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Abstract. This paper is a survey of cobordism theory for knots. We first
recall the classical results of knot cobordism, and next we give some recent

results.
We classify fibered knot up to cobordism in all dimensions, and we give

several examples of fibered knots which are cobordant and non isotopic. Some

related results about surfaces embedded in S4 are given.

”... the theory of ”Cobordisme” which has,
within the few years of its existence,

led to the most penetrating insights into
the topology of differentiable manifolds.”

H. Hopf,
International Congress of Mathematics, 1958.

1. Introduction

1.1. Historic. In the sixties, R. Fox and J. Milnor [F-M] were the first to
study cobordism of embeddings of S1 in S3. Next, M. Kervaire [K2] and J. Levine
[L2] studied embeddings of (2n − 1)-spheres into codimension two spheres, and
gave a classification of these embeddings up to cobordism. Moreover, M. Kervaire
defined a group structure on the sets C2n−1, of cobordism classes of (2n−1)-spheres
embedded in S2n+1, and C̃2n−1, of concordance classes of (2n−1)-spheres embedded
in S2n+1.

Remark that spherical knots were only studied as codimension two embeddings
into spheres, because in the P.L. category E. Zeeman [Ze] proved that all spherical
knots in codimension greater or equal to three are unknoted, and J. Stallings [Sta]
proved that it is also true in the topological category as soon as the knots are
of dimension greater or equal to two. In the smooth category A. Heafliger [Ha1]
proved that cobordism of spherical knots in codimension greater or equal to three
implies isotopy.

After J. Milnor’s work [M4] on isolated singularities of complex hypersurfaces,
the notion of fibered knot became the right topological framework which corre-
spond to algebraic knots. Then the topology of isolated singularities of complex
hypersurfaces appears as a motivation to study embeddings of general manifolds
into codimension two spheres. In the beginning of the seventies, D.T. Lê [Lê1]
proved that isotopy and cobordism are equivalent for one dimensional algebraic
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knots. About twenty years later, P. Du Bois and F. Michel [DB-M] gave the first
examples of cobordant algebraic spherical knots which are not isotopic. Then the
classification of fibered knots up to cobordism became an open problem.

1.2. Contents. This survey is organized as follows. In section 2 we give defi-
nitions and the classifications of spherical knots and fibered knots of high dimension
up to cobordism. The classification of three dimensional knots up to cobordism is
given in section 3. In section 4 we give examples of cobordant knots and explain
the pull back relation for knots. The results for even dimensional knots are given
in section 5, in which we explain recent results about embedded surfaces in S4, and
four dimensional manifolds embedded in S6.

Throughout the paper, we shall work in the smooth category. All the homol-
ogy and cohomology groups are understood to be with integer coefficients unless
otherwise specified.

2. Definitions and classical results

Since we want to study cobordism of codimension two embeddings of more
general manifolds than spheres, we define

Definition 2.1. A closed (n−2)-connected oriented (2n−1)-dimensional man-
ifold embedded in the (2n+ 1)-sphere S2n+1 is called a (2n− 1)-knot, or simply a
knot. A (2n − 1)-knot is spherical, if the embedded manifold is abstractly homeo-
morphic to S2n−1.

As said before this definition is motivated by the study of the topology of
isolated singularities of complex hypersurfaces.

More precisely, let f : Cn+1, 0 → C, 0 be a holomorphic germ with an isolated
singularity at the origin. The orientation preserving homeomorphism class of the
pair (D2n+2

ε , f−1(0) ∩ D2n+2
ε ) does not depend on the choice of ε small, it is the

topological type of f . The diffeomorphism class of the oriented pair (S2n+1
ε ,Kf )

where Kf = f−1(0) ∩ S2n+1
ε is the algebraic knot associated to f .

In [M4], J. Milnor proved that algebraic knots associated to isolated singulari-
ties of germs f : Cn+1, 0 → C, 0 are some (2n−1)-dimensional closed, oriented and
(n− 2)-connected submanifolds of the sphere S2n+1. Moreover the complementary
of an algebraic knot Kf in the sphere S2n+1 admits a fibration over the one dimen-
sional sphere S1, and the closure of the fibers are some 2n-dimensional oriented
and closed submanifolds of S2n+1 which admits Kf as boundary. This motivates
the following definition

Definition 2.2. We say that a (2n − 1)-knot K is fibered, if there exists a
fibration φ : S2n+1 r K → S1 with φ being trivial on U r K, where U is a small
open tubular neighborhood of K, such that the closure of each fiber is a manifold
which has K as boundary.

For high dimensional fibered knots isotopy classes are well known since we have
the following theorem

Theorem 2.3. [D1] Let n ≥ 3, two (2n − 1)-dimensional fibered knots are
isotopic if and only if they have isomorphic Seifert forms.

We will focus on the cobordism classes of knots.
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Definition 2.4. Two (2n − 1)-knots K0 and K1, embedded in S2n+1, are
cobordant if there exists a proper submanifold X of S2n+1 × [0, 1] such that

(1) X is diffeomorphic to K0 × [0, 1],
(2) ∂(X) = (K0 × {0}) ∪ (K1 × {1}).

When all the manifolds are oriented, we say that K0 and K1 are oriented cobordant
if they are cobordant and ∂(X) = (−K0 × {0}) ∪ (K1 × {1}), where −K0 is the
manifold K0 with the reversed orientation.

rrK0

S2n+1 × {0}

rrK1

S2n+1 × {1}

S2n+1 × [0; 1]

Figure 1: A cobordism between K0 and K1

It is clear that isotopic knots are cobordant, but the converse is not true in
general.

rK0 rK1

Figure 2: A cobordism which is not an isotopy

We also introduce the notion of concordance defined for embeddings

Definition 2.5. We say that two embeddings fi : K → S2n+1, for i = 0, 1, of
a closed (2n− 1)-dimensional and (n− 2)-connected manifold K, are concordant if
there exists a proper embedding Φ : K×[0, 1] → S2n+1×[0, 1] such that Φ|K×{i} = fi

for i = 0, 1.
We say that two embeddings fi : K → S2n+1, for i = 0, 1, of a closed (2n −

1)-dimensional and (n − 2)-connected manifold K are cobordant if there exists a
diffeomorphism h : K → K such that f0 ◦ h and f1 are concordant.

This definition can be extended to embeddings of Sn into Sn+2. Let Cn be
the set of cobordism classes of n-spheres embedded in Sn+2, and C̃n be the set of
concordance classes of n-spheres embedded in Sn+2. In [K1] M. Kervaire showed
that the natural surjection i : C̃n → Cn is a group homorphism.

Let us denote by On the group of h-cobordism classes of differential homotopy
n-spheres, and by bPn+1 the subgroup of On of h-cobordism classes represented
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by differential homotopy n-spheres which are boundary of parallelizable manifolds.
Then we have the following Theorem

Theorem 2.6. [K1] For n ≤ 5 we have C̃n
∼= Cn, and for n > 6 we have the

following exact sequence 0 → On/bPn+1
→ C̃n

i→ Cn → 0

In the following we will study cobordism classes of knots. We will give classi-
fications of knots up to cobordism using Seifert forms. First, recall that for every
(2n − 1)-knots K, there exists a compact oriented 2n-dimensional submanifold F
of S2n+1 having K as boundary. Such a manifold F is called a Seifert manifold
for K. See [R1] for a construction in the case one dimensional knots, for higher
dimensional knots it is a classical result which comes from obstruction theory. For
fibered knots the closure of a fiber is a Seifert manifold associated with the knot.

Definition 2.7. Suppose that F is a compact oriented 2n-dimensional subman-
ifold of S2n+1, and let G be the quotient of Hn(F ) by its Z-torsion. The Seifert
form associated with F is the bilinear form A : G×G→ Z defined as follows. For
(x, y) ∈ G × G, we define A(x, y) to be the linking number in S2n+1 of ξ and η+,
where ξ and η are n-cycles in F representing x and y respectively, and η+ is the
n-cycle η pushed off F into the positive normal direction to F in S2n+1.

By definition a Seifert form for a (2n−1)-knot K is the Seifert form associated
with a Seifert manifold for K.

Let us consider the case of the trefoil knot. The Seifert manifold F considered
for this knot is a surface such that the rank of the first homology group is two. If
we denote by η and ξ the 1-cycles which represent the generators of H1(F ) then
the Seifert matrix can be computed as follows.

-
i+

�
�� # 
"!

# 
"!

ξ- ξ+- η- η+-

Figure 3: Computation of the seifert matrix for the trefoil knot

According to the choices of orientation made to draw cycles in Figure 3, the Seifert

matrix for the trefoil knot is then A =
(
−1 0

1 −1

)
. One can remark that the

Seifert matrix is not usually symmetrical. But the matrix S = A+ (−1)nAT is the
matrix of the usual intersection form for F , where F is the Seifert manifold of the
(2n− 1)-knot K = ∂F .

When a knot is fibered, we shall often call the closure of each fiber simply a
fiber. The Seifert form associated with a fiber is always unimodular because of
Alexander’s duality (see [Kau]). In the following, for a fibered (2n − 1)-knot, we
use the Seifert form associated with a fiber unless otherwise specified.

4



Definition 2.8. A (2n − 1)-knot is simple, if it admits an (n − 1)-connected
Seifert manifold. Furthermore, a fibered (2n − 1)-knot is simple, if its fiber is
(n− 1)-connected.

As a consequence of J. Milnor’s results, see [M4], we have that algebraic knots
are not only fibered but they are simple as well. Remark that when a (2n−1)-knot
is simple the group Hn(F ) is torsion free because F is a (n − 1)-connected Seifert
manifold.

Recall that for a (2n − 1)-knot K with a seifert manifold F , when n ≥ 3 we
have the following exact sequence

(∗) 0 → Hn(K) → Hn(F ) S∗→ Hn(F,K) → Hn−1(K) → 0

the homomorphism S∗ is induced by the inclusion. But if we denote by P̃ the

isomorphism Hn(F,K)
eP∼= HomZ(Hn(F );Z) given by the Poincaré duality and the

universal coefficient isomorphism, then S∗ : Hn(F ) → Hn(F,K), and S∗ the adjoint
of S = A+ (−1)nAT , are related together by S∗ = S∗ ◦ P̃.

Since cobordant knots are diffeomorphic, to have a cobordism we need topolog-
ical information of the knot, i.e., the boundary of the Seifert manifold. Considering
the previous exact sequence (∗) we will use the kernel and the cokernel of the
homomorphism S∗ to get these data.

It is clear that in the case of spherical knots, these considerations are not
necessary since S∗ and S∗ are isomorphisms. First we will concentrate on the case
of spherical knots.

2.1. Spherical knots. The main tool to study cobordism of spherical knots
is the Seifert form associated to a Seifert manifold of a knot.

First, in [L3] J. Levine described modifications on the Seifert form of a spherical
simple knot after changing Seifert manifold.

Following J. Levine, an enlargement of a square matrix A to a matrix A′ is
defined as follows

A′ =

 A O1 O2

α 0 0
O3 1 0

 or

 A β O1

O2 0 1
O3 0 0


where Oi are row or column vectors of 0 for i = 1, 2, 3, and α is a column vector

of scalars, and β is a row vector of scalars.
Then A is a reduction of A′.
Two square matrices are S-equivalent if they are related by enlargement and re-

duction operations. The equivalence classes defined are called S-equivalence classes.
J. Levine proved

Theorem 2.9. [L3] Isotopic spherical knots have S-equivalent Seifert forms.

Remark 2.10. One can generalize this result to non spherical knots (see [D1]).

M. Kervaire showed that there exists a group structure on the set of cobordism
classes of spherical knots. The connected sum is the operation and the inverse of a
spherical knot is given by its mirror image. Then two spherical knots are cobordant
if their connected sum is cobordant to the trivial knot. We say that a (2n−1)-knot
K ⊂ S2n+1 is null-cobordant when it is cobordant to the trivial knot, i.e., when
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there exists a 2n-ball D embedded into the (2n+ 2)-ball B2n+2 such that ∂D = K
and ∂B2n+2 = S2n+1.

In the case of spherical knots M. Kevaire and J. Levine used the following
equivalence relation on the setA of integral bilinear forms defined on free Z-modules
of finite rank

Definition 2.11. Let A : G×G→ Z be a bilinear form in A. The form A is
Witt associated to 0, if the rank m of G is even and there exists a pure submodule
M of rank m/2 in G such that A vanishes on M . Such a submodule M is called a
metabolizer for A.

In [K2] and [L2] one can find proofs of the following Theorem

Theorem 2.12. [K2, L2] For n ≥ 3, a spherical (2n−1)-knot is null-cobordant
if and only if its Seifert form is Witt associated to 0.

The hypothesis n ≥ 3 is a technical condition which comes from the proof of
the sufficiency. This is because in order to construct an embedded 2n-disk with K
as boundary it is necessary to be able to do embedded surgeries a (2n+ 2)-ball on
a Seifert manifold associated to K. When n = 1, 2 this is not possible in general.

For two spherical knots K0 and K1 with Seifert forms A0 and A1 respectively,
the oriented connected sum K = K0](−K1) has A = A0 ⊕ −A1 as Seifert form
asociated with the oriented connected sum along the boundaries of the Seifert
manifold associated to K0 and −K1. Hence, as a consequence of Theorm 2.12
we have that the two spherical knots K0 and K1 are cobordant if and only if the
Seifert form A = A0⊕−A1 is Witt-associated to 0, then we sometimes say that A0

and A1 are Witt equivalent.

2.2. Cobordism of fibered knots. In this section we will give the classifica-
tion of fibered knots up to cobordism. This cannot be done by a direct generaliza-
tion of the results proved by M. Kervaire and J. Levine. We will have to consider
the topological data contained in the kernel and the cokernel of the intersection
form (see Equation (∗)).

First, we will explain why we restrict our study to fibered knots. Let K be a
(2n− 1) dimensional knot with ≥ 1 with a Seifert manifold denoted by F , then we
have the following long exact sequence

. . .→ Hn(K)→Hn(F ) S∗→ Hn(F,K) → . . .

where maps are induced by inclusions.
As we can guess after Theorem 2.12, the existence of a metabolizer will be

necessary to have knot cobordism. But More precisely, we will need to control the
contribution to the metabolizer given by the cycles coming from the homology of
the boundary of the fibers. Hence in the long exact sequence above we must have
the following short exact sequence

0 → Hn(K)→Hn(F ) S∗→ Hn(F,K) → Hn−1(K)→0.

One possibility is to only study knots if they have a Seifert manifold for which
we have this short exact sequence, for instance simple knots, and use only these
Seifert manifolds.

But in the case of fibered knots this condition is automatic.
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Proposition 2.13. Let n ≥ 1. Let K be a fiber knot of dimension 2n− 1 and
let F be a Seifert manifold associated to the fibration, then we have the following
short exact sequence

0 → Hn(K)→Hn(F ) S∗→ Hn(F,K) → Hn−1(K)→0.

Proof. Let F be a Seifert manifold given by the fibration. Then S2n+1 r F
has the same homotopy type as F . Now by Alexander duality we get the following
isomorphisms Hk(F ) ∼= H2n−k(S2n+1 r F ) ∼= H2n−k(F ), for k > 0.

Moreover by Poincaré duality we have Hk(F,K) ∼= H2n−k(F ), and this implies

(?) Hk(F,K) ∼= Hk(F ).

Now consider the long exact sequence

. . .→ Hn(K)→Hn(F ) S∗→ Hn(F,K) → . . .

since K is (n− 2)-connected then we have the following short exact sequence

0 → Hn+1(F ) α→ Hn+1(F,K) → Hn(K) → Hn(F ) →

Hn(F,K) → Hn−1(K) → Hn−1(F )
β→ Hn−1(F,K) → 0

Since α is a monomorphism with (?) it is an isomorphism, and since β is an
epimorphism with (?) it is an isomorphism. Finally we get the desired short exact
sequence

0 → Hn(K)→Hn(F ) S∗→ Hn(F,K) → Hn−1(K)→0

�

Then for high dimensional fibered knots we have a complete characterization
of cobordism classes using their Seifert forms as follows.

Theorem 2.14. [B3] For n ≥ 3, two fibered (2n − 1)-knots are cobordant if
and only if their Seifert forms are algebraically cobordant.

The condition on the integer n is only used for the sufficiency, and we have the
following theorem

Theorem 2.15. [B3] Two cobordant fibered knots have algebraically cobordant
Seifert forms.

To define the algebraic cobordism we first need to fix some notations and defi-
nitions. Let A be the set of all bilinear forms defined on free Z-modules G of finite
rank. Set ε = (−1)n. For A ∈ A, let us denote by AT the transpose of A, by S the
ε-symmetric form A + εAT associated with A, by S∗ : G → G∗ the adjoint of S
with G∗ being the dual HomZ(G,Z) of G, and by S : G×G→ Z the ε-symmetric
non degenerate form induced by S on G = G/KerS∗. A submodule M of G is said
to be pure, if G/M is torsion free, or equivalently if M is a direct summand of G.
For a submodule M of G, let us denote by M∧ the smallest pure submodule of G
which contains M . We denote by M the image of M in G by the natural projection
map.
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Definition 2.16. [B3] Let Ai : Gi×Gi → Z, i = 0, 1, be two bilinear forms in
A. Set G = G0 ⊕G1 and A = A0 ⊕−A1. The form A0 is said to be algebraically
cobordant to A1, if there exists a metabolizer M for A such that M is pure in G,
an isomorphism ψ : KerS∗0 → KerS∗1 , and an isomorphism θ : Tors(CokerS∗0 ) →
Tors(CokerS∗1 ) which satisfy the following two conditions:

(c1) M ∩KerS∗ = {(x, ψ(x));x ∈ KerS∗0} ⊂ KerS∗0 ⊕KerS∗1 = KerS∗,

d(S∗(M)∧) = {(y, θ(y)); y ∈ Tors(CokerS∗0 )}(c2)

⊂ Tors(CokerS∗0 )⊕ Tors(CokerS∗1 ) = Tors(CokerS∗),

where d is the quotient map G∗ → CokerS∗ and “Tors” means the torsion subgroup.
In the above situation, we also say that A0 and A1 are algebraically cobordant with
respect to ψ and θ.

Note that the algebraic cobordism is an equivalence relation, see [B-M, Theo-
rem 1].

Theorem 2.17. [B-M] Algebraic cobordism is an equivalence relation on the
set A.

If Ai are Seifert forms associated with (n − 1)-connected Seifert manifolds Fi

of simple (2n− 1)-knots Ki, i = 0, 1, then Si∗ is the intersection form of F . Hence
KerSi∗ and CokerSi∗ are naturally identified with Hn(Ki) and Hn−1(Ki) respec-
tively, since we have the exact sequence

0 = Hn+1(Fi,Ki) → Hn(Ki) → Hn(Fi)
Si∗−→ Hn(Fi,Ki)

→ Hn−1(Ki) → Hn−1(Fi) = 0,

where we identify Hn(Fi,Ki) with the dual of Hn(Fi), see (∗).
As remarked before, in the case of a spherical knot K we have Hn(K) =

Hn−1(K) = 0, so the intersection form is an isomorphism. Hence the algebraic
cobordism of Seifert forms associated to spherical knots is reduced to Witt equiva-
lence, and Theorem 2.14 gives the classification of M. Kervaire and J. Levine.

Let K0 = ∂F0 and K1 = ∂F1 be two (2n− 1)-knots with n ≥ 3. Denote by A0

and A1 the Seifert forms associated with F0 and F1 respectively.
To prove Theorem 2.14 (see [B3]), we first suppose that K0 and K1 are cobor-

dant and then construct a metabolizer for A0 ⊕−A1 which fulfills the definition of
algebraic cobordism to have the necessity.

For sufficiency we suppose that A0 and A1 are algebraically cobordant. Then
we prove that we can do embedded surgeries, in a (2n+ 2)-ball, on the connected
sum of Seifert manifolds associated to the knots. The result of these surgeries is a
submanifold W of B2n+2 such that ∂W = K0

∐
K1 and H∗(W ;Ki) = 0 for i = 0; 1.

Then with h-cobordism theorem W ∼= K0×Ki gives the cobordism between K0 and
K1. This is where we need to have high dimensional knots, because these technics
are not valid for knots of dimensions one and three.

3. Three dimensional knots

In this section we will deal with three dimensional knots. This case is much
more difficult than the case of high dimensional knots because the dimension of
the Seifert manifolds is four. The topology of four dimensional manifolds is very
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particular, and the usual technics used in the case of higher dimensional manifolds
are not available anymore.

The algebraic cobordism of Seifert forms is necessary for the cobordism of sim-
ple fibered knots in any dimension (see Theorem 2.15). But there exists some non
isotopic three dimensional fibered knots which have diffeomorphic fibers and con-
gruent Seifert matrices (see Example 3.1). Hence, in the case of three dimensional
knots isotopy classes, and then cobordism classes must be characterized by new
equivalence relations on Seifert forms. Isotopy classes were studied in [S4], for
cobordism classes we will define a new equivalence relation for Seifert forms. To do
that we will need Spin structures.

Recall that a Spin structure on a manifold X means the homotopy class of a
trivialization of its tangent bundle over the 2-skeleton X(2). Note that X admits a
spin structure if and only if its second Stiefel-Whitney class w2(X) vanishes and that
if it admits, then the set of all spin structures on X is in one-to-one correspondence
with H1(X;Z2).

Let K be a 3-knot, with Seifert manifold F , embedded in S5. All the manifolds
are oriented. Then K has a natural normal 2-framing ν = (ν1, ν1) in S5 such that
the first normal vector field ν1 is obtained as the inward normal vector field of
K = ∂F in F . The homotopy class of this 2-framing does not depend on the choice
of the Seifert manifold F . Then K carries a tangent 3-framing on its 2-skeleton K(2)

such that the juxtaposition with the above 2-framing gives the standard framing
of S5 restricted to K(2) up to homotopy. This means that K carries a natural
Spin structure, which is determined uniquely up to homotopy. Furthermore, this
Spin structure coincides with that induced from the Seifert manifold F , which is
endowed with the natural spin structure induced from S5.

In the case of 3-knots the Spin structure must be considered as the following
example shows.

Example 3.1. Set M = S1 × Σg, where Σg is the closed connected orientable
surface of genus g ≥ 2. Let K0 and K1 be the simple fibered M-knots constructed in
[S4, Proposition 3.8]. They have the property that their Seifert forms are isomor-
phic, but that there exists no diffeomorphism between K0 and K1 which preserves
their Spin structures and they are not isotopic.

In order to study cobordism of 3-knots we will use some results only valid for
three dimensional manifolds without torsion on the first homology group, hence we
define

Definition 3.2. [B-S1] We say that a 3-knot K is free if H1(K) is torsion
free over Z.

Moreover by considering free knots we do not need to consider the condition
(c2) in the definition of the algebraic cobordism (see Definition 2.16), which is
always a necessary condition for knot cobordism (see Theorem 2.15).

Definition 3.3. Consider two simple 3-knots K0 and K1. Let A0 and A1

be the Seifert forms of K0 and K1 respectively with respect to 1-connected Seifert
manifolds. We say that A0 and A1 are Spin cobordant, if there exists an orientation
preserving diffeomorphism h : K0 → K1 such that

(1) h preserves their spin structures,
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(2) A0 and A1 are algebraically cobordant with respect to h∗ : H2(K0) →
H2(K1) and h∗|TorsH1(K0) : TorsH1(K0) → TorsH1(K1), where we
identify H2(Ki) and H1(Ki) with KerS∗i and CokerS∗i respectively for
i = 0, 1

Note that if K0 and K1 are free 3-knots, then we do not need to consider the
condition (c2) of Definition 2.16 and hence the isomorphism h∗|TorsH1(K0) in the
above definition.

Spin cobordism of Seifert forms with respect to 1-connected Seifert manifolds
is an equivalence relation on the set of pairs of a Seifert manifold of a simple 3-knot
and its Seifert form.

Remark 3.4. In Example 3.1 above, the Seifert forms of K0 and K1 are alge-
braically cobordant, but are not Spin cobordant. Hence they cannot be cobordant by
Proposition 3.6. Example 3.1 shows that Spin structures are essential in the theory
of cobordism for 3-knots.

In [B-S1] we prove

Theorem 3.5. [B-S1] Two simple fibered free 3-knots are cobordant if and only
if their Seifert forms with respect to 1-connected fibers are Spin cobordant.

Let us see that Spin cobordism is necessary to have knot cobordism. Let K0

and K1 be two cobordant free 3-knots with fibers F0 and F1 respectively. Denote
by C ∼= K0× [0, 1] the submanifold of S5× [0, 1] which gives the cobordism between
K0 and K1, and set N = F0 ∪ C ∪ (−F1). By classical obstruction theory the
closed oriented 4-manifold N ⊂ S5 × [0, 1] is the boundary of a compact oriented
5-submanifold W of S5 × [0, 1]. Using a normal 2-framing of C in S5 × [0, 1]
induced from the inward normal vector field along N = ∂W in W , we see that the
diffeomorphism h between K0 and K1 induced by C preserves their Spin structures.

Moreover, in [B-M], it has been shown that the two forms A0 and A1, asso-
ciated with cobordant fibered knots, are algebraically concordant with respect to
h∗ : H2(K0) → H2(K1) and h∗|TorsH1(K0) : TorsH1(K0) → TorsH1(K1).

Finaly we get the following result, in which the knots are not necessary simple.

Proposition 3.6. [B-S1] If two simple fibered 3-knots are cobordant, then
their Seifert forms with respect to 1-connected fibers are Spin cobordant.

Using the 5-dimensional stable h-cobordism theorem due to T. Lawson [La]
and F. Quinn [Q], and S. Boyer’s work [Bo] we also have the following Theorem,
in which the 3-knots are simple and free, but may not be fibered.

Theorem 3.7. [B-S1] Consider two simple free 3-knots. If their Seifert forms
with respect to 1-connected Seifert manifolds are spin concordant, then the 3-knots
are concordant.

The proof of this Theorem is very technical and difficult, we refer to [B-S1] for
details. Finally Proposition 3.6 and Theorem 3.7 imply Theorem 3.5.

4. Examples, and pull-back relation for knots

First we construct concordant, but not isotopic non spherical 3-knots.
10



Example 4.1. [B-S1]
Let us call a stabilizer a simple fibered spherical 3-knot whose fiber F is diffeo-

morphic to (S2 × S2)](S2 × S2) r IntD4. Such a stabilizer does exist, see [S2, §4].
Moreover, we denote by KS a stabilizer with Seifert matrix (see [S1, p. 600] or [S4,
§10])

A =


0 1 0 1
0 0 1 0
0 −1 0 0
−1 0 1 0


with respect to a basis of H2(F ) denoted by a1, a2, a3, a4.

Since A is not congruent to the zero form, KS is a non-trivial 3-knot.
Moreover, the submodule generated by a1 and a3 is a metabolizer for A, and one

can do embedded surgeries on the two cycles a1 and a3, represented by two embedded
2-spheres in F . The result of this embedded surgery in D6 is a four dimensional
disc D properly embedded in D6 with KS as boundary. Thus KS is null-cobordant,
i.e., cobordant to the trivial spherical 3-knot.

Then consider any simple fibered 3-knot K which is not spherical. The two
simple fibered 3-knots K]KS and K are not isotopic since the ranks of the second
homology groups of their fibers are distinct. However, these knots are cobordant.

In the following example we construct non spherical cobordant but not isotopic
simple fibered knots of dimension 2n − 1 with n ≥ 3. These knots are not related
together by stabilization, i.e., by connected sum of a given knot with null cobordant
spherical knots.

Example 4.2. [B2]
Let Ki, with i = 0, 1, be the algebraic knots of dimension 2n − 1, n ≥ 3,

associated with the isolated singularity at 0 of the germs of holomorphic functions
hi : (Cn+1, 0) → (C, 0) defined by:

hi(x0, . . . , xn) = gi(x0, x1) + xp
2 + xq

3 +
n∑

k=4

x2
k

with

g0(x0, x1) = (x0 − x1)
(
(x2

1 − x3
0)

2 − xs+6
0 − 4x1x

(s+9)/2
0

)
(
(x2

0 − x5
1)

2 − xr+10
1 − 4x0x

(r+15)/2
1

)
,

and

g1(x0, x1) = (x0 − x1)
(
(x2

1 − x3
0)

2 − xr+14
0 − 4x1x

(r+17)/2
0

)
(
(x2

0 − x5
1)

2 − xs+2
1 − 4x0x

(s+7)/2
1

)
.

where s ≥ 11 and s 6= r + 8 are odd, and, p and q are distinct prime numbers
which not divide the product ε = 330(30+ r)(22+ s), see [DB-M] p.166. We denote
by Ai, i = 0, 1 the Seifert form associated to Ki defined on a free Z-module of finite
rank Hi.
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Let L be the algebraic knot of dimension 2n − 1 associated to the isolated sin-
gularity at 0 defined by the germ:

f : (Cn+1, 0) → (C, 0)

(x0, . . . , xn) 7→
n∑

k=0

x2
k

according to [D] prop. 2.2 p.50 this algebraic knot has A =
(
(−1)n(n+1)/2

)
, defined

on a free Z-module of rank one G, as Seifert matrix.
We construct Li the connected sum of L and Ki for i = 0, 1. The Seifert form

for Li is the integral bilinear form A⊕Ai defined on a free Z-module Gi = G⊕Hi

of finite rank. The links Li are simple fibered since A⊕Ai is unimodular (see [K-W]
chap. V §3 p. 118).

The knots L0 and L1 are cobordant by Theorem 2.14, but they cannot be isotopic
since K0 and K1 are not isotopic.

According to [A], th. 4 p. 117, the knots L0 and L1, which are the connected
sum of two algebraic links, are not algebraic.

As in Example 4.1, stabilization is a natural way to construct high dimensional
cobordant but non isotopic knots. For that, start with a knot K and do the
connected sum K]KS where KS is null-cobordant spherical knot. Then K and
K]KS are cobordant but not isotopic.

Hence, for non spherical knots, the following question naturally arises.
(Q) If two non-spherical knots are simple homotopy equivalent as

abstract manifolds, then are they cobordant after taking connected sums
with some spherical knots?

According to the codimension two surgery theory [Ma1], this is true provided
that the relevant knots satisfy some connectivity conditions and that one of them is
obtained as the inverse image of the other one by a certain degree one map between
the ambient spheres. We define

Definition 4.3. [B-M-S] Let K0 and K1 be m-knots in Sm+2. We say that
K0 is a pull back of K1 if there exists a degree one smooth map g : Sm+2 → Sm+2

with the following properties:
(1) g is transverse to K1,
(2) g−1(K1) = K0,
(3) g|K0 : K0 → K1 is an orientation preserving simple homotopy equivalence.

In this case, we write K0 � K1.

The following are some direct consequences of the previous definition.
(1) K � K for any m-knot K.
(2) K0 � K1 and K1 � K2 imply K0 � K2 for any m-knots K0,K1 and K2.
(3) K0 � K1 and K ′

0 � K ′
1 imply K0]K

′
0 � K1]K

′
1 for any m-knots K0, K ′

0,
K1 and K ′

1.
Furthermore, if we restrict ourselves to spherical m-knots, then it is not difficult
to see that the trivial m-knot KU is the minimal element, i.e., K � KU for every
spherical m-knot K, where KU is defined to be the isotopy class of the boundary
of an (m+ 1)-dimensional disk embedded in Sm+2.

Here are some basic results on the pull back relation for fibered knots.
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Theorem 4.4. [B-M-S] Let K0 and K1 be simple fibered (2n − 1)-knots in
S2n+1 with fibers F0 and F1 respectively, where n ≥ 3. Suppose rankHn(F0) =
rankHn(F1). If K0 � K1, then K0 and K1 are orientation preservingly isotopic.

Corollary 4.5. [B-M-S] Let K0 and K1 be simple fibered (2n − 1)-knots in
S2n+1 with n ≥ 3. If K0 � K1 and K1 � K0, then K0 is orientation preservingly
isotopic to K1. In other words, the relation “�” defines a partial order for simple
fibered (2n− 1)-knots in S2n+1 for n ≥ 3.

Theorem 4.6. [B-M-S] Let K0 and K1 be simple fibered (2n − 1)-knots in
S2n+1 with n ≥ 3. Then K0 � K1 if and only if there exists a spherical simple
fibered (2n − 1)-knot Σ in S2n+1 such that K0 is orientation preservingly isotopic
to the connected sum K1]Σ.

Let K0 and K1 be two simple fibered (2n− 1)-knot, with n ≥ 3. If K0 is pull
back equivalent to K1, then they are cobordant after taking connected sums with
some spherical knots. With the following Proposition, we show that the converse
is not true in general.

Proposition 4.7. [B-M-S] For every odd integer n ≥ 3, there exists a pair
(K0,K1) of simple fibered (2n− 1)-knots with the following properties.

(1) The knots K0 and K1 are cobordant.
(2) The knots K0 and K1 are not pull back equivalent.

Proof. Let us consider the following two matrices:

L0 =
(

9 1
−1 0

)
and L1 =

(
25 1
−1 0

)
.

Note that they are both unimodular and that

S0 = L0 − tL0 = S1 = L1 − tL1 =
(

0 2
−2 0

)
.

Let us show that L0 and L1 are algebraically cobordant in the sense of [B-M, (1.2)
Definition] for ε = (−1)n = −1.

Set m = t(5, 0, 3, 0) and m′ = t(0, 3, 0, 5). Then it is easy to see that the
submodule M of Z4 generated by m and m′ constitutes a metabolizer for L =
L0⊕ (−L1). Furthermore, M is pure in Z4: in other words, M is a direct summand
of Z4. Since S0 = S1 are non-degenerate, we have only to verify the condition c.2
of [B-M, (1.2) Definition].

Set S = S0 ⊕ (−S1) = L − tL. Let S∗ : Z4 → Z4, S∗0 : Z2 → Z2 and
S∗1 : Z2 → Z2 be the adjoints of S, S0 and S1 respectively. It is easy to see that
CokerS∗0 = CokerS∗1 is naturally identified with Z2 ⊕ Z2. Furthermore, we have

S∗(m) = tmS = (0, 10, 0,−6) and S∗(m′) = tm′S = (−6, 0, 10, 0).

Therefore, S∗(M)∧, the smallest direct summand of Z4 containing S∗(M), is the
submodule of Z4 generated by (0, 5, 0,−3) and (−3, 0, 5, 0). Hence, for the natural
quotient map d : Z4 → CokerS∗ = (Z2 ⊕ Z2)⊕ (Z2 ⊕ Z2), we have

d(S∗(M)∧) = {(x, x) : x ∈ CokerS∗0 = Z2 ⊕ Z2},
13



since ImS∗i is generated by (2, 0) and (0, 2), i = 0, 1, and ImS∗ is generated by
(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0) and (0, 0, 0, 2). Therefore, we conclude that the
unimodular matrices L0 and L1 are algebraically cobordant.

Now, there exists a simple fibered (2n − 1)-knot Ki which realizes Li as its
Seifert form with respect to the fiber, i = 0, 1 (see [D1, 2]). By [B-M, Theorem 3],
K0 and K1 are cobordant.

Let us now show that K0 and K1 are not pull back equivalent. By Theorem 4.6,
we have only to show that for any spherical simple fibered (2n − 1)-knots Σ0 and
Σ1 in S2n+1, K0]Σ0 is never orientation preservingly isotopic to K1]Σ1.

Since Ki]Σi is a fibered knot, we can consider the monodromy on the n-th
homology group of the fiber, i = 0, 1. Let us denote by Hi the monodromy matrix
of Ki]Σi and by L̃i its Seifert matrix with respect to the same basis. Here, we
choose a basis which is the union of a basis of the homology of the fiber for Ki

and that for Σi. It is known that Hi = (−1)n+1L̃−1
i (tL̃i) (for example, see [D1]).

Therefore, we have

H0 =
(
−1 0
18 −1

)
⊕H ′

0 and H1 =
(
−1 0
50 −1

)
⊕H ′

1,

where H ′
i is the monodromy matrix of Σi, i = 0, 1.

Let us consider Ker ((I +Hi)2), where I is the unit matrix, i = 0, 1. Since Σi

are spherical knots, the monodromy matrices H ′
i cannot have the eigenvalue −1.

Therefore, Ker ((I +Hi)2) corresponds exactly to the homology of the fiber of Ki.
Suppose that K0]Σ0 is orientation preservingly isotopic to K1]Σ1. Then the

Seifert form of K0]Σ0 restricted to Ker ((I +H0)2) should be isomorphic to that
of K1]Σ1 restricted to Ker ((I +H1)2). This means that L0 should be congruent
to L1. However, this is a contradiction, since there exists an element x ∈ Z2 such
that txL0x = 9, while such an element does not exist for L1.

Thus, we conclude that K0 and K1 are not pull back equivalent. �

Example 4.8. In fact, we can find infinitely many examples as in the above
proposition. For example, we could use the matrices(

p2 1
−1 0

)
and

(
q2 1
−1 0

)
for arbitrary relatively prime odd integers p and q.

We can also use K0]K
′ and K1]K

′, instead of K0 and K1, for any simple
fibered (2n− 1)-knot K ′ whose monodromy does not have the eigenvalue −1.

Let us now give some examples of pairs of knots which are diffeomorphic but
not cobordant even after taking connected sums with (not necessarily simple or
fibered) spherical knots. For this, we use the following proposition.

Proposition 4.9. [B-M-S] Let K0 and K1 be simple fibered (2n − 1)-knots
with n ≥ 3. If K0]Σ0 and K1]Σ1 are cobordant for some spherical knots Σ0 and Σ1,
then the Seifert forms of K0 and K1 restricted to I(K0) and I(K1), respectively,
are isomorphic to each other.

Remark 4.10. The usual (2n− 1)-dimensional spherical knot cobordism group
C2n−1 acts on the cobordism semi-group of simple (2n− 1)-knots with torsion free
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homologies by connected sum. The orbit space of the action inherits a natural semi-
group structure. Then this orbit space contains infinitely many free generators as a
commutative semi-group for n ≥ 3.

Moreover, for an arbitrary spherical simple (2n − 1)-knot Σ whose Alexander
polynomial is nontrivial and irreducible, K]Σ is never cobordant to K for any simple
(2n − 1)-knot K, since the Alexander polynomials of K]Σ and K do not satisfy a
Fox-Milnor type relation necessary to be cobordant (see [B-M, (5.1) Proposition]).

In the following example we give a pair of knots for which their connected
sum with any spherical knots are never cobordant. This answers the question (Q)
mentioned before negatively.

Example 4.11. [B-M-S] Let us consider the following unimodular matrices:

L0 =
(

0 1
(−1)n+1 0

)
and L1 =


0 0 1 0
0 0 0 1

(−1)n+1 0 0 1
0 (−1)n+1 0 0

 .

Then, for every integer n ≥ 3, there exist simple fibered (2n−1)-knots Ki in S2n+1

whose Seifert matrices are given by Li, i = 0, 1 (see [D1, 2]). Note that if we denote
their fibers by Fi, i = 0, 1, then F1 is orientation preservingly diffeomorphic to
F0](Sn×Sn). In particular, K0 and K1 are orientation preservingly diffeomorphic
to each other.

It is easy to verify that the Seifert form restricted to I(K1) is the zero form,
while it is not zero for K0. Hence, by Proposition 4.9, K0]Σ0 is never cobordant to
K1]Σ1 for any spherical (but not necessarily simple or fibered) knots Σ0,Σ1.

Note that for this example, we have Hn−1(Ki) ∼= Z⊕ Z, i = 0, 1.

Let us give another kind of an example together with an argument using the
Alexander polynomial.

Example 4.12. [B-M-S] Let us consider the unimodular matrices

L0 =
(

1 1
0 1

)
and L1 =


1 1 1 1
0 1 0 0
−1 0 0 1
−1 0 0 0


and their associated simple fibered (2n− 1)-knots Ki, i = 0, 1, with n ≥ 4 even. As
in Example 4.11 we see that K0 and K1 are orientation preservingly diffeomorphic
to each other.

Now, suppose that for some spherical (2n − 1)-knots Σi, i = 0, 1, K0]Σ0 is
cobordant to K1]Σ1. We may assume that Σ0 and Σ1 are simple. The Alexander
polynomials of K0 and K1 are respectively

∆K0(t) = det(tL0 + tL0) = t2 + t+ 1

and
∆K1(t) = det(tL1 + tL1) = −(t4 + t3 − t2 + t+ 1).

Both of these polynomials are irreducible over Z. If K0]Σ0 is cobordant to K1]Σ1,
then by [B-M, (5.1) Proposition], we must have a Fox-Milnor type relation

(R) ∆K0(t)∆Σ0(t)∆K1(t
−1)∆Σ1(t

−1) = tλf(t)f(t−1)
15



for some λ ∈ Z and f(t) ∈ Z[t, t−1], where ∆Σi
(t) denote the Alexander polynomial

of Σi, i = 0, 1.
Note that we have |∆K0(1)| = |∆K1(1)| = 3 and |∆Σ0(1)| = |∆Σ1(1)| = 1.

Since ∆K0(t) is irreducible of degree 2, and ∆K1(t) is irreducible of degree 4, the
relation (R) leads to a contradiction.

Hence, K0]Σ0 is not cobordant to K1]Σ1 for any spherical (not necessarily
simple or fibered) (2n− 1)-knots Σ0,Σ1. In this example we have Hn−1(Ki) ∼= Z3,
for i = 0, 1.

The last example gives non cobordant 3-knots with isomorphic Seifert forms.

Example 4.13. Let M be a nontrivial orientable S1-bundle over the closed
connected orientable surface of genus g ≥ 2. Note that H1(M) is not torsion free
in general. Let K1,K2, . . . ,Kn be the simple fibered M-knots constructed in [S4,
Theorem 3.1]. They have the property that their Seifert forms are isomorphic to
each other, but that any such isomorphism restricted to H2(Ki) cannot be realized
by a diffeomorphism. Thus, the Seifert forms of Ki are algebraically concordant
to each other, but are not spin concordant. Hence they are not concordant by
Proposition 3.6, which is valid also for non-free simple fibered 3-knots.

5. Even dimensional knots

We want to consider now cobordism classes of codimension two embeddings of
even dimensional manifolds which are not necessary spheres. So we define

Definition 5.1. A closed (n− 1)-connected oriented 2n-dimensional manifold
embedded in the (2n+ 2)-sphere S2n+2 is called a 2n-knot.

Recall that in [K1] M. Kervaire showed that C2n, the group of cobordism classes
of 2n-spheres embedded in S2n+2, is trivial; and when n ≥ 3 R. Vogt [V2] proved
that the embeddings of a 2n-manifold, which is closed and (n − 1)-connected, in
S2n+2 are cobordant all together. The restriction of the dimension comes from the
difficulty to do embedded surgeries in low dimensions, and the impossibility to use
the h-cobordism theorem.

To prove that C2n is trivial M. Kervaire showed that an embedded n-sphere in
Sn+2 = ∂(Bn+3) is the boundary of a (n+ 1)-ball embedded in Bn+3.

5.1. Cobordism of surfaces. In the case of non spherical 2n-knots, we can
prove that any connected and closed surface (oriented or not) embedded in S4 is the
boundary of an embedded handlebody in the ball B5. More precisely, in [B-S2] we
characterize the connected closed surfaces embedded in S4 which are the boundary
of an embedded handlebody in B5. To do that we need to consider Pin− structure
on manifolds.

A Pin− structure on a manifold X is the homotopy class of a trivialization of
TX⊕detTX⊕εN over the 2-squeleton X(2) where TX denotes the tangent bundle,
detTX denotes the orientation line bundle and εN is a trivial bundle of dimension
N sufficiently big. A Pin− structure is equivalent to a Spin structure when X is
orientable.

The important fact is that when M is a closed surface embedded in S4, since
M is characteristic (i.e., as a submanifold of S4 it represents the mod 2 homology
class dual to the second Stiefel-Whitney class of S4) the unique Spin structure on
S4 rM induce a unique Pin− structure on M (see [Ki-T1]).
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We denote by Hg the orientable handlebody of dimension 3; which is obtained
by gluing g orientable 1-handles on the 3-ball. The boundary of Hg is the orientable
closed surface of genus g. And we denote by Ig the non-orientable handlebody of
dimension 3; which is obtained by gluing g non-orientable 1-handles. The boundary
of Ig is the closed non-oriented surface of non-orientable genus 2g. In the following
we will denote by Kg the handlebody Hg or Ig.

Definition 5.2. [B-S2] Let M be a connected closed surface embedded in S4.
Suppose that the genus of M is g if M is orientable and 2g if M is non-orientable.
Let ψ : ∂Kg →M a diffeomorphism. We say that ψ is Pin− compatible if the Pin−

structure on ∂Kg induced by ψ extend to Kg.

From now S4 will be oriented. When a connected closed surface M is embedded
in S4 we denote by e(M) ∈ Z the Euler number (see [Wh1]) of the normal bundle
of M in S4. When M is oriented this number is always equal to 0. But when
M is non-orientable, according to [Wh1] the set of value of e(M) is equal to
{−2g, 4− 2g, 8− 2g, . . . , 2g}.

When M is orientable there always exists a submanifold V of S4 such that
∂V = M (see [E]). Similary to the case of odd dimensional knots we call such
a manifold V a Seifert manifold for M . If M is non-orientable a Seifert manifold
exists for M if and only if e(M) = 0 (see [Go-L]), then remark that the unique Spin
structure on S4 induces a Pin− structure on V and this Pin− structure induces a
Pin− structure on M , which is exactly the same described before (see [F]).

In [B-S1] we proved the following theorem

Theorem 5.3. [B-S1] Let M be a connected closed surface embedded in S4 =
∂B5, and let ψ : ∂Kg →M a diffeomorphism, where Kg denotes the 3 dimensional
handlebody with g 1-handles. There exists an embedding ψ̃ : Kg → B5 such that its
restriction to the boundary coincide with ψ if and only if e(M) = 0 and ψ is Pin−

compatible.

Remark 5.4. Since every 3-dimensional manifolds admits a Heegaard spliting
of genus g, then as a consequence of Theorem 5.3 we have a new proof of Rohlin’s
Theorem on embeddings of 3-dimensional manifols in R3 (see [B-S2]).

The proof is based on the construction of the handlebody by embedded surgeries
in the ball B5 on a Seifert manifold V for M . To do that we first do the gluing
V ′ = V ∪∂ Kg of V and Kg along their boundaries. Then we use the nullity
of the group ΩPin−

3 to have the existence of an abstract manifold W with V ′ as
boundary. And then we give a handle decomposition of a manifold W ′ ∼= W such
that ∂W = ∂W ′, with only handle of index 2. This can be done by removing
handles of index 1 and 3 using a modification described by A. Wallace [Wa]. Then
we can do the corresponding embedded surgeries since we only have handle of index
equal to 2.

As a corollary of the Theorem 5.3 we can prove the following.

Corollary 5.5. [B-S1] Let M be a connected closed surface embedded in
S5 = ∂B5. There exists a 3-dimensional handlebody embedded in B5 such that its
boundary coincides with M if and only if e(M) = 0.

As M. Kervaire did for spherical knots, using Theorem 5.3 we can describe
cobordism classes of connected closed surfaces embedded in S4.
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Theorem 5.6. [B-S1] Let M0 and M1 be two connected closed surfaces embed-
ded in S4. Then they are cobordant if and only if they are diffeomorphic as abstract
manifolds and they have same Euler number.

To prove this Theorem, we first remark that (∂Kg rIntB2)×[0, 1] ∼= K2g. Then
we construct Σ = (S4 r IntB4)× [0, 1] ∼= B5, such that M0 ∩B4 = M1 ∩B4 = B2

and (B4, B2) is the standard pair. Then we find a Pin− compatible diffeomorphism
between (M0 r B2) ∪ (∂B2 × [0, 1]) ∪ (M1 r B2) = M0]M1 ⊂ Σ and ∂

(
(∂Kg r

IntB2) × [0, 1]
)
∼= ∂K2g. So we can apply Theorem 5.3 to embed K2g in Σ. The

cobordism between M0 and M1 is obtained by gluing back IntB4 × [0, 1] to Σ, and
then replace K2g by Kg × [0, 1] with boundary M0

∐
M1.

In the case of oriented surfaces, two oriented closed surfaces embedded in S4

are cobordant if and only if they have same genus. Hence the monoide of cobordism
classes of connected closed oriented surfaces embedded in S4 is isomorphic to the
monoide of the non negative integers.

For non-orientable surfaces, first remark that by adding the cobordism class
of an embedding of S2 into S4 to the associative magma of cobordism classes of
non-orientable surfaces embedded in S4, we get a monoide denote by M. We can
also describe the monoide structure of M. Let RP 2

− the projective plane trivialy
embedded in S4 with Euler number equals to −2, and RP 2

+ the projective plane
trivialy embedded in S4 with Euler number equals to 2. For a couple of positive
integers (k, l) such that k+ l ≥ 1, let Mk,l be the surface embedded in S4 obtained
by doing the connected sum of k copies of RP 2

+ and l copies of RP 2
−. Then we

have e(Mk,l) = 2(k − l) and the genus of Mk,l is equal to k + l. Hence the surfaces
Mk,l are some complete representant of the cobordism classes of connected closed
non-orientable surfaces embedded in S4, and M is then isomorphic to the monoide
of pairs of non negative integers. If we denote by [M ] the cobordism class of the
surface M embeded in S4, and by g(M) the genus of M , the isomorphism is given
by

M → N×N

[M ] 7→
(

2g(M)+e(M)
4 , 2g(M)−e(M)

4

)
5.2. concordance of surfaces. As a consequence of Theorem 5.3 we have

Theorem 5.7. [B-S2] Let Σ be a connected closed surface. Two embeddings
of Σ into S4 are concordant if and only if the Pin− structures induced by these
embeddings coincide and the Euler numbers of these embeddings are equal.

In the case of spherical knots the two notions of cobordism and concordance
coincide since every diffeomorphism of S2 which preserve the orientation is isotopic
to identity. But if Σg denotes the oriented closed surface of genus g, then for every
embedding f : Σg → S4 there exists an orientation preserving diffeomorphism
h : Σg → Σg which do not preserve the Pin− structure induced by f . Henceforth
the embeddings f ◦ h and f are not concordant.

The group of orientation preserving diffeomorphism of an oriented connected
and closed surface acts transitively on the set of Pin− structure with trivial Brown
invariant (see [B-S2]). This imply that the number of concordance classes of the
embeddings of an oriented connected closed surfaces is equal to the number of
Pin− sturcture with trivial Brown invariant. If we denote by Ag the number of
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concordances classes in the case of the oriented connected closed surfaces of genus
g, then we have

Ag = 2g−1(2g + 1)
Let us denote by Cg the number of concordances of the embeddings of the non

orientable connected closed surface Ng of non orietable genus g. According to [M] if
M is a connected closed non orientable surface of non orientable genus g embedded
in S4, then e(M) ∈ {−2g, 4− 2g, 8− 2g, . . . , 2g} and all the value in this set can be

realized. Hence Cg =
g∑

i=0

Cg,−2g+4i, where Cg,−2g+4i is the number of concordance

classes of embeddings ofNg in S4 with Euler number equal to −2g+4i. Moreover by
[Ki-T1] Cg,−2g+4i is equal to the number of Pin− structure with Brown invariant
equal to −g + 2i modulo 8.

β g: impair g: pair

0 0 2(g−2)/2(2(g−2)/2 + 1)

1 2(g−3)/2(2(g−1)/2 + 1) 0

2 0 2g−2

3 2(g−3)/2(2(g−1)/2 − 1) 0

4 0 2(g−2)/2(2(g−2)/2 − 1)

5 2(g−3)/2(2(g−1)/2 − 1) 0

6 0 2g−2

7 2(g−3)/2(2(g−1)/2 + 1) 0

Table 1: Number of Pin−structure on Ng with Brown invariant β ∈ Z8

With the values given in Table 1, we get

Cg =
{

2g−2(g + 1) if g is odd,
2g−2(g + 1) + 2(g−2)/2 if g is even.

5.3. Cobordism of 4-knots. In the study of cobordism of embeddings, the
only case which remains is for 4 dimensional manifolds. In [B-S3] we prove the
following Theorem

Theorem 5.8. [B-S3] Let M be an oriented, closed and simply connected 4
dimensional manifold. All the embeddings of M into S6 are concordant.

Remark 5.9. Since concrodance imply cobordism these embeddings are also
cobordant.

The proof is an adaptation of the proof of Theorem 5.3.

6. Questions

To conclude this paper we want to list some open questions.
(Q1) Is the multiplicity of complex holomorphic germs of functions with an

isolated singularity a cobordism invariant?
(Q2) Is Spin cobordism of Seifert forms associated with non free 3-knots a

sufficient condition of cobordism?
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[Wh1] H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, pp. 101–
141, University of Michigan Press, Ann Arbor, Mich., 1941.

[Wh2] H. Whitney, The Self-Intersection of a Smooth n-Manifold in 2n-Spaces, Annals of Math.

45 (1944), 220–246.
[Za] O. Zariski, On the topology of algebroide singularities Amer. J. Math. 54 (1932), 453–

465.
[Ze] E. C. Zeeman, Unkontting combinatorial balls, Ann. of Maths 78 (1963), 501–526.
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