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Abstract

The restricted dual of a quantized enveloping algebra can be viewed as the algebra
of functions on a quantum group. According to Woronowicz, there is a general notion
of bicovariant differential calculus on such an algebra. We give a classification theorem
of these calculi. The proof uses the notion (due to Reshetikhin and Semenov-Tian-
Shansky) of factorizable quasi-triangular Hopf algebra and relies on results of Joseph
and Letzter. On the way, we also give a new formula for Rosso’s bilinear form.

Introduction

Let G be a semi-simple connected simply-connected complex Lie group, g its Lie algebra,
Uqg the quantized enveloping algebra of g. Uqg is a Hopf algebra. The associated quantum
group is an object of non-commutative geometry. According to a point of view due to
Woronowicz and developed by Faddeev, Reshetikhin and Takhtadzhyan [F–R–T], one may
view the restricted (Hopf) dual (Uqg)∗ res as the function algebra AqG on this quantum group.
In this way, the Peter–Weyl theorem becomes a definition: the rational representations of
the quantum group are the finite dimensional representations of Uqg.

In order to study the differential geometry of quantum groups, Woronowicz [Wo] defined
the notion of bicovariant differential calculus. As in the classical case, one needs only to define
the differential of functions at the unity point of the quantum group. If ε : AqG → C(q)
is the augmentation map, this amounts to take the residual class of functions belonging to
ker ε modulo a right ideal R ⊆ ker ε. In the classical case, one takes R = (ker ε)2. As for
quantum groups, it is more important to preserve the group structure than the infinitesimal
structure, and one is led to select ideals R as above by the requirement of a certain invariance
condition. In this article, we solve the classification problem for these ideals R, and we give
a picture of what they look like.

We now compare our results with previous ones. Rosso [Ro3] showed how to use the
quasi-triangular structure of Uqg in order to construct left covariant differential calculi on
the quantum group. Modifying this construction, Jurčo [Ju] used the R-matrix in the natural
representation of Uqg (and in the dual of it) so as to construct bicovariant differential calculi:
he obtained particular cases (when M is the natural g-module or its dual) of our theorem2.
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(In this spirit, see also [F–P].) As regards classification results, Schmüdgen and Schüler have
classified the ideals R as above, but only when g is of classical type, and under restrictive
assumptions on R. Most of the results in [S–S1, S–S2] are particular cases of our theorem 1.
For instance, the classification given in the theorem 2.1 corresponds (in the wording of our
theorem) to the ideals R constructed (up to a twisting character χ : 2X/2Q → C×, as
explained in the section 3.3) from the natural Uqg-module or its dual.

Let us explain our proof and the contents of our article. Our proof relies on the quasi-
triangular structure of Uqg. Since the formalism of R-matrices may be justified only for finite
dimensional Hopf algebras, we will employ the dual notion of co-quasi-triangular (c.q.t.) Hopf
algebra (see [L–T]): the algebra AqG is c.q.t.. We use then a bilinear form on AqG, intro-
duced by Reshetikhin and Semenov-Tian-Shansky. As Uqg is a factorizable quasi-triangular
Hopf algebra (in the terminology of [R–S]), this pairing is non-degenerate and gives a linear
injection AqG →֒ Uqg ⊆ (AqG)∗. The image of R under this map is nearly the annihilator
of a Uqg-module. It is then easier to discuss what R may be. The definitions and the proofs
of these assertions are given in sections 1 and 2. In section 3, we present a contruction of
bicovariant differential calculi valid for any factorizable c.q.t. Hopf algebra. Finally we link,
in the case of AqG, these constructions with our classification result.
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Notations

• Let A be a k-algebra. If M is an A-module, its annihilator is noted annA M. If
m ∈ M and m∗ ∈ M∗ (the k-dual of M), we denote by θM(m,m∗) the matrix coefficient
(A → k, a 7→ 〈m∗, a · m〉).

• For a Hopf algebra H, we will use Sweedler’s notation for coproduct (∆(a) =
∑

a(1) ⊗
a(2)) and for coaction on comodules. The sum sign will generally be omitted. We will
denote the augmentation and the antipode of H by ε and S respectively.

• Let H be a Hopf algebra, and H∗ res be the restricted (Hopf) dual of H. A finite
dimensional left H-module M (with a basis (mi) and the dual basis (m∗

i ) of M∗) can
be viewed as a right H∗ res-comodule with structure map δR : (M → M ⊗ H∗ res,m 7→
∑

mi ⊗ θM(m,m∗
i ) ).
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1 Co-quasi-triangular Hopf algebras

1.1 Some definitions

Let H be a Hopf algebra over a field k. A right crossed bimodule over H (in the sense of
Yetter [Ye]) is a k-vector space M, which is also a right H-module, a right H-comodule (with
structure map δR : (M → M ⊗ H,m 7→

∑

m(0) ⊗ m(1))), both structures being compatible:
δR(m · a) =

∑

m(0) · a(2) ⊗ S(a(1))m(1)a(3) (for m ∈ M, a ∈ H). When M and N are
right crossed bimodules over H, M ⊗ N becomes a right crossed bimodule for the action
(m ⊗ n) · a = m · a(1) ⊗ n · a(2) and the coaction δR(m ⊗ n) = (m(0) ⊗ n(0)) ⊗ m(1)n(1).

There are two easy examples: we can endow H with the structures: a · b = ab and
δR : (H → H ⊗ H, a 7→ a(2) ⊗ S(a(1))a(3)). Alternatively, we can put on H the structures
a · b = S(b(1))ab(2) (right adjoint action) and δR : (H → H ⊗ H, a 7→ a(1) ⊗ a(2)).

When Γ is a bicovariant bimodule (see [Wo]), the space ΓL of left coinvariants is a right
crossed bimodule over H. Conversely, any right crossed bimodule over H is the space of left
coinvariants of a bicovariant bimodule.

Finally (H still being a Hopf algebra), we endow the tensor product coalgebra H∗ res ⊗ H
with the product (f⊗a)(g⊗b) = 〈g(3), a(3)〉〈g(1), S(a(1))〉(g(2)f⊗a(2)b). We obtain a bialgebra,
called Drinfel′d’s double of H and denoted by D(H). (Here H∗ res is the standard dual of H,
the coproduct is not brought into its opposite.) When M is a right crossed bimodule over
H, it is a right D(H)-module for the actions: m · (f ⊗ 1) = 〈f,m(1)〉m(0), m · (1⊗ a) = m · a.

1.2 Definition of a co-quasi-triangular Hopf algebra

We give the definition of c.q.t. Hopf algebras, by now usual (see [L–T] for historical notes):

Definition 1 A co-quasi-triangular Hopf algebra is a pair (A, γ) where A is a Hopf algebra
and γ : A → A∗ res is a coalgebra morphism and algebra antimorphism such that we have
the Yang-Baxter equation (or rather the Baxter commutation relations): a(1)b(1)〈γa(2), b(2)〉 =
〈γa(1), b(1)〉b(2)a(2) for all a, b ∈ A.

That γ is a coalgebra morphism and an algebra antimorphism gives us that for all a, b ∈ A,
〈γa, b〉 = 〈γSa, Sb〉. We call δ : A → A∗ the map such that 〈δa, b〉 = 〈γb, Sa〉, for all a, b ∈ A.
Hence we have 〈γa, b〉 = 〈δb, Sa〉. We verify easily that δ takes its values in A∗ res and (A, δ)
is a c.q.t. Hopf algebra.

If U is a Hopf algebra quasi-triangular for an R-matrix R12, then U∗ res becomes a c.q.t.
Hopf algebra for the map γ given by: for a, b ∈ U∗ res, 〈γ(a), b〉 = 〈b ⊗ a,R12〉, and then
〈δ(a), b〉 = 〈b⊗a,R−1

21 〉. This follows from Drinfel′d’s classical axioms. For instance, let H be
a finite dimensional Hopf algebra, and U = D(H): the dual vector space H ⊗ H∗ of U is the
underlying space of the restricted dual of U. If (ei) is a basis for H, the canonical R-matrix is
∑

(e∗i ⊗1)⊗(1⊗ei) ∈ U⊗U. It corresponds to the maps γ : (H⊗H∗ → U, a⊗f 7→ ε(a)f⊗1)
and δ : (H ⊗ H∗ → U, b ⊗ g 7→ g(1)ε ⊗ S−1(b)) (the antipode of a finite dimensional Hopf
algebra being invertible).

The category of left modules over a quasi-triangular Hopf algebra is braided. The trans-
lation in the present formalism is the:
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Proposition 1 Let (A, γ) be a c.q.t. Hopf algebra. If M is a right A-comodule, it becomes
a right crossed bimodule over A when endowed with the right module structure given by: for
m ∈ M and a ∈ A, m · a = 〈γa,m(1)〉m(0). This extra structure is compatible with tensor
products of comodules and crossed bimodules.

Proof. Let δR : (M → M ⊗A,m 7→ m(0) ⊗ m(1)) the structure map for M. Then we have:

m(0) · a(2) ⊗ S(a(1))m(1)a(3) = m(0) ⊗ 〈γa(2),m(1)〉S(a(1))m(2)a(3)

= m(0) ⊗ S(a(1))a(2)m(1)〈γa(3),m(2)〉

= m(0) ⊗ m(1)〈γa,m(2)〉

= δR(m · a).

The compatibility with tensor products is a consequence of γ being a coalgebra homomor-
phism. ¤

We also note that the antipode of a c.q.t. Hopf algebra is always invertible, the square
of its transpose being an inner automorphism of the algebra A∗ (see [Dr2]).

Finally, when (A, γ) is a c.q.t. Hopf algebra, we have the maps γ and δ, and Radford
[Ra] has shown that (im γ)(im δ) = (im δ)(im γ) is a sub-Hopf-algebra of A∗ res. This was
shown in the early [R–S]: there is a Hopf algebra structure (with invertible antipode) on the
tensor product coalgebra A ⊗ A such that the map (A ⊗ A → A∗ res, a ⊗ b 7→ γb · δa) is a
coalgebra morphism and an algebra antimorphism.

Example. In the F.R.T. construction [F–R–T], one considers matrices L+ and L−, whose
elements lie in im γ and im δ respectively. Then Faddeev, Reshetikhin and Takhtadzhyan
defined Uqg to be the algebra (im γ)(im δ).

1.3 The maps I and J

We fix in this subsection a c.q.t. Hopf algebra (A, γ) over the field k, and note δ the
associated map. We define two maps I : (A → A∗ res, a 7→ γ(a(1)) Sδ(a(2))) and J : (A →
A∗ res, a 7→ Sδ(a(1)) γ(a(2))). Equivalently, we may consider the pairing of two elements
a, b ∈ A: 〈I(a), b〉 = 〈J(b), a〉. (When A is the dual of a quasi-triangular Hopf algebra, this
pairing is 〈a ⊗ b, R21R12〉.) We have I = S ◦ J ◦ S and J = S ◦ I ◦ S.

We will now state an important property of the map I. A∗ res is a left A∗ res⊗A∗ res-module
for the law (x ⊗ y) · z = xz S(y). A is a right crossed bimodule over A for the structures:
a · b = ab and δR : (A → A⊗A, a 7→ a(2) ⊗ S(a(1))a(3)), so A is a right D(A)-module. Let
Π : (D(A) ≡ A∗ res ⊗A → A∗ res ⊗A∗ res, x ⊗ b 7→ γ(b(1))x(1) ⊗ δ(b(2))x(2)).

Proposition 2 In the set-up above, Π is an algebra antimorphism. If ξ ∈ D(A) and a ∈ A,
then I(a · ξ) = Π(ξ) · I(a).

Proof. That Π is an antimorphism is already in [R–S]. Then, as a consequence of the
Yang-Baxter equation, we may write, for x ∈ A∗ res and a ∈ A, that Sγ(a(1))〈x, a(2)〉 =
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〈x(2), a(1)〉x(1)Sγ(a(2))S(x(3)). Then we compute, for ξ = x ⊗ b ∈ D(A):

I(a · ξ) = 〈x, S(a(1))a(3)〉 I(a(2)b)

= γ(b(1)) 〈x, S(a(1))a(4)〉 γ(a(2)) Sδ(a(3)) Sδ(b(2))

= γ(b(1)) 〈x(1), S(a(1))〉 SγS(a(2)) 〈x(2), a(4)〉 Sδ(a(3)) Sδ(b(2))

= γ(b(1)) 〈x(2), S(a(2))〉x(1) SγS(a(1)) S(x(3)) 〈x(5), a(3)〉x(4) Sδ(a(4)) S(x(6)) Sδ(b(2))

= γ(b(1)) 〈x(2), S(a(2))〉x(1) SγS(a(1)) 〈x(3), a(3)〉 Sδ(a(4)) S(x(4)) Sδ(b(2))

= γ(b(1)) x(1) γ(a(1)) Sδ(a(2)) S(x(2)) Sδ(b(2))

= Π(ξ) · I(a).

¤

We single out the particular case b = 1:

Proposition 3 We consider A and A∗ res as left A∗ res-modules for the adjoint action: if
x, y ∈ A∗ res and a ∈ A, x·a = 〈x, S(a(1))a(3)〉a(2) and x·y = x(1)y S(x(2)). Then I : A → A∗ res

is a morphism of A∗ res-modules.

Finally, we give the definition, originally due to Reshetikhin and Semenov-Tian-Shansky
[R–S]:

Definition 2 One says that (A, γ) is factorizable if the pairing (A × A → k, (a, b) 7→
〈I(a), b〉) is non-degenerate.

Thus (A, γ) is factorizable iff the maps I and J are injective. It is possible to show that
(A, γ) is factorizable iff (A, δ) is so.

1.4 A related construction

First, let U be a Hopf algebra. It is a left U-module for the adjoint action: x·y = x(1)y S(x(2)).
We let Fℓ(U) be the sum of all finite dimensional U-submodules of U. It is known [J–L1] that
Fℓ(U) is a subalgebra of U, a left coideal in U, and a U-submodule for the left adjoint action.
The multiplication in U defines a morphism of left U-modules Fℓ(U) ⊗ Fℓ(U) → Fℓ(U). We
can then do the semi-direct product Fℓ(U) ⊗ U: we obtain an algebra. U ⊗ U denoting the
ordinary tensor product algebra, there is an algebra morphism (Fℓ(U)⊗U → U⊗U, x⊗y 7→
xy(1)⊗y(2)). We can make the same constructions on the right: we obtain an algebra Fr(U). If
the antipode of U is invertible, the algebra morphism (U⊗Fr(U) → U⊗U, x⊗y 7→ x(1)⊗x(2)y)
has the same image as the previous one. Hence this image contains Fℓ(U)⊗Fr(U) ⊆ U⊗U.

We take now a c.q.t. Hopf algebra (A, γ), with δ, I and J as in the preceding subsection.
Let U = (im γ)(im δ) be the minimal sub-Hopf-algebra of A∗ res in which γ and δ take their
values. We consider on A and A∗ res the A∗ res-module structures of proposition 3. By
restriction, A and A∗ res are U-modules, and I : A → A∗ res is a morphism of U-modules. We
can see that I takes its values in U, which is a U-submodule of A∗ res. Further, A is the sum
of its finite dimensional U-submodules, hence im I ⊆ Fℓ(U).
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Proposition 4 Let (A, γ) be a c.q.t. factorizable Hopf algebra, and I be the associated map.
Let U be the sub-Hopf-algebra (im γ)(im δ) ⊆ A∗ res. We suppose that im I = Fℓ(U). Then I
induces a bijection between:

• the set of right ideals R of A, which are subcomodules for the right coaction δR : (A →
A⊗A, a 7→ a(2) ⊗ S(a(1))a(3)).

• the set of two-sided ideals I of Fℓ(U), which are U-submodules for the adjoint action.

This bijection preserves dimensions, codimensions, and the inclusion ordering in both sets.

Proof. By assumption, I : A → Fℓ(U) is a U-module isomorphism. We adopt the notations
of the proposition 2. A is a D(A)-module, and U ⊗ A is (the underlying space of) a sub-
Hopf-algebra of D(A), so we will view A as a right U⊗A-module: 1⊗A acts on A by right
multiplication, Uop ⊗ 1 acts on A by the left adjoint action. The injectivity of I implies that
im J ⊆ U separates the points of A: hence the sub-U ⊗A-modules of A are the right ideals
which are subcomodules for the right coaction δR.

On the other hand, we let E be the image of the morphism (Fℓ(U)⊗U → U⊗U, x⊗y 7→
xy(1) ⊗ y(2)). U is a U⊗U-module, so is an E-module, and Fℓ(U) is a sub-E-module of U. E
contains Fℓ(U)⊗Fr(U), with S(Fr(U)) = Fℓ(U). Therefore, the sub-E-modules of Fℓ(U) are
the two-sided ideals I which are U-submodules for the adjoint action.

Now the proposition is a consequence of the proposition 2: writing Π as the composition
(Fℓ(U)⊗A∗ res → A∗ res ⊗A∗ res, x⊗ y 7→ xy(1) ⊗ y(2)) ◦ (A∗ res ⊗A → Fℓ(U)⊗A∗ res, x⊗ a 7→
I(a(1))⊗ δ(a(2))x), and using the assumption im I = Fℓ(U), we can see that E is the image of
U ⊗A through Π. ¤

2 The case of the quantum coordinate algebra

2.1 Notations

In this section, we study the preceding constructions in the case where A is the algebra AqG
of regular functions on a quantum group.

Let g be a finite dimensional semi-simple split Lie algebra, h a splitting Cartan subalgebra,
{α1, . . . , αℓ} ⊆ h∗ a basis for the root system, {α∨

1 , . . . , α∨
ℓ } ⊆ h the inverse roots, P ⊆ h∗

and Q ⊆ h∗ the weight and the root lattices. The choice of an invariant (under Weyl group

action) scalar product (·|·) allows us to identify h and h∗, with αi = diα
∨
i , di = (αi|αi)

2
. We

choose the normalization of (·|·) so that (λ | µ) ∈ Z whenever λ and µ belong to P. We
denote by ρ half the sum of the positive roots, by P+ the set of dominant weights, and by
w0 the longest element in the Weyl group.

We now choose the following version of Uqg: this is a C(q)-algebra (q is generic) gener-
ated by Ei, Fi and Kλ (λ ∈ P). The relations are the usual ones among which: KλEi =

q(λ|αi)EiKλ, KλFi = q−(λ|αi)FiKλ, EiFj − FjEi = δij
Kαi

−K−αi

qdi−q−di
. The coproduct is given by:

∆Kλ = Kλ⊗Kλ, ∆Ei = Ei⊗1+Kαi
⊗Ei, ∆Fi = 1⊗Fi+Fi⊗K−αi

. We note S the antipode
of Uqg. If one chooses a dominant weight λ and a character χ : P/2Q → C×, one knows
how to construct a simple finite dimensional Uqg-modules, in which there is a highest weight
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vector mλ such that Kµ · mλ = χ(µ mod 2Q)q(µ|λ)mλ. We note Lχ(λ) such a Uqg-module ;
when χ is the trivial character, we simply write L(λ), and then Lχ(λ) = L(λ) ⊗ Lχ(0).

The matrix coefficients of the representation L(λ) span a linear subspace C(λ) of the
restricted dual of Uqg, and we let AqG =

⊕

λ∈P+
C(λ). This is a Hopf subalgebra of (Uqg)∗ res.

The elements of AqG separate the points of Uqg [J–L1], so that there is an inclusion of Uqg

into the dual of AqG, actually into the restricted dual of AqG. We note S the antipode of
AqG, which is the restriction to AqG of the transpose of the antipode of Uqg.

There is an R-matrix for Uqg [Dr1, Ta, Ga]. We choose the R-matrix with the structure
∑

(diagonal part)(polynomial in F ) ⊗ (polynomial in E). If a and b belong to AqG, the
number 〈R12, b ⊗ a〉 ∈ C(q) is well-defined (thanks to the weight graduation of Uqg and
of any finite dimensional Uqg-module), and we can define γ, δ : AqG → (AqG)∗ such that
〈R12, b⊗ a〉 = 〈γ(a), b〉 = 〈δ(b), S(a)〉. (AqG, γ) and (AqG, δ) are c.q.t. Hopf algebras, im(γ)
and im(δ) are the sub-Hopf-algebras U−U0 and U0U+ of Uqg ⊆ (AqG)∗ res respectively, and
Uqg is the sub-Hopf-algebra (im γ)(im δ) = (im δ)(im γ) of (AqG)∗ res.

2.2 Factorizability of AqG

Let (AqG, γ) be the c.q.t. algebra presented above, and δ be the associated map. For all the
section, we endow AqG and Uqg with the left adjoint action of Uqg, as in the section 1.4:
in particular, the map I : AqG → Fℓ(Uqg) is a morphism of left Uqg-modules. Joseph and
Letzter [J–L1, J–L2] have studied the structure of Fℓ(Uqg), and we need the following results:

• If λ ∈ P+, K−2λ generates a finite dimensional Uqg-submodule of Uqg, and Fℓ(Uqg) =
⊕

λ∈P+
(Uqg · K−2λ).

• Each block Uqg · K−2λ contains a unique one-dimensional Uqg-submodule; it defines a
unique (up to scalars) element zλ of the center of Uqg.

• Fℓ(Uqg) ⊆ (AqG)∗ separates the points of AqG.

The next assertion has been stated in [R–S]:

Proposition 5 (AqG, γ) is a factorizable c.q.t. Hopf algebra, and im I = Fℓ(Uqg).

Proof. Let λ ∈ P+, L(λ) the standard Uqg-module, mλ a highest weight vector, mw0λ a
lowest weight vector, (mi) a basis for L(λ) composed of weight vectors, (m∗

i ) the dual basis.
We have:

• The matrix element θL(λ)(mw0λ,m
∗
w0λ) is the linear form on Uqg given by (in the trian-

gular decomposition U+ ⊗ U0 ⊗ U− of Uqg): EKµF 7→ ε(E)q(w0λ|µ)ε(F ).

• On this element, γ takes the value Kw0λ and δ the value K−w0λ.

• The image by γ (respectively δ) of the matrix element θL(λ)(mi,m
∗
w0λ) (respectively

θL(λ)(mw0λ,m
∗
i )) is zero if i 6= w0λ.
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So we have:

I(θL(λ)(mw0λ,m
∗
w0λ)) = γ((θL(λ)(mw0λ,m

∗
w0λ))(1)) S(δ((θL(λ)(mw0λ,m

∗
w0λ))(2)))

=
∑

γ(θL(λ)(mi,m
∗
w0λ)) S(δ(θL(λ)(mw0λ,m

∗
i )))

= γ(θL(λ)(mw0λ,m
∗
w0λ)) S(δ(θL(λ)(mw0λ,m

∗
w0λ)))

= K2w0λ.

Hence im I is a Uqg-submodule of Fℓ(Uqg) which contains all the K2w0λ (λ ∈ P+), so im I =
Fℓ(Uqg). We now want to show that J is injective. If b ∈ ker J, then for all a ∈ AqG,
〈I(a), b〉 = 〈J(b), a〉 = 0, so b is null when viewed as a linear form on im I = Fℓ(Uqg). Then
b = 0, because Fℓ(Uqg) separates the points of AqG. Finally, owing to the formula J = S◦I◦S
and to the invertibility of S, I is also injective. This concludes the proof of the proposition.
¤

There is another way to present this result. Rosso [Ro1] introduced a bilinear non-
degenerate ad-invariant form on Uqg, that Caldero [Ca] writes (Uqg×Uqg → C(q1/2), (x, y) 7→
〈ζ(x), S−1(y)〉), where ζ : Uqg → (Uqg)∗. Rosso’s non-degeneracy result is that ζ is injec-
tive; Caldero’s theorem states that ζ maps Fℓ(Uqg) onto AqG ⊆ (Uqg)∗ res. The triangular
behaviour of Rosso’s form gives us that ζ(K2w0λ) = θL(λ)(mw0λ,m

∗
w0λ). The ad-invariance

of Rosso’s form can be translated for ζ: when we restrict ζ to Fℓ(Uqg) and AqG, ζ is a
morphism of Uqg-modules for the adjoint structures. Now I ◦ ζ : Fℓ(Uqg) → Fℓ(Uqg) and
ζ ◦ I : AqG → AqG are morphisms of Uqg-modules and fix the respective generators K2w0λ

and θL(λ)(mw0λ,m
∗
w0λ) of these modules. (The fact that θL(λ)(mw0λ,m

∗
w0λ) generates the Uqg-

submodule C(λ) of AqG is equivalent to the fact that m∗
w0λ⊗mw0λ generates the Uqg-module

L(λ)∗⊗L(λ).) So we conclude that ζ and I are mutually inverse isomorphisms, and that I is
a bijection between C(λ) and Uqg · K2w0λ. The analysis also shows the amusing side-result:

Proposition 6 If x ∈ Fℓ(Uqg), y ∈ Uqg, then the Rosso form on (x, y) is given by
〈I−1(x), S−1(y)〉 where I : (AqG → Fℓ(Uqg), a 7→ 〈a⊗ idUqg, R21R12〉) is related to the univer-
sal R-matrix and S is the antipode of Uqg.

Remarks. 1. It is also possible to give an heuristic proof of this result, using the canonical
R-matrix for Drinfel′d’s double and using Rosso’s formula for his form [Ro2].

2. In the preceding discussion, we were lying a bit. Caldero’s map ζ does not give ex-
actly Rosso’s bilinear form, but our formula connecting I and Rosso’s form is correct
as stated. In our notations, Caldero’s map ζ is the inverse of the map (AqG →
Fℓ(Uqg), a 7→ δ(a(1)) Sγ(a(2))).

Later, we will need to know the relations between the central elements zλ defined above.
To this aim, we recall Drinfel′d’s construction of the center of Uqg [Dr2]. Let λ ∈ P+ and
t ∈ AqG be the quantum trace in L(λ): for x ∈ Uqg, 〈t, x〉 = TrL(λ)(K2ρ x). t is an invariant
element for the adjoint action of Uqg in AqG, so I(t) is central, and belongs to Uqg · K2w0λ.
We choose the normalization of z−w0λ by letting z−w0λ = I(t). We then have a Mackey-like
theorem (which is implicit in [Dr2] and in the thesis of Caldero, chapter II, 1.2):
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Proposition 7 Let cν
λµ be the fusion coefficients for g: L(λ) ⊗ L(µ) ≃

⊕

ν cν
λµL(ν). Then

zλzµ =
∑

ν cν
λµzν.

Proof. Let µ ∈ P+. We compute J(θL(µ)(mµ,m
∗
µ)) = K2µ (with the help of the formulas

J = S ◦ I ◦ S and S(θL(µ)(mµ,m
∗
µ)) = θL(−w0µ)(m−µ,m

∗
−µ)). Now let λ ∈ P+ and let t be the

quantum trace in L(λ). Let Ψ be the Harish-Chandra morphism from the center of Uqg to
U0 [Ro1]. We want to compute Ψ(z−w0λ) on µ + ρ. (Evaluation on µ + ρ means the algebra
homomorphism (U0 → C(q), Kλ 7→ q(λ|µ+ρ)).) The result will be the image of z−w0λ by the
central character of L(µ). So it is 〈I(t), θL(µ)(mµ,m

∗
µ)〉 = 〈JθL(µ)(mµ,m

∗
µ), t〉 = 〈K2µ, t〉 =

TrL(λ)(K2µK2ρ) = TrL(λ)(K2(µ+ρ)). Thus Ψ(z−w0λ) equals the sum of K2ν for ν in the set of
weights (with multiplicities) of L(λ). We then use the fact that Ψ is an injective algebra
homomorphism. ¤

We note R the Grothendieck ring of the category of finite dimensional Uqg-modules
whose components are modules L(λ), without any twisting character χ : P/2Q → C×. Let
Z(Uqg) the center of Uqg, and Z[P] the group algebra of P (with standard Z-basis denoted by
(eν)ν∈P). The map (R → AqG, [M] 7→ TrM(K2ρ )) is a ring homomorphism. If a, b ∈ AqG
are such that I(a) belongs to the center of Uqg, then I(ab) = I(a) I(b). As a consequence,
the map (R → Z(Uqg), [M] 7→ I(TrM(K2ρ ))) is a ring homomorphism. This shows again
the statement in proposition 7, and we can paraphrase the above proof by saying that the
following diagram is commutative:

R AqG Z(Uqg)

Z[P] U0
? ?

-

-

-
I

ch Ψ

Here ch : R → Z[P] is the ring homomorphism which maps a module to its formal character,
and the bottom arrow is the map (Z[P] → U0, eν 7→ K2ν).

2.3 A technical result on the representation ring

We have just introduced a Grothendieck ring R: by the classical results of Lusztig and Rosso,
R is naturally isomorphic to the representation ring of g. The elements [L(λ)] (λ ∈ P+) form
a Z-basis of R and a Q-basis of R ⊗Z Q.

Proposition 8 Let λ ∈ P+. Then the ideal of R⊗Z Q generated by the elements [L(λ + ̟)]
(̟ ∈ P+) is the whole algebra R ⊗Z Q.

The proof of this proposition can be skipped without any drawbacks.∗ Before we give it, we
have to state an elementary lemma:

∗Indeed the proof presented here is very inefficient. P. Polo showed us a much shorter and easier proof,

which we reproduce with his permission as a note added in proof at the end of this article.
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Lemma Let (µ(1), . . . , µ(k)) ∈ (Cℓ)k be such that their image in (C/Z)
ℓ
are all different, and

let (P (1), . . . , P (k)) ∈ (C[X1, . . . , Xℓ])
k. If

∑

i P
(i)(n1, . . . , nℓ) exp(2πi

∑

j njµ
(i)
j ) = 0 holds

for all (n1, . . . , nℓ) ∈ Nℓ, then the polynomials P (1),. . . , P (k) are all equal to zero.

For ℓ = 1, this lemma states linear independance of elementary solutions of a linear difference
equation. The general proof is by induction on ℓ.

Proof of proposition 8 In this proof, we are in a classical context and we do not identify
h and h∗. Let R ⊆ h∗ and R∨ ⊆ h be the direct and inverse root systems, (α 7→ α∨) the
canonical bijection between R and R∨, Q(R∨) ⊆ h the root lattice. P = P(R) ⊆ h∗ is
still the weight lattice; we denote by {α∨

1 , . . . , α∨
ℓ } the set of inverse simple roots, and by

{̟1, . . . , ̟ℓ} the set of fundamental weights. R∨ and R define Q-structures on h and h∗,
and we can define hR and hC. The Weyl group W operates on h and h∗, and the affine Weyl
group Wa = W ⋉ Q(R∨) operates on h. Let Z[P] be the Z-algebra of the group P, Z[P]W

be the set of elements which are invariant under Weyl group action, ch : (R
∼
→Z[P]W) be the

ring isomorphism “formal character”. Finally, we denote by ε(w) = ±1 the determinant of
an element w of the Weyl group.

For µ ∈ hC, let evµ : (Z[P] → C) be the ring morphism which sends a basic element eν

(ν ∈ P) to exp(2πi〈µ, ν〉), where exp is the complex exponential. This extends to an algebra
morphism evµ : (C[P] → C). If ν ∈ P+, let fν be the map (hC → C, µ 7→ evµ(ch L(ν))).
We first assert that given any (x1, . . . , xℓ) ∈ Cℓ, there exists µ ∈ hC such that for all
i ∈ {1, . . . , ℓ}, f̟i

(µ) = xi. We view C[P] as the coordinate ring of the affine variety (C×)ℓ,
and we view an element µ =

∑

µiα
∨
i (µi ∈ C) as the point (e2πiµ1 , . . . , e2πiµℓ) ∈ (C×)ℓ. By

the Nullstellensatz, it is sufficient to prove that the elements (ch L(̟i)− xie
0) (i = 1, . . . , ℓ)

generate a proper ideal in C[P]. This is already true in C[P]W by [Bo], ch. VI, § 3, Théorème 1.
The case of C[P] is given by a standard trick: let ♮ : (C[P] → C[P]W) be the projection onto
the trivial homogeneous component in C[P] for the action of W; ♮ is a morphism of C[P]W-
modules, and thus a relation

∑

Qi · (ch L(̟i) − xie
0) = 1 in C[P] would give a relation

∑

Q♮
i · (ch L(̟i) − xie

0) = 1 in C[P]W, which is impossible.
We now want to prove a formula for the character fν(µ) = evµ(ch L(ν)). We first remark

that fν is invariant under the action of the affine Weyl group Wa in hC. If the real part
Re(µ) of µ lies in an open alcove of hR, our formula will just be Weyl’s character formula:

fν(µ) =

∑

w∈W ε(w) exp(2πi〈wµ, ν + ρ〉)
∑

w∈W ε(w) exp(2πi〈wµ, ρ〉)
.

Writing the denominator as a product over the positive roots:

exp(2πi〈µ, ρ〉)
∏

α∈R,α≥0 (1 − exp(−2πi〈µ, α〉)),

we can see that it is a non-zero complex number. In the general case, we let T = {α ∈ R |
Re(〈µ, α〉) ∈ Z}: this is a closed symmetric subset of R ([Bo], ch. VI, § 1, Définition 4), thus T
is a root system in the vector space V1 ⊆ h∗

R
that it spans ([Bo], ch. VI, § 1, Proposition 23).

The stabilizer of µ in Wa is generated by the reflections across the affine hyperplanes in
which Re(µ) lies ([Bo], ch. V, § 3, Proposition 2), thus W1 := {w ∈ W | µ − wµ ∈ Q(R∨)}
is precisely the subgroup generated by reflections along α∨ (α ∈ T), and its restriction
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to V1 is the Weyl group of T. Let σ be half the sum of the inverse positive roots of T:
σ = 1

2

∑

α∈T,α≥0 α∨. In restriction to V1, σ is the sum of the fundamental weights of the root
system T∨ of V∗

1. Let h be a small real parameter: Re(µ) + hσ then lies in an open alcove
of hR and we can compute (with a small piece of abuse):

fν(µ) = lim
h→0

fν(µ + hσ)

= lim
h→0

∑

w∈W/W1

∑

w1∈W1
ε(ww1) exp(2πi〈wµ, ν + ρ〉) exp(2πih〈w1σ,w−1(ν + ρ)〉)

∑

w∈W/W1

∑

w1∈W1
ε(ww1) exp(2πi〈wµ, ρ〉) exp(2πih〈w1σ,w−1ρ〉)

.

In the sums, we fix w ∈ W/W1 and compute the sums on w1: in the numerator for instance,
we have an alternating sum of exp(2πih〈w1σ,w−1(ν + ρ)〉) where w−1(ν + ρ) ∈ P(R) has to
be projected on V1, as in [Bo], ch. VI, § 1, Proposition 28. The formula (valid in the group
algebra of the weight lattice of T∨):

∑

w1∈W1
ε(w1)e

w1σ = eσ
∏

α∈T,α≥0(1 − e−α∨

) then gives:

fν(µ) =

∑

w∈W/W1
ε(w) exp(2πi〈wµ, ν + ρ〉)

∏

α∈T,α≥0〈α
∨, w−1(ν + ρ)〉

∑

w∈W/W1
ε(w) exp(2πi〈wµ, ρ〉)

∏

α∈T,α≥0〈α
∨, w−1ρ〉

.

As ν + ρ and ρ are regular, neither of the products occurring here can be zero. (We will see
soon that the denominator cannot be zero.)

We now prove that the ideal of R ⊗Z C generated by the elements [L(λ + ̟)] (̟ ∈ P+)
is the whole algebra R ⊗Z C. We consider again [Bo], ch. VI, § 3, Théorème 1: this time,
the isomorphism ϕ : C[X1, . . . , Xℓ] → C[P]W is given by ϕ(Xi) = ch L(̟i). Composing
with the isomorphism ch : R → Z[P]W, we can see that R ⊗Z C is a polynomial algebra
over C. We suppose by the way of contradiction that the elements [L(λ + ̟)] (̟ ∈ P+) all
belong to some maximal ideal of R ⊗Z C. Then, by the Nullstellensatz, there exists a point
(x1, . . . , xℓ) ∈ Cℓ such that for all ̟ ∈ P+, ϕ−1(ch L(λ + ̟))(x1, . . . , xℓ) = 0. We can find
µ ∈ hC such that f̟i

(µ) = xi (i = 1, . . . , ℓ): then fλ+̟(µ) = 0 for all ̟ ∈ P+. We next use
the formula:

fλ+̟(µ) (denominator) =
∑

w∈W/W1

ε(w) exp(2πi〈wµ, λ + ̟ + ρ〉)
∏

α∈T,α≥0

〈α∨, w−1(λ + ̟ + ρ)〉,

and write ̟ =
∑

ni̟i, where (ni) ∈ Nℓ are any integers. The wµ (w ∈ W/W1) are all
distinct modulo Q(R∨), and the expressions

∏

α∈T,α≥0〈α
∨, w−1(λ + ̟ + ρ)〉 are non-zero

polynomials in (n1, . . . , nℓ) (they never vanish indeed). Then the above lemma states that
the right-hand side cannot vanish for all (ni) ∈ Nℓ. This proves firstly that the denominator
is not null, and secondly that fλ+

P

ni̟i
(µ) cannot vanish for all (ni) ∈ Nℓ. We have reached

a contradiction.
To go down to the case of R ⊗Z Q is then easy: we have shown that we can express in

R ⊗Z C the unity as a finite sum 1 =
∑

xi[L(τi)][L(νi)], where τi ∈ P+, νi ∈ λ + P+ and
xi ∈ C. As the structure constants of R ⊗Z C are integer-valued, this system, viewed as
linear equations in (xi), has a solution in C, so has a solution in Q. ¤
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2.4 Classification of some ideals of Fℓ(Uqg)

In order to achieve our classification of ideals R ⊆ AqG in the next section, we must study
the ideals I ⊆ Fℓ(Uqg) which are stable by the adjoint action of Uqg. The analysis requires
the use of the subalgebra V of Uqg generated by Fℓ(Uqg) and by the elements K2λ (λ ∈ P+).

Joseph and Letzter [J–L1] have shown that V is the subalgebra generated by the elements
Ei, FiKαi

and K2λ (λ ∈ P). As it is such a “big” subalgebra of Uqg, its representation theory
is similar to that of Uqg. We will describe it in the next subsection, but in the following
proof, we need to know that the annihilator of a finite dimensional V-module is homogeneous
with respect to the Q-graduation of V.

Proposition 9 The following two properties for a subspace I ⊆ Fℓ(Uqg) are equivalent:

1. I is the annihilator in Fℓ(Uqg) of a finite dimensional V-module;

2. I is a finite codimensional two-sided ideal of Fℓ(Uqg) and a Uqg-submodule of Fℓ(Uqg)
for the left adjoint action.

Proof. We first show that (1) ⇒ (2). If M is a finite dimensional V-module, its annihilator in
V is a finite codimensional two-sided ideal of V, and is homogeneous w.r.t. the Q-graduation
of V. It is then easy to see that annV M is a Uqg-submodule of V for the left adjoint action.
The annihilator I = (annV M) ∩ Fℓ(Uqg) of M in Fℓ(Uqg) thus satisfies the property (2).

Conversely, let I ⊆ Fℓ(Uqg) satisfying the property (2). We consider the left regular
Fℓ(Uqg)-module M = Fℓ(Uqg)/I. I is its annihilator, so it is sufficient to show that M
extends to a V-module. We thus want to show that the elements K−2λ ∈ Fℓ(Uqg) (λ ∈ P+)
map to invertible operators in End(M).

1. M is a finite dimensional algebra, and is also a left Uqg-module (for the adjoint action).
The multiplication in M defines a morphism of left Uqg-modules: M ⊗ M → M. Thus
the Q-graduation of M (defined by the structure of Uqg-module) is an algebra grading.

2. We fix λ ∈ P+. We can write M = M0 ⊕ M∞ (as C(q)-vector space) where K−2λ acts
nilpotently on M0 and inversibly on M∞ (Fitting’s decomposition). M0 and M∞ are
stable by the commutant of K−2λ in End(M), so are right ideals of M. If x ∈ Fℓ(Uqg)
is homogeneous w.r.t. the Q-graduation of Fℓ(Uqg), x commutes (up to a scalar) with
K−2λ, so M0 and M∞ are stable by left multiplication by x. Thus M0 and M∞ are also
left ideals of M.

3. We now show that M0 and M∞ are Uqg-submodules of M.

(a) Let {e1, . . . , ek} be the set of central idempotents in M. The elements Kµ (µ ∈ P)
of Uqg act on M (by the adjoint action) as algebra automorphisms, so permute the
elements of the set {e1, . . . , ek}. Hence for each µ, there exists an integer n ≥ 1
such that Knµ fixes each ei. Since M is, as a Uqg-module, a direct sum of modules
L(ν) (without any twisting character χ), and since q is generic, we conclude that
e1,. . . , ek are fixed by the adjoint action of the elements Kµ.
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(b) Let e be a central idempotent in M. e is of weight zero. We consider the q-

exponential expq(ad Ei) =
∑

n≥0 q−din(n−1)/2 ad En
i

[n]i!
(i ∈ {1, . . . , ℓ} fixed).

Then expq(ad Ei) is a well defined operator in M. The formula ∆(En
i ) =

∑n
k=0

[

n
k

]

i
qdi(n−k)kEn−k

i Kk
αi
⊗Ek

i enables us to see that expq(ad Ei)(e) is an idempo-
tent which we write e+x. Then 2ex+x2 = x, x(1−2e) = x2, x = x(1−2e)2 = x3.
The weights of the Q-homogeneous components of x belong to {nαi | n ≥ 1}; so
the weights of the Q-homogeneous components of x3 belong to {nαi | n ≥ 3},
and the homogeneous component of x of weight αi is null. We obtain that
(ad Ei)(e) = 0. Similarly, (ad Fi)(e) = 0 for all i ∈ {1, . . . , ℓ}.

(c) M0 and M∞ are ideals in M generated by central idempotents e0 and e∞ respec-
tively. (a) and (b) show that e0 and e∞ define the trivial Uqg-module. Hence for
x ∈ M0 and u ∈ Uqg, u · x = u · (xe0) = (u(1) · x)(u(2) · e0) = (u(1) · x)ε(u(2))e0 =
(u · x)e0 ∈ M0. The same holds for M∞.

4. We first consider the case g = sl2. We choose naturally λ = ̟ the fundamental weight,
and write M0 = L0/I and M∞ = L∞/I. The points 2 and 3 show that L0 and L∞

are two-sided ideals and left Uqg-submodules of Fℓ(Uqg). By definition of the Fitting
decomposition, there exists an integer n ≥ 0 such that K−2n̟ ∈ L∞. Hence for all
integers m ≥ n, we have K−2m̟ ∈ L∞, and thus zm̟ ∈ L∞. Let n0 ≥ 0 be the
smallest integer such that for all m ≥ n0, zm̟ ∈ L∞. The proposition 7 and the
Clebsch–Gordan theorem show that if n ≥ 1, z(n+1)̟ + z(n−1)̟ = z̟zn̟. Thus n0 has
to be equal to zero. So 1 = z0 ∈ L∞, M∞ = M, and K−2̟ acts inversibly on M.

5. The general case is solved in the same way. We consider the decomposition of the
point 2 and write M0 = L0/I and M∞ = L∞/I. L0 and L∞ are two-sided ideals
and left Uqg-submodules of Fℓ(Uqg), and there exists an integer n ≥ 0 such that
K−2nλ ∈ L∞. If ̟ ∈ P+, then K−2(nλ+̟) ∈ L∞, and thus znλ+̟ ∈ L∞. Let ϕ be the
Q-algebra morphism (R ⊗Z Q → Z(Uqg), [M] 7→ I(TrM(K2ρ ))) considered at the end
of section 2.2. Then ϕ−1(L∞) is an ideal of R ⊗Z Q, which contains all the elements
[L(−w0nλ + ̟)] (̟ ∈ P+). Thus ϕ−1(L∞) = R ⊗Z Q by the proposition 8, and so
1 = ϕ([L(0)]) ∈ L∞, M∞ = M, and K−2λ acts inversibly on M.

¤

Remark. This result is a particular case of the proposition 8.4.13 in [Jo]. Accordingly, its
proof is shorter than the one of Joseph’s theorem, and does not require the knowledge of the
inclusions between Verma modules, nor the use of Gel′fand–Kirillov dimensions.

2.5 Classification of some right ideals of AqG

The notations AqG, Uqg, V have the same meaning as in sections 2.1 and 2.4. The map
I : (AqG

∼
→Fℓ(Uqg)) was introduced in section 1.3.

We now specify the structure of the finite dimensional V-modules: they are completely
reducible; each Uqg-module Lχ(λ) (with λ ∈ P+, χ : P/2Q → C×) is (by restriction) a simple
V-module; the V-modules Lχ(λ) and Lϕ(µ) are isomorphic iff λ = µ and the characters χ,
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ϕ restrict to the same character 2P/2Q → C×. The simple finite dimensional V-modules
will be denoted by Lχ(λ) with λ ∈ P+ and χ : 2P/2Q → C× a character. We finally
remark (see [J–L1]) that a simple finite dimensional V-module is still simple as a Fℓ(Uqg)-
module. Consequently, if (Mi) is a finite family of non-isomorphic finite dimensional simple
V-modules, the natural ring homomorphism Fℓ(Uqg) →

⊕

End Mi is surjective.

Theorem 1 1. Let R be a finite codimensional right ideal of AqG, which is a subcomodule
of AqG w.r.t. the right coaction δR : (AqG → AqG⊗AqG, a 7→ a(2)⊗S(a(1))a(3)). Then
there exists a finite dimensional V-module M such that R = I−1(annFℓ(Uqg) M).

2. If M is a finite dimensional V-module, then I−1(annFℓ(Uqg) M) is a finite codimensional
right ideal of AqG, stable by the right coaction δR.

3. If M and N are finite dimensional V-modules, then I−1(annFℓ(Uqg) M) = I−1(annFℓ(Uqg) N)
iff M and N have the same irreducible components.

4. I−1(annFℓ(Uqg) M) is included in the augmentation ideal of AqG iff M contains the trivial
V-module.

Proof. (1) and (2) are consequences of the propositions 4 and 9. Let M and N be two
finite dimensional V-modules having the same annihilator in Fℓ(Uqg). Then annFℓ(Uqg) M =
annFℓ(Uqg)(M ⊕ N). Let M1, . . . , Mk (respectively M1, . . . , Mn) be the distinct irreducible
components of M (respectively M ⊕ N). Then we have:

Fℓ(Uqg)/annFℓ(Uqg)(M) ≃
⊕k

i=1 End Mi

and:
Fℓ(Uqg)/annFℓ(Uqg)(M ⊕ N) ≃

⊕n
i=1 End Mi,

and so k = n: all the irreducible components of N appear in M. (3) follows. (4) can be
proved in a similar way, using the fact that the augmentation ideal of AqG is the inverse
image by I of the annihilator of the trivial V-module. ¤

3 Differential calculi on quantum groups

3.1 Woronowicz’s definition

Let A be a Hopf algebra, Γ be a bicovariant bimodule and d : A → Γ be a linear map. We
say that (Γ, d) is a bicovariant differential calculus on A if d is a derivation, a morphism of
two-sided comodules and if the image of d generates the left A-module Γ. The dimension of
the space ΓL of left coinvariants will be supposed to be finite.

When (Γ, d) is a differential calculus over A, we note dL the map (A → ΓL, a 7→ S(a(1)) ·
d(a(2))). The subspace R = ker dL ∩ ker ε is a finite codimensional right ideal of A, and
a subcomodule for the right coadjoint coaction δR : (a 7→ a(2) ⊗ S(a(1))a(3)). As shown by
Woronowicz, the subspace R determines (up to isomorphism) the bicovariant differential
calculus (Γ, d): we call it the ideal associated to (Γ, d).
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Geometrically, A must be viewed as the algebra of functions over a group G, Γ is the
space of 1-forms on G, ΓL is the space of left-G-invariant 1-forms on G, identified with the
cotangent space at the unity point of G, and dL maps a function on G to its differential at
the unity point.

3.2 A construction of bicovariant differential calculi

Let A be a c.q.t. Hopf algebra over the field k, and let γ, δ be the associated maps.
We take a finite dimensional right A-comodule M. We note (mi) a basis of M, (m∗

i )
the dual basis, and Rij the elements of A such that δR(mi) =

∑

mj ⊗ Rji. Then ∆Rji =
∑

Rjk ⊗ Rki and ε(Rji) = δji (Kronecker’s symbol). Also, M is a left A∗-module, and the
Rji (viewed as linear forms on A∗) are the matrix coefficients θM(mi,m

∗
j) of this module.

Since (A, γ) is c.q.t., M becomes a right crossed bimodule over A for the action mi · a =
∑

〈γ(a), Rji〉mj (proposition 1). M∗ is a right comodule over A too, for the coaction
δR(m∗

i ) =
∑

m∗
j ⊗ S(Rij). Using the fact that (A, δ) is a c.q.t. Hopf algebra, we may

endow M∗ with the structure of a right crossed bimodule over A for the action m∗
i · a =

∑

〈δ(a), S(Rij)〉m
∗
j . Then, by making the tensor product, we obtain that End(M) ≃ M⊗M∗

is a right crossed bimodule.
We denote by Γ the bicovariant bimodule associated to this right crossed bimodule

End(M). As a vector space, Γ is just the tensor product A ⊗ M ⊗ M∗. On the basic el-
ements, the structure maps are:

b · (a ⊗ mi ⊗ m∗
j) = ba ⊗ mi ⊗ m∗

j

(a ⊗ mi ⊗ m∗
j) · b =

∑

ab(1) ⊗ 〈γ(b(2)), Rki〉mk ⊗ 〈δ(b(3)), S(Rjℓ)〉m
∗
ℓ

δL(a ⊗ mi ⊗ m∗
j) = a(1) ⊗ a(2) ⊗ mi ⊗ m∗

j

δR(a ⊗ mi ⊗ m∗
j) =

∑

a(1) ⊗ mk ⊗ m∗
ℓ ⊗ a(2)RkiS(Rjℓ).

It follows that the canonical element X =
∑

1 ⊗ mi ⊗ m∗
i of Γ is left and right coinvariant.

The linear map d : (A → Γ, a 7→ X · a − a · X) is then a derivation and a morphism of
two-sided comodules.

Theorem 2 1. If (A, γ) is a factorizable c.q.t. Hopf algebra and if M is a simple finite
dimensional non-trivial A-comodule, then the above construction gives a bicovariant
differential calculus d : (A → Γ ≡ A⊗ End(M)).

2. Its associated ideal is R = I−1(annA∗(k ⊕ M)), where k is the trivial A∗-module.

Proof. We first compute for a ∈ A:

d(a) =
∑

a(1)〈I(a(2)), Rkℓ〉 ⊗ mk ⊗ m∗
ℓ − a(1)〈a(2), δkℓ〉 ⊗ mk ⊗ m∗

ℓ

=
∑

a(1)〈I(a(2)), Rkℓ − δkℓ〉 ⊗ mk ⊗ m∗
ℓ

and so:

dL(a) =
∑

〈I(a − ε(a)), Rkℓ〉mk ⊗ m∗
ℓ

=
∑

〈J(Rkℓ − δkℓ), a〉mk ⊗ m∗
ℓ .
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The Rji are the matrix coefficients θM(mi,m
∗
j) of the A∗-module M, which is irreducible

and non-trivial. Thus, by the Jacobson density theorem, the (dim M)2 + 1 elements {1, Rji}
are linearly independant in A. The (dim M)2 linear forms {J(Rkℓ − δkℓ)} are then linearly
independant in A∗, and the formula for dL(a) shows that dL maps A onto ΓL = End(M).
(1) is proved. The same formula shows that R is the set of elements a in the augmentation
ideal of A such that I(a) is orthogonal to all the matrix coefficients Rkℓ of the A∗-module
M. Thus R = ker ε ∩ I−1(annA∗ M) = I−1(annA∗(k ⊕ M)). We have shown (2). ¤

If we consider now a finite family (Mi) of non-trivial non-isomorphic finite dimensional
simple right A-comodules, we can do the direct sum of such constructions. If (A, γ) is
factorizable, then the map d : (A →

⊕

(A⊗ End Mi)) is a bicovariant differential calculus.
The associated ideal is I−1(annA∗(k ⊕

⊕

Mi)).

3.3 The link with the classification theorem

We are now gathering the pieces of our patchwork. According to the statements in section 3.1,
the theorem 1 yields a complete classification of bicovariant differential calculi on AqG.
Morally, they are all given by the construction described in section 3.2.

Proposition 10 Let Uqg and AqG be the objects defined in section 2.1. If the root and
the weight lattices for g are equal, all the bicovariant differential calculi on AqG can be
constructed by the method described in section 3.2.

Proof. The results in section 2.5 tell us that an ideal R associated to a bicovariant differential
calculus on AqG is a subspace I−1(annFℓ(Uqg) M), where M is a V-module containing the trivial
V-module. Let M1, . . . , Mn be the distinct non-trivial irreducible components of M. The
assumption on g gives us that the Mi are modules L(λi) (without any twisting character),
and so can be considered as non-trivial non-isomorphic simple right AqG-comodules. The
construction of section 3.2 for this family of comodules leads to a bicovariant differential
calculus whose associated ideal is the inverse image by I of the annihilator of the (AqG)∗-
module C(q) ⊕

⊕

Mi. It is R, and the proposition is proved. ¤

In the remainder of this section, we will discuss what happens when the root and the
weight lattices differ. Up to the end of this article, we consider this case. There exist
non-trivial characters χ : 2P/2Q → C×, and for any weight λ, we can look at the ideal
R = I−1(annFℓ(Uqg)(C(q) ⊕ Lχ(λ))), and at the associated bicovariant differential calculus.
It cannot be constructed by the method of the theorem 2, since Lχ(λ) is not a right AqG-
comodule. However, one may notice that the main trick in the construction of section 3.2
consisted in using two different R-matrices, namely R12 and R−1

21 . R12 was used to endow
the AqG-comodule L(λ) with the structure of a right crossed bimodule over AqG, and R−1

21

turned the AqG-comodule L(λ)∗ into a right crossed bimodule over AqG. The tensor product
of these right crossed bimodules then gave the bicovariant differential calculus associated to
I−1(annFℓ(Uqg)(C(q) ⊕ L(λ))). When one uses the small freedom allowed in the choice of the
R-matrix of Uqg (see [Ga]), one can make similar constructions for the bicovariant differential
calculi associated with some of the ideals I−1(annFℓ(Uqg)(C(q) ⊕ Lχ(λ))). We will not write
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all the details, but point out that this is the way followed by Schmüdgen and Schüler for the
construction described in [S–S1], theorem 2.2.

As an example, we now describe explicitely the bicovariant differential calculus associated
with the ideal I−1(annFℓ(Uqg)(C(q) ⊕ Lχ(0))). Let (P/Q)

∧
be the group of characters ζ :

P/Q → C×. If ζ is such a character, it extends to a one-dimensional representation ζ̄ of AqG
by letting ζ̄(θL(λ)(m,m∗)) = ζ(λ mod Q)〈m∗,m〉, and this gives an inclusion of the group
(P/Q)

∧
into the center of (AqG)∗ res. Since (ζ̄⊗id)◦δR : AqG → C(q)⊗AqG is given by (x 7→

ζ̄(x)⊗1), we can see that the kernel of ζ̄ is a one-codimensional two-sided ideal of AqG, stable
by the right coaction δR. If ζ is non-trivial, the ideal R = ker ε ∩ ker ζ̄ defines a bicovariant
differential calculus on AqG. Putting χ : (2P/2Q → C×, 2λ mod 2Q 7→ ζ(λ mod Q)), we can
check that R = I−1(annFℓ(Uqg)(C(q)⊕Lχ(0))). This construction gives all the one-dimensional
differential calculi on AqG (generalizing the result of [S–S1], remark 4 after the theorem 2.2).

Finally, let X be an intermediate lattice between P and Q. The matrix coefficients of
the irreducible representations of Uqg whose highest weight belongs to X span a subalgebra
AqGX ⊆ AqG. These algebras AqGX are factorizable c.q.t. Hopf algebras. For instance,
AqGQ is the algebra of functions on the quantum adjoint group, and AqG ≡ AqGP is the
algebra of functions on the quantum simply-connected group. Our arguments in the sec-
tion 2.5 show that the indecomposable bicovariant differential calculi on AqGX are classified
by ideals R = AqGX ∩ I−1(annFℓ(Uqg)(C(q) ⊕ Lχ(λ))), where χ : 2X/2Q → C× is a character
(extended arbitrarily to a character of the group 2P/2Q). Thus the “twisted” bicovariant
differential calculi are non-local, their appearance depending of the choice of X. The bico-
variant differential calculi seem localized at the central elements of GX, that is to say, at the
fixed points of GX under the adjoint action.
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Note added in proof. P. Polo kindly communicated the following simple proof of Propo-
sition 8. By the formal character isomorphism, G ≃ Z[P]. Let Z[P]W ⊆ Z[P] the subring of
W-invariant elements. Z[P] is a module of finite type over the noetherian ring Z[P]W, hence
one can choose a finite generating set (eνi)1≤i≤n from the family (eν)ν∈P. Take a weight µ
such that all µ + νi are dominant. Let λ ∈ P+. Then there exist some ai ∈ Z[P]W such that
e−λ−µ =

∑

i aie
νi , hence 1 =

∑

i aie
λ+µ+νi . Multiplying this by eρ and making the alternating

sum over the Weyl group, one obtains that

ch L(0) =
∑

i

ai ch L(λ + µ + νi).

This concludes the proof.
Thanks are also due to A. Joseph for some useful comments about this work.

19


