Construction and combinatorics of perfect bases
1) Definition

$$A = \{a_{ij}\; j \in J$$, symmetricizable Cartan matrix

$$\mathfrak{g}(A) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$$, Kac-Moody algebra / \mathbb{C}

$$U = U(m_r)$$, presented by generators $$e_i \; (i \in I)$$

relations $$\sum_{p+q = 1-a_{ij}} (-1)^p e_i^{(p)} e_j e_i^{(q)} = 0 \quad (i \neq j)$$

$$e_i^{(n)} = \frac{e_i^n}{n!}$$, divided power

graded by $$\mathbb{Q}^+ = \{ \sum n_i \epsilon_i \mid n_i \in \mathbb{N} \} \subset \mathfrak{h}^*$$ with deg $$e_i = \alpha_i$$

(with $$U = \bigoplus_{v \in \mathbb{Q}^+} U_v$$)

endowed with an involutive anti-automorphism $$x \mapsto x^\dagger$$ which fixes the $$e_i$$.

Main problem: construct bases of $$U$$ related to this presentation. Already a lot of work on this problem: Gelfand, Zelevinsky, Retakh, Bernstein, Hochster, Lusztig, Kashiwara, Kajihara,...

$$N = \exp \mathfrak{n}_+$$, unipotent group with Lie algebra $$\mathfrak{n}_+$$.

$$R = C[N]$$, algebra of regular functions on $$N$$.

$$\cong U^*$$ graded dual

$$R = \bigoplus_{v \in \mathbb{Q}^+} R_v$$, $$R_v = (U_v)^*$$

$$\mathfrak{n}_+$$ acts by derivations on $$R$$ (left-invariant vector fields on $$N$$)

$$\eta \mapsto \eta^\dagger$$ the transpose of $$x \mapsto x^\dagger$$.

For $$i \in I$$ and $$\eta \in R^{-\{0\}}$$, set $$e_i(\eta) = \max \{ n \in \mathbb{N} \mid e_i^n \eta \neq 0 \}$$

$$\tilde{e}_i \eta = \left(e_i(\eta) \right) \eta$.

Definition: A linear basis B of R is perfect if:

(P0) $a \in B$

(P1) B is graded with the Q_+-gradation

(P2) $\forall b \in B, \forall i \in I, \ \bar{e}^\text{max}_i b \in B$.

Further, $\forall n \in \mathbb{N}$, \bar{e}^max_i is injective on $\{b \in B | \bar{e}^\text{I}_i(b) = n\}$.

(P3) B is stable under \dagger.

Observation: For $i \in I$ and $n \in \mathbb{N}$, let $K_{i,n} = \bar{e}^\text{max}_i \cdot b \in R$.

- B perfect basis $\Rightarrow \{b \in B | \bar{e}^\text{I}_i(b) \leq n\}$ basis of $K_{i,n}$.

(proof: let $\eta \in K_{i,n}$. Write $\eta = \sum_{b \in B} a_b \cdot b$, set $m = \max \{\bar{e}^\text{I}_i(b) | a_b \neq 0\}$.

If we had $m > n$, then we would have $0 = \bar{e}^\text{I}_i(\eta) = \sum_{b \in B} a_b (\bar{e}^\text{max}_i \cdot b)_{\bar{e}^\text{I}_i(b) = m}$, which is impossible.)

- \bar{e}^I_i induces a linear bijection $K_{i,m}/K_{i,m-1} \longrightarrow K_i$.

(proof of surjectivity: \bar{e}^I_i is not a zero divisor in U)

and \bar{e}^max_i induces a bijection $\{b \in B | \bar{e}^\text{I}_i(b) = n\} \longrightarrow \{b \in B | \bar{e}^\text{I}_i(b) = 0\}$.

Conclusion: Each perfect basis carries a combinatorial structure:

- A map $\chi : B \rightarrow \mathbb{Q}_+$

- Maps $\bar{e}^\text{I}_i : B \rightarrow \mathbb{N}$

- Bijections $\{b \in B | \bar{e}^\text{I}_i(b) = n\} \overset{\chi}{\longrightarrow} \{b \in B | \bar{e}^\text{I}_i(b) = n+1\}$

- \bar{e}^max_i:

- The involution $b \mapsto b^\dagger$ (Kashiwara's involution \ast / Lusztig's σ)

- For convenience, define $\bar{e}^\text{I}_i(b) = \bar{e}^\text{I}_i(b) + \langle \bar{e}^\text{I}_i, \chi \rangle b$

and set $\bar{e}^\text{I}_i b = 0$ if $\bar{e}^\text{I}_i(b) = 0$.
2) Usefulness

\[P_+ = \{ \text{dominant integral weights} \} \]

\[\lambda \in P_+ \quad \mapsto \quad L(\lambda) \quad \text{irreducible integrable module with hw } \lambda \]

\[\psi^\lambda : L(\lambda) \rightarrow \mathbb{R} \quad \text{the unique morphism of } \mathfrak{h}_+ \text{-modules that maps } v_{\lambda} \mapsto 1 \]

\[W = \langle \mathbf{w}_i \mid i \in I \rangle \quad \text{Weyl group} \]

For \(w \in W, \lambda \in P_+ \) \(\mathbf{w}_\lambda \in L(\lambda) \) extremal weight vector (suitably normalized)

Flag minors: any element in \(R \) of the form \(\psi^\lambda (w_{\lambda \lambda}) \).

Proposition: Let \(B \) be a perfect basis of \(R \). Then

1) \(B \) is compatible with all subspaces in \(\psi^\lambda \) and contains all flag minors.

2) for each \(\lambda \in P_+ \), the basis \(\psi^\lambda(B) \) of \(L(\lambda) \) consists of weight vectors and is compatible with all subspaces \(\text{ker } \mathbf{e}_i^{\lambda} \) and \(\text{ker } \mathbf{p}_i^{\lambda} \).

Proof: Let \(\lambda \in P_+ \), set \(\mathbf{v}_\lambda = (\mathbf{v}_\lambda^i, \lambda) \). Then \(\im \psi^\lambda = \{ \eta \in R \mid \eta^+ \in \bigcap_{i \in I} \text{Ker } K_i \mathbf{v}_\lambda \} \).

Application: Let \(B \) be a perfect basis of \(R \), let \(\lambda, \mu, \nu \in P_+ \). Then

\[\dim \text{Hom}_g (L(\lambda), L(\mu) \otimes L(\nu)) = \# \{ b \in B \mid wt \mathbf{b} = \mu + \nu - \lambda, \mathbf{e}_i(b) \in \langle \omega_i^\mu, \mu \rangle, \mathbf{e}_i(b^+) \in \langle \omega_i^\nu, \nu \rangle \} \]

Proof: \(f \mapsto \psi_f (f(v_\lambda \otimes v_\mu \otimes v_\nu)) \) is an \(\text{bijection} \)

\[\text{Hom}_g (L(\lambda) \otimes L(\mu) \otimes L(\nu)) \]

\[\{ \eta \in R \mid wt(\eta) = \mu + \nu - \lambda, \eta^+ \in \bigcap_{i \in I} \text{Ker } K_i (\omega_i^\mu), \eta^+ \in \bigcap_{i \in I} \text{Ker } K_i (\omega_i^\nu) \} \]

Theorem (Kashiwara): \(B \) perfect basis, \(\lambda \in P_+ \). The basis of \(L(\lambda) \) dual to \(\psi^\lambda(B) \) (w.r.t. a contravariant form) is compatible with the Demazure submodules.

(Reference: M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, §§ 3.1-3.2. Kashiwara proves this for the upper crystal basis, but the argument is general.)
3) Examples

Type A₁: \[N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \middle| x \in \mathbb{C} \right\} \quad C[N] = C[x] \]

\[e = \frac{d}{dx} \quad B = \left\{ x^n \middle| n \in \mathbb{N} \right\} \quad \text{(exists and is unique)} \]

Type A₂: \[N = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{C} \right\} \quad C[N] = C[x, y, z] \]

\[e_1 = \frac{2}{3x} \quad e_2 = \frac{2}{3y} + x \frac{2}{3y} \]

Flag minors of \(L(\omega_1) \): \(x, z \)

Flag minors of \(L(\omega_2) \): \(y, xy-z \)

\[B = \left\{ x^a y^b (xy-z)^c \middle| a, b, c \in \mathbb{N} \right\} \cup \left\{ y^a z^b (xy-z)^c \middle| a, b, c \in \mathbb{N} \right\} \]

(Exists and is unique)

(One can check here that in this basis, \(e_1 \) and \(e_2 \) act with coefficients in \(\mathbb{N} \), and that the structure constants of the multiplication belong to \(\mathbb{N} \).)

Type A₃: Still have existence, uniqueness, and explicit formulas

(Reference: A. Berenstein, A. Zelevinsky, String bases for quantum groups of type \(A_n \). This paper is the starting point of the theory of cluster algebras.)

In general: no uniqueness; existence ensured by several constructions:

- Lusztig's dual canonical basis = Kashiwara's upper crystal basis (specialized at \(q=1 \)).

- Basis arising from KLR algebras: \(R_v = G_v(R(V)) \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbb{C} \) (at \(q=1 \))

 (Simple graded \(R(V) \)-modules up to isomorphism and up to a shift in the graduation give a perfect basis)

- Lusztig's dual semicanonical basis (\(A \) symmetric)

- the MV basis, arising from geometric Satake equivalence (\(A \) of finite type)

 (proof: see II)
4) Uniqueness of crystal

Theorem (Berenstein-Kashiwara): Let B', B'' be two perfect bases of R.

Then $\exists !$ bijection $B' \rightarrow B''$ that preserves the combinatorial data
(wt, $\xi_i, \eta_i, \tilde{c}_i, \tilde{f}_i$). In addition, it commutes with \dagger.

Notation: $(B(\infty), \text{wt}, \xi_i, \eta_i, \tilde{c}_i, \tilde{f}_i, \dagger)$ the abstract set with combinatorial data
common to all perfect bases of R (Kashiwara's crystal).

5) Saito's reflections

For $i \in I$ and $b \in B_i$, define $\xi_i^+ b = (\xi_i b^\dagger)^\dagger$ (right action of U on R).

Theorem-Definition (Saito): Let $i \in I$.

There are inverse bijections $\{ b \in B(\infty) | \xi_i(b) = 0 \}$ given by

$\sigma_i(b) = \xi_i (\xi_i^+ b) = \xi_i (\xi_i^+ \xi_i^{-\min} b)$

$\xi_i^+ (\xi_i^+) = (\xi_i(b))^\dagger$

if $\xi_i(b) = 0$.

Note that $\text{wt } \sigma_i(b) = \text{wt } b - (\xi_i^+ b - \xi_i (b^\dagger)) \omega_i = \text{wt } b - (\omega_i^\dagger \text{wt } b^\dagger) \omega_i = \omega_i (\text{wt } b)$.

For convenience, set $\xi_i^+ (b) = \sigma_i (\xi_i^+ \omega_i b)$ for all $b \in B(\infty)$, $i \in I$.

Remark (Tingley): If $n \geq \xi_i(b) + \xi_i(b^+) + (\omega_i^\dagger \text{wt } b)$, then $\sigma_i(b) = (\xi_i^+)^{\text{max} \frac{n}{\omega_i}} b$.

(always a ≥ 0 number)

Proposition: The $\xi_i: B(\infty) \rightarrow B(\infty)$ satisfy the braid relations.

Proof: see III

Notation: For $w = \omega_i \cdots \omega_k$ reduced, set $\xi_w = \xi_i \cdots \xi_k$.
6) Minkovici-Vilenken polytopes

A of finite type

Notations: \(\Phi \) root system of \(\mathfrak{g} \)

- Weyl fan in \(\mathfrak{g}_R^* \) (described by the root hyperplanes)
- \(\overline{Q}^+_+ = \{ \sum a_i \alpha_i | a_i \in \mathbb{R}_+ \} \subset \mathfrak{g}_R^* \)

Definition (Kannitger): A Gelfand-Graevski-Molevan-Serganov polytope is a woven polytope

\(p \subset \mathfrak{g}_R^* \) when dual fan is a coarsening of \(W \).

Picture in type \(A_2 \)

To a chamber \(wC_i \), corresponds a vertex \(\mu_w \) of \(p \). (Vertices are allowed to be non-distinct)

Lemma (Kannitger): \(G \rightarrow \{ \text{GCMV polytopes} \} \rightarrow \{ \text{collection } (\mu_w) \in (\mathfrak{g}_R^*)^W | \forall w, \mu_w \in \mu_w + w \overline{Q}^+_+ \} \)

\(A \rightarrow \{ \text{collection } (\mu_w) \mid \forall w, \forall j, \mu_{w^j - w} \in \mathbb{R}_+ w \delta_i \} \}

Back to \(B(\varnothing) \).

Definition: For \(b \in B(\varnothing) \) and \(w \in W \), set \(\mu_w(b) = w \cdot \text{wt}(\hat{\sigma}_w^\vee b) \).

Observation: \(wC_i \succ W \Rightarrow (\mu_{w^j}(b) - \mu_j(b)) = w \left[\text{wt}(\hat{\sigma}_i^\vee b) - \text{wt}(b) \right] = \hat{\epsilon}_i(b) \cdot w \delta_i \geq 0 \)

So \(\text{Conv} \{ \mu_w(b) | w \in W \} \subset \text{GCMV} P(b), \text{the MV polytope of } b \).
7) Lusztig data

A still of finite type.

\[U_q(g) \] the quantum group \(\mathcal{L}(q) \); generators \(E_i, F_i, k_i^{\pm 1} \)

\[T_i : U_q(g) \rightarrow U_q(g) \] Lusztig's automorphism

a quantum analogue of \(\text{Ad}(\tilde{a}_i) \).

\[\tilde{\tau} : U_q(g) \rightarrow U_q(g) \] the bar involution; \(C \)-algebra automorphism, \(\tilde{q} = q^{-1}, \tilde{E}_i = E_i \)

Given \(\tilde{\tau} = (\tilde{a}_1, \ldots, \tilde{a}_n) \) such that \(a_1 \cdots a_n \) reduced decomposition of \(\tilde{a}_{\tilde{\tau}} \):

- enumeration of the positive roots \(\beta_1, \ldots, \beta_n \)

- \(\beta_k = a_1 \cdots a_k \)

- PBW basis of \(U_q(\mathfrak{n}_+) \)

\[\left\{ E_{\beta_1}^{(n_1)} \cdots E_{\beta_n}^{(n_n)} \right\} \quad \text{such that} \quad E_{\beta_1}^{(n_1)} \cdots E_{\beta_n}^{(n_n)} = E_{\sigma(\beta_1)}^{(n_1)} \cdots E_{\sigma(\beta_n)}^{(n_n)} \quad \text{for all} \quad \sigma \in S_n \]

- \(\tilde{\tau} = (\tilde{a}_1, \ldots, \tilde{a}_n) \) basis of \(U_q(\mathfrak{m}_+) \); independent of \(\beta \) : canonical basis.

Specialization at \(q = 1 \) gives a basis of \(U \), whose dual is perfect.

Theorem (Lusztig): \(\forall \ n \in \mathbb{N}^\ast, \exists ! \) bar-invariant element in \(U_q(\mathfrak{n}_+) \)

\[\tilde{E}_{\beta_1}^{(n)} (n) = \sum_{m \in \mathbb{N}^\ast} \tilde{E}_{\beta_1}^{(n)} E_{\beta_1}^{(m)} \]

such that \(\tilde{E}_{\beta_1}^{(n)} = 1 \) and \(\tilde{E}_{\beta_1}^{(n)} \in q \mathbb{Z}[q] \) for all \(m \neq n \).

\[\left\{ \tilde{E}_{\beta_1}^{(n)} \right\} \quad \forall \ n \in \mathbb{N}^\ast \] basis of \(U_q(\mathfrak{m}_+) \), independent of \(\beta \) : canonical basis.

Notation: \(B(\infty) \) denotes the dual canonical basis, whereas a bijection \(B(\infty) \rightarrow \mathbb{N}^\ast \)

\(b \mapsto n = N(\beta, b) \)

\(N(\beta, b) \): Lusztig data of \(b \) in direction \(\beta \).

Theorem (Saito): \(n_1 = \tilde{s}_1(b) ; n_2 = \tilde{s}_1(\tilde{s}_2(b)) \) \(\ldots \) \(n_k = \tilde{s}_1(\tilde{s}_2(\cdots \tilde{s}_k(b))) \) \(\ldots \)

\((\tilde{s}_1 \) mimics on \(B(\infty) \) the action of \(T_i^{-1} \) on PBW monomials. \)

Corollaries:
1) \(\tilde{m}_{i_1 \cdots i_k}(b) - \tilde{m}_{i_1 \cdots i_k}(b) = n_k \beta_k \)

(The length of the edges of \(\text{Pol}(b) \) are Lusztig data of \(b \).)

2) \(b \mapsto \text{Pol}(b) \) is injective.
A of finite type

1) Background on geometric Satake equivalence

\(G \) connected alg. gp. s.t. Lie \(G = \mathfrak{g} \)

\(U, B, U_T \)

\(\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+ \)

\(X = \text{Hom}(T, \mathbb{C}^*) \) \((X = P \text{ if } G \text{ simply connected}) \)

\(T^\vee = X \otimes \mathbb{Z} \mathbb{C}^* \) dual torus

\(\text{Hom}(T^\vee, \mathbb{C}^*) = X^\vee \) dual lattice

\(\tilde{X}^\vee \)

\(G^\vee \) Langlands dual

\(\mathcal{O} = \mathbb{C}[[t]], \ K = \mathbb{C}((t)) \)

\(G^\vee = G^\vee(X)/G^\vee(\mathcal{O}) \) affine Grassmannian of \(G^\vee \)

(like a \(G/P \) with \(P \) parabolic maximal, but for a Kac-Moody group, so infinite dimensional. However, this is the limit of a direct system of projective varieties and closed embeddings, namely the Schubert varieties)

\(\text{Perv} = \{ G^\vee(\mathcal{O})\text{-equiv. perverse sheaves on } G^\vee \text{ with coeff in } \mathcal{O} \text{ and fin. dim. supp.} \} \)

abelian rigid monoidal category

\(H: \text{Perv} \rightarrow \text{Vect} \) exact, faithful, monoidal

\(\Rightarrow \text{Perv} \cong \text{Rep} \ G \) pro-algebraic gp (Saavedra Rivano's theorem)

Beilinson-Drinfeld, Ginzburg, Mirković-Vilonen (+ Lusztig): \(\overline{G} \cong G \)
\[X = \text{Hom}(C^*, T^V) \]

\[\lambda \mapsto k^\lambda = \text{image of } t \in k^* \text{ in } T^V(\lambda) \text{ or } G_\lambda. \]

\[G_\lambda \subset G \text{ the } G^v(0) \text{- orbit of } k^\lambda \]

\[G_\lambda = \bigsqcup_{\lambda \in X_+} k^\lambda \]

Simple objects in \(\text{Pev} \): \[J_\lambda = I_C(\overline{G_\lambda}, \lambda) \]

\[\bigoplus_{H} L(\lambda) \]

2) The MV basis

\[G^V \]

\[U \]

\[B_- \subset N_- \]

\[U \]

\[T^V \]

For \(\nu \in X \), let \(T^\nu \subset G_\nu \) the \(N^\nu(\lambda) \)-orbit of \(k^\nu \).

Define \(p : \bR^*_R \to \bR \), \(\omega \mapsto 1 \).

Minkošić–Vilomen:

\[\forall \lambda \in \text{Pev}, \forall k \in \bZ, \quad \bigoplus_{\nu \in X_+} H^{k}_{T^\nu}(G_\nu, A) \to H^{k}(G_\nu, A) \text{ isomorphism} \] \((?)\)

\[\forall \lambda \in X_+, \forall \nu \in X, \quad H^{2p(\nu)}_{T^\nu}(G_\nu, j_\lambda) \cong H^{2p(\nu)}(\overline{G_\nu} \cap T^\nu) \text{ with roots in } C \text{ of pure spin } p(\lambda-\nu) \]

\[z(\lambda)_\nu = \text{Im}(\overline{G_\nu} \cap T^\nu) \in \bZ \quad \mapsto \quad [z] \in H^{2p(\nu)}_{T^\nu}(G_\nu, j_\lambda) \text{ fundamental class} \]

\[\bigoplus_{\nu} \{ [z] | z \in z(\lambda)_\nu \} \text{ basis of } H(G_\nu, j_\lambda) = L(\lambda) \]

Theorem (B – Kammüller): Via \(\Psi_\lambda : L(\lambda) \to \bR \), these bases glue together and give a perfect basis of \(\bR \). In this basis, the structure constants of the multiplication \(\in \bN \).
3) Action of G (Gingburg, Vasserot)

Fix the isomorphism $G \cong \mathfrak{g}$.

Action of T defined by (ϕ):

$$
\begin{align*}
\text{maximal torus of } \mathfrak{g} \\
\text{basic representation of } \phi' \\
\text{affine Kac-Moody algebra corresponding to } \phi'.
\end{align*}
$$

Consider the Plücker embedding:

$$
\begin{align*}
\mathfrak{g} & \hookrightarrow \mathbb{P}(L(\Lambda_0)) \\
\text{basic representation of } \phi' \\
\end{align*}
$$

(to simplify, assume here G simple of adjoint type)

$L: \mathfrak{g} \otimes \mathbb{C}$ ample line bundle. Set $\mathfrak{e} = (e_i(x)) \cup ?$.

Since $[\mathfrak{h}, \mathfrak{e}] = 2 \mathfrak{e}$, \mathfrak{h} acts on H^k by multiplication by k.

we can write $\mathfrak{e} = \sum Q(\alpha_i) \mathfrak{e}_i$ with $\mathfrak{e}_i \in \phi^{\alpha_i}$ ($Q(\alpha_i)$ = square of length of α_i, 1 if α_i short root).

Hard Lefschetz $\Rightarrow \exists e_{\mathfrak{h}}$-triple $(\mathfrak{h}, \mathfrak{f}, \mathfrak{e})$ for each $\mathfrak{e} \neq 0$.

Define $\mathfrak{g} = \mathfrak{e}$ by integrating the isomorphism $\phi = \phi'$, i.e., $\mathfrak{e} \rightarrow \mathfrak{e}$.

Geometric translation:

Choose v $\in X$. Minkovíč-Vilonen $\Rightarrow \mathfrak{g}_v = \bigcup_{x \in Q^+_\mathfrak{g}} \mathfrak{g}_x$ and $\bigcap_{x \in Q^+_\mathfrak{g}} \mathfrak{g}_x = \bigcup_{i \in I \subset I} \mathfrak{g}_i$.

For a well-chosen hyperplane $D = \mathbb{P}(L(\Lambda_0))$.

For $k = 2 p(\lambda)$ and $\lambda \in X^+_{\mathfrak{q}}$, $d = 2 p(\lambda)$:

$$
\begin{align*}
H^k(G, \mathfrak{g}) & \leftarrow H^k(\mathfrak{g}, \mathfrak{g}) \xrightarrow{\text{MV}} H^{\mathfrak{g}^\mathfrak{m}}(\mathfrak{g}, \mathfrak{g}) \rightarrow H^{\mathfrak{g}^\mathfrak{m}}(\mathfrak{g}, \mathfrak{g}) \\
\bigcup_{\lambda \in X^+_{\mathfrak{g}}} & \bigcup_{i \in I} H^{k+1}(\mathfrak{g}, \mathfrak{g}) \xrightarrow{\text{MV}} H^{\mathfrak{g}^\mathfrak{m}}(\mathfrak{g}, \mathfrak{g}) \\
\end{align*}
$$
4) Polytopes

Let \(Y \subset G \) be closed, \(T \)-invariant, finite dim.

For \(v \in X \), \(T^v \cdot Y = Y \) meets \(T^v \), and this holds for finitely many \(v \).

If \(Y \) irreducible, then \(\exists v \in X \) s.t. \(Y T^v \) open dense in \(Y \);

concretely, \(t^v \in Y \) and any \(p \in X \) s.t. \(t^v Y \) belongs to \(v \), \(v + Q^+ \).

Denote this \(v \) by \(\mu_i(Y) \).

For \(w \in W \), let \(\mu_{w,v}(Y) = w \cdot \mu_i \left(\tilde{w}^v \cdot Y \right) \), where \(\tilde{w} \in G^v \) lift of \(w \).

Fact: \(\forall x, w, \quad \mu_{x,v}(Y) \in \mu_{w,v}(Y) + w \cdot Q^+ \)

\(\rightarrow \) GMS polytope \(\text{Pol}(Y) \).

Remark: \(Y \subset Z \Rightarrow \mu_{x,v}(Y) \in Z \Rightarrow \mu_i(Y) \in \mu_i(Z) + Q^+ \)

\(\Rightarrow \) plus généralement, \(\forall w, \mu_{w,v}(Y) \in \mu_{w,v}(Z) + w \cdot Q^+ \)

\(\Rightarrow \) \(\text{Pol}(Y) \subset \text{Pol}(Z) \)

Notation: \(\mu_{w,v}(Y) - \mu_i(Y) = \varepsilon_i(Y) \varepsilon_w \)

\(\in \mathbb{N} \)

Fact 1: \(z \in \mathcal{L}(\lambda) \) \(\Rightarrow \mu_i(z) = v \) and \(\mu_{w,v}(z) = \lambda \)

\(\Rightarrow \) Let \(z \in \mathcal{L}(\lambda) \), let \(i \in I \).

Any \(Y \in \mathcal{L}(\lambda), Y \subset Z \subset Z \) satisfies \(\varepsilon_i(Y) \subset \varepsilon_i(Z) \)

Assume \(\varepsilon_i(Z) > 1 \). Then \(\exists! Y \in \mathcal{L}(\lambda) \) such that \(Y \subset Z \)
and \(\varepsilon_i(Y) = \varepsilon_i(Z) - 1 \) (Braverman-Gaitsgory), and with \(D \) as in \(\S 3 \)
the multiplicity of \([Y] \) in \([Z], [D] \subset D(X)_X \varepsilon_i(Z) \).
5) End of the proof

a) Look first at $L(\lambda)$ for $\lambda \in X_+$

Take $Z \in \mathcal{Z}(\lambda)_0$, choose D as in §3.

Then $\mathcal{E}_z [Z] = [Z] \cdot D$ so $\mathcal{E}_z [Z] = \sum_{Y \in \mathcal{Z}(\lambda)_{\mu \nu, Y \subset Z}} \frac{\text{multiplicity}}{Q(\lambda)} [Y]

b) For all Y here, $\mathcal{E}_z (Y) \leq \mathcal{E}_z (Z) - 1$; exactly one Y has $\mathcal{E}_z (Y) = \mathcal{E}_z (Z) - 1$, and it appears with coefficient $\mathcal{E}_z (Z)$.

$$\Rightarrow \mathcal{P}_{z, (k)} [Z] = \begin{cases} 0 & \forall \; k > \mathcal{E}_z (Z) \\ [V] & \text{for a } V \in \mathcal{Z}(\lambda)_{\nu + k, x_i} \land k = \mathcal{E}_z (Z) \end{cases}$$

c) For any $\lambda, \rho \in X_+$ and $V \in X$, there exists a linear injection $\mathcal{L}(\lambda)_0 \hookrightarrow \mathcal{L}(\lambda + \rho)_0 \rightarrow (J. \text{Anderson})$

$$Z \mapsto Z^{\rho}$$

whence a linear injection $i : L(\lambda) \hookrightarrow L(\lambda + \rho)$.

Step a) $\Rightarrow i$ is a map of n_+-module

$$\begin{array}{c}
\xymatrix{ & L(\lambda) \ar[r]^-{\Psi_\lambda} & R \\
L(\lambda + \rho) \ar[r]_-{\Psi_{\lambda + \rho}} & } \\
\end{array}$$

so the bases of the $L(\lambda)$ glue correctly and give a basis of R.

d) Step b) \Rightarrow this basis satisfies (P2)

(I omit the proof of (P3) and of the last assertion of the theorem.)

6) Relation to MV polytopes

Theorem (Kamnitzer's thesis): Let $\lambda \in X_+$, let $Z \in \mathcal{Z}(\lambda)_0$. Suppose $\Psi_\lambda [Z]$ is indexed by $b \in B(\infty, x \lambda)$. Then $\text{Pol} (Z) = \lambda + \text{Pol} (b)$.

Proof: requires finer description of MV cycles + Berenstein, Fomin and Zelevinsky's chamber Anomaly, whose tropicalization describe Lusztig data.
Proposition: The transition matrix between the MV basis and the dual canonical basis is upper unitriangular and the order on $B(\infty)$ given by inclusion of MV polytopes.
III Preprojective algebras and the semicanonical basis

A symmetric

1) Preprojective algebras

Oriented graph without loops:
\[\{ \text{vertices} \} = \mathbb{I} \]
\[\{ \text{edges} \} = \mathcal{H} : \text{between } i \text{ and } j, \text{ -aj edges in each direction} \]
\[\cup \]
\[h \to \mathbb{H} \text{ orientation reversing involution} \]
\[\varepsilon : \mathcal{H} \to \{ \pm 1 \} \text{ such that } \varepsilon(h) + \varepsilon(h^{-1}) = 0 \]

K field

\[\Lambda = K \text{-path algebra of the quiver } (\mathbb{I}, \mathcal{H})/ \left\langle \sum_{h \in \mathcal{H}} \varepsilon(h) \mathbb{H}^2 \right\rangle \text{ completed with the ideal generated by the arrows} \]

Example: type \(A_3 \)
\[(\mathbb{I}, \mathcal{H}) = \begin{array}{c}
\mathbb{I} \\
\mathbb{H} \\
\mathbb{H}
\end{array} \]
\[\varepsilon(h) = \varepsilon(h)^{-1} \cdot 1 \]

\[\Lambda \text{-module } M_1 \xrightarrow{M_2} M_2 \xrightarrow{M_3} M_3 \]
\[\Delta \mathbb{F} = M_{\mathbb{F}} M_{\mathbb{F}} = M_{\mathbb{F}} M_{\mathbb{F}} - M_{\mathbb{F}} M_{\mathbb{F}} = 0 \]

\[M \text{ a } \Lambda \text{-module } \rightsquigarrow \dim M = \sum_{i \in \mathbb{I}} (\dim M_i) \alpha_i \in \mathbb{Q}_+ \text{ dimension vector} \]

Simple \(\Lambda \)-modules: \(S_i \) \((i \in \mathbb{I})\), \(\Lambda \)-dimensional, concentrated on vertex \(i \);
\[\dim S_i = \alpha_i \]

\[M \mapsto \dim M \text{ induces } K(\Lambda \text{-mod}) = \bigoplus_{i \in \mathbb{I}} \mathbb{Z} \alpha_i \]

Duality operation on \(\Lambda \text{-mod} \):
\[M = (\bigoplus_{i \in \mathbb{I}} M_i, (M_h)) \mapsto M^\dagger = (\bigoplus_{i \in \mathbb{I}} M_i^*, (M_h^*)) \]

Representation spaces:
\[\forall v = \sum_i \nu_i \alpha_i \in \mathbb{Q}_+, \text{ let } \Lambda(v) \subset \prod_{h \in \mathcal{H}} \text{Hom}_K(K^{\nu_h} \mathbb{I}, K^{\nu_h}) \]
\[G(v) = \prod_{i \in \mathbb{I}} GL(K) \]

affine variety of \(\Lambda \)-module structures on \(\bigoplus_{i \in \mathbb{I}} K^{\nu_i} \)

"Lusztig's nilpotent varieties"
2) Lusztig's semi-canonical basis

Take here $K = C$.

Let $\nu \in \mathbb{Q}_+$. For a Λ-module M of dim. vector ν, define $\delta_M : U_\nu \to C$ by:

If $\alpha_1 + \ldots + \alpha_k = \nu$, then (Lusztig; Geiβ- Leclerc - Schröer)

$$\delta_M(e_{i_1} \ldots e_{i_k}) = \chi \left(\left\{ 0 : M_0 < M_1 < \ldots < M_k = M \middle| \dim M_p/M_{p-1} = \alpha_p \right\} \right)$$

A closed subset of the product of flag manifolds

Example: Type A_2

\[
\begin{align*}
C^2 & \overset{0}{\underset{0}{\longrightarrow}} C \\
S_1 \oplus S_2 & \quad \chi(\mathbb{F}) = 2 \\
S_1 \oplus T_1 & \quad \chi(\mathbb{F}) = 2 \\
S_1 \oplus T_2 & \quad \chi(\mathbb{F}) = 0
\end{align*}
\]

in dimension vectors $\nu = 2\alpha_1 + \alpha_2$

\[
\begin{array}{c|c|c|c}
M & \delta_M(e_1 e_2) & \delta_M(e_1 e_2 e_1) & \delta_M(e_2 e_1) \\
\hline
S_1 \oplus S_2 & \chi(\mathbb{F}) = 2 & \chi(\mathbb{F}) = 2 & \chi(\mathbb{F}) = 2 \\
S_1 \oplus T_1 & \chi(\mathbb{F}) = 2 & \chi(\mathbb{F}) = 1 & \chi(\mathbb{F}) = 0 \\
S_1 \oplus T_2 & 0 & 1 & 2
\end{array}
\]

As one can see, the Sene relation $\delta_M(e_1 e_2) - 2 \delta_M(e_1 e_2 e_1) + \delta_M(e_2 e_1) = 0$ is always satisfied, so δ_M is well defined.

Observation: The δ_M are not linearly independent. But they span $R_\nu = (U_\nu)^*$.

Problem: Extract a basis

$(\Lambda(\nu) \to R_\nu, M \mapsto \delta_M)$ is constructible; for each $Z \in \text{Im} \Lambda(\nu)$, define δ_2 as δ_M for M general in Z.

Theorem (Lusztig): \[
\bigcup_{\nu \in \mathbb{Q}_+} \{ \delta_2 \mid Z \in \text{Im} \Lambda(\nu) \} \text{ is a basis of } R \text{ "dual semi-canonical basis".}
\]
Definition: \(M \) a \(\Lambda \)-module, \(\iota \in \mathbb{I} \).

1. Head of \(M \): \(\text{hd}_i M \): largest quotient of \(M \) isomorphic to \(S_i^{\oplus \infty} \)\
 (\(i \)-th part of the head of \(M \))

Observations: \(\delta_i(M) \neq 0 \Rightarrow \exists N \rightarrow S_i^{\oplus n} \Rightarrow n \leq \dim \text{hd}_i M \)

and for \(n = \dim \text{hd}_i M \), \(e_i^{(n)}M = \delta_i N = 0 \), where \(N = \ker (M \rightarrow \text{hd}_i M) \).

(Not have that the divided power \(n! \) is in the Euler characteristic of the flag variety of \(\text{hd}_i M \).)

Moreover, if \(M \) is generic, then \(N \) is generic.

\[\delta_i(M)^+ = \delta_i N^+ \]

Conclusion: 1) The dual semicanonical basis is perfect.

2) \(\bigoplus_{\iota \in \mathbb{I}} \mu_\iota \Lambda_\iota \) is canonically induced by \(S(\infty) \) (Kashiwara–Saito)

an ingredient of the proof of Lusztig's theorem.

3) Reflection functors

Let \(i \in \mathbb{I} \).

Local description around \(i \) of a \(\Lambda \)-module \(M \):

\[\bigoplus_{k \in \mathbb{K}} \mu_k \Lambda_k \rightarrow M_i \rightarrow \bigoplus_{\alpha \in \mathbb{A}} \mu_{\alpha(i)} \Lambda_{\alpha(i)} \]

for brevity: \(\widetilde{M} \rightarrow \mu_{\text{in}(i)} \rightarrow M_i \rightarrow \mu_{\text{out}(i)} \rightarrow \widetilde{M} \)

Note: \(\text{hd}_i M = \text{co} \mu_{\text{in}(i)} \) set \(\text{soc}_i M = \text{ker} \mu_{\text{out}(i)} \) is socle of \(M \)

Define \(\Sigma_i M \) by replacing in \(M \) the part (\(\ast \)) by \(\widetilde{M} \rightarrow \mu_{\text{in}(i)} \rightarrow \text{ker} \mu_{\text{out}(i)} \rightarrow \widetilde{M} \)

\(\Sigma_i^+ M \)

Still get \(\Lambda \)-modules, because \(\widetilde{M} \rightarrow \widetilde{M} \) hasn't changed, and at vertex \(i \), the composed of the two maps is zero.
Facts: These functors induce equivalences of categories
\[
\left\{ M \in \Lambda\text{-mod} \mid \text{ld}_i M = 0 \right\} \xleftarrow{\Sigma_i} \left\{ M \in \Lambda\text{-mod} \mid \text{soc}_i M = 0 \right\}
\]
Moreover \(\text{ld}_i M = 0 \Rightarrow \dim \Sigma_i M = \delta_i (\dim M) \).

Theorem (B.): Let \(\lambda \in I \), set \(T_\lambda = \text{Ad}(\lambda) \in \text{Aut}(U(g)) \) \((\lambda = \exp(z) \exp(-z) \exp(z)) \).
Let \(\nu \in Q_+ \), let \(M \in \Lambda\text{-mod} \) s.t. \(\text{dim} M = \nu \) and \(\text{ld}_i M = 0 \). Let \(x \in U_\nu \)
such that \(T_\lambda(x) \in U_\nu \). Then \(\langle \delta_M, \nu \rangle = \langle \delta_{\Sigma_i M}, T_\lambda(x) \rangle \).

Theorem (B.-Kamnitzer): Let \(b \in B(\infty) \), \(M \) general in \(\Lambda_b \Rightarrow \Sigma_i M \) general in \(\Lambda_{\hat{c}b} \).
(Loosely stated).
(Another interpretation of the Saito reflection: they now act on irreducible components of nilpotent varieties.)

4) Tilting theory in \(\Lambda\text{-mod} \)
\[I_\lambda = \text{ann}_\Lambda \Sigma_i \lambda \text{. Then } \Sigma_i = \text{Hom}_\Lambda (I_\lambda, ?) \text{ and } \Sigma_i^\perp = I_\lambda \otimes_\Lambda ? \text{.} \]

Theorem (Buan-Iyama-Reiten-Scott)
1) The \(\Lambda\)-bimodules \(I_\lambda \) satisfy the braid relations: set \(I_{\lambda \lambda} = I_{\lambda \lambda} \otimes_\Lambda \text{ red.} \)
\(\text{red } \lambda = \lambda_1 \ldots \lambda_k \text{ reduced.} \)
(Consequence: the \(\Sigma_i \) satisfy the braid relations, hence the \(\hat{\Sigma}_i \) also do.)
2) \(I_{\lambda \lambda} \text{ tilting } \Lambda\text{-bimodule, } \text{End}_\Lambda (I_{\lambda \lambda}) = \Lambda \).

Brenner-Butler theory \(\Rightarrow \)
- \(I_{\lambda \lambda} \) defines a (in fact, two) torsion pair in \(\Lambda\text{-mod} \).
- Each \(M \in \Lambda\text{-mod} \) has a largest quotient \(M/N \) such that \(\text{Hom}_\Lambda (I_{\lambda \lambda}, M/N) = 0 \),
 namely \(N = \ker \left(I_{\lambda \lambda} \otimes_\Lambda \text{Hom}_\Lambda (I_{\lambda \lambda}, M) \rightarrow M \right) \).
Write \(M^{\text{tr}} \) for \(N \).
Examples: \(M^{\text{tr}} M, M^{\text{tr}} = \ker (M \rightarrow \text{ld}_i M) \), \(M^{\text{tr}} \subset M^{\text{tr}} \) if \(\lambda(\lambda
u) = \lambda(\lambda) + \lambda(\nu) \).
Prop (B.-Kamnitzer-Tracy): Let \(b \in B(\infty) \), \(M \) general in \(\Lambda_b \), \(w \in W \). Then \(\mu_w(b) = -\dim M^w \).

Proof: \(w = s_{i_1} \ldots s_{i_k} \) reduced.

\[\text{Hom}_\Lambda(I_n, M) = \Sigma_{i_k} \cdots \Sigma_{i_1} M \text{ in general in } \Lambda_{n}, \text{ where } b' = \widehat{s}_{i_k} \cdots \widehat{s}_{i_1} b = \widehat{s}_{i_k} \cdots \widehat{s}_{i_1} M. \]

\[\dim M^w = \dim \text{Hom}_\Lambda(I_n, M) = -w \dim b' = -\mu_w(b). \]

5) Harder-Narasimhan polytopes

A finite length category

\(T \subseteq A \rightarrow [T] \in K(A) \)

Definition: \(P(T) = \text{convex hull in } K(A)_R = K(A) \otimes \mathbb{R} \text{ of } [X] \text{ for } X \in T. \)

HN polytope of \(T \)

(Convex hull of a finite number of points).

Faces of \(P(T) \): each \(\Theta \in K(A)_R^* \) defines \(P_\Theta(T) = \{ x \in P(T) \mid \langle x, \Theta \rangle = \text{sup } P(T) \} \)

Fact: \(\{ X \in T \mid [X] \in P_\Theta(T) \} \) has a smallest element, \(T_\Theta^{\min} \), and a largest one, \(T_\Theta^{\max} \).

Exercise: Let \(\Theta_B = \{ T \in A \mid \langle \Theta, [T] \rangle = 0 \text{ and } \forall X \in T, \langle \Theta, [X] \rangle \leq 0 \} \)

(\(\Theta \)-ministable objects) Then \(\Theta_B \) is a biadjoint subcategory, \(T_\Theta^{\max} / T_\Theta^{\min} \in \Theta_B \),

and for \(i: R_\Theta \rightarrow A \),

\[P_\Theta(T) = [T_\Theta^{\min}] + K_A \left(P \left(T_\Theta^{\max} / T_\Theta^{\min} \right) \right) \]

HN polytope relative to \(R_\Theta \)

(Hereditary property: a face of a HN polytope is a HN polytope,
flattened and shifted.)
Case $A = \Lambda$-mod

$$K(\Lambda \text{-mod}) = \bigoplus_{i \in I} \mathbb{Z} x_i, \quad K(\Lambda \text{-mod})_\mathbb{R} = f^*_R.$$ Denote $C_0 \subset f^*_R$ dominant chamber.

$$[M] = \dim M$$

Theorem (B.-Kamnitzer-Tingley): Assume A of finite type.

Let $\Theta \in f^*_R$. Then \{ $\omega \in W$ | $\omega \Theta \in C_0$ \} has a shortest element, w_1, and longest element, w_2.

Then for each Λ-module M, $M^\min_\Theta = M^{w_2}$ and $M^\max_\Theta = M^{w_1}$.

In particular, $P(M)$ is GAGMS and equals \{convex hull ({$\dim M^w$ | $w \in W$})\}.

Corollary: $b \in B_\infty$, M general in A_b \Rightarrow $P(e)(b) = -P(M)$.

Example: Type A_2, $M = S^\Theta_a \oplus S^\Theta_b \oplus T^\Theta_c \oplus T^\Theta_d$.

![Diagram](image)

M general \Rightarrow $a \cap b = 0$ \Rightarrow one of the two diagonals is \parallel to the opposite side.

All 2-faces of type A_2 of an MV polytope have this property ("Tropical Bleicher Relations"). This characterizes MV polytopes among all lattice GAGMS polytopes (see also TPR for 2-faces of type B_2 and G_2).

In view of the last Corollary in Part I, this condition translates to relations between Lustzig data $N_i(2,b)$ for b fixed, i variable. These relations are equivalent to Lustzig's piecewise linear bijections.