present an example communicated to us by J. Wunsch showing that absolute
continuity of the elements of M (1/h) may fail in the presence of a subprincipal symbol
of order hβ with β ∈ (0, 2) even in the case H (ξ) = |ξ|2. We also show in Section 5 that
absolute continuity may fail for the elements of M (1/h) when H (ξ) = |ξ|2k, k ∈ N and
k > 1; a situation where the Hessian is degenerate at ξ = 0.

We point out that Theorem 1.3(2) admits a microlocal refinement, which allows us
to deal with more general Hamiltonians H whose Hessian is not necessarily definite at
every ξ ∈ Rd. Given µ ∈ M̃ (τ) we shall denote by µ̄ the image of µ under the map
π2 : (x, ξ) 7−→ ξ. For Vh(t) = Oph(V (t, x, ξ)) with V ∈ C∞(R × T ∗Td), it is shown in
the appendix that µ̄ does not depend on t if τh � h−2: in this case we have µ̄ = (π2)∗ µ0,
where the measure µ0 is an accumulation point in D′

(
T ∗Td

)
of the sequence

(
whuh
)
. For

simplicity we restrict our attention to that case in the following theorem :

Theorem 1.8. Assume that Vh(t) = Oph(V (t, ·)) with V ∈ C∞(R× T ∗Td) bounded.
Let µ ∈ M̃ (1/h) and denote by µξ(t, ·) the disintegration of µ(t, ·) with respect to the

variable ξ, i.e. for every θ ∈ L1 (R) and every bounded measurable function f :∫
R
θ(t)

∫
Td×Rd

f(x, ξ)µ(t, dx, dξ)dt =

∫
R
θ (t)

∫
Rd

(∫
Td
f(x, ξ)µξ(t, dx)

)
µ̄(dξ)dt.

Then for µ̄-almost every ξ where d2H(ξ) is definite, the measure µξ(t, ·) is absolutely con-
tinuous.

Let us introduce the closed set

CH :=
{
ξ ∈ Rd : d2H(ξ) is not definite

}
.

The following consequence of Theorem 1.8 provides a refinement on Theorem 1.3(2), in
which the global hypothesis on the Hessian ofH is replaced by a hypothesis on the sequence
of initial data.

Corollary 1.9. Suppose ν ∈ M (1/h) is obtained through an h-oscillating sequence (uh)
having a semiclassical measure µ0 such that µ0

(
Td × CH

)
= 0. Then ν is absolutely

continuous with respect to dtdx.

1.4. Second-microlocal structure of the semiclassical measures. Theorem 1.8 is a
consequence of a more detailed result on the structure of the elements of M̃ (1/h) on which
we focus in this paragraph. We follow here the strategy of [3] that we adapt to a general
Hamiltonian H(ξ). The proof relies on a decomposition of the measure associated with the
primitive submodules of (Zd)∗. Before stating it, we must introduce some notation.

Recall that (Rd)∗ is the dual of Rd. Later in the paper, we will sometimes identify both
by working in the canonical basis of Rd. We will denote by (Zd)∗ the lattice in (Rd)∗ defined
by (Zd)∗ = {ξ ∈ (Rd)∗, ξ.n ∈ Z, ∀n ∈ Zd}. We call a submodule Λ ⊂ (Zd)∗ primitive if
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〈Λ〉 ∩ (Zd)∗ = Λ (here 〈Λ〉 denotes the linear subspace of (Rd)∗ spanned by Λ). Given such
a submodule we define:

(8) IΛ :=
{
ξ ∈ (Rd)∗ : dH (ξ) · k = 0, ∀k ∈ Λ

}
.

We note that IΛ \ CH is a smooth submanifold.
We define also Lp

(
Td,Λ

)
for p ∈ [1,∞] to be the subspace of Lp

(
Td
)
consisting of the

functions u such that û (k) = 0 if k ∈ (Zd)∗ \Λ (here û (k) stand for the Fourier coefficients
of u). Given a ∈ C∞c

(
T ∗Td

)
and ξ ∈ Rd, denote by 〈a〉Λ (·, ξ) the orthogonal projection of

a (·, ξ) on L2
(
Td,Λ

)
:

(9) 〈a〉Λ(x, ξ) =
∑
k∈Λ

âk(ξ)
eikx

(2π)d

Note that if a only has frequencies in Λ, then 〈a〉Λ = a.
For ω in the torus 〈Λ〉/Λ, we denote by L2

ω(Rd,Λ) the subspace of L2
loc(Rd) ∩ S ′(Rd)

formed by the functions whose Fourier transform is supported in Λ − ω. Each L2
ω(Rd,Λ)

has a natural Hilbert space structure.
We denote by m〈a〉Λ (ξ) the operator acting on each L2

ω

(
Rd,Λ

)
by multiplication by

〈a〉Λ (·, ξ).

Theorem 1.10. (1) Let µ ∈ M̃ (1/h). For every primitive submodule Λ ⊂ (Zd)∗ there
exists a positive measure µfinal

Λ ∈ L∞
(
R;M+

(
T ∗Td

))
supported on Td × IΛ and invariant

by the Hamiltonian flow φs such that : for every a ∈ C∞c
(
T ∗Td

)
that vanishes on Td×CH

and every θ ∈ L1 (R):

(10)
∫
R
θ (t)

∫
T ∗Td

a (x, ξ)µ (t, dx, dξ) dt =
∑

Λ⊆Zd

∫
R
θ (t)

∫
Td×IΛ

a (x, ξ)µfinal
Λ (t, dx, dξ) dt,

the sum being taken over all primitive submodules of (Zd)∗.

In addition, there exists a measure µ̄Λ(t) on (〈Λ〉/Λ) × IΛ and a measurable family
{NΛ(t, ω, ξ)}t∈R,ω∈〈Λ〉/Λ,ξ∈IΛ of non-negative, symmetric, trace-class operators acting on
L2
ω

(
Rd,Λ

)
, such that the following holds:

(11)
∫
Td×IΛ

a (x, ξ)µfinal
Λ (t, dx, dξ) =

∫
(〈Λ〉/Λ)×IΛ

Tr
(
m〈a〉Λ (ξ)NΛ(t, ω, ξ)

)
µ̄Λ(t, dω, dξ).

(2) If Vh(t) = Oph(V (t, ·)) with V ∈ C∞(R× T ∗Td), then µ̄Λ does not depend on t, and
NΛ(t, ω, ξ) depends continuously on t, and solves the Heisenberg equation labelled below as
(HeisΛ,ω,ξ).

When the Hessian of H is definite, formula (10) holds for every a ∈ C∞c
(
T ∗Td

)
and

therefore completely describes µ.

Remark 1.11. The arguments in Section 6.1 of [3] show that Theorem 1.8 is a consequence
of Theorem 1.10. Therefore, in this article only the proof of Theorem 1.10 will be presented.
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Theorem 1.10 has been proved for H (ξ) = |ξ|2 in [29] for d = 2 and in [3] for the
x-dependent Hamiltonian |ξ|2 + h2V (x) in arbitrary dimension (in these papers the pa-
rameter ω does not appear, and all measures have Dirac masses at ω = 0).

The measures µfinal
Λ in equation (10) are obtained as the final step of an interative pro-

cedure that involves a process of successive microlocalizations along nested sequences of
submanifolds in frequency space.

Theorem 1.10(2) allows to describe the dependence of µ on the parameter t. This is a
subtle issue since, as was noticed in [28, 29], the semiclassical measures of the sequence of
initial data (uh) do not determine uniquely the time dependent semiclassical measure µ.
Thus, when Vh(t) = Oph(V (t, ·)) with V ∈ C∞(R × T ∗Td), the measure µfinal

Λ (t, dx, dξ)
is fully determined by the measures µ̄Λ and the family of operators NΛ(0, ω, ξ), which are
objects determined by the initial data (uh). The NΛ(t, ω, ξ) are obtained from NΛ(0, ω, ξ)
by propagation along a Heisenberg equation (HeisΛ,ω,ξ), written in Theorem 3.2, which is
the evolution equation of operators that comes from the following Schrödinger equation in
L2
ω(Rd,Λ) :

(SΛ,ω,ξ) i∂tv =

(
1

2
d2H(ξ)Dy ·Dy + 〈V (·, ξ)〉Λ

)
v.

This process gives an explicit construction of µ in terms of the initial data. Full details on
the structure of these objects are provided in Sections 3 and 4.

Theorem 1.10 is stated for the time scale τh = 1/h; if τh � 1/h, the elements of M̃ (τ) can
also be described by a similar result (see Section 4.3) involving expression (10). However,
in that case, the propagation law involves classical transport rather than propagation along
a Schrödinger flow, and as a result Theorem 1.3(2) does not hold for τh � 1/h.

Second microlocalisation has been used in the 80’s for studying propagation of singular-
ities (see [6, 7, 14, 26]). The two-microlocal construction performed here is in the spirit of
that done in [37, 17, 18] in Euclidean space in the context of semi-classical measures. We
also refer the reader to the articles [43, 44, 45] for related work regarding the study of the
wave-front set of solutions to semiclassical integrable systems.

When the Hessian of H is constant Theorem 1.10 gives a complement to the results
announced in [3] (where the argument was only valid when the Hessian has rational coef-
ficients).

1.5. Hierarchy of time scales. In this section, we discuss the dependence of the set
M (τ) on the time scale τ . The following proposition allows to derive Theorem 1.3(2)
for τh � 1/h from the result about τh = 1/h. Denote by Mav (τ) the subset of P

(
Td
)

consisting of measures of the form:∫ 1

0

ν (t, ·) dt, where ν ∈ ConvM (τ) .

where ConvX stands for the convex hull of a set X ⊂ L∞
(
R;P

(
Td
))

with respect to the
weak-∗ topology. We have the following result.
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Proposition 1.12. Suppose (τh) and (τ ′h) are time scales tending to infinity and such that
τ ′h � τh. Then:

M (τ) ⊆ L∞ (R;Mav (τ ′)) .

It is also important to clarify the link between the time-dependent Wigner distributions
and those associated with eigenfunctions. Eigenfunctions are the most commonly studied
objects in the field of quantum chaos, however, we shall see that they do not necessarily
give full information about the time-dependent Wigner distributions. For the sake of
simplicity, we state the results that follow in the case Vh(t) = 0, although they easily
generalise to the case in which Vh(t) does not depend on t. Start noting that the spectrum
of H (hDx) coincides with H

(
hZd

)
; given Eh ∈ sp(H (hDx)) the corresponding normalised

eigenfunctions are of the form:

(12) uh (x) =
∑

H(hk)=Eh

chke
ik·x, with

∑
k∈Zd

∣∣chk∣∣2 =
1

(2π)d
.

In addition, one has:
νh (τht, ·) =

∣∣Sτhth uh
∣∣2 = |uh|2 ,

independently of (τh) and t. Let us denote by M (∞) the set of accumulation points in
P
(
Td
)
of sequences |uh|2 where (uh) varies among all possible h-oscillating sequences of

normalised eigenfunctions (12), we have

M (∞) ⊆M (τ) .

As a consequence of Theorem 1.3, we obtain the following result.

Corollary 1.13. All eigenfunction limitsM (∞) are absolutely continuous under the def-
initeness assumption on the Hessian of H.

A time scale of special importance is the one related to the minimal spacing of eigenval-
ues : define

(13) τHh := h sup
{∣∣E1

h − E2
h

∣∣−1
: E1

h 6= E2
h, E

1
h, E

2
h ∈ H

(
hZd

)}
.

It is possible to have τHh =∞: for instance, if H (ξ) = |ξ|α with 0 < α < 1 or H (ξ) = ξ ·Aξ
with A a real symmetric matrix that is not proportional to a matrix with rational entries
(this is the content of the Oppenheim conjecture, settled by Margulis [13, 31]). In some
other situations, such as H (ξ) = |ξ|α with α > 1, (13) is finite : τHh = h1−α.

Proposition 1.14. If τh � τHh one has:

M (τ) = ConvM (∞) .

This result is a consequence of the more general results presented in Section 6.
Note that Proposition 1.14 allows to complete the description of M (τ) in the case

H (ξ) = |ξ|2 as the time scale varies.
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Remark 1.15. Suppose H (ξ) = |ξ|2, or more generally, that τHh ∼ 1/h and the Hessian
of H is definite. Then:

if τh � 1/h, ∃ν ∈M (τ) such that ν ⊥ dtdx;

if τh ∼ 1/h, M (τ) ⊆ L∞
(
R;L1

(
Td
))

;

if τh � 1/h M (τ) = ConvM (∞) .

Finally, we point out that in this case the regularity of semiclassical measures can be
precised. The elements inM (∞) are trigonometric polynomials when d = 2, as shown in
[23]; and in general they are more regular than merely absolutely continuous, see [1, 23, 36].
The same phenomenon occurs with those elements inM (1/h) that are obtained through
sequences whose corresponding semiclassical measures do not charge {ξ = 0}, see [2].

1.6. Application to semiclassical and non-semiclassical observability estimates.
As was already shown in [3] for the case H (ξ) = |ξ|2 the characterization of the structure
of the elements in M (1/h) implies quantitative, unique continuation-type estimates for
the solutions of the Schrödinger equation (1) known as observability inequalities. This is
the case again in this setting; here we shall prove the following result.

Theorem 1.16. Let U ⊂ Td open and nonempty, T > 0 and χ ∈ C∞c (Rd) such that
suppχ ∩ CH = ∅. Assume that Vh(t) = Oph(V (t, ·)) with V ∈ C∞(R × T ∗Td) bounded.
Then the following are equivalent:
i) Semiclassical observability estimate. There exists C = C(U, T, χ) > 0 and h0 > 0 such
that:

(14) ‖χ (hDx)u‖2
L2(Td) ≤ C

∫ T

0

∫
U

∣∣∣St/hh χ (hDx)u (x)
∣∣∣2 dxdt,

for every u ∈ L2(Td) and h ∈ (0, h0].
ii) Unique continuation in M̃ (1/h). For every µ ∈ M̃ (1/h) with µ(suppχ) 6= 0 and
µ(CH) = 0 (recall that µ is the image of µ under the projection π2) one has:∫ T

0

µ (t, U × suppχ) dt 6= 0.

Besides, any of i) or ii) is implied by the following statement.

iii) Unique continuation for the family of Schrödinger equations (SΛ,ω,ξ). For every Λ ⊂ Zd,
every ξ ∈ suppχ with Λ ⊆ dH(ξ)⊥ and every ω ∈ 〈Λ〉/Λ, one has the following unique
continuation property: if v ∈ C

(
R;L2

ω(Rd,Λ)
)
solves the Schrödinger equation (SΛ,ω,ξ) and

v|(0,T )×U = 0 then v = 0.

This result will be proved as a consequence of the structure Theorem 1.10.

Remark 1.17. The unique continuation property for (SΛ,ω,ξ) stated in Theorem 1.16, iii)
is known to hold in any of the following two cases:

i) V (·, ξ) is analytic in (t, x) for every ξ. This is a consequence of Holmgren’s uniqueness
theorem (see [42])
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ii) V (·, ξ) is smooth (or even continuous outside of a set of null Lebesgue measure) for
every ξ and does not depend on t (see Theorem 1.20 below).

Corollary 1.18. Let U , T , χ, and Vh(t) be as in Theorem 1.16, and suppose that V
satisfies any of the two conditions in Remark 1.17. Then the semiclassical observability
estimate (14) holds.

The nature of the observability estimate (14) is better appreciated when H is itself
quadratic. Suppose:

HA,θ (ξ) =
1

2
A (ξ + θ) · (ξ + θ) ,

where θ ∈ Rd, A is a definite real matrix, and denote by St the (non-semiclassical) prop-
agator, starting at t = 0, associated to HA,θ (Dx) + V (t, ·). Clearly, the propagator St/hh
associated to HA,hθ (hDx) + h2V (t, ·) coincides with St in this case.

Corollary 1.19. Let U ⊂ Td be a nonempty open set, and T > 0. Let Vh(t) = Oph(V (t, ·))
with V ∈ C∞(R × T ∗Td) bounded. Suppose that the following unique continuation result
holds:
For every Λ ⊂ Zd and every ξ ∈ Rd with Λ ⊆ dH(ξ)⊥, if v ∈ C

(
R;L2

ω(Rd,Λ)
)
, ω ∈ 〈Λ〉/Λ,

solves:

(15) i∂tv = (HA,θ (Dy) + 〈V (·, ξ)〉Λ) v

and v|(0,T )×U = 0 then v = 0.
Then there exist C > 0 such that for every u ∈ L2(Td) one has:

(16) ‖u‖2
L2(Td) ≤ C

∫ T

0

∫
U

∣∣∣Stu (x)
∣∣∣2 dxdt.

Note that an estimate such as (16) implies a unique continuation result for solutions
to (1): S

t
u|U = 0 for t ∈ (0, T ) =⇒ u = 0. Corollary 1.19 shows in particular that

this (weaker) unique continuation property for family of quadratic Hamiltonians in equa-
tions (15) actually implies the stronger estimate (16). We also want to stress the fact that
Corollary 1.19 establishes the unique continuation property for perturbations of pseudodif-
ferential type from the analogous property for perturbations that are merely multiplication
by a potential.

It should be also mentioned that the proof of Theorem 4 in [3] can be adapted almost
word by word to prove estimate (16) in the case when V does not depend on t, without
relying in any a priori unique continuation result except those for eigenfunctions. In fact,
the function V can be supposed less regular than smooth: it suffices that it is continuous
outside of a set of null Lebesgue measure.

Theorem 1.20. Suppose V only depends on x; let U ⊂ Td a nonempty open set, and
let T > 0. Then (16) holds; in particular, any solution S

t
u that vanishes identically on

(0, T )× U must vanish everywhere.
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In the proof of Theorem 1.20, unique continuation for solutions to the time dependent
Schrödinger equation is replaced by a unique continuation result for eigenfunctions of
HA,θ (Dx) + V (t, ·). This allows to reduce the proof of (16) to that of a semiclassical
observability estimate (14) with a cut-off χ vanishing close to ξ = 0. At this point, the
validity of (16) is reduced to the validity of the corresponding estimate on Td−1. The proof
of (16) is completed by applying an argument of induction on the dimension d. We refer
the reader to the proof of [3], Theorem 4 for additional details (see also [30] for a proof in
a simpler case in d = 2).

Let us finally mention that Theorem 1.20 was first proved in the case H (ξ) = |ξ|2 in [24]
for V = 0, in [10] for d = 2 and in [3] for general d, the three results having rather different
proofs. We also refer the reader to [4, 9, 25, 30] for additional results and references
concerning observability inequalities in the context of Schrödinger-type equations.

1.7. Generalization to quantum completely integrable systems. Our results may
be transferred to more general completely integrable systems as follows. Let (M,dx) be a
compact manifold of dimension d, equipped with a density dx. Assume we have a family
(Â1, . . . , Âd) of d commuting self-adjoint h-pseudodifferential operators of order 0 in h. By
this, we mean an operator a(x, hDx) where a is in some classical symbol class Sl, or may
even have an asymptotic expansion a ∼

∑+∞
k=0 h

kak in this Sl (the term a0 will then be
called the principal symbol). Let H̃ = f(Â1, . . . , Âd) where f : Rd −→ R is smooth. Let
A = (A1, . . . Ad) : T ∗M −→ Rd be the principal symbols of the operators Âi. Note that
the commutation [Âi, Âj] = 0 implies the Poisson commutation {Ai, Aj} = 0. Assume
that there is an open subset W of Rd and a symplectomorphism T : Td ×W −→ A−1(W )
with Ai ◦ T = ξj (note that, by Arnold-Liouville Theorem, this situation occurs locally
where the differentials of the Ai are linearly independent). Then, there exists a Fourier
integral operator Û : L2(Td) −→ L2(M) associated with T , such that Û Û∗ = I + O(h∞)
microlocally on A−1(W ), and such that

Û∗ÂjÛ = hDxj +
∑
k≥1

hkSj,k(hDx)

on Td ×W with Sj,k ∈ C∞(Rd) (see [12], Theorem 78 (1)).

This may be used to generalize our results to the equation

(17)

{
ih∂tψh (t, x) =

(
Ĥ + h2V

)
ψh (t, x) , (t, x) ∈ R×M,

ψh|t=0 = uh,

where V is a pseudodifferential operator of order 0.

If a is smooth, compactly supported inside A−1(W ), if χ is supported in A−1(W ) taking
the value 1 on the support of a, and if t stays in a compact set of R, we have

Oph(a)Sτhtuh = Oph(a)Sτht Oph(χ)uh + o(1)
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as long as τh � h−2 (or for all τh if V = 0) and

Oph(a)Sτht Oph(χ)uh = Oph(a)Û Û∗SτhtÛ Û∗Oph(χ)uh +O(h∞).

Note that Û∗SτhtÛ Û∗Oph(χ)uh coincides modulo o(1) with S̃τhtÛ∗Oph(χ)uh where S̃τht is
the propagator associated to

(18) ih∂tψh (t, x) =
(
fh(hDx) + h2Û∗V Û

)
ψh (t, x) , (t, x) ∈ R× Td .

where fh(ξ) = f(ξ +
∑

k≥1 h
kSk(ξ)).

The semiclassical measures associated with equation (17), when restricted to A−1(W ),
are exactly the images under T of the semiclassical measures coming from (18) supported
on Td×W . Applying Theorem 1.3 to the solutions of (18) and transporting the statement
by the symplectomorphism T , we obtain the following result :

Theorem 1.21. If τh ≥ h−1 then the semiclassical measures associated with solutions
of (18) are absolutely continuous measures of the lagrangian tori A−1(ξ), for µ̄-almost
every ξ ∈ V such that d2f(ξ) is definite.

The observability results could also be rephrased in this more general setting.

1.8. Organisation of the paper. When τh ≤ 1/h, the key argument of this article is
a second microlocalisation on primitive submodules which is the subject of Section 2 and
leads to Theorems 2.5 and 2.6. Sections 3 and 4 are devoted to the proof of these two
theorems. At that stage of the paper, the proofs of Theorem 1.10 and Theorem 1.3(2)
when τh ∼ 1/h are then achieved. Examples are developed in Section 5 in order to prove
Theorem 1.3(1). Finally, the results concerning hierarchy of time-scales are proved in
Section 6 (and lead to Theorem 1.3 for τh � 1/h), whereas the proof of Theorem 1.16 is
given in Section 7.

Acknowledgements. The authors would like to thank Jared Wunsch for communicating
to them the construction in example (3) in Section 5.3. They are also grateful to Luc
Hillairet for helpful discussions related to some of the results in Section 6. Part of this
work was done as F. Macià was visiting the Laboratoire d’Analyse et de Mathématiques
Appliquées at Université de Paris-Est, Créteil. He wishes to thank this institution for its
support and hospitality.

2. Two-microlocal analysis of integrable systems on Td

In this section, we develop the two-microlocal analysis of the elements of M̃(τ) that will
be at the core of the proof of Theorems 1.3, 1.8 and 1.10 in the case where τh ≤ 1/h. From
now on, we shall assume that the time scale (τh) satisfies:

(19) (hτh) is a bounded sequence.

Note however that the discussion of section 2.1 does not require this assumption.
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2.1. Invariant measures and a resonant partition of phase-space. As in [3], the
first step in our strategy to characterise the elements in M̃ (τ) consists in introducing a
partition of phase-space T ∗Td according to the order of “resonance” of its elements, that
induces a decomposition of the measures µ ∈ M̃ (τ).

Using the duality ((Rd)∗,Rd), we denote by A⊥ ⊂ Rd the orthogonal of a set A ∈ (Rd)∗

and by B⊥ ⊂ (Rd)∗ the orthogonal of a set B ∈ Rd. Recall that L is the family of all
primitive submodules of (Zd)∗ and that with each Λ ∈ L, we associate the set IΛ defined
in (8): IΛ = dH−1(Λ⊥). Denote by Ωj ⊂ Rd, for j = 0, ..., d, the set of resonant vectors of
order exactly j, that is:

Ωj :=
{
ξ ∈ (Rd)∗ : rk Λξ = d− j

}
,

where
Λξ :=

{
k ∈ (Zd)∗ : k · dH(ξ) = 0

}
= dH(ξ)⊥ ∩ Zd.

Note that the sets Ωj form a partition of (Rd)∗, and that Ω0 = dH−1 ({0}); more generally,
ξ ∈ Ωj if and only if the Hamiltonian orbit {φs (x, ξ) : s ∈ R} issued from any x ∈ Td in
the direction ξ is dense in a subtorus of Td of dimension j. The set Ω :=

⋃d−1
j=0 Ωj is usually

called the set of resonant momenta, whereas Ωd = (Rd)∗ \ Ω is referred to as the set of
non-resonant momenta. Finally, write

(20) RΛ := IΛ ∩ Ωd−rk Λ.

Saying that ξ ∈ RΛ is equivalent to any of the following statements:

(i) for any x0 ∈ Td the time-average 1
T

∫ T
0
δx0+tdH(ξ) (x) dt converges weakly, as T →∞,

to the Haar measure on the torus x0 + TΛ⊥ . Here, we have used the notation
TΛ⊥ := Λ⊥/

(
2πZd ∩ Λ⊥

)
, which is a torus embedded in Td;

(ii) Λξ = Λ.
Moreover, if rk Λ = d− 1 then RΛ = dH−1

(
Λ⊥ \ {0}

)
= IΛ \ Ω0. Note that,

(21) (Rd)∗ =
⊔
Λ∈L

RΛ,

that is, the sets RΛ form a partition of (Rd)∗. As a consequence, any measure µ ∈
M+(T ∗Rd) decomposes as

(22) µ =
∑
Λ∈L

µeTd×RΛ
.

Therefore, the analysis of a measure µ reduces to that of µeTd×RΛ
for all primitive submod-

ule Λ. Given an H-invariant measure µ, it turns out that µeTd×RΛ
are utterly determined

by the Fourier coefficients of µ in Λ. Indeed, define the complex measures on Rd:

µ̂k :=

∫
Td

e−ik·x

(2π)d/2
µ (dx, ·) , k ∈ Zd,
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so that, in the sense of distributions,

µ (x, ξ) =
∑
k∈Zd

µ̂k (ξ)
eik·x

(2π)d/2
.

Then, the following proposition holds.

Proposition 2.1. Let µ ∈M+

(
T ∗Td

)
and Λ ∈ L. The distribution:

〈µ〉Λ (x, ξ) :=
∑
k∈Λ

µ̂k (ξ)
eik·x

(2π)d/2

is a finite, positive Radon measure on T ∗Td.
Moreover, if µ is a positive H-invariant measure on T ∗Td, then every term in the decom-
position (22) is a positive H-invariant measure, and

(23) µeTd×RΛ
= 〈µ〉ΛeTd×RΛ

.

Besides, identity (23) is equivalent to the fact that µeTd×RΛ
is invariant by the translations

(x, ξ) 7−→ (x+ v, ξ) , for every v ∈ Λ⊥.

The proof of Proposition 2.1 follows the lines of those of Lemmas 6 and 7 of [3]. We also
point out that this decomposition depends on the function H through the definition of IΛ.
In the following, our aim is to determine µ restricted to Td ×RΛ for any Λ ∈ L.

2.2. Second microlocalization on a resonant submanifold. Let (uh) be a bounded
sequence in L2

(
Td
)
and suppose (after extraction of a subsequence) that its Wigner dis-

tributions wh(t) = wh
S
tτh
h uh

converge to a semiclassical measure µ ∈ L∞
(
R;M+

(
T ∗Td

))
in

the weak-∗ topology of L∞
(
R;D′

(
T ∗Td

))
.

Given Λ ∈ L, the purpose of this section is to study the measure µeTd×RΛ
by performing

a second microlocalization along IΛ in the spirit of [17, 18, 19, 37, 35] and [3, 29]. By
Proposition 2.1, it suffices to characterize the action of µeTd×RΛ

on test functions having
only x-Fourier modes in Λ. With this in mind, we shall introduce two auxiliary “distri-
butions” which describe more precisely how wh (t) concentrates along Td × IΛ. They are
actually not mere distributions, but lie in the dual of the class of symbols S1

Λ that we define
below.

In what follows, we fix ξ0 ∈ RΛ such that d2H(ξ0) is definite and, by applying a cut-off
in frequencies to the data, we restrict our discussion to normalised sequences of initial data
(uh) that satisfy:

ûh (k) = 0, for hk ∈ Rd \B(ξ0; ε/2),

where B(ξ0, ε/2) is the ball of radius ε/2 centered at ξ0. The parameter ε > 0 is taken
small enough, in order that

d2H(ξ) is definite for all ξ ∈ B(ξ0, ε);

this implies that IΛ∩B(ξ0, ε) is a submanifold of dimension d−rk Λ, everywhere transverse
to 〈Λ〉, the vector subspace of (Rd)∗ generated by Λ. Note that this is actually achieved
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under the weaker hypothesis that d2H(ξ) is non-singular and defines a definite bilinear
form on 〈Λ〉×〈Λ〉 (Section 4.5 gives a set of assumptions which is weaker than definiteness
but sufficient for our results). By eventually reducing ε, we have

B(ξ0, ε/2) ⊂ (IΛ ∩B(ξ0, ε))⊕ 〈Λ〉,

by which we mean that any element ξ ∈ B(ξ0, ε/2) can be decomposed in a unique way as
ξ = σ + η with σ ∈ IΛ ∩B(ξ0, ε) and η ∈ 〈Λ〉. We thus get a map

F : B(ξ0, ε/2) −→ (IΛ ∩B(ξ0, ε))× 〈Λ〉(24)
ξ 7−→ (σ(ξ), η(ξ))

With this decomposition of the space of frequencies, we associate two-microlocal test-
symbols.

Definition 2.2. We denote by S1
Λ the class of smooth functions a (x, ξ, η) on T ∗Td × 〈Λ〉

that are:
(i) compactly supported on (x, ξ) ∈ T ∗Td, ξ ∈ B(ξ0, ε/2),
(ii) homogeneous of degree zero at infinity w.r.t. η ∈ 〈Λ〉, i.e. such that there exist

R0 > 0 and ahom ∈ C∞c
(
T ∗Td × S〈Λ〉

)
with

a (x, ξ, η) = ahom

(
x, ξ,

η

|η|

)
, for |η| > R0 and (x, ξ) ∈ T ∗Td

(we have denoted by S〈Λ〉 the unit sphere in 〈Λ〉 ⊆ (Rd)∗, identified later on with
the sphere at infinity);

(iii) such that their non vanishing Fourier coefficients (in the x variable) correspond to
frequencies k ∈ Λ:

a (x, ξ, η) =
∑
k∈Λ

âk (ξ, η)
eik·x

(2π)d/2
.

We will also express this fact by saying that a has only x-Fourier modes in Λ.

The index 1 in the notation S1
Λ refers to the fact that we have added one variable (η) to

the standard class of symbols corresponding to the second microlocalisation. In Section 4,
we will perform successive higher order microlocalisations corresponding to the addition of
k ≥ 1 variables and we will consider spaces denoted SkΛ.

For a ∈ S1
Λ, we introduce the notation

OpΛ
h (a(x, ξ, η)) := Oph (a (x, ξ, τhη(ξ))) .

Notice that, for all β ∈ Nd,

(25)
∥∥∥∂βξ (a (x, hξ, τhη(hξ)))

∥∥∥
L∞
≤ Cβ (τhh)|β| .
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The Calderón-Vaillancourt theorem (see [11] or the appendix of [3] for a precise statement)
therefore ensures that there exist N ∈ N and CN > 0 such that

(26) ∀a ∈ S1
Λ,

∥∥OpΛ
h (a)

∥∥
L(L2(Rd))

≤ CN
∑
|α|≤N

‖∂αx,ξ,ηa‖L∞ ,

since (hτh) is assumed to be bounded. Therefore the family of operators OpΛ
h (a) is a

bounded family of L2(Td).
We are going to use this formalism to decompose the Wigner transform wh(t). Let

χ ∈ C∞c (〈Λ〉) be a nonnegative cut-off function that is identically equal to one near the
origin. For a ∈ S1

Λ, R > 1, δ < 1, we decompose a into: a(x, ξ, η) =
∑3

j=1 aj(x, ξ, η) with

a1(x, ξ, η) := a(x, ξ, η)
(

1− χ
( η
R

))(
1− χ

(
η(ξ)

δ

))
,

a2(x, ξ, η) := a(x, ξ, η)
(

1− χ
( η
R

))
χ

(
η(ξ)

δ

)
,(27)

a3(x, ξ, η) := a(x, ξ, η)χ
( η
R

)
.(28)

Since any smooth compactly supported function with Fourier modes in Λ can be viewed
as an element of S1

Λ (which is constant in the variable η), this induces a decomposition of
the Wigner distribution:

wh(t) = wIΛh,R,δ (t) + wIΛ,h,R (t) + w
IcΛ
h,R,δ (t) ,

where: 〈
wIΛh,R,δ (t) , a

〉
:=

∫
T ∗Td

a2 (x, ξ, τhη(ξ))wh (t) (dx, dξ) ,

(29) 〈wIΛ,h,R (t) , a〉 :=

∫
T ∗Td

a3 (x, ξ, τhη(ξ))wh (t) (dx, dξ) ,

and 〈
w
IcΛ
h,R,δ (t) , a

〉
:=

∫
T ∗Td

a1 (x, ξ, τhη(ξ))wh (t) (dx, dξ) ,

that we shall analyse in the limits h −→ 0+, R −→ +∞ and δ −→ 0 (taken in that order).

The distributions wIΛh,R,δ(t) and wIΛ,h,R(t) can be expressed for all t ∈ R by

〈wIΛh,R,δ(t), a〉 = 〈uh, Sτht∗h OpΛ
h (a2)Sτhth uh〉L2(Td),(30)

〈wΛ
IΛ,h,R

(t), a〉 = 〈uh, Sτht∗h OpΛ
h (a3)Sτhth uh〉L2(Td).(31)

As a consequence of (26), both wIΛh,R,δ and wIΛ,h,R are bounded in L∞
(
R; (S1

Λ)
′).
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The first observation is that

lim
δ−→0

lim
R→∞

lim
h→0

∫
R
θ(t)

〈
w
IcΛ
h,R,δ (t) , a

〉
dt

=

∫
R

∫
T ∗Td

θ(t)ahom

(
x, ξ,

η(ξ)

|η(ξ)|

)
µ(t, dx, dξ)eTd×IcΛdt

where µ ∈ M̃ (τh) is the semiclassical measure obtained through the sequence (uh). Since
RΛ ⊂ IΛ, the restriction of the measure thus obtained to Td×RΛ vanishes, and we do not
need to further analyse the term involving the distribution wI

c
Λ
h,R,δ (t).

Then, after possibly extracting subsequences, one defines limiting objects µ̃Λ and µ̃Λ

such that for every ϕ ∈ L1 (R) and a ∈ S1
Λ,∫

R
ϕ (t)

〈
µ̃Λ (t, ·) , a

〉
dt := lim

δ−→0
lim
R→∞

lim
h→0+

∫
R
ϕ (t)

〈
wIΛh,R,δ (t) , a

〉
dt,

and

(32)
∫
R
ϕ (t) 〈µ̃Λ (t, ·) , a〉 dt := lim

R→∞
lim
h→0+

∫
R
ϕ (t) 〈wIΛ,h,R (t) , a〉 dt.

From the decomposition wh(t) = wIΛh,R,δ (t) + wIΛ,h,R (t) + w
IcΛ
h,R,δ (t) (when testing against

symbols having Fourier modes in Λ), it is immediate that the measure µ (t, ·)eTd×RΛ
is

related to µ̃Λ and µ̃Λ according to the following Proposition.

Proposition 2.3. Let

µΛ (t, ·) :=

∫
〈Λ〉
µ̃Λ (t, ·, dη)eTd×RΛ

, µΛ (t, ·) :=

∫
〈Λ〉
µ̃Λ (t, ·, dη)eTd×RΛ

.

Then both µΛ (t, ·) and µΛ (t, ·) are H-invariant positive measures on T ∗Tdand satisfy:

(33) µ (t, ·)eTd×RΛ
= µΛ (t, ·) + µΛ (t, ·) .

This proposition motivates the analysis of the structure of the accumulation points
µ̃Λ (t, ·) and µ̃Λ (t, ·). It turns out that both µ̃Λ and µ̃Λ have some extra regularity in the
variable x, although for two different reasons. Our next two results form one of the key
steps towards the proof of Theorem 1.3.

Remark 2.4. All the results in this section remain valid if the Hamiltonian Hh depends
on h as stated in Remark 1.1. The proofs are completely analogous, the only difference
being that the the resonant manifolds IΛ and the coordinate system F = (σ, η) now also
vary with h. Therefore, the definitions of wIΛh,R,δ and wIΛ,h,R should be modified accordingly.

2.3. Properties of two-microlocal semiclassical measures. We define, for (x, ξ, η) ∈
T ∗Td × (〈Λ〉 \ {0}) and s ∈ R,

φ0
s (x, ξ, η) := (x+ sdH(ξ), ξ, η) ,

φ1
s (x, ξ, η) :=

(
x+ sd2H(σ(ξ)) · η

|η|
, ξ, η

)
.
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This second definition extends in an obvious way to η ∈ S〈Λ〉 (the sphere at infinity). On
the other hand, the map (x, ξ, η) 7→ φ1

s|η| (x, ξ, η) extends to η = 0.

We first focus on the measure µ̃Λ. We point out that because of the existence of R0 > 0
and of ahom ∈ C∞c

(
T ∗Td × S 〈Λ〉

)
such that

a (x, ξ, η) = ahom

(
x, ξ,

η

|η|

)
, for |η| ≥ R0,

the value
〈
wIΛh,R,δ (t) , a

〉
only depends on ahom. Therefore, the limiting object µ̃Λ (t, ·) ∈

(S1
Λ)
′ is zero-homogeneous in the last variable η ∈ Rd, supported at infinity, and, by

construction, it is supported on ξ ∈ IΛ. This can be also expressed as the fact that µ̃Λ is
a “distribution” on Td × IΛ × 〈Λ〉 (where 〈Λ〉 is the compactification of 〈Λ〉 by adding the
sphere S〈Λ〉 at infinity) supported on {η ∈ S〈Λ〉}. Moreover, we have the following result.

Theorem 2.5. µ̃Λ (t, ·) is a positive measure on Td × IΛ × 〈Λ〉 supported on the sphere at
infinity S〈Λ〉 in the variable η. Besides, for a.e. t ∈ R, the measure µ̃Λ (t, ·) satisfies the
invariance properties:

(34)
(
φ0
s

)
∗ µ̃

Λ (t, ·) = µ̃Λ (t, ·) ,
(
φ1
s

)
∗ µ̃

Λ (t, ·) = µ̃Λ (t, ·) , s ∈ R.

Note that this result holds whenever τh � 1/h or τh = 1/h. This is in contrast with
the situation we encounter when dealing with µ̃Λ(t, ·). The regularity of this object indeed
depends on the properties of the scale.

Theorem 2.6. (1) The distributions µ̃Λ(t, ·) are supported on Td × IΛ × 〈Λ〉 and are
continuous with respect to t ∈ R.
(2) If τh � 1/h then µ̃Λ (t, ·) is a positive measure.
(3) If τh = 1/h, the projection of µ̃Λ (t, ·) on T ∗Td is a positive measure, whose projection
on Td is absolutely continuous with respect to the Lebesgue measure.
(4) If τh � 1/h, then µ̃Λ satisfy the following propagation law:

(35) ∀t ∈ R, µ̃Λ(t, x, ξ, η) = (φ1
t|η|)∗µ̃Λ(0, x, ξ, η).

Note that (4) implies the continuous dependence of µ̃Λ(t, ·) with respect to t in the
case τh � 1/h. For τh = 1/h the dependence of µ̃Λ(t, x, ξ, η) on t will be investigated in
Section 3.

Remark 2.7. Consider the decomposition µ (t, ·) =
∑

Λ∈L µ
Λ (t, ·) +

∑
Λ∈L µΛ (t, ·) . given

by Proposition 2.3. When τh = 1/h, Theorem 2.6(3) implies that the second term defines
a positive measure whose projection on Td is absolutely continuous with respect to the
Lebesgue measure.

Theorem 2.6 calls for a few comments.

The fact that the distribution µ̃Λ is supported on Td×IΛ×〈Λ〉 is straightforward. Indeed,
we have for all t,

(36) 〈wIΛ,h,R(t), a(x, ξ, η)〉 = 〈wIΛ,h,R(t), a(x, σ(ξ), η)〉+O(τ−1
h )
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since, by (26),

OpΛ
h (a3(x, ξ, η)) = OpΛ

h (a(x, σ(ξ) + τ−1
h η, η)χ(η/R))

= OpΛ
h (a(x, σ(ξ), η)χ(η/R)) +O(τ−1

h )

where the O(τ−1
h ) term is understood in the sense of the operator norm of L(L2(Rd)) and

depends on R (the fact that we first let h go to 0+ is crucial here).

When τh � 1/h the quantization of our symbols generates a semi-classical pseudodiffer-
ential calculus with gain hτh. The operators OpΛ

h (a) are semiclassical both in ξ and η. This
implies that the accumulation points µ̃Λ and µ̃Λ are positive measures (see for instance [35]
or [19]).

When τh = 1/h, we will see in Theorem 3.2 in Section 3 that the distributions µ̃Λ (t, ·)
satisfy an invariance law that can be interpreted in terms of a Schrödinger flow type
propagator.

Let us now comment on the invariance by the flows. Note first that of major importance
is the observation that for all ξ ∈

(
Rd
)∗ \ CH (recall that CH stands for the points where

the Hessian d2H (ξ) is not definite) we have the decomposition Rd = Λ⊥ ⊕ d2H (ξ) 〈Λ〉.
Therefore, the flows φ0

s and φ1
s are independent on Td × (RΛ \ CH) × 〈Λ〉. Then, the

following remark holds:

Remark 2.8. In the case where rk Λ = 1 then (34) implies that, for a.e. t ∈ R, and for
any ν in the 1-dimensional space 〈Λ〉, the measure µ̃Λ (t, ·)eTd×RΛ×〈Λ〉 is invariant under

(x, σ, η) 7−→ (x+ d2H(σ) · ν, σ, η).

On the other hand, the invariance by the Hamiltonian flow and Proposition 2.1, imply that
µ̃Λ (t, ·)eTd×RΛ×〈Λ〉 is also invariant under

(x, σ, η) 7−→ (x+ v, σ, η)

for every v in the hyperplane Λ⊥. Using the independence of the different flows and the
fact that the Hessian d2H (σ) is definite on the support of µ̃Λ (t, ·)eTd×RΛ×〈Λ〉, we conclude
that the measure µ̃Λ (t, ·)eTd×RΛ×〈Λ〉 is constant in x ∈ Td in this case. For rk Λ > 1, we
will develop a similar argument thanks to successive microlocalisations (see section 4).

In the next subsection, we prove the invariance properties stated in Theorems 2.5 and 2.6
(2) and (4). For τh = h−1 the detailed analysis of the measure µ̃Λ is performed in section 3
and the proof of the absolute continuity of its projection on T ∗Td is done in section 4.

2.4. Invariance properties of two-microlocal semiclassical measures.

Proof of Theorem 2.5. The positivity of µ̃Λ (t, ·) can be deduced following the lines of [19]
§2.1, or those of the proof of Theorem 1 in [21]; see also the appendix of [3]. The proof of
invariance of µ̃Λ (t, ·) under φ0

s is similar to the proof of invariance of µ under φs done in
the appendix.
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Let us now check the invariance property (34). Using (27), we have (along any convergent
subsequence)∫

R
ϕ(t)〈µ̃Λ(t, ·), a〉dt = lim

δ→0
lim

R→+∞
lim
h→0

∫
R
ϕ(t)

〈
wIΛh,R,δ (t) , a

〉
dt(37)

= lim
δ→0

lim
R→+∞

lim
h→0

∫
R
ϕ(t)〈wh(t), a2 (x, ξ, τhη(ξ))〉dt.

Notice that the symbol

a2 ◦ φ1
s(x, ξ, η) = a2

(
x+ sd2H(σ(ξ))

η

|η|
, ξ, η

)
,

is a well-defined element of S1
Λ, since, for fixed R, a2 is identically equal to zero near η = 0;

moreover

∀ω ∈ S〈Λ〉, (a2 ◦ φ1
s)hom(x, ξ, ω) = ahom(x+ sd2H(σ(ξ))ω, ξ, ω).

We write
d

ds
|s=0

(
a2 ◦ φ1

s

)
(x, ξ, τhη(ξ)) =

(
d2H(σ(ξ))

η(ξ)

|η(ξ)|

)
· ∂xa2 (x, ξ, τhη(ξ)) .

Using the Taylor expansion

d2H(σ(ξ))η(ξ) +G(ξ)[η(ξ), η(ξ)] = dH(ξ)− dH(σ(ξ))

where

(38) G(ξ) =

∫ 1

0

d3H(σ(ξ) + tη(ξ))(1− t)dt,

is uniformly bounded, and taking into account the fact that η(ξ) = O(δ) on the support
of a2, we have(
d2H(σ(ξ))

η(ξ)

|η(ξ)|

)
·∂xa2 (x, ξ, τhη(ξ)) =

(
dH(ξ)− dH(σ(ξ))

|η(ξ)|

)
·∂xa2 (x, ξ, τhη(ξ)) +O(δ).

Because a2 has only x-Fourier coefficients in Λ and dH(σ(ξ)) ∈ Λ⊥, we can write(
dH(ξ)− dH(σ(ξ))

|η(ξ)|

)
· ∂xa2 (x, ξ, τhη(ξ)) =

(
dH(ξ)

|η(ξ)|

)
· ∂xa2 (x, ξ, τhη(ξ)) .

Note now that

Oph

(
dH(ξ)

|η(ξ)|
· ∂xa2 (x, ξ, τhη(ξ))

)
=
i

h

[
H(hDx) + h2Vh(t),Oph

(
a2 (x, ξ, τhη(ξ))

|η(ξ)|

)]
+O(h) +O

(
hτh
R

)
.

For the last term, we have only used that Vh(t) is a bounded operator on L2 and∥∥∥∥Oph

(
a2 (x, ξ, τhη(ξ))

|η(ξ)|

)∥∥∥∥
L2−→L2

= O
(τh
R

)
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since 1
|η(ξ)| = O

(
τh
R

)
on the support of a2.

To conclude, take a test function ϕ(t) ∈ C∞c (R) (those are dense in L1(R)).∫
R
ϕ(t)

〈
wIΛh,R,δ (t) ,

d

ds
|s=0

(
a2 ◦ φ1

s

)
(x, ξ, τhη(ξ))

〉
dt

=

∫
R
ϕ(t)

〈
Sτhth uh,

i

h

[
H(hDx) + h2Vh(t),Oph

(
a2 (x, ξ, τhη(ξ))

|η(ξ)|

)]
Sτhth uh

〉
dt

+O(h) +O

(
hτh
R

)
+O(δ)

=
1

τh

∫
R
ϕ(t)

d

dt

〈
Sτhth uh,Oph

(
a2 (x, ξ, τhη(ξ))

|η(ξ)|

)
Sτhth uh

〉
dt+O(h) +O

(
hτh
R

)
+O(δ)

= − 1

τh

∫
R
ϕ′(t)

〈
Sτhth uh,Oph

(
a2 (x, ξ, τhη(ξ))

|η(ξ)|

)
Sτhth uh

〉
dt+O(h) +O

(
hτh
R

)
+O(δ)

= O(τ−1
h ) +O(h) +O

(
hτh
R

)
+O(δ).

Taking the limit h −→ 0 followed by R −→ +∞ and δ −→ 0, we obtain∫
R
ϕ(t)

〈
µ̃Λ(t),

d

ds
|s=0

(
a ◦ φ1

s

)〉
dt = 0

for any ϕ and a, which ends the proof of Theorem 2.5. �

Proof of (1), (2) and (4) of Theorem 2.6 for hτh −→ 0. The statement on the support of
the measure µ̃Λ has already been discussed in Section 2.2 (after Remark 2.7). The positivity
of µ̃Λ is standard once we notice that the two-scale quantization admits the gain hτh (in
view of (25)). Note also that (4) implies the continuous dependence with respect to t.
Thus let us prove part (4) of the theorem. The propagation law (and hence, the continuity
with respect to t) is proved as follows. Let

φ̃1
t (x, ξ, η) = φ1

t|η|(x, ξ, η) = (x+ td2H(σ(ξ))η, ξ, η).

We write
d

dt |t=0
a3 ◦ φ̃1

t (x, ξ, τhη(ξ)) = τhd
2H(σ(ξ))η(ξ) · ∂xa3(x, ξ, τhη(ξ))

and the same argument as in the previous proof now yields

τhd
2H(σ(ξ))η(ξ) · ∂xa3(x, ξ, τhη(ξ)) = τhdH(ξ) · ∂xa3(x, ξ, τhη(ξ)) +O

(
R2

τh

)
where we now use that |η(ξ)| = O

(
R
τh

)
on the support of a3. Note now that

τh Oph (dH(ξ) · ∂xa3(x, ξ, τhη(ξ))) =
iτh
h

[
H(hDx) + h2Vh(t),Oph (a3(x, ξ, τhη(ξ))

]
+O (hτh) ,

using only the fact that Vh(t) is a bounded operator.
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To conclude, take a test function ϕ(t) ∈ C∞c (R).∫
R
ϕ(t)

〈
wIΛ,h,R (t) ,

d

dt |t=0
a3 ◦ φ̃1

t (x, ξ, τhη(ξ))

〉
dt

=

∫
R
ϕ(t)

〈
Sτhth uh,

iτh
h

[
H(hDx) + h2Vh(t),Oph (a3 (x, ξ, τhη(ξ)))

]
Sτhth uh

〉
dt

+O (hτh) +O

(
R2

τh

)
=

∫
R
ϕ(t)

d

dt

〈
Sτhth uh,Oph (a3 (x, ξ, τhη(ξ)))Sτhth uh

〉
dt+O (hτh) +O

(
R2

τh

)
= −

∫
R
ϕ′(t)

〈
Sτhth uh,Oph (a3 (x, ξ, τhη(ξ)))Sτhth uh

〉
dt+O (hτh) +O

(
R2

τh

)
Taking the limit h −→ 0 followed by R −→ +∞, we obtain∫

R
ϕ(t)

〈
µ̃Λ(t),

d

dt
|t=0

(
a ◦ φ̃1

t

)〉
dt = −

∫
R
ϕ′(t) 〈µ̃Λ(t), a〉 dt

for any ϕ and a, which is the announced result. �

3. Regularity and transport of µ̃Λ.

In this section, we suppose τh = 1/h and we prove statement (3) of Theorem 2.6.
This constitutes a first step towards the proof of Theorem 1.10 (and Theorem 1.3(2))
which will be achieved in Section 4. In Theorem 3.2 below, we give a description of the
measure µ̃Λ. The first part of our result implies in particular that the projection of µ̃Λ

onto Td is absolutely continuous. For this result to hold we only assume that Vh(t) is a
general bounded self-adjoint perturbation as described in the Introduction. The second
part of Theorem 3.2 shows that µ̃Λ satisfies a propagation law that involves a Heisenberg
equation. For that part we need to assume that Vh (t) = Oph (V (t, ·)) for some smooth
bounded symbol V .

Recall that for ω in the torus 〈Λ〉/Λ, we denote by L2
ω(Rd,Λ) the subspace of L2

loc(Rd)∩
S ′(Rd) formed by the functions whose Fourier transform is supported in Λ − ω. In other
words, f ∈ L2

ω(Rd,Λ) if and only if f ∈ L2
loc(Rd) and:

f (·+ v) = f, ∀v ∈ Λ⊥,

(39) f (·+ k) = e−iω·kf, ∀k ∈ 2πZd,
where, recall, Λ⊥ stands for the orthogonal of Λ in the duality sense. Clearly, f ∈ L2

ω(Rd,Λ)
if and only if there exists g ∈ L2(Td,Λ) (the set of L2 function on Td which have Fourier
modes in Λ) such that f (x) = e−iω·xg (x); this characterization induces a natural Hilbert
structure on L2

ω(Rd,Λ).

We introduce an auxiliary lattice Λ̃ ⊂ 2πZd such that 2πZd ⊂ Λ⊥ ⊕ Λ̃. Let DΛ̃ ⊂ 〈Λ̃〉
be a fundamental domain of the action of Λ̃ on 〈Λ̃〉. Each space L2

ω(Rd,Λ) is naturally
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isomorphic to L2(DΛ̃), (simply by extending by continuity the restriction of functions
in C∞(Rd) ∩ L2

ω(Rd,Λ)). Under this isomorphism, the norm in L2(DΛ̃) equals a factor
|DΛ̃|

1/2 / (2π)d/2 times the norm in L2
ω(Rd,Λ).

Introduce a vector bundle F over (〈Λ〉/Λ)× IΛ, formed of pairs (ω, σ, f) where (ω, σ) ∈
(〈Λ〉/Λ) × IΛ and f ∈ L2

ω(Rd,Λ). This vector bundle is trivial, it may be identified with
(〈Λ〉/Λ) × IΛ × L2(DΛ̃) just by taking the above isomorphism (note, however, that the
subbundle formed of triples (ω, σ, f) such that f is smooth does not admit a smooth
trivialisation).

We denote by L(F) (resp. K(F), L1(F)) the vector bundles over (〈Λ〉/Λ) × IΛ formed
of pairs (ω, σ,Q) where Q ∈ L(L2(Rd,Λ, ω)) (resp. K(L2(Rd,Λ, ω)), L1(L2(Rd,Λ, ω))).
Again, all these bundles are trivial. Recall that, given a Hilbert space H, L(H), K(H) and
L1 (H) stands respectively for the space of bounded, compact and trace-class operators
acting on H.

Remark 3.1. The Bloch-Floquet spectral decomposition shows that L∞ sections of L(F)
are in one-to-one correspondence with L∞ maps IΛ 3 σ 7−→ Q(σ) ∈ L(L2(Rd)), where, in
addition, a.e. Q(σ) commutes with all translations by vectors k ∈ 2πZd + Λ⊥.

We denote by Γ(K(F)) the space of continuous sections of K(F). Using the previous
trivialisation, it is isomorphic to C((〈Λ〉/Λ) × IΛ,K(L2(DΛ̃))), the space of continuous
functions on (〈Λ〉/Λ)×IΛ taking values in K(L2(DΛ̃)). The dual space Γ(K(F))′ to Γ(K(F))
is isomorphic toM((〈Λ〉/Λ)×IΛ,L1(L2(DΛ̃))), the space of measures on (〈Λ〉/Λ)×IΛ taking
values in L1(L2(DΛ̃)).

We denote by Γ+(K(F)) the subset of positive sections, and Γ(K(F))′+ the positive ele-
ments of the dual, which correspond to elements of M+((〈Λ〉/Λ) × IΛ,L1(L2(DΛ̃))) (the
space of measures taking values in positive trace-class operators). Note that, by the Radon-
Nikodym theorem (see for instance the appendix in [21]), an element ρ ∈ Γ+(K(F)) can
be written as ρ = Mν where ν = Tr ρ is a positive measure on (〈Λ〉/Λ) × IΛ and M is a
ν-integrable section of L1(F). We shall denote by Γ1(L1(F); ν) the set of such sections.

In order to state the propagation law obeyed by µ̃Λ when Vh(t) = Oph (V (t, x, ξ)), let
us introduce one more notation. Write x = s + y ∈ Rd with (s, y) ∈ Λ⊥ × 〈Λ̃〉 and let
σ ∈ IΛ; we denote by 〈V (t, y, σ)〉Λ the average of V (t, s + y, σ) w.r.t. s, thus getting a
function that does not depend on s. We denote by 〈V (t)〉Λ,σ the multiplication operator
on L2

ω(Rd,Λ) associated to the multiplication by the σ-depending function 〈V (t, y, σ)〉Λ.
In the trivialisation introduced above, this operator does not depend on ω. In the case
of a function a(x, ξ, η) ∈ S1

Λ, the function a(s + y, ξ, η) does not depend on s so that
〈a(y, σ, η)〉Λ = a(y, σ, η). We denote by aσ the section of L(F) that associates to (ω, σ) the
operator acting on L2

ω(Rd,Λ) by a(y, σ,Dy) (Weyl quantization). In the case of a function
a(x, ξ) ∈ C∞0 (T ∗Td) with Fourier modes in Λ (and independent of η), the function a(s+y, ξ)
does not depend on s so that 〈a(y, σ)〉Λ = a(y, σ). In this case aσ is the section of L(F) that
associates to (ω, σ) the operator acting on L2

ω(Rd,Λ) by multiplication by a(y, σ). Finally,
(d2H(σ)Dy ·Dy)ω will be used to denote the operator d2H(σ)Dy ·Dy acting on L2

ω(Rd,Λ).
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Theorem 3.2. There exists mΛ ∈ M+((〈Λ〉/Λ)× IΛ) and M0
Λ a mΛ-integrable section of

L1(F), which only depend on the sequence of initial data, such that for all a ∈ S1
Λ and all

t ∈ R:

(40) 〈µ̃Λ (t, ·) , a〉 =

∫
(〈Λ〉/Λ)×IΛ

TrL2
ω(Rd,Λ) (aσMΛ (t, ω, σ))mΛ(dω, dσ).

where MΛ(t, ω, σ) solves, mΛ-a.e. (ω, σ) ∈ (〈Λ〉/Λ)×RΛ,

(HeisΛ,ω,σ) i∂tMΛ(t, ω, σ) =

[
1

2

(
d2H(σ)Dy ·Dy

)
+ 〈V (t)〉Λ,σ,MΛ(t, ω, σ)

]
,

with MΛ(0, ·) = M0
Λ. In other words,

(41) MΛ(t, ω, σ) = UΛ,ω,σ (t)M0
Λ(ω, σ)U∗Λ,ω,σ (t) ,

where UΛ,ω,σ (t) is the propagator starting at t = 0 of the unitary evolution associated to
the operator 1

2
(d2H(σ)Dy ·Dy) + 〈V (t)〉Λ,σ on L2

ω(Rd,Λ).

Remark 3.3. i) Note that the fact that MΛ (t, ·) is given by (HeisΛ,ω,σ) and (41) implies
that it is a continuous function of t. Therefore, µ̃Λ (t, ·) itself can be identified to a family
of positive measures depending continuously on time .
ii) The proof of Theorem 3.2 is carried out using the trivialisation obtained by identifying
L2
ω(Rd,Λ) with L2(DΛ̃) and the final result does not depend on the choice of Λ̃ and DΛ̃.

iii) Identity (40) holds when Vh(t) is a bounded family of perturbations as described in the
introduction. In that case, the measure mΛ may also depend on time and equation (41) is
not available.

The proof of Proposition 3.2 is divided in three steps:
(1) We first define an operator Kh which maps functions on Rd to distributions with

Fourier frequencies only in 〈Λ〉; in addition, this operator maps (2πZd)-periodic
functions to distributions on IΛ taking values in functions satisfying a Bloch-Floquet
periodicity condition.

(2) Then, we express wIΛ,h,R(t) in terms of Kh and take limits, first h → 0+ then
followed by R→ +∞. This defines an element ρΛ ∈ L∞ (R; Γ+(K(F))).

(3) We study the dependence in t of the limit object ρΛ and show that it obeys a
Heisenberg equation similar to (HeisΛ,ω,σ). Note that the latter is of lower dimension
than the original one (1) as soon as rk Λ < d.

Each of the next subsections is devoted to one of the steps of the proof.

3.1. First Step: Construction of the operator Kh. Take m ∈ C∞0 ((Rd)∗) supported
in the ball B(ξ0, ε) ⊂ (Rd)∗, and identically equal to 1 on B(ξ0, ε/2). For f a tempered
distribution, we let

Ff(ξ) :=

∫
Rd
f(x)e−iξ·x

dx

(2π)d/2
.

In particular, if f is a 2πZd-periodic function, we have Ff =
∑

k∈Zd f̂(k)δk. In what follows
we shall denote dΛ := rk Λ and dΛ⊥ := rk Λ⊥.
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The operator Kh maps a tempered distribution f to a distribution on IΛ×Rd as follows:

Khf(σ, y) :=

∫
x∈Rd

f(x)

∫
η∈〈Λ〉

m(σ)e
i
h
η·ye−

i
h

(σ+η)·x dη

(2πh)dΛ/2

dx

(2πh)d/2

=
m(σ)

hd/2

∫
〈Λ〉
Ff
(
σ + η

h

)
e
i
h
η·y dη

(2πh)dΛ/2
.

In order to get more insight on the properties ofKhf it is useful to introduce some notations.
Let πΛ̃ be the projection on 〈Λ̃〉, in the direction of Λ⊥. We have πΛ̃(2πZd) = Λ̃ ⊂ Zd. For
ξ ∈ (Rd)∗, we shall denote by ξΛ ∈ 〈Λ〉 the linear form ξΛ(y) := ξ · πΛ̃(y) (in other words,
the projection of ξ on 〈Λ〉, in the direction Λ̃⊥). Note that for ξ ∈ Zd one has ξΛ ∈ Λ. We
fix a bounded fundamental domain DΛ for the action of Λ on 〈Λ〉. For η ∈ 〈Λ〉, there is a
unique {η} ∈ DΛ (the “fractional part” of η) such that η − {η} ∈ Λ.

Sometimes we shall use the decomposition (Rd)∗ = Λ̃⊥ ⊕ 〈Λ〉. This decomposition
is related to the one given by the local coordinate system F (ξ) = (σ (ξ) , η (ξ)) defined
in (24) as follows. Let (ξ1, ξ2) ∈ Λ̃⊥ × 〈Λ〉 such that F is defined on ξ = ξ1 + ξ2 (and
therefore ξ = σ (ξ) + η (ξ)). Then σ (ξ) = σ (ξ1) does not depend on ξ2 and

ξ2 = η (ξ) + σ (ξ1)Λ .

In other words, (ξ1, ξ2) ∈ Λ̃⊥ × 〈Λ〉 corresponds through F (whenever F (ξ) is defined) to
a pair (σ, η) ∈ IΛ × 〈Λ〉 given by:

(42) σ = σ (ξ1) , η = ξ2 − σ (ξ1)Λ .

These relations imply that for every ξ1 ∈ Λ̃⊥ and y ∈ Rd the following holds:

(43) Khf(σ (ξ1) , y) = e−i
σ(ξ1)Λ
h
·ym(σ(ξ1))

∫
Λ⊥
f(s+ πΛ (y))e−i

ξ1
h
·s ds

(2πh)dΛ⊥/2
.

In the above formula, ds is the dual density of dξ1, which in turn is defined to have
dξ = dξ1dξ2 where dξ2 stands for the natural density on 〈Λ〉. Note that dξ1 is a constant
multiple of the natural density on Λ̃⊥.

If f is a 2πZd-periodic function then:

Khf(σ, y) =
hdΛ⊥/2

(2π)dΛ/2

∑
kσ∈σ(hZd)

δkσ (σ)
∑

kη∈〈Λ〉, (kσ ,kη)∈F(hZd)

m(kσ)f̂

(
kσ + kη

h

)
e
i
h
kη ·y.

It is clear from the above formula that for every y ∈ Rd, the distribution Khf (·, y) is
supported on the set

IhΛ :=
{
σ ∈ IΛ :

σ

h
∈ Zd − 〈Λ〉

}
.

We gather the properties of the operator Kh that will be used in the sequel in the following
lemma.
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Lemma 3.4. (i) The Fourier transform of Khf(σ, ·) w.r.t. the second variable is:

(44) FKhf (σ, η) =

(
2π

h

)d
Λ⊥/2

m (σ)Fu
(σ
h

+ η
)
δ〈Λ〉 (η) ,

in particular it is supported in 〈Λ〉.
(ii) The support of Khf(σ, ·) is included in supp f + Λ⊥.
(iii) If f is (2πZ)d-periodic, then suppKhf (·, y) ⊂ IhΛ and Khf(σ, ·) satisfies a Floquet
periodicity condition:

(45) Khf(σ, y + k) = Khf(σ, y)e−iωh(σ)·k

for all k ∈ 2πZd, where
ωh : IhΛ −→ 〈Λ〉 /Λ : σ 7−→

{σΛ

h

}
.

Statement (45) is equivalent to the fact that Khf(σ, ·) has only frequencies in Λ− ωh (σ).
(iv) Let f be a 2πZd-periodic function, and let χ be a compactly supported function on Rd

such that
∑

k∈2πZd χ(·+ k) ≡ 1. Then

(46)
∑
k∈Λ̃

Kh(χf)(σ, y + k)eiωh(σ)·k = Khf(σ, y).

(v) If f ∈ L2(Td) then the following Plancherel-type formula holds:

(47)
∑
k∈Zd
|f̂(k)m(hk)|2 =

∑
σ∈IhΛ

∫
Td
|Khf(σ, y)|2dy.

Proof. All points are quite obvious except (iii), which we prove below. Formula (44) shows
that the Fourier transform of Khf(σ, ·) is supported in 〈Λ〉. On the other hand, if f is
2πZd-periodic then its Fourier transform is supported in Zd. Therefore, because of identity
(44), on the support of FKhf(σ, η) one must have:

σ

h
+ η ∈ Zd, η ∈ 〈Λ〉.

In other words, σ ∈ IhΛ and η ∈ 〈Λ〉. Taking the projection on 〈Λ〉 in the direction Λ̃⊥

yields η ∈ Λ − σΛ

h
, which is equivalent to η ∈ Λ − {σΛ

h
}. Note that any other choice of

the auxiliary lattice used to define the projection onto 〈Λ〉 would lead to a σ′Λ ∈ 〈Λ〉 that
differs from σΛ on an element of hΛ. This shows, in particular, that the mapping ωh is
well-defined on IhΛ. �

Remark 3.5. Let f be 2πZd-periodic and let θ ∈ (Rd)∗/(Zd)∗. Let gθ (y) := e−iθ·yf (y);
then the proof of Lemma 3.4 (iii) shows that Khgθ satisfies the following Bloch-Floquet
periodicity condition:

Khgθ(σ, y + k) = Khgθ(σ, y)e−i(ωh(σ)+θΛ)·k,

for every k ∈ 2πZd.
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3.2. Second step: Link between wIΛ,h,R and Kh. Now we show how the two-microlocal
Wigner distributions (wIΛ,h,R) of the sequence

(
S
t/h
h uh

)
can be expressed in terms of(

KhS
t/h
h uh

)
. Let χ ∈ C∞c (Rd) be such that

∑
k∈2πZd χ(· + k) ≡ 1. All the following

identities hold independently of the choice of such χ. We start expressing the standard
Wigner distributions whuh in terms of the decomposition ξ = (ξ1, ξ2) ∈ Λ̃⊥ × 〈Λ〉 of (Rd)∗.
Let b ∈ C∞c (Td × Rd), possibly depending on h. The following holds:

I(b, h) :=

∫
T ∗Td

b (x, ξ)whuh(dx, dξ)

=
1

(2π)d/2

∫
(Rd)∗×(Rd)∗

F (χuh) (ξ)Fuh(ξ′)Fb
(
ξ′ − ξ, hξ + ξ′

2

)
dξdξ′

=
1

(2π)d/2hdΛ⊥

∫
ξ1,ξ′1∈Λ̃⊥,ξ2,ξ′2∈〈Λ〉

F (χuh) (ξ1, ξ2)Fuh(ξ′1, ξ′2)

Fb
(
ξ′1 − ξ1

h
+ ξ′2 − ξ2,

ξ1 + ξ′1
2

+ h
ξ2 + ξ′2

2

)
dξ1dξ

′
1dξ2dξ

′
2.

Identity (42) shows that:

ξ =
ξ1

h
+ ξ2 =

σ

h
+ η,

where σ = σ(ξ1) and η = ξ2 − σ(ξ1)Λ

h
. For every σ ∈ IΛ, we denote by ξ1 (σ) the element

in Λ̃⊥ characterised by ξ1 (σ)− σ ∈ 〈Λ〉. The density dξ1 on Λ̃⊥ is transferred to a density
dσ on IΛ (note that dξ = dξ1dξ2 = dσdη).

With this in mind, we obtain using (44), provided we assume that uh has frequencies in
B(ξ0, ε/2):

(48) I(b, h) =
(2πh)−dΛ⊥

(2π)d/2

∫
σ,σ′∈IΛ,η,η′∈Rd

FKhχuh(σ, η)FKhuh(σ′, η′)

Fb
(
ξ1(σ′)− ξ1 (σ)

h
+
σ′Λ
h

+ η′ − σΛ

h
− η, σ ⊕ σ

′

2
−
(
σ ⊕ σ′

2

)
Λ

+
σΛ + σ′Λ

2
+ h

η + η′

2

)
dσdσ′dηdη′,

where σ⊕σ′
2

is a notation for the image under the coordinate map σ (ξ) of σ+σ′

2
.

If b is invariant in the direction Λ⊥ then the previous integral reduces to an integral over
σ = σ′ and takes the simpler form

I(b, h) =
(2πh)−dΛ⊥

(2π)dΛ/2

∫
σ∈IΛ,η,η′∈Rd

FKhχuh(σ, η)FKhuh(σ, η′)Fb
(
η′ − η, σ + h

η + η′

2

)
dσdηdη′,

where now Fb should just be interpreted as a partial Fourier transform in the direction 〈Λ̃〉.
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In (48), the function Khχuh may be replaced by any other function satisfying the iden-
tity (46). In particular, we may replace Khχuh by χ0Khuh, where χ0 is a function that
satisfies ∑

k∈Λ̃

χ0(·+ k) ≡ 1

and χ0 is constant in the direction Λ⊥. In what follows, we take χ0 to be the characteristic
functions of DΛ̃, a fundamental domain for the action of Λ̃ on Rd.

By the changes of variables η −→ η − σΛ

h
+ 1

h

(
σ⊕σ′

2

)
Λ
and η′ −→ η′ − σ′Λ

h
+ 1

h

(
σ⊕σ′

2

)
Λ
,

(48) may be transformed into

(49) I(b, h) =
(2πh)−dΛ⊥

(2π)d/2

∫
σ,σ′∈IΛ,η,η′∈Rd

Fχ0Khuh

(
σ, η − σΛ

h
+

1

h

(
σ ⊕ σ′

2

)
Λ

)
× FKhuh

(
σ′, η′ − σ

′
Λ

h
+

1

h

(
σ ⊕ σ′

2

)
Λ

)
×Fb

(
ξ1(σ′)− ξ1 (σ)

h
+ η′ − η, σ ⊕ σ

′

2
+ h

η + η′

2

)
dσdσ′dηdη′.

Next we write

Khuh (σ, y) =
∑
k∈Λ̃

χ0(y + k)Khuh (σ, y) =
∑
k∈Λ̃

(χ0Khuh)(σ, y + k)eiωh(σ)·k,

so that
FKhuh(σ, η) = Fχ0Khuh(σ, η)δΛ−ωh(σ)+Λ̃⊥ (η) ,

Thus (49) is also

(50) I(b, h) =
(2πh)−dΛ⊥

(2π)d/2

∫
σ,σ′∈IΛ,η,η′∈Rd

Fχ0Khuh

(
σ, η − σΛ

h
+

1

h

(
σ ⊕ σ′

2

)
Λ

)
Fχ0Khuh

(
σ′, η′ − σ

′
Λ

h
+

1

h

(
σ ⊕ σ′

2

)
Λ

)
Fb
(
ξ1(σ′)− ξ1 (σ)

h
+ η′ − η, σ ⊕ σ

′

2
+ h

η + η′

2

)
dσdσ′dηdη′δ

η′∈Λ̃⊥+ωh(σ⊕σ
′

2
)
.

This motivates the following definition :

Definition 3.6. If Q(ω, s, σ) is a smooth compactly supported function on 〈Λ〉/Λ×Λ⊥×IΛ,
taking values in L(L2(DΛ̃)), we define:

P h
Q (s, σ) := ei

σΛ•
h Q (ωh (σ) , s, σ) e−i

σΛ•
h , vh (σ, y) := χ0 (y) ei

σΛ
h
·yKhuh (σ, y) ,

where ei
σΛ•
h denotes multiplication by ei

σΛ
h
·y. Define

(51) 〈ρhuh , Q〉 :=
〈
vh, P

h
Q (hDσ, ·) vh

〉
L2(IΛ;L2(DΛ̃))

,

where P h
Q (hDσ, σ) is obtained from P h

Q by Weyl quantization.
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More explicitly, we have:

(52) 〈ρhuh , Q〉 =
1

(2πh)dΛ⊥

∫
σ,σ′∈IΛ

∫
s∈Λ⊥

e−i
ξ1(σ′)−ξ1(σ)

h
·s〈

vh(σ
′, ·), P h

Q

(
s,
σ ⊕ σ′

2

)
vh(σ

′, ·)
〉
L2(DΛ̃)

dσdσ′ds.

The interest of this definition becomes clearer if we realize the following identity. Let
b ∈ C∞c (T ∗Td), then formula (50) is equivalent to the identity

(53) 〈uh,Oph(b)uh〉L2(Td) = 〈ρhuh , Q
h
b 〉,

where Qh
b (ω, s, σ) is the operator on L2(DΛ̃) given by the kernel

(54) Qh
b (ω, s, σ)(ỹ′, ỹ) =

1

(2π)dΛ

∑
k∈Λ̃

eiωk
∫
η∈〈Λ〉

b

(
s+

ỹ + ỹ′

2
, σ + hη

)
eiη·(ỹ

′−ỹ+k)dη,

where, recall we have written x = s + ỹ ∈ Λ⊥ ⊕ 〈Λ̃〉. Note that if one identifies L2(DΛ̃)
with L2

ω(Rd,Λ) as we did before, the operator Qh
b (ω, s, σ) then corresponds to the (ω-

independent) Weyl pseudodifferential operator b(y, σ + hDy) acting on L2
ω(Rd,Λ).

Let us now consider a ∈ S1
Λ and let bh,R (x, ξ) := a(x, ξ, η(ξ)/h)χ(η(ξ)/hR) . We then

have
〈St/hh uh,Oph(bh)S

t/h
h uh〉L2(Td) = 〈wIΛ,h,R (t) , a〉

= 〈ρh(t), Qh
a,R〉+OR(h)(55)

where ρh(t) := ρh
S
t/h
h uh

and Qh
a,R := Qh

bh,R
. Note that Qh

a,R does not depend on s, since as a
has only frequencies in Λ it is a function independent on s.

We now take limits as h tends to zero :

Proposition 3.7. After extraction of a subsequence, there exist

ρΛ ∈ L∞
(
Rt,D′

(
〈Λ〉/Λ× Λ⊥ × IΛ;L1

(
L2 (DΛ̃)

)))
such that for every Q ∈ C∞c

(
〈Λ〉/Λ× Λ⊥ × IΛ;K (L2 (DΛ̃))

)
and every φ ∈ L1 (R):∫

R
φ (t) 〈ρh(t), Q〉dt −→

∫
R
φ (t) 〈ρΛ(t), Q〉dt.

In addition, ρΛ is positive when restricted to symbols Q(ω, s, σ) that do not depend on s.

Proof. Note that Lemma 3.4, v) implies that (vh) is bounded in L2 (IΛ;L2(DΛ̃)) and that
the Calderón-Vaillancourt theorem gives that the operators P h

Q (hDσ, σ) are uniformly
bounded with respect to h. Therefore, the linear map

Lh : Q 7→
∫
R
〈ρh(t), Q (t)〉dt

is uniformly bounded as h −→ 0. Therefore, for any Q, up to extraction of a subsequence,
it has a limit l(Q).
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Considering a countable dense subset of L1
(
R; C∞c

(
〈Λ〉/Λ× Λ⊥ × IΛ;K (L2 (DΛ̃))

))
, and

using a diagonal extraction process, one finds a sequence (hn) tending to 0 as n goes to +∞
such that for any Q ∈ L1

(
R; C∞c

(
〈Λ〉/Λ× Λ⊥ × IΛ;K (L2 (DΛ̃))

))
, the sequence Lhn(Q)

has a limit as n goes to +∞.
The limit is a linear form on L1

(
R; C∞c

(
〈Λ〉/Λ× Λ⊥ × IΛ;K (L2 (DΛ̃))

))
, characterized by

an element ρΛ of the dual bundle L∞
(
Rt,D′

(
〈Λ〉/Λ× Λ⊥ × IΛ;L1 (L2 (DΛ̃))

))
. Finally,

note that ifQ(t, ω, σ) is a positive operator independent of s, equation (51) gives Lh(Q) ≥ 0,
whence the positivity of ρΛ when restricted to symbols that do not depend on s. �

As a consequence and in view of (55), letting h going to 0, then R to +∞, we have
(possibly along a subsequence) for every a ∈ S1

Λ and φ ∈ L1 (R):

lim
R→+∞

lim
h→0+

∫
R
φ (t) 〈wIΛ,h,R(t), a〉dt = lim

R→+∞
lim
h→0+

∫
R
φ (t) 〈ρh(t), Qa,R〉dt

= lim
R→+∞

∫
R
φ (t) 〈ρΛ(t), Qa,R〉dt

=

∫
R
φ (t) 〈ρΛ(t), Qa,∞〉dt,

where Qa,∞(ω, s, σ) is the bounded operator on L2(DΛ̃) given by the kernel

(56) Qa,∞(ω, s, σ)(ỹ′, ỹ) =
1

(2π)dΛ

∑
k∈Λ̃

eiωk
∫
η∈〈Λ〉

a

(
s+

ỹ + ỹ′

2
, σ, η

)
eiη·(ỹ

′−ỹ+k)dη.

As discussed before, the operator Qa,∞ corresponds to the Weyl operator a(s + y, σ,Dy)
acting on L2

ω(Rd〈Λ〉). In particular, when a ∈ C∞c (Td) has only frequences in Λ, the
operator Qa,∞ is the multiplication operator aσ appearing in identity (40) of Theorem 3.2.

At this stage of the analysis, we have completed the proof of the first part of Theo-
rem 3.2 (equation (40)), using only the fact that Vh(t) is a bounded perturbation : we let
mΛ (t, ω, s, σ) := TrL2

ω(Rd,Λ)ρΛ(t, ω, s, σ). We have ρΛ = MΛmΛ where TrMΛ = 1.

As already noted, equation (40) implies the absolute continuity result, Theorem 1.3 (2).

3.3. Step 3: Showing a propagation law. From now on we shall assume Vh (t) =
Oph (V (t, ·)) and prove the propagation law (HeisΛ,ω,σ). The first crucial observation is
the following lemma.

Lemma 3.8. The measure ρΛ is invariant by the Hamiltonian flow. More precisely, for
every Q ∈ C∞c (〈Λ〉/Λ× Λ⊥ × IΛ,K(L2(DΛ̃))) and a.e. t,

〈ρΛ (t) , dH(σ) · ∂sQ〉 = 0.

In particular, the restriction of ρΛ (t) to σ ∈ RΛ is invariant under the action of Λ⊥ by
translation on the parameter s.
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Proof. This lemma may be understood as a consequence of the invariance by the classical
flow of semi-classical measures. Indeed, the same arguments than those of Appendix 8 give
that for all ` ∈ R, we have

〈wIΛ,h,R(t), a〉 = 〈wIΛ,h,R(t), a ◦ φ0
`〉+ o(1)

as h goes to 0 (R fixed). As a consequence, we deduce that for all ` ∈ R,

〈ρh(t), Qa,R〉 = 〈ρh(t), Qa◦φ0
` ,R
〉+ o(1)

as h goes to 0 and R to +∞. Recall that φ0
`(x, ξ) = (x+ `dH(ξ), ξ) and that for σ ∈ IΛ,

dH(σ) ∈ Λ⊥. As a consequence, if x = s + y ∈ Λ⊥ ⊕ 〈Λ̃〉, then for σ ∈ IΛ, the vector
x+ `dH(σ) decomposes as

x+ `dH(σ) = (s+ `dH(σ)) + y ∈ Λ⊥ ⊕ 〈Λ̃〉,

and the kernel of the operator Qa◦φ0
` ,R

(ω, s, σ) is the function

Qa◦φ0
` ,R

(ω, s, σ)(ỹ′, ỹ) =
1

(2π)dΛ

∑
k∈Λ̃

eiωk
∫
a

(
s+ `dH(σ) +

ỹ + ỹ′

2
, σ, η

)
×χ (η/R) eiη·(ỹ

′−ỹ+k)dη.

The result follows if we note that compact pseudodifferential operators (e.g. operators of
the form Qa,R(ω, s, σ)) are dense in K(L2(DΛ̃)) for the weak topology of operators . �

We finally show that ρΛ, restricted to σ ∈ RΛ obeys the propagation law (HeisΛ,ω,σ).
From now on, we only consider test symbols Q(ω, σ) that do not depend on the parameter
s ∈ Λ⊥. We recall that we write V (t, x, ξ) as V (t, s+ ỹ, σ+η) and that we use the notation
〈V (t, ỹ, σ + η)〉Λ to mean that we are averaging V (t, s + ỹ, σ + η) w.r.t. s, thus getting
a function that does not depend on s (nor η when ξ ∈ IΛ). In the notation of (54), we
note that Qh=0

〈V (t,·,σ)〉Λ = 〈V (t)〉Λ,σ defines a multiplication operator on L2(DΛ̃) (for which
the Floquet-Bloch periodicity conditions are transparent). To simplify the notation, we
set in what follows:

A (σ, η) :=
1

2
d2H(σ)η · η.

To prove that ρΛ satisfies a Schrödinger-type equation, we note that

KhH(hDx)f(σ, y) =
1

hd/2
m(σ)

∫
η∈〈Λ〉

H(σ + η)Ff
(
σ + η

h

)
e
i
h
η·y dη

(2πh)dΛ/2

= H(σ + hDy)Khf(σ, y),

and that
Kh Oph (V (t, ·)) f(σ, y) = P h

QhV
(hDσ, σ)Khf(σ, y)

(we used the notation of Definition 3.6). Therefore, wh (t, ·) := KhS
t/h
h uh solves:

i∂twh (t, σ, y) =
(
h−2H (σ + hDy) + P h

QhV
(hDσ, σ)

)
wh (t, σ, y) .



34 N. ANANTHARAMAN, C. FERMANIAN, AND F. MACIÀ

Note that if Q(ω, s, σ) does not depend on s, we have

〈ρh(t), [h−2H(σ + hDy), Q]〉

= 〈χ0e
i
σΛ
h
· (h−2H (σ + hDy)

)
wh(t), P

h
Q (hDσ, ·)χ0e

i
σΛ
h
·wh(t)〉

− 〈χ0e
i
σΛ
h
·wh(t), P

h
Q (hDσ, ·)χ0e

i
σΛ
h
· (h−2H (σ + hDy)

)
wh(t)〉L2(IΛ;L2(DΛ̃))

Hence, passing to the limit h −→ 0,∫
R
φ′ (t) 〈ρh(t), Q〉dt = i

∫
R
φ (t) 〈ρh(t), [h−2H(σ + hDy)ω +Qh

V (s, σ), Q]〉dt+ o(1).

Above, the index ω in H(σ + hDy)ω indicates that the operator acts on L2(〈DΛ̃〉) with
Floquet periodicity conditions (45). We perform a Taylor expansion of H(σ + hDy) and
write, in L(L2(〈DΛ̃〉)), for any Q ∈ K (L2(〈DΛ̃〉)),

H(σ + hDy)Q = H(σ)Q+ hdH(σ)DyQ+ h2A(σ,Dy)Q+O(h3).

At this point, note that dH(σ)Dy = 0 (since σ ∈ IΛ one has dH(σ) ∈ Λ⊥). Therefore, for
Q ∈ C∞c (〈Λ〉/Λ× Λ⊥ × IΛ,K(L2(DΛ̃))),[

h−2H(σ + hDy)ω, Q(ω, hDσ, σ)
]

= [A(σ,Dy)ω, Q(ω, hDσ, σ)] +O(h).

As a consequence, we obtain:∫
R
φ′ (t) 〈ρh(t), Q〉dt = i

∫
R
φ (t) 〈ρh(t), [A(σ,Dy)ω +Qh

V (hDσ, σ), Q (ω, hDσ, σ)]〉dt+ o(1).

Taking limits, we obtain∫
R
φ′ (t) 〈ρΛ(t), Q〉dt = i

∫
R
φ (t) 〈ρΛ(t), [A(σ,Dy)ω +Q0

V (s, σ), Q]〉dt(57)

= i

∫
R
〈ρΛ(t), [A(σ,Dy)ω +Q0

〈V 〉(s, σ), Q]〉dt(58)

where the potential 〈V 〉(s, σ) is averaged along the flow s 7→ s + tdH(σ) (because of
Lemma 3.8). But 〈V 〉 does not depend on s for σ ∈ RΛ, and it is simply the average of V
w.r.t. s. Hence Q0

〈V 〉 = 〈V (t)〉Λ,σ and ρΛ satisfies the following Heisenberg equation for
σ ∈ RΛ:

i∂tρΛ(t, ω, σ) = [A(σ,Dy)ω + 〈V (t)〉Λ,σ, ρΛ(t, ω, σ)]

(note that ρΛ(t, ω, σ) does not depend on s for σ ∈ RΛ). Let

mΛ (t, ω, s, σ) := TrL2
ω(Rd,Λ)ρΛ(t, ω, s, σ);

the propagation law (58) implies that mΛ does not depend on t. Therefore, ρΛ = MΛmΛ

where MΛ(·, ω, σ) solves (HeisΛ,ω,σ) for σ ∈ RΛ and TrMΛ = 1. This concludes the proof
of Theorem 3.2 (in the statement, the parameter s disappeared since all test functions are
independent of s).
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4. An iterative procedure for computing µ

In this section, we develop the iterative procedure which leads to the proof of Theo-
rem 1.10

4.1. First step of the construction. What was done in the previous section can be
considered as the first step of an iterative procedure that allows to effectively compute the
measure µ(t, ·) solely in terms of the sequence of initial data (uh). Recall that we assumed
in §2.2, without loss of generality, that the projection on ξ of µ (t, ·) was supported in a
ball contained in Rd \ CH . We have decomposed this measure as a sum

µ(t, ·) =
∑
Λ∈L

µΛ(t, ·) +
∑
Λ∈L

µΛ(t, ·),

where Λ runs over the set of primitive submodules of Zd, and where

µΛ(t, ·) =

∫
〈Λ〉
µ̃Λ(t, ·, dη)eTd×RΛ

, µΛ(t, .) =

∫
〈Λ〉
µ̃Λ(t, ·, dη)eTd×RΛ

.

From Theorem 2.6, the distributions µ̃Λ have the following properties :

(1) µ̃Λ(t, dx, dξ, dη) is in C (R; (S1
Λ)′) and all its x-Fourier modes are in Λ; with respect

to the variable ξ, µ̃Λ(t, dx, dξ, dη) is supported in IΛ;

(2) if τh � 1/h then for every t ∈ R, µ̃Λ (t, ·) is a positive measure and:

µ̃Λ (t, ·) =
(
φ̃1
t

)
∗
µ̃Λ (0, ·) ,

where:
φ̃1
s : (x, ξ, η) 7−→ (x+ sd2H(σ(ξ))η, ξ, η);

(3) if τh = 1/h then
∫
〈Λ〉 µ̃Λ(t, ·, dη) is in C(R;M+(T ∗Td)) and

∫
Rd×〈Λ〉 µ̃Λ(t, ·, dξ, dη) is

an absolutely continuous measure on Td. In fact, with the notations of Section 2.4,
we have, for every a ∈ C∞c

(
T ∗Td

)
with Fourier modes in Λ,∫

Td×IΛ×〈Λ〉
a(x, ξ)µ̃Λ(t, dx, dξ, dη) =

∫
(〈Λ〉/Λ)×IΛ

Tr (aσρΛ(t, dω, dσ))

where ρΛ ∈ L∞
(
Rt,Γ (K(F))′+

)
and aσ is the section of L(F) defined by the

map (ω, σ) 7→ multiplication by a(y, σ). In addition, if Vh (t) = Oph(V (t, ·)) then
ρΛ = MΛmΛ where mΛ ∈ M+((〈Λ〉/Λ) × IΛ), MΛ is a section of L1(F) integrable
with respect to mΛ. Moreover, TrL2

ω(Rd,Λ)MΛ (t, ω, σ) = 1 and MΛ(·, ω, σ) satisfies a
Heisenberg equation (HeisΛ,ω,σ).

On the other hand, the measures µ̃Λ satisfy:

(1) for a ∈ S1
Λ, 〈µ̃Λ(t, dx, dξ, dη), a(x, ξ, η)〉 is obtained as the limit of〈

wIΛh,R,δ (t) , a
〉

=

∫
T ∗Td

χ

(
η (ξ)

δ

)(
1− χ

(
τhη(ξ)

R

))
a (x, ξ, τhη(ξ))wh (t) (dx, dξ) ,
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in the weak-∗ topology of L∞(R, (S1
Λ)
′
), as h −→ 0+, R −→ +∞ and then δ −→ 0+

(possibly along subsequences);
(2) µ̃Λ(t, dx, dξ, dη) is in L∞(R,M+(T ∗Td×〈Λ〉)) and all its x-Fourier modes are in Λ.

With respect to the variable η, the measure µ̃Λ(t, dx, dξ, dη) is 0-homogeneous and
supported at infinity : we see it as a measure on the sphere at infinity S〈Λ〉. With
respect to the variable ξ, it is supported on {ξ ∈ IΛ};

(3) µ̃Λ is invariant by the two flows,

φ0
s : (x, ξ, η) 7−→ (x+ sdH(ξ), ξ, η), and φ1

s : (x, ξ, η) 7−→ (x+ sd2H(σ(ξ))
η

|η|
, ξ, η).

This is the first step of an iterative procedure; the next step is to decompose the measure
µΛ(t, ·) according to primitive submodules of Λ. We need to adapt the discussion of [3]; to
this aim, we introduce some additional notation.

Fix a primitive submodule Λ ⊆ Zd and σ ∈ IΛ \ CH . For Λ2 ⊆ Λ1 ⊆ Λ primitive
submodules of (Zd)∗, for η ∈ 〈Λ1〉, we denote

Λη (σ,Λ1) :=
(
Λ⊥1 ⊕ R d2H(σ).η

)⊥ ∩ (Zd)∗

=
(
R d2H(σ).η

)⊥ ∩ Λ1,

where the orthogonal is always taken in the sense of duality. We note that Λη (σ,Λ1) is a
primitive submodule of Λ1, and that the inclusion Λη (σ,Λ1) ⊂ Λ1 is strict if η 6= 0 since
d2H(σ) is definite. We define:

RΛ1
Λ2

(σ) := {η ∈ 〈Λ1〉,Λη (σ,Λ1) = Λ2}.

Because d2H(σ) is definite, we have the decomposition (Rd)∗ = (d2H(σ).Λ2)⊥ ⊕ 〈Λ2〉. We
define P σ

Λ2
to be the projection onto 〈Λ2〉 with respect to this decomposition.

4.2. Step k of the construction. In the following, we set Λ = Λ1, corresponding to step
k = 1. We now describe the outcome of our decomposition at step k (k ≥ 1); we will
indicate in §4.3 how to go from step k to k + 1, for k ≥ 1.

At step k, we have decomposed µ(t, ·) as a sum

µ(t, ·) =
∑

1≤l≤k

∑
Λ1⊃Λ2⊃...⊃Λl

µ
Λ1Λ2...Λl−1

Λl
(t, ·) +

∑
Λ1⊃Λ2⊃...⊃Λk

µΛ1Λ2...Λk(t, ·),

where the sums run over the strictly decreasing sequences of primitive submodules of (Zd)∗
(of lengths l ≤ k in the first term, of length k in the second term). We have

µ
Λ1Λ2...Λl−1

Λl
(t, x, ξ) =

∫
R

Λ1
Λ2

(ξ)×...×R
Λl−1
Λl

(ξ)×〈Λl〉
µ̃

Λ1Λ2...Λl−1

Λl
(t, x, ξ, dη1, . . . , dηl)eTd×RΛ1

,

µΛ1Λ2...Λk(t, x, ξ) =

∫
R

Λ1
Λ2

(ξ)×...×R
Λk−1
Λk

(ξ)×S〈Λk〉
µ̃Λ1Λ2...Λk(t, x, ξ, dη1, . . . , dηk)eTd×RΛ1

.

The distributions µ̃Λ1Λ2...Λl−1

Λl
have the following properties :
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(1) µ̃Λ1Λ2...Λl−1

Λl
∈ C

(
R,D′

(
T ∗Td × S〈Λ1〉 × . . .× S〈Λl−1〉 × 〈Λl〉

))
and all its x-Fourier

modes are in Λl; with respect to ξ it is supported in IΛ1 ;

(2) for every t ∈ R, µ̃Λ1Λ2...Λl−1

Λl
(t, ·) is invariant under the flows φjs (j = 0, 1, . . . , l − 1)

defined by

φ0
s(x, ξ, η1, ..., ηl) = (x+ sdH(ξ), ξ, η1, ..., ηl−1, ηl);

φjs(x, ξ, η1, ..., ηl) = (x+ sd2H(ξ)
ηj
|ηj|

, ξ, η1, ..., ηl);

(3) if τh � 1/h then for every t ∈ R, µ̃Λ1Λ2...Λl−1

Λl
(t, ·) is a positive measure and

µ̃
Λ1Λ2...Λl−1

Λl
(t, ·) =

(
φ̃lt

)
∗
µ̃

Λ1Λ2...Λl−1

Λl
(0, ·),

where, for (x, ξ, η1, .., ηl) ∈ T ∗Td × S〈Λ1〉 × . . .× S〈Λl−1〉 × 〈Λl〉 we define:

φ̃ls : (x, ξ, η1, ..., ηl) 7−→ (x+ sd2H(ξ)ηl, ξ, η1, ..., ηl);

(4) if τh = 1/h then
∫
〈Λl〉

µ̃
Λ1Λ2...Λl−1

Λl
(t, ·, dηl) is in C(R,M+(T ∗Td×S〈Λ1〉×. . .×S〈Λl−1〉))

and the measure
∫

(Rd)∗×S〈Λ1〉×...×S〈Λl−1〉×〈Λl〉
µ̃

Λ1Λ2...Λl−1

Λl
(t, ·, dξ, dη1, . . . , dηl) is an ab-

solutely continuous measure on Td. Besides, if a ∈ C∞c
(
T ∗Td

)
has only Fourier

modes in Λl, then, define L(Fl) the bundle over (〈Λl〉/Λl)×IΛ1×S〈Λ1〉×. . .×S〈Λl−1〉
formed of elements (ω, σ, η1, · · · , ηl−1, Q) where Q ∈ L(L2

ω(Rd,Λl)), define similarly
K(Fl) and L1(Fl), then∫

T ∗Td×S〈Λ1〉×...×S〈Λl−1〉×〈Λl〉
a(x, ξ)µ̃

Λ1Λ2...Λl−1

Λl
(t, dx, dξ, dη1, . . . , dηl) =∫

(〈Λl〉/Λl)×IΛ1
×S〈Λ1〉×...×S〈Λl−1〉

Tr
(
aσρ

Λ1Λ2···Λl−1

Λl
(t, dσ, dη1, · · · , dη`−1)

)
,

where ρΛ1Λ2···Λl−1

Λl
is L∞ in t, a positive section element of Γ(K(Fl))

′ and where aσ
is the section of L(Fl) defined by multiplication by a(σ, y).
When Vh (t) = Oph(V (t, ·)) then ρΛ1Λ2···Λl−1

Λl
= M

Λ1Λ2···Λl−1

Λl
m

Λ1Λ2···Λl−1

Λl
where

m
Λ1Λ2···Λl−1

Λl
∈M+((〈Λl〉/Λl)× IΛ1 × S〈Λ1〉 × . . .× S〈Λl−1〉),

M
Λ1Λ2···Λl−1

Λl
is a section of L1(Fl) integrable with respect to m

Λ1Λ2···Λl−1

Λl
. More-

over, TrL2
ω(Rd,Λl)M

Λ1Λ2···Λl−1

Λl
= 1 and M

Λ1Λ2···Λl−1

Λl
satisfies a Heisenberg equation

(HeisΛ,ω,σ) with Λ = Λl.
On the other hand µ̃Λ1Λ2...Λk satisfy:
(1) µ̃Λ1Λ2...Λk is in L∞(R,M+(T ∗Td×S〈Λ1〉× . . .×S〈Λk〉)) and all its x-Fourier modes

are in Λk;
(2) µ̃Λ1Λ2...Λk is invariant by the k + 1 flows, φ0

s : (x, ξ, η) 7→ (x+ sdH(ξ), ξ, η1, . . . , ηk),
and φls : (x, ξ, η1, . . . , ηk) 7−→ (x+ sd2H(σ(ξ)) ηl

|ηl|
, ξ, η1, . . . , ηk) (where l = 1, . . . , k).
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Finally, we define the space SkΛk which is the class of smooth functions a(x, ξ, η1, . . . , ηk)

on T ∗Td × 〈Λ1〉 × . . .× 〈Λk〉 that are
(i) smooth and compactly supported in (x, ξ) ∈ T ∗Td;
(ii) homogeneous of degree 0 at infinity in each variable η1, . . . , ηk;
(iii) such that their non-vanishing x-Fourier coefficients correspond to frequencies in Λk.

4.3. From step k to step k + 1 (k ≥ 1). After step k, we leave untouched the term∑
1≤l≤k

∑
Λ1⊃Λ2⊃...⊃Λl

µ
Λ1Λ2...Λl−1

Λl
and decompose further

∑
Λ1⊃Λ2⊃...⊃Λk

µΛ1Λ2...Λk . Using the
positivity of µ̃Λ1Λ2...Λk , we use the procedure described in Section 2.1 to write

(59) µ̃Λ1Λ2...Λk(σ, ·) =
∑

Λk+1⊂Λk

µ̃Λ1Λ2...Λke
ηk∈R

Λk
Λk+1

(σ)
,

where the sum runs over all primitive submodules Λk+1 of Λk. Moreover, by Proposition 2.1,
all the x-Fourier modes of µ̃Λ1Λ2...Λke

ηk∈R
Λk
Λk+1

(σ)
are in Λk+1. To generalize the analysis of

Section 2.2, we consider test functions in Sk+1
Λk+1

. We let

w
Λ1Λ2...Λk+1

h,R1,...,Rk+1
(t, x, ξ, η1, · · · , ηk+1) :=

(
1− χ

(
ηk+1

Rk+1

))
×wΛ1Λ2···Λk

h,R1,··· ,Rk(t, x, ξ, η1, · · · , ηk)⊗ δP ξΛk+1
(ηk)(ηk+1),

and

wΛ1Λ2...Λk
Λk+1h,R1,...,Rk+1

(t, x, ξ, η1, · · · , ηk+1) := χ

(
ηk+1

Rk+1

)
×wΛ1Λ2···Λk

h,R1,··· ,Rk(t, x, ξ, η1, · · · , ηk)⊗ δP ξΛk+1
(ηk)(ηk+1).

By the Calderón-Vaillancourt theorem, both wΛ1Λ2...Λk
Λk+1,h,R1,...,Rk

and wΛ1Λ2...Λk+1

h,R1,...,Rk
are bounded

in L∞(R, (Sk+1
Λk+1

)′). After possibly extracting subsequences, we can take the following lim-
its :

lim
Rk+1−→+∞

· · · lim
R1−→+∞

lim
h−→0

〈
w

Λ1Λ2...Λk+1

h,R1,...,Rk
(t) , a

〉
=:
〈
µ̃Λ1Λ2...Λk+1(t), a

〉
,

and
lim

Rk+1−→+∞
· · · lim

R1−→+∞
lim
h−→0

〈
wΛ1Λ2...Λk

Λk+1,h,R1,...,Rk
(t) , a

〉
=:
〈
µ̃Λ1Λ2...Λk

Λk+1
(t), a

〉
.

Then the properties listed in the preceding subsection are a direct generalisation of Theo-
rems 2.5 and 2.6 (see also [3], Section 4) and of the identity

µ̃Λ1Λ2···Λk(t, .)e
ηk∈R

Λk
Λk+1

(σ)
=

∫
〈Λk+1〉

µ̃Λ1Λ2···Λk+1(t, ., dηk+1)e
ηk∈R

Λk
Λk+1

(σ)
(60)

+

∫
〈Λk+1〉

µ̃Λ1Λ2···Λk
Λk+1

(t, ., dηk+1)e
ηk∈R

Λk
Λk+1

(σ)
.
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Remark 4.1. By construction, if Λk+1 = {0}, we have µ̃Λ1Λ2...Λk+1 = 0, and the induction
stops. Similarly to Remark 2.8, one can also see that if rk Λk+1 = 1, the invariance
properties of µ̃Λ1Λ2...Λk+1 imply that it is constant in x.

Remark 4.2. Note that in the preceding definition of k-microlocal Wigner transform for
k ≥ 1, we did not use a parameter δ tending to 0 as we did when k = 0 in order to isolate
the part of the limiting measures supported above RΛk

Λk+1
(σ). This comes directly from the

restrictions made in (59) and (60).

4.4. Proof of Theorem 1.10. This iterative procedure allows to decompose µ along
decreasing sequences of submodules. In particular, when τh ∼ 1/h, it implies Theorem 1.10.
Indeed, to end the proof of Theorem 1.10 , we let after the final step of the induction

µfinal
Λ (t, ·) =

∑
0≤k≤d

∑
Λ1⊃Λ2⊃···⊃Λk⊃Λ

µΛ1Λ2...Λk
Λ (t, ·)

=
∑

0≤k≤d

∑
Λ1⊃Λ2⊃···⊃Λk⊃Λ

∫
R

Λ1
Λ2

(ξ)×...×RΛk
Λ (ξ)×〈Λ〉

µ̃Λ1Λ2...Λk
Λ (t, ·, dη1, . . . , dηk)eTd×RΛ1

,

where Λ1, . . . ,Λk run over the set of strictly decreasing sequences of submodules ending
with Λ. We know that µΛ1Λ2...Λk

Λ is supported on {ξ ∈ IΛ1}, and since Λ ⊂ Λ1 we have
IΛ1 ⊂ IΛ.

We also let

ρfinal
Λ (t, ω, σ) =

∑
0≤k≤d

∑
Λ1⊃Λ2⊃···⊃Λk⊃Λ

∫
R

Λ1
Λ2

(ξ)×...×RΛk
Λ (ξ)

ρ̃Λ1Λ2...Λk
Λ (t, ω, σ, dη1, . . . , dηk)eσ∈RΛ1

,

where the ρ̃Λ1Λ2...Λk
Λ are the operator-valued measures appearing in §4.2.

Remark 4.3. It is clear from this construction that ρfinal
Λ and µfinal

Λ (t, ·) can only charge
those σ ∈ (Rd)∗ with Λ ⊆ dH(σ)⊥. Moreover, if Vh (t) = Oph(V (t, ·)) the measure ρfinal

Λ

admits a decomposition ρfinal
Λ = NΛµΛ where µΛ is a measure that does not depend on t

and NΛ(·, ω, σ) is a family of positive, trace-class operators on L2
ω(Rd,Λ) with TrNΛ ≡ 1,

satisfying the propagation law (HeisΛ,ω,σ).

As already mentioned, Theorem 1.10 implies Theorem 1.3 in the case τh ∼ 1/h. The
proof of Theorem 1.3 in the case τh � 1/h is discussed in Section 5 and in the case
τh � 1/h, in Section 6.

4.5. Sufficient assumptions. In the induction, we used the fact that

(61) 〈Λk〉 = 〈Λk+1〉 ⊕ (d2H(ξ) · 〈Λk+1〉⊥ ∩ 〈Λk〉) for all k.

Definiteness of the Hessian d2H(ξ) is certainly a sufficient assumption for this, but we
see that we actually need less if we note we are not using this property for arbitrary Λk,
but only for the ones arising in the construction (remember for instance that for k = 1 we
only need (61) for Λ1 = dH(ξ)⊥ ∩ Zd).

A careful analysis of the proof shows that a sufficient set of assumptions is the following :
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Assumption 4.4. For every integer k, for all ξ, η1, . . . , ηk ∈ (Rd)∗, for every strictly
decreasing sequence of primitive submodules Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λk ⊃ {0} such that:

Λ1 = dH(ξ)⊥ ∩ Zd,Λ2 = (d2H(ξ) · η1)⊥ ∩ Λ1, . . . ,Λk = (d2H(ξ) · ηk−1)⊥ ∩ Λk−1,

and

η1 ∈ 〈Λ1〉 \{0}, η2 ∈ (d2H(ξ) ·η1)⊥ \ (d2H(ξ) ·Λ1)⊥, ηk ∈ (d2H(ξ) ·ηk−1)⊥ \ (d2H(ξ) ·Λk−1)⊥

then d2H(ξ) · ηk 6∈ Λ⊥k .

We leave it to the reader to check that Assumptions 4.4 implies (61) and thus is a
sufficient assumption for all our results.

In dimension d = 2, Assumptions 4.4 is implied by isoenergetic non-degeneracy (whereas
we saw that it is no longer the case for d ≥ 3). In dimension 2, what happens is that,
either dH(ξ) is a vector with rationally independent entries (in which case Λ1 = {0}
and the conditions of Assumptions 4.4 are empty), or dH(ξ) is a non zero vector with
rationally dependent entries : in this case (and this is very special to dimension 2), Λ⊥1 is
one-dimensional and coincides with RdH(ξ). Thus Assumptions 4.4 just says that

dH(ξ) · η1 = 0, η1 6= 0 =⇒ dH2(ξ) · η1 6∈ RdH(ξ)

which is isoenergetic non-degeneracy. Remark that dH(ξ) = 0 is forbidden by isoenergetic
non-degeneracy.

Note, finally, that isoenergetic non-degeneracy is only a local condition at ξ (since it
involves only dH(ξ), d2H(ξ)) whereas condition Assumptions 4.4 contains some global fea-
tures, namely the relations between dH(ξ), d2H(ξ) and the ring Zd, which is the homology
group of Td.

5. Some examples of singular concentration

In Subsection 5.1, assuming Vh(t) = 0, we present some examples of singular concen-
trations for the scales τh � h and, in that manner, we conclude the proof of Theorem 1.3
by proving the only remaining point (1). Then the two other subsections are devoted to
the analysis of other cases of singular concentration which arise when the assumptions of
Theorem 1.3 are not satisfied.

5.1. Singular concentration for time scales τh � 1/h. Assume Vh(t) = 0 and con-
sider ρ ∈ S

(
Rd
)
with ‖ρ‖L2(Rd) = 1 and such that the Fourier transform ρ̂ is compactly

supported. Let (x0, ξ0) ∈ Rd ×Rd and (εh) a sequence of positive real numbers that tends
to zero as h −→ 0+. Form the wave-packet:

(62) vh (x) :=
1

(εh)
d/2
ρ

(
x− x0

εh

)
ei
ξ0
h
·x.

Define uh := Pvh, whereP denotes the periodization operatorPv (x) :=
∑

k∈Zd v (x+ 2πk).
Since ρ is rapidly decreasing, we have ‖uh‖L2(Td) −→h−→0

1. The family (uh) is h-oscillatory if
εh � h.
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Theorem 1.3(1) is a consequence of our next result.

Proposition 5.1. Let (τh) be such that limh→0+ hτh = 0; suppose that εh � hτh. Then
the Wigner distributions of the solutions Sτhth uh converge weakly-∗ in L∞

(
R;D′

(
T ∗Td

))
to

µ(x0,ξ0), defined by:

(63)
∫
T ∗Td

a (x, ξ)µ(x0,ξ0) (dx, dξ) = lim
T→∞

1

T

∫ T

0

a (x0 + tdH (ξ0) , ξ0) dt, ∀a ∈ Cc(T ∗Td).

We call the measures µx0,ξ0 “uniform orbit measures” for φs (their definition and existence
as a limit is specific to translation flows on the torus). They are H-invariant and the convex
hull of the set of uniform orbit measures is dense in the set of H-invariant measures.
Considering initial data that are linear combinations of wave packets of the form (62), we
see that the convex hull of uniform orbit measures is contained in M̃(τ), and since the
latter is closed, it contains all measures invariant by φs as stated in Theorem 1.3(1).

Proof. Start noticing that the sequence of initial conditions (uh) possesses the unique semi-
classical measure µ0 = δx0 ⊗ δξ0 . Using property (4) in the appendix, we deduce that the
image µ of µ (t, ·) by the projection from Td × Rd onto Rd satisfies:

µ =
∑
Λ∈L

µeRΛ
= δξ0 .

Since the sets RΛ form a partition of Rd, we conclude that µeRΛ
= 0 unless Λ = Λξ0

and therefore µ = µeTd×RΛξ0

. Therefore, in order to characterize µ it suffices to test it
against symbols with Fourier coefficients in Λξ0 . Let a ∈ C∞c

(
T ∗Td

)
be such a symbol;

we can restrict our attention to the case where a is a trigonometric polynomial in x. Let
ϕ ∈ L1 (R). Recall that the Wigner distributions wh (t) of Sτhth uh satisfy∫

R
ϕ (t) 〈wh (t) , a〉 dt =

∫
R
ϕ (t) 〈wh (0) , a ◦ φτht〉 dt+ o (1) ;

moreover the Poisson summation formula ensures that the Fourier coefficients of uh are
given by:

ûh (k) =
(εh)

d/2

(2π)d/2
ρ̂
(εh
h

(hk − ξ0)
)
e−i(k−ξ0/h)·x0 .

Combining this with the explicit formula (77) for the Wigner distribution presented in the
appendix we get:

∫
R
ϕ (t) 〈wh (t) , a〉 dt =

(εh)
d

(2π)3d/2

∑
k−j∈Λξ0

ϕ̂

(
τhdH

(
h
k + j

2

)
· (k − j)

)
âj−k

(
h
k + j

2

)

ρ̂
(εh
h

(hk − ξ0)
)
ρ̂
(εh
h

(hj − ξ0)
)
e−i(k−j)·x0 + o (1) .

(64)
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Now, since k − j ∈ Λξ0 we can write:∣∣∣∣dH (hk + j

2

)
· (k − j)

∣∣∣∣ =

∣∣∣∣[dH (hk + j

2

)
− dH (ξ0)

]
· (k − j)

∣∣∣∣
≤ C

∣∣∣∣hk + j

2
− ξ0

∣∣∣∣ |k − j| .
By hypothesis, both ρ̂ and k 7−→ âk (ξ) are compactly supported, and hence the sum (64)
only involves terms satisfying:

εh
h

∣∣∣∣hk2 − ξ0

∣∣∣∣ ≤ R,
εh
h

∣∣∣∣hj2 − ξ0

∣∣∣∣ ≤ R and |j − k| ≤ R

for some fixed R. This in turn implies∣∣∣∣τhdH (hk + j

2

)
· (k − j)

∣∣∣∣ ≤ CR2 τhh

εh
.

This shows that the limit of (64) as h −→ 0+ coincides with that of:

(εh)
d

(2π)3d/2

∑
k−j∈Λξ0

ϕ̂ (0) aj−k

(
h
k + j

2

)
ρ̂
(εh
h

(hk − ξ0)
)
ρ̂
(εh
h

(hj − ξ0)
)
e−i(k−j)·x0

= ϕ̂ (0) 〈wh (0) , a〉 ,

which is precisely:

ϕ̂ (0) a (x0, ξ0) = ϕ̂ (0) lim
T→∞

1

T

∫ T

0

a (x0 + tdH (ξ0) , ξ0) dt,

since a has only Fourier modes in Λξ0 . �

We next present a slight modification of the previous example in order to illustrate the
two-microlocal nature of the elements of M̃ (τ). Define now, for η0 ∈ Rd:

uh (x) = P
[
vh (x) eiη0/(hτh)

]
,

where vh was defined in (62).

Proposition 5.2. Suppose that limh→0+ hτh = 0 and εh � hτh. Suppose moreover that
d2H (ξ0) is definite and that η0 ∈ 〈Λξ0〉. Then the Wigner distributions of Sτhth uh converge
weakly-∗ in L∞

(
R;D′

(
T ∗Td

))
to the measure:

µ (t, ·) = µ(x0+td2H(ξ0)η0,ξ0), t ∈ R,

where µ(x0,ξ0) is the uniform orbit measure defined in (63).

Proof. The same argument we used in the proof of Proposition 5.1 gives µ = µeTd×RΛξ0

.
We claim that wIΛξ0 ,h,R (0) converges to the measure:

(65) µ̃Λξ0
(0, x, ξ, η) = µ(x0,ξ0) (x, ξ) δη0 (η) .
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Assume this is the case, Theorem 2.6 (4) implies that:

µ̃Λξ0
(t, x, ξ, η) = µ(x0+td2H(ξ0)η0,ξ0) (x, ξ) δη0 (η) , ∀t ∈ R,

and, since µ̃Λξ0
(t, ·) are probability measures, it follows from Proposition 2.3 that µ̃Λξ0 = 0

and :

µ (t, ·) =

∫
〈Λξ0〉

µ̃Λξ0
(t, ·, dη) = µ(x0+td2H(ξ0)η0,ξ0).

Let us now prove the claim (65). Set

ũh(x) = vh (x) eiη0/(hτh).

Consider h0 > 0 and χ ∈ C∞0 (Rd) such that χũh = ũh for all h ∈ (0, h0) and Pχ2 ≡ 1. We
now take a ∈ S1

Λ and denote by ã the smooth compactly supported function defined on Rd

by ã = χ2a. Using the fact that the two-scale quantization admits the gain hτh (in view
of (25)),

〈uh , Op
Λξ0
h (a)uh〉L2(Td) = 〈uh , Op

Λξ0
h (ã)uh〉L2(Rd)

= 〈ũh , Op
Λξ0
h (a)ũh〉L2(Rd) +O(hτh).

Therefore, it is possible to lift the computation of the limit of wIΛξ0 ,h,R (0) to T ∗Rd×〈Λξ0〉
and, in consequence, replace sums by integrals. A direct computation gives:

〈ũh,Op
Λξ0
h (a)ũh〉L2(Rd) = (2π)−d

∫
R3d

eiξ·(x−y)ρ(x)ρ(y)

×a
(
x0 + εh

x+ y

2
, ξ0 +

1

τh
η0 +

h

εh
ξ, τhη(ξ0 +

1

τh
η0 +

h

εh
ξ)

)
dxdydξ.

Note that if F (ξ) = (σ, η), then

∀k ∈ Λ, F (ξ + k) = (σ, η + k) = F (ξ) + (0, k),

which implies that dF (ξ)k = (0, k) and dη(ξ)k = k for all k ∈ Λξ0 . We deduce dη(ξ0)η0 = η0

since η0 ∈ 〈Λξ0〉 and, in view of η(ξ0) = 0, a Taylor expansion of η(ξ) around ξ0 gives

τhη

(
ξ0 +

1

τh
η0 +

h

εh
ξ

)
= η0 + o(1).

Therefore, as h goes to 0,

〈ũh,Op
Λξ0
h (a)ũh〉 → a(x0, ξ0, η0) = 〈µ̃Λξ0

, a〉.

�
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5.2. Singular concentration for Hamiltonians with critical points. We next show
by a quasimode construction that for Hamiltonians having a degenerate critical point (of
order k > 2) and for time scales τh � 1/hk−1, the set M̃ (τ) always contains singular
measures.

Suppose ξ0 ∈ Rd is such that:

dH (ξ0) , d2H (ξ0) , ..., dk−1H (ξ0) vanish identically.

The Hamiltonian H(ξ) = |ξ|k (k an even integer – corresponding to the operator (−∆)
k
2 )

provides such an example (with ξ0 = 0). Let uh = Pvh, where vh is defined in (62). If
εh � h it is not hard to see that

‖H (hDx)uh −H (ξ0)uh‖L2(Td) = O
(
hk/ (εh)

k
)
.

Therefore, ∥∥∥Sthuh − e−i thH(ξ0)uh

∥∥∥
L2(Td)

= t O
(
hk−1/ (εh)

k
)
,

and, it follows that, for compactly supported ϕ ∈ L1(R) and a ∈ C∞c
(
T ∗Td

)
,∫

R
ϕ(t)〈wh(t) , a〉dt =

∫
R
ϕ(t) 〈uh,Oph(a)uh〉L2(Td) dt+O

(
τhh

k−1/ (εh)
k
)
.

Choosing (εh) tending to zero and such that εh �
(
τhh

k−1
)1/k

, the latter quantity converges
to a(x0, ξ0)‖ϕ‖L1(R) as h −→ 0+. In other words,

dt⊗ δx0 ⊗ δξ0 ∈ M̃(τ),

whence dt⊗ δx0 ∈M(τ).

In the special case of H(ξ) = |ξ|k (k an even integer), we know that the threshold τHh is
precisely h1−k. From the discussion of §6 and previously known results about eigenfunctions
of the laplacian, we know that the elements ofM(τ) are absolutely continuous for scales
τh � 1/hk−1. In the case of τh = 1/hk−1, one can still show that elements of M(τ) are
absolutely continuous. This requires some extra work which consists in checking that all
our proofs still work in this case for τh = 1/hk−1 and ξ in a neighbourhood of ξ0 = 0,
replacing the Hessian d2H(ξ0) by dkH(ξ0), and the assumption that the Hessian is definite
by the assumption that

[
dkH(ξ0).ξk = 0 =⇒ ξ = 0

]
.

In the general case of a Hamiltonian having a degenerate critical point, the existence of
such a threshold, and its explicit determination, is by no means obvious.

5.3. The effect of the presence of a subprincipal symbol of lower order in h.
Here we present some remarks concerning how the preceding results may change when the
Hamiltonian H(hDx) is perturbed by a potential hβVh(t) with β ∈ (0, 2) and Vh(t) is a
multiplication operator by some smooth function V (t, x). In this case, it is possible to find
potentials V (t, x) for which Theorem 1.3(2) fails, i.e. such that there exists µ ∈ M̃ (1/h),
the projection of which on x is not absolutely continuous with respect to dtdx. The
following example has been communicated to us by Jared Wunsch. On the 2-dimensional
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torus, take H (ξ) = |ξ|2 and V (x1, x2) := W (x2) such that W (x2) = (x2)2 /2 in the
set {|x2| < 1/2}. Take ε ∈ (0, 1) and

uh(x, y) :=
1

π1/4hε/4
ei
x1
h e−

(x2)2

2hε χ(y),

where χ is a smooth function that is equal to one in {|x2| < 1/4} and identically equal
to 0 in {|x2| > 1/2}. One checks that(

−h2∆ + h2(1−ε)V − 1
)
uh = h2−εuh +O(h∞).

It follows that for ϕ ∈ L1(R) and a ∈ C∞c (T ∗T2),

lim
h→0+

∫
R
ϕ(t)

〈
S
t/h
2(1−ε),huh,Oph(a)S

t/h
2(1−ε),huh

〉
L2(T2)

dt

= lim
h→0+

∫
R
ϕ(t) 〈uh,Oph(a)uh〉L2(T2) dt

=

(∫
R
ϕ (t) dt

)
lim
h→0+

〈uh,Oph(a)uh〉L2(T2) dt

=

(∫
R
ϕ (t) dt

)∫
T ∗T2

a (x, ξ)µ (dx, dξ) ,

and it is not hard to see that µ is concentrated on {x2 = 0, ξ1 = 1, ξ2 = 0}. In particular
the image of µ by the projection to T2 is supported on {x2 = 0}.

6. Hierarchies of time scales

Here we prove the results announced in §1.5 of the introduction. These results make
explicit the relation between the sets M̃ (τ) as the time scale (τh) varies.

Proposition 6.1. Let (τh) and (σh) be time scales tending to infinity as h −→ 0+ such
that limh→0+ σh/τh = 0. Then for every µ ∈ M̃ (τ) and almost every t ∈ R there exist
µt ∈ ConvM̃ (σ) such that

(66) µ (t, ·) =

∫ 1

0

µt (s, ·) ds.

Before presenting the proof of this result, we shall need two auxiliary lemmas.

Lemma 6.2. Let (σh) be a time scale tending to infinity as h −→ 0+. Let
(
v

(n)
h

)
h>0,n∈N

be a normalised family in L2
(
Td
)
and define:

w
(n)
h (t, ·) := wh

S
σht

h v
(n)
h

.

Let c(n)
h ≥ 0, n ∈ N, be such that

∑
n∈N c

(n)
h = 1.Then, every weak-∗ accumulation point in

L∞
(
R;D′

(
T ∗Td

))
of

(67)
∑
n∈Ih

c
(n)
h w

(n)
h (t, ·)
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belongs to ConvM̃ (σ).

Proof. Suppose (67) possesses an accumulation point µ̃ ∈ L∞
(
R;M+

(
T ∗Td

))
that does

not belong to ConvM̃ (σ). By the Hahn-Banach theorem applied to the compact convex
sets {µ̃} and ConvM̃ (σ) we can ensure the existence of ε > 0, a ∈ C∞c

(
T ∗Td

)
and

θ ∈ L1 (R) such that: ∫
R
θ (t) 〈µ̃ (t, ·) , a〉 dt < −ε < 0,

and,

(68)
∫
R
θ (t) 〈µ (t, ·) , a〉 dt ≥ −ε

3
, ∀µ ∈ ConvM̃ (σ) .

Suppose that µ̃ is attained through a sequence (hk) tending to zero. For k > k0 big enough,∫
R
θ (t)

∑
n∈Ihk

c
(n)
hk

〈
w

(n)
hk

(t, ·) , a
〉
dt ≤ −3

2
ε,

which implies that there exists nk ∈ N such that:

(69)
∫
R
θ (t)

〈
w

(nk)
hk

(t, ·) , a
〉
dt ≤ −3

2
ε.

Therefore, every accumulation point of
(
w

(nk)
hk

)
also satisfies (69) which contradicts (68).

�

Lemma 6.3. Let τ , σ and µ be as in Proposition 6.1. For every α < β there exists
µα,β ∈ ConvM̃ (σ) such that

1

β − α

∫ β

α

µ (t, ·) dt =

∫ 1

0

µα,β (t, ·) dt.

Proof. Let µ ∈ M̃ (τ). Then there exists an h-oscillating, normalised sequence (uh) such
that, for every θ ∈ L1 (R) and every a ∈ C∞c

(
T ∗Td

)
:

lim
h→0+

∫
R
θ (t)

〈
Sτhth uh,Oph(a)Sτhth uh

〉
dt =

∫
R
θ (t) 〈µ (t, ·) , a〉 dt.

Write Nh := τh/σh; by hypothesis Nh −→ ∞ as h −→ 0+. Let α < β, define L := β − α
and put:

δh :=
LNh

bLNhc
, thn := αNh + nδh,
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where bLNhc is the integer part of LNh. Then,

1

L

∫ β

α

〈
Sτhth uh,Oph(a)Sτhth uh

〉
L2(Td)

dt =
1

LNh

∫ βNh

αNh

〈
Sσhth uh,Oph(a)Sσhth uh

〉
L2(Td)

dt

=
1

LNh

bLNhc∑
n=1

∫ thn

thn−1

〈
Sσhth uh,Oph(a)Sσhth uh

〉
L2(Td)

dt

=
1

LNh

bLNhc∑
n=1

∫ δh

0

〈
Sσhth v

(n)
h ,Oph(a)Sσhth v

(n)
h

〉
L2(Td)

dt,

where the functions v(n)
h := S

σht
h
n

h uh form, for each n ∈ Z, a normalised sequence indexed
by h > 0. The result then follows by Lemma 6.2 and using the fact that δh −→ 1 as
h −→ 0+. �

Proof of Proposition 6.1. Let µ ∈ M̃ (τ); an application of the Lebesgue differentiation
theorem gives the existence of a countable dense set S ⊂ C∞c

(
T ∗Td

)
and a set N ⊂ R of

measure zero such that, for a ∈ S and t ∈ R \N ,

(70) lim
ε→0+

1

2ε

∫ t+ε

t−ε

∫
T ∗Td

a (x, ξ)µ (s, dx, dξ) ds =

∫
T ∗Td

a (x, ξ)µ (t, dx, dξ) .

Fix t ∈ R \ N ; then, for any ε > 0 there exist µtε ∈ ConvM̃ (σ) such that, for every
a ∈ C∞c

(
T ∗Td

)
,

(71)
1

2ε

∫ t+ε

t−ε

∫
T ∗Td

a (x, ξ)µ (s, dx, dξ) ds =

∫ 1

0

∫
T ∗Td

a (x, ξ)µtε (s, dx, dξ) ds.

Note that ConvM̃ (σ) is sequentially compact for the weak-∗ topology, therefore, there
exist a sequence (εn) tending to zero and a measure µt ∈ ConvM̃ (σ) such that µtεn
converges weakly-∗ to µt. Identities (70) and (71) ensure that µ (t, ·) =

∫ 1

0
µt (s, ·) ds. �

Remark 6.4. Projecting on x in identity (66) we deduce that given ν ∈M (τ) there exist
νt ∈M (σ) such that:

ν (t, ·) =

∫ 1

0

νt (s, ·) ds.

This, together with the fact that elements of M (1/h) are absolutely continuous imply the
conclusion of Theorem 1.3(2) when τh � 1/h.

We now assume that Vh(t) = 0. Denote by M̃ (∞) the set of weak-∗ limit points
of sequences of Wigner distributions (wuh) corresponding to sequences (uh) consisting of
normalised eigenfunctions of H (hDx). We now focus on a family of time scales τ for which
the structure of M̃ (τ) can be described in terms of the closed convex hull of M̃ (∞).
Given a measurable subset O ⊆ Rd, we define:

τHh (O) := h sup
{
|H (hk)−H (hj)|−1 : H (hk) 6= H (hj) , hk, hj ∈ hZd ∩O

}
.
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Note that the scale τHh defined in the introduction coincides with τHh
(
Rd
)
. The following

holds.
Proposition 6.5. Let O ⊆ Rd be an open set such that τHh (O) tends to infinity as
h −→ 0+. Suppose (τh) is a time scale such that limh→0+ τHh (O) /τh = 0. If V = 0

and if µ ∈ M̃ (τ) is obtained through a sequence whose semiclassical measure satisfies
µ0

(
Td ×

(
Rd \O

))
= 0 then µ ∈ ConvM̃ (∞).

Proof. Since the Fourier coefficient of Sτhth uh are e−it
τh
h
H(hk)ûh(k) and in view of (76)

and (77), we can write for a ∈ C∞c
(
T ∗Td

)
and θ ∈ L1 (R), we write:∫

R
θ (t) 〈wh (t) , a〉 dt =

∫
R
θ(t)〈uh, Sτht∗h Oph(a)Sτhth uh〉L2(Td)dt

=
1

(2π)d/2

∑
k,j∈Zd

ûh (k) ûh (j) âj−k

(
h

2
(k + j)

)∫
R
θ(t)e−it

τh
h

(H(hk)−H(hj)dt

=
1

(2π)d/2

∑
h,j∈Zd

θ̂

(
τh
H (hk)−H (hj)

h

)
ûh(k)ûh(j)âj−k

(
h

2
(k + j)

)
.

Our assumptions on the semiclassical measure of the initial data implies that, for a.e.
t ∈ R:

µ
(
t,Td ×

(
Rd \O

))
= 0.

Suppose that µ is obtained through the normalised sequence (uh). Suppose that a ∈
C∞c
(
Td ×O

)
and that supp θ̂ is compact. For 0 < h < h0 small enough,

τh
H (hk)−H (hj)

h
/∈ supp θ̂, ∀hk, hj ∈ O such that H (hk) 6= H (hj) .

Therefore, for such h, a and θ,∫
R
θ (t) 〈wh (t) , a〉 dt =

θ̂ (0)

(2π)d/2

∑
kh,hj∈O

H(hk)=H(hj)

ûh(k)ûh(j)âj−k

(
h

2
(k + j)

)

= θ̂ (0)
∑

Eh∈H(hZd)∩H(O)

〈PEhuh,Oph(a)PEhuh〉L2(Td) ,

where PEh stands for the orthogonal projector onto the eigenspace associated to the eigen-
value Eh. This can be rewritten as:∫

R
θ (t) 〈wh (t) , a〉 dt = θ̂ (0)

∑
Eh∈H(hZd)∩H(O)

cEhh

〈
wh
v
Eh
h

, a
〉
,

where
vEhh :=

PEhuh
‖PEhuh‖L2(Td)

, and cEhh := ‖PEhuh‖
2
L2(Td) .
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Note that vEhh are eigenfunctions of H (hDx) and the fact that (uh) is normalised implies:∑
Eh∈H(hZd)∩H(O)

cEhh = 1.

We conclude by applying (a straightforward adaptation of) Lemma 6.2 to vEhh and cEhh . �

Corollary 6.6. Suppose τHh := τHh
(
Rd
)
−→ ∞ as h −→ 0+ and that (τh) is a time scale

such that τHh � τh. Then
M̃ (τ) = Conv M̃ (∞) .

Proof. The inclusion M̃ (τ) ⊆ ConvM̃ (∞) is a consequence of the previous result with
O = Rd. The converse inclusion can be proved by reversing the steps of the proof of
Proposition 6.5. �

Remark 6.7. Proposition 1.14 is a direct consequence of this result.

7. Observability and unique continuation.

In this section we prove Theorem 1.16. Start noticing that the fact that (14) does not
hold is equivalent to the existence of a sequence (uh) in L2(Td) such that:

‖χ (hDx)uh‖L2(Td) = 1,

and

lim
h→0+

∫ T

0

∫
U

∣∣∣St/hh χ (hDx)u (x)
∣∣∣2 dxdt = 0.

This in turn, is equivalent to the existence of an element µ ∈ M̃ (1/h) such that:

(72) µ(suppχ) = 1, µ(CH) = 0,

∫ T

0

µ (t, U × suppχ) dt = 0,

(recall that µ is the projection on µ on the ξ-coordinate). This establishes the equivalence
between statements (i) and (ii) in Theorem 1.16.

Let µ ∈ M̃ (1/h) such that µ(CH) = 0. Theorem 1.10 implies that µ decomposes as a
sum of positive measures:

µ =
∑
Λ∈L

µfinal
Λ ,

such that, see Remark 4.3 and Theorem 3.2, for any b ∈ C(T ∗Td),∫
T ∗Td

b (x, ξ)µfinal
Λ (t, dx, dξ) =

∫
(〈Λ〉/Λ)×IΛ

Tr
(
m〈b〉Λ (σ)NΛ(t, ω, σ)

)
µ̄Λ(dω, dσ),

for some µ̄Λ ∈M+

(
(〈Λ〉/Λ)× Rd

)
and where NΛ (t, ω, σ) is given by:

(73) NΛ (t, ω, σ) = UΛ,ω,σ (t)N0
Λ (ω, σ)U∗Λ,ω,σ (t) ,
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for some positive, self-adjoint trace-class operator N0
Λ (ω, σ) acting on L2

ω(Rd,Λ) with
TrL2

ω(Rd,Λ)N
0
Λ(ω, σ) = 1 and where UΛ,ω,σ(t) is the unitary propagator of the equation

(SΛ,ω,σ).

Therefore, the measure µ̄Λ only charges those σ ∈ Rd satisfying Λ ⊆ dH(σ)⊥ (see
Remark 4.3) and we also have:∫

Td
µfinal

Λ (dx, ·) =

∫
〈Λ〉/Λ

µ̄Λ(dω, ·).

If
(
ϕ0
j (ω, σ)

)
j∈N is an orthonormal basis in L2

ω(Rd,Λ) consisting of eigenfunctions of the
operator N0

Λ (ω, σ) then

N0
Λ (ω, σ) =

∞∑
j=1

λj(ω, σ)|ϕ0
j (ω, σ)〉〈ϕ0

j (ω, σ) |,

where
∑∞

j=1 λj = 1 and λj ≥ 0. Now (73) implies that:

(74) NΛ (t, ω, σ) =
∞∑
j=1

λj(ω, σ)|ϕj (t, ω, σ)〉〈ϕj (t, ω, σ) |

where ϕj (t, ω, σ) ∈ L2
ω(Rd,Λ) is the solution to :

i∂tϕj (t, ω, σ) =

(
1

2
d2H(σ)Dy ·Dy + 〈V (t, σ)〉Λ

)
ϕj (t, ω, σ)

with ϕj|t=0 = ϕ0
j .

Now, suppose that Theorem 1.16 (ii) fails. Therefore there exists µ ∈ M̃ (1/h) which
satisfies condition (72). Then there exists Λ ∈ L such that

µfinal
Λ (t, U × suppχ) dt = 0,

for every t ∈ (0, T ), but such that µfinal
Λ 6= 0. This implies that µ̄Λ 6= 0 and that, for µ̄Λ-a.e.

(ω, σ) with Λ ⊆ Λσ:

(75) TrL2
ω(Rd,Λ) (〈1U〉ΛNΛ (t, ω, σ)) = 0.

Comparing with (74), we obtain∫ T

0

∫
U

|ϕj (t, ω, σ)|2 (y) dydt = 0,

for every j such that λj 6= 0 µ̄Λ-a.e.. Since µ̄Λ 6= 0, NΛ (·, ω, σ) 6= 0 on a set of positive
µ̄Λ-measure. This implies that at least for one j, ϕj (·, ω, σ) 6= 0 and therefore, the unique
continuation property of Theorem 1.16 iii) fails for that choice of Λ, ω and σ. This shows
that iii) implies ii).
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8. Appendix: Basic properties of Wigner distributions and semi-classical
measures

In this Appendix, we review basic properties of Wigner distributions and semiclassical
measures. Recall that we have defined whuh for uh ∈ L2

(
Td
)
as:

(76)
∫
T ∗Td

a(x, ξ)whuh(dx, dξ) = 〈uh,Oph(a)uh〉L2(Td) , for all a ∈ C∞c (T ∗Td),

Start noticing that (76) admits the more explicit expression:

(77)
∫
T ∗Td

a(x, ξ)whuh(dx, dξ) =
1

(2π)d/2

∑
k,j∈Zd

ûh(k)ûh(j)âj−k

(
h

2
(k + j)

)
,

where ûh(k) :=
∫
Td uh(x) e−ik.x

(2π)d/2
dx and âk(ξ) :=

∫
Td a(x, ξ) e−ik.x

(2π)d/2
dx denote the respective

Fourier coefficients of uh and a, with respect to the variable x ∈ Td.

By the Calderón-Vaillancourt theorem [11], the norm of Oph(a) is uniformly bounded
in h: indeed, there exists an integer Kd, and a constant Cd > 0 (depending on the
dimensiond) such that, if a is a smooth function on T ∗Td, with uniformly bounded deriva-
tives, then

‖Op1(a)‖L(L2(Td)) ≤ Cd
∑

α∈N2d,|α|≤Kd

sup
T ∗Td
|∂αa| =: CdM (a) .

A proof in the case of L2(Rd) can be found in [16]. As a consequence of this, equation (76)
gives: ∣∣∣∣∫

T ∗Td
a(x, ξ)whuh(dx, dξ)

∣∣∣∣ ≤ Cd ‖uh‖2
L2(Td)M (a) , for all a ∈ C∞c (T ∗Td).

Therefore, if wh(t, ·) := wh
S
τht

h uh
for some function h 7−→ τh ∈ R+ and if the family (uh) is

bounded in L2
(
Td
)
one has that (wh) is uniformly bounded in L∞

(
R;D′

(
T ∗Td

))
. Let us

consider µ ∈ L∞
(
R;D′

(
T ∗Td

))
an accumulation point of (wh) for the weak-∗ topology.

It follows from standard results on the Weyl quantization that µ enjoys the following
properties :

(a) µ ∈ L∞(R;M+(T ∗Td)), meaning that for almost all t, µ(t, ·) is a positive measure
on T ∗Td.

(b) The unitary character of Sth implies that
∫
T ∗Td µ(t, dx, dξ) does not depend on t;

from the normalization of uh, we have
∫
T ∗Td µ(τ, dx, dξ) ≤ 1, the inequality coming

from the fact that T ∗Td is not compact, and that there may be an escape of mass
to infinity. Such escape does not occur if and only if (uh) is h-oscillating, in which
case µ ∈ L∞

(
R;P

(
T ∗Td

))
.

(c) If τh −→∞ as h −→ 0+ then the measures µ(t, ·) are invariant under φs, for almost
all t and all s.
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(d) Let µ̄ be the measure on Rd given by the image of µ(t, ·) under the projection
map (x, ξ) 7−→ ξ. If Vh(t) = Oph(V (t, x, ξ)) is a pseudodifferential operator and if
τh � h−2 then µ̄ does not depend on t. Moreover, if µ0 stands for the image under
the same projection of any semiclassical measure corresponding to the sequence of
initial data (uh) then µ̄ = µ0.

For the reader’s convenience, we next prove statements (c) and (d) (see also [28] for a
proof of these results in the context of the Schrödinger flow eiht∆ on a general Riemannian
manifold). Let us begin with the invariance through the Hamiltonian flow. We set

as(x, ξ) := a(x+ sdH(ξ), ξ) = a ◦ φs(x, ξ).
The symbolic calculus for Weyl’s quantization implies:
d

ds
Ssh Oph(as)S

s∗
h = Ssh Oph(∂sas)S

s∗
h −

i

h
Ssh
[
H(hD) + h2Vh(t) , Oph(as)

]
Ss∗h = O(h).

Therefore, for fixed s, Ssh Oph(as)S
s∗
h = Oph(a) + O(h) (note that we have only used here

the boundedness of the operator Vh(t)) and for θ ∈ L1(R),∫
R
θ(t) 〈wh (t) , a〉 dt =

∫
R
θ(t)〈uh , Sτht∗h Oph(a)Sτhth uh〉dt

=

∫
R
θ(t)〈uh , Sτh(t−s/τh)∗

h Oph(a ◦ φs)S
τh(t−s/τh)
h uh〉dt+O(h)

=

∫
R
θ(t+ s/τh)〈uh , Sτht∗Oph(a ◦ φs)Sτhtuh〉dt+O(h)

=

∫
R
θ(t+ s/τh)〈wh (t) , a ◦ φs〉dt+O(h).

Since ‖θ(·+ s/τh)− θ‖L1 −→ 0 (recall that we have assumed that τh −→ ∞ as h −→ 0+)
we obtain ∫

R
θ(t) 〈wh (t) , a〉 dt−

∫
R
θ(t)〈wh (t) , a ◦ φs〉dt −→ 0, as h −→ 0+,

whence the invariance under φs.

Let us now prove property (d). Consider µ the image of µ by the projection (x, ξ) 7−→ ξ,
we have for a ∈ C∞0 (Rd) :

〈wh (t) , a (ξ)〉 −
〈
whuh , a (ξ)

〉
=

∫ t

0

d

ds
〈wh(s) , a(ξ)〉ds

=

∫ t

0

〈uh ,
d

ds
(Sτhs∗h Oph(a)Sτhsh )uh〉ds

= O
(
τhh‖[Vh(t),Oph(a)]‖L(L2(Td))

)
,

(for a only depending on ξ we have Oph(a) = a(hDx), which commutes with H(hDx)). If
Vh(t) = Oph(V (t, x, ξ)) then

‖[Vh(t),Oph(a)]‖L(L2(Td)) = O(h) and τhh ‖[Vh(t),Oph(a)]‖L(L2(Td) = O(τhh
2).
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Therefore, if τh � h−2, we find, for every θ ∈ L1 (R):∫
R
θ (t)

∫
T ∗Td

a (ξ)µ (t, dx, dξ) =

(∫
R
θ (t) dt

)∫
T ∗Td

a (ξ)µ0 (dx, dξ) ,

where µ0 is any accumulation point of
(
whuh
)
. As a consequence of this, we find that µ

does not depend on t and:

µ (ξ) =

∫
Td
µ0 (dy, ξ) .
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