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Abstract. A symplectic connection on a symplectic manifold, unlike the Levi-Civita con-
nection on a Riemannian manifold, is not unique. However, some spaces admit a canonical
one (symmetric symplectic spaces, Kidhler manifolds ... ); besides, some “preferred” sym-
plectic connections can be defined in some situations (see [6]). These facts motivate a study
of the symplectic connections inducing a parallel Ricci tensor. This paper gives the possible
forms of the Ricci curvature on such manifolds and gives a decomposition theorem (linked
with the holonomy decomposition) for them.
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Introduction and motivation.

On a Riemannian or pseudo-Riemannian manifold is defined the Levi-Civita connection.
The symplectic analog is the following. Let (M,w) be a symplectic manifold; a connection
D on M is said to be symplectic when:

e D is torsion-free: for every vectorfields « and y, Dyy — Dya — [z, y] = 0,
e the symplectic form is parallel for D : Dw = 0.

To such a connection D is associated its (1,3)-curvature tensor R and its Ricci curvature
tensor, here denoted by ric. Let us recall ric is the bilinear symmetric form defined on each
tangent space by: ric(u,v) = tr R(u,.)v. Unlike in the (pseudo-)Riemannian situation, the
set of symplectic connections is an affine space of infinite dimension (see 1(b) below). In
some situations however, there is a privileged one.

In case M is a symmetric symplectic space for instance (in the natural sense intro-
duced in [11]; see also [2] for the symplectic case), it has a canonical connection, which is
symplectic. This connection is symmetric, so in particular its Ricci curvature is parallel.

In case M is a (pseudo-)Riemannian manifold carrying a parallel symplectic form — e.g.
a Kidhler manifold —, the Levi Civita connection is also symplectic with respect to it.

On a general symplectic manifold, F. Bourgeois and M. Cahen have introduced in [6]
a variational principle distinguishing so-called “preferred” symplectic connections. The
corresponding field equations are:

D, ric(y, z) + Dy ric(z,z) + D, ric(z, y) = 0.

In particular, symplectic connections the Ricci curvature of which is parallel, i.e. such that
Dric = 0, are therefore preferred. More generally, they have a specific interest in this theory
and were soon studied by M. Cahen and al. in [7]. Note also that the canonical connection



of a symmetric symplectic manifold is thus preferred.

Besides, Riemannian manifolds the Ricci curvature of which is parallel, shortly called
here Ricci-parallel, are, at least locally, products of Einstein manifolds. Pseudo-Riemannian
Ricci-parallel manifolds admit an analogous, though slightly different decomposition; see [5].
We show here a similar result for Ricci parallel symplectic connections (Main Theorem in
section 2). It shall be noticed that the algebraic part of the result is the same as in the
pseudo-Riemannian case, the geometrical consequence being weaker in general.

The structure of the article is the following. After some lemmas and remarks given in
section 1, the Main Theorem is stated and commented in section 2, then proven in section
3. Section 4 gives a refinement of the decomposition obtained in the Main Theorem and
studies the subfactors. Finally section 5 provides some examples and last remarks.

Notations. On a symplectic manifold with a symplectic connection (M,w, D), we will
denote by ric the Ricci tensor and by Ric the endomorphism induced by ric, i.e. the
endomorphism such that ric(.,.) = w(., Ric.).

We denote by H the holonomy group of (M, D), and classical Lie algebras by old
German letters. For example, if p € M, the symplectic Lie algebra sp(w,) is the algebra
of the w,-antiselfadjoint endomorphisms of T, M; besides h denotes the Lie algebra of the
holonomy group.

1 Elementary facts about symplectic connections.

We need some basic facts in the following; pointing them out here together will also make
symplectic connections more familiar.

(a) As hinted at above, the properties satisfied by a symplectic connection D are those
that define the Levi-Civita connection of a Riemannian or pseudo-Riemannian metric g,
if you replace w by ¢g. On any symplectic manifold, such a connection exists but it is
not unique. The space of the symplectic connections associated with a given form w is
parametrized by S3T*M:; let us recall the

Proposition 1 let D be a symplectic connection on (M, w), then a connection A is sym-

plectic iff : w(D.,") —w(A.-,-) € S3T*M.
Proof. It is a straightforward remark, see [10] p.48.

(b) The curvature tensor R satisfies the usual algebraic properties :

e R(z,y) = —R(y,z),

o w(R(z,y)z,t) =w(R(z,y)t,z) i.e all the R(z,y) are w-antiselfadjoint,
o R(z,y).24+ R(y,z).z+ R(z,z).y=0  “Bianchi identity”

In the (pseudo-)Riemannian situation, an additional relation involving R and the metric g
then follows:

g(R(z,y).2,t) = g(R(z,1).2,y) (1)



It is not true with R and w, w being an alternate form. However, notice that, provided
all the R(z,y) for z,y € T, M are antiselfadjoint with respect to a bilinear symmetric
form ¢, we get (1) for R and g, whether g is degenerate or not. The proof does not need
nondegeneracy, see [12] p.54 for example.

In particular, we get the following little

Lemma 1 If g is a parallel symmetric bilinear form on (M, D), R and g salisfy (1).

Note. Relation (1) between R and the metric ¢ is one of the essential tools giving the
pseudo-Riemannian result [5]. So is it here: the Main Theorem is based on the fact that R
and ric satisfy (1), see the next remark.

(c) In the (pseudo-)Riemannian situation, ric is the only non-trivial invariant trace of R.
In the symplectic case, there is a priori another one : w,v — try[w(R(.,.)u,v)]. However,
it turns out that it is the same, up to a scalar; let us recall the (standard) little

Lemma 2 [f (M,w, D) is a symplectic manifold with a symplectic connection:
try[w(R(.,.)u,v)] = —2ric(u, v).

Proof. It follows from Bianchi identity; as the result will be useful, let us recall its proof.
Let 2n be the dimension of M, p be a point in M and (e;)#*, be a basis of T, M such
thatw=> .. e*Ae:, ;. Foraand bin T)M:

) n+i°
try[w(R(:, -)a,b)]
Yicnw(B(€i, enyi)a,b) — w(R(enti, €)a, b)
23 icn w(R(€i engi)a, b)
= 2 <Ez§n w(R(a, enqi)ei, b) +w(R(e;, a)ents, b)) (Bianchi Identity)
= 2 (Ezgn w(R(a,enti)b, €;) — w(R(a,e;)b, en-l—i))
—2tr[R(a, -)b]
= —2ric(a,b) 0

Important remark. The bilinear form ric is hence symmetric (what also holds for a Levi-
Civita connection, but not in general for a torsion-free affine connection). In particular, Ric
is w-antiselfadjoint.

With lemma 1, if ric is parallel, it implies also that (1) holds for ric and more generally
for all the bilinear symmetric forms w(., Ric P(Ric?).) where P is a polynomial.

(d) The endomorphism Ric in this framework.

A final preliminary is necessary before stating the theorem. It is some standard linear
algebra but has to be precisely stated here.

Let p be a point of M; Ric being parallel, its minimal polynomial (i.e. the monic
generator of the ideal of the polynomials P of R[X] such that P(Ric) = 0) is defined
independently of the point. Now Ric|, € sp(w),), so we can apply to the complexified
endomorphism Ric€ of T, M @ C the following well-known



Lemma 3 Let (F,w) be a complex vectorspace endowed with a nondegenerate alternate
form w and U in sp(w). The minimal polynomial p of U then satisfies: p(X) = £p(—X).
There thus exists an L C C such that LU(—L) = {nonzero eigenvalues of U} and LN(—L) =
0; with such a L:

L/

E=kerU™ & ( @ (ker(U — A1d)** @ ker(U + /\Id)‘”)) ,
NEL

where oy is the (common) power of (X — X) and (X + A) in p. The decomposition is

orthogonal with respect to w and each space ker(U + A1d) is w-totally isotropic. Here ag

may be zero.

Furthermore, Ric being real, its minimal polynomial g is also invariant under complex
conjugation; so taking for example A = {eigenvalues of Ric} N (R* x iR*) C C, we get:

FPo=X appearing if 0 € A
p= ] Py with:{ Py=(X=A)(X+2) if A € R*UiR* (2)
AEA Py=(X -\ (X+X) (X=X (X+)) otherwise.

and the corresponding decomposition of T, M:

L
TyM = @ ker(P{*(Ric)). (3)
AEA
Remark. This is the finest w-orthogonal decomposition of T, M that is stable under the
action of the centralisor of Ric. However, under this action and for example for A € R*:

e ker(P"*(Ric)) = ker(Ric —A1d)** & ker(Ric +A1d)**; each factor being stable but

w-totally isotropic.

o ker(Ric —A1d)** and ker(Ric +A1d)** are irreducible iff ay = 1.

2 The Main Theorem.

A Riemannian manifold with parallel Ricci curvature is, at least locally, a product of Ein-
stein manifolds (its only a remark, see [5], pp.2 and 3). Let us recall a manifold is said
Einstein if ric is proportional to the metric. In our situation, this notion has no sense, since
w is alternate and ric symmetric.

Nevertheless, being a local product of Einstein Riemannian manifolds can be stated in
other terms: ric is parallel and the minimal polynomial of Ric has simple roots in C (then
necessarily in R, g being positive definite). That statement has a sense in our symplectic
situation. Is it true? Yes, except possibly for the root zero. It is the same result as for a
pseudo-Riemannian connection, the proof being quite different: see [5].

Remark. Before stating the theorem, let us recall a straightforward fact linking holonomy-
stable subspaces with some foliations. If (M, D) is a manifold endowed with a torsion-free
connection D, if p is a point of M and if the holonomy group stabilizes a subspace A of
T, M, then A can be extended by parallel transport to a (parallel) distribution on M.
The connection being torsion-free, this distribution is integrable; the leaves of the integral
foliation are moreover totally geodesic.



Main Theorem. Let (M,w, D) be a symplectic manifold with a symplectic connection
the Ricci curvature ric of which is parallel and p € M. Let u be the minimal polynomial of
Ric and pp = [[\cp P\ the decomposition (2) of u given in section 1. For simplicity of the
statement, we set 0 € A and allow ag to be null. Let us also denote by M) the (parallel)
distribution ker(Py* (Ric)), by M1 the integral leaf of M) through a point ¢ and simply by
M, the leaf M%. Then:

(1) For each XA # 0, avy, is equal to one and: ap < 2.

(ii) Setting, for each A, wy = wirpq, and Dy = Dippy,, (My,wy, D)) is a symplectic
manifold with a symplectic connection. Now, the unique local diffeomorphism M — [[, M\
preserving the integral foliations of the M) and equal to identity on the M identifies, on
a suitable neighbourhood of p, M to [[, M. With this identification:

(M, w, D) = (ITy M, TTywr, (I1 D) +9),

with S a (1,2)-tensor on M. Moreover D and [[, D) have the same Ricci curvature and
S satisfies the following properties:

o w(S(.,.),.) is completely symmetric,

e S is a section of 73(TiMy), where mq is defined, at each point ¢, as the canonical
projection T,M = @)\T, MY — T, MY,

o V(z,y) € TyM, tr[z = D, S(z,y)] — tr[z = S(z, 5(y, 2))] = 0,
e Im Ric C ker S,

the last property being a consequence of the third one.
We prove the main theorem in section 3. We make here some remarks.

(a) As the decomposition T, M = @, M) is unique, either is the collection ((My,wy,
D)) xea,S).

(b) Once supposed that ric is parallel, the first point of the theorem is a purely “point-
wise” consequence of the algebraic properties of the curvature tensor R,

The second one is a consequence of an adaptation of de Rham’s decomposition theorem
of Riemannian manifolds, see Proposition 2 below.

Point (i) will then give information on the factors M given by point (ii): see section
4, in particular Proposition 4 in section 4.2.

Proposition 2 Let (M,w, D) be a symplectic manifold with a symplectic connection and
p € M. Suppose that the restricted holonomy group HO preserves an w-orthogonal decom-
position:
1
Tp./\/l = ¢ M,
0<i<k
of T,M. Then for each i, M; induces by parallel transport a parallel, thus integrable,
distribution on M, also denoted by M;.
Let (M;) be the integral manifold through p of the distribution M;. Then:



(i) The (Mi,wi, D;) = (M;,wiram,, Ditag,) are symplectic manifolds with a symplectic
connection.

(ii) The unique local diffeomorphism preserving the foliations induced by the M; and equal
to identily on the M; identifies, on a suitable neighbourhood of p, M to [[, M;. On
this neighbourhood: w =[], w;.

(iii) With this local identification M ~ [, M;, there is S a (unique) (1,2)-tensor on M
such that: D = ([[; D;) + S.

Moreover, S salisfies the following conditions:
o w(S(.,.),.) is symmetric,

o S =73".5% where each S* is a section of 77(TIM,), where m; is defined, al each point
q, as the canonical projection T,M = ©; T M — T MY,

e For each v and each ¢ € M;, Sé =0, i.e.r Sy, s null on M.

This proposition is, adapted to a symplectic connection, the local (and easy) part of de
Rham’s theorem. Its proof will also be given in section 3. Two points of the Riemannian
theorem fail here to be true:

e The result is weaker — and a little deceptive — because (M, D) is not a product
for the affine structure: M ~ [[.(M;,w;) but D # [[, D;. This is due to the non-

uniqueness of a symplectic connection on a symplectic manifold.

e Fora Riemannian manifold M, T, M is the sum of a trivial subrepresentation of / and
of a sum of irreducible subrepresentations; a consequence is the uniqueness of this de-
composition. It is not the case here, since T, M may admit reducible-indecomposable

factors. So there does not exist in general any canonical decomposition of T\, M under
the action of H (or of HY).

Nevertheless, in case (M,w, D) is a symmelric symplectic space, a quite unexpected de-
composition result holds, see [4], theorems 2.3 and 2.12. Besides, point (iv) of Proposition
2 will in fact not be used here; it is hewever mentioned as a natural part of the result.

(c) In general, the local symplectomorphism (M, w) — [[,(My,w)) of the Main The-
orem is not an isomorphism of affine structure from (M, D) on [], (M, D). However, it
s one in the case Ric is nondegenerate; the following decomposition holds then:

Corollary 1 Let (M,w, D) be a symplectic manifold with a symplectic connection, the Ricci
curvalure ric of which is parallel and nondegenerate. Let p be the minimal polynomial of
Ric and p = T]\cp Py* the decomposition (2) of p given in section 1. Then:

(1) For each A, ay is equal to one (and 0 ¢ A since ric is nondegenerate).

(ii) There exists a unique family ((My,wx, Dy))rea of symplectic manifolds with a sym-
plectic connection such that

e for each A, the minimal polynomial of Ricay, is P,
e (M,w, D) is locally affinely symplectomorphic to [], (M, wn, Dy).



(iii) If (M,w, D) is moreover geodesically complete and simply connected, the isomorphism
of point (ii) is global.

Proof. Points (i) and (ii) are simply the case “ag = 0, Mg reduced to a point” of the
Main Theorem: then S = 0, what gives points (i) and (ii). Point (iii) is an immediate
consequence of the global part of Wu’s theorem ([13], see here in section 4.1) applied to the
pseudo-Riemannian manifold (M, ric). O

We can also easily understand autonomously the reason why it works. In that case
indeed, (M, ric) turns out to be a pseudo-Riemannian manifold (which is moreover Einstein
with constant 1 by definition). Ric being parallel, the decomposition

T,M = /\ée;A ker (P2 (Ric))
is holonomy stable. Applying Wu’s theorem, the pseudo-Riemannian generalization of de
Rham’s theorem (see [13]), we get that M is isomorphic to the Riemannian product of the
factors M. Besides, the symplectic connection D is torsion-free and satisfies Dric = 0, so
it is the Levi-Civita connection of the metric ric. Consequently, the Riemannian product is

also a affine morphism (M, D)~ [], (M, D)). O

(d) Conversely, if (M;,w;, D;)%_, are symplectic manifolds with Ricci-parallel symplectic
connections, with Ric; nondegenerate except for ¢+ = 0, then a manifold of the type

(IT; (M, i), TT; Di + )

where S satisfying the properties listed in the Main Theorem, is Ricci-parallel. It is an
immediate consequence of proposition 1 combined with lemma 6 below.

3 Proof of the Main Theorem.

Proof of Proposition 2 of section 2. We have to check that the Riemannian proof (see
[Ko-No] pp.179 sq.) remains valid or can be adapted at each step. Let us do it for k = 2,
the general case comes then by induction. We denote My, My, My and My by A, A, B
and B respectively. For another point ¢ of M, A, (resp. B,) will stand for the integral leaf
of A (resp. B) through g.

(i) At p, w4 and w|p are nondegenerate. Now A and B being integral leaves of parallel
distributions and w being parallel, wt4 and wyrs are nondegenerate; let us denote them
by w? and wB. A is totally geodesic, so the restriction D4 to T.A of the connection D is
the connection induced by D on the submanifold .A. Hence similarly for B. Eventually, as
Dw = 0, DAw* = 0 and (A,w?, DA) is (locally) a symplectic submanifold of M, with a
symplectic connection (hence also for (B,w?, DF)).

(ii) The fact that M is locally canonically diffeomorphic to A x B is obvious and purely
differential, see [Ko-No], lemma p.182, for a formal proof. We can then take local coordinates
of M of the form ((ai)?ﬁl, (bi)fﬁl) such that, at every point ¢: A, = span((’?/(’?ai)?ﬁl and
B, = span(a/abi)fjl.

Proving that w is equal to the product form w

La/am [w(a/aa], 0/0ak)] = 0.

A x w8 is showing: for each (4,7, k),



It follows ([Ko-No], prop. 5.2 p.182), from the fact that D is torsion-free. Indeed for each
(1,5): Dayan,(0/0a;) = Da/aa](a/abi)- Now, as the distributions A and B are parallel,
Dyyov;(0/0a;) € A and Dy;y,,(9/0b;) € B. Thus:

D8/8b1‘ (0/0(1]) = Da/aa] (0/0()2) =0. (4)
Then:

Lyjop,|w(0/0a;,0/0ay)] =
(Do) (9] 0a;,0/0ar) +w(Dayay, (0/0a;), 0/ 0ar) +w(d/daj, Dyjap,(9/0a ) = 0
SN—— S— ——
=0 =0 =0
(iii) and the properties of S. The product connection DA x D% on A x B is

a symplectic connection. Indeed, the local product structure of (M,w) induces a local

diffeomorphism between 4, and A, for each point ¢, preserving moreover w and mapping
D# on (DA x DP)14, by definition of DA X DB. As DAw = 0on A,, (DA x DB)ira,w = 0.
So by proposition 1, there exists a (2,1)-tensor S on A, such that:

o Dipa, = (D x DP)jpa, + 54
o w(SA4(,,.),.) is symmetric.

Now, as shown above, at any point of M and for any indexes (i,7), Dy/ap,(0/0a;) =
D3;54,(0/0b;) = 0. The same equality is true for the procuct connection DA x DB, by
definition of it. So, for all (¢,7), S(9/0a;,d/0b;) = 0. Therefore, as S is a tensor, S|, can

be factored, pointwise at each point ¢, as S|, = (WA)*(Srq‘q) + (WB)*(Siq)7 where my4 is the
projection T,M = A, @ B, — A, and similarly for 7. The result follows. O

In addition to proposition 2, we will also use three more lemmas. Point (1) of the Main
Theorem is a consequence of an essential technical lemma we can state autonomously.

Lemma 4 Let p be a point of M, U € sp(w),) (i.e. U is an w-antiselfadjoint endomorphism
of T,M), commuting with all the R(z,y) for x,y € T,M. Let us take a,b € T, M with
b € ImU. The bilinear form w(R(.,.)a,b) is skew-symmelric; let us denote by A, the
w-selfadjoint endomorphism such that: w(R(.,.)a,b) = w(., Agp.). Then:

Agp=—-UoR(a,c) = —R(a,c) o U, where c is any antecedent of b by U.
Proof of the lemma. Let us simply write here A = A,; and let us take ¢ such that
Uc=1b. As U € sp(w),), the bilinear form u : (z,y) = w(z,Uy) is symmetric; as all the
R(z,y) are supposed to commute with U, notice they are all u-anti selfadjoint:
u(R(z,y)z,t) = w(R(z,y)z,Ut)
= w(k(z,y)UL,2)
= w(UR(z,y)t,2)
= —w(z UR(:E,y)t)
= —u(z, R(z,y)t).
Consequently, by Lemma 1 of section 1, (1) holds for u:

Va,y, z,t, u(R(z,y).2,t) = u(R(z,t).2,y).

To prove the lemma it is sufficient to check: Vz,y € TyM, w(z, Ay) = w(z,U(R(a, c)y)).
Let z,y be any two vectors in T, M. Then:



w(z,Ay) =

1
€ €

)

by definition of u

by (1)

a,c)y) R(a,c) being u-anti selfadjoint

= —w(z,UR(a,c)y) by definition of . O

I
=

Il
|
=
—_
8
=
—~—

Let us also recall the following standard remark:

Lemma 5 Let F be a real or complex veclorspace, < .,. > a reflexive, i.e. symmelric
or skew-symmetric form on E and U a < .,. >-antiselfadjoint endomorphism of E. Let
U=S+T be the decomposition of U into ils semi-simple and nilpotent parts (unique such
decomposition with ST =TS). Then S and T are < .,. >-antiselfadjoint.

For point (ii) we will also need the following (standard) little

Lemma 6 Let D and D' two symplectic connections on a symplectic manifold (M, w) and
S the tensor such that D' = D + S. Let us denote by ric and ric’ the Ricci curvatures
induced by D and D' respectively and by S, the endomorphism S(z,.). Then:

ric’(z, y) = ric(z,y) — tr[z = (D.S)(z, y)] + tr 5z5,.

Proof. It is sufficient to do the proof with vectorfields which are coordinate vectorfields
for some normal coordinate system at some point p in M. For two distinct such vectors u
and v: Dyv = Dyu and, at p, D,v = 0. With such vectors, a straightforward computation
gives:

R'(z,2)y=(D+5).(D+S),y — (D+ S5)(D+5).y
= R($7 Z)y + (Dzs)zy - (Dzs)a:y + SzSzy - Sszy

So: ric/(z,y) = ric(z, y) + tr[z = (DzS).y — (D.S)zy — SzS.y + S,S:y]. Now:

o [z 5.S:y] = [z S(z,5(2,y))] = Ss(zy)- But w(S(.,.),.) is symmetric, so in par-
ticular: w(Syv, w) = w(S(u,v), w) = w(S(u, w),v) = —w(v, S (v, w)) = —w(v, Syw))
so the Sy are in sp(w), thus trace-free. So tr[z — S,5,y] = 0.

e For the same reason, tr(D;S), = 0. So by symmetry of S: tr[z — (D;5),y] =
tr[(DyS),] = 0.

e By symmetry of S, 5.5,y = 5.5,z.

The result follows. O
We can now state the

Proof of the theorem.
(i) Let Ric = S+1T be the decomposition of Ric into its semi-simple and nilpotent parts.

As S and T are polynomials in Ric, they are themselves parallel. Let p be a point in M, let
us consider the endomorphism 7" acting on T, M. Let us take b € Im T, say b = T'(c). By



Lemma 5, T € sp(wp); T being parallel, it commutes with all the R(z,y) for z,y € T, M,
we can therefore apply Lemma 4. Combined with Lemma 2 it gives:

Ya € TyM, ric(a,b) = -3t [R(.,.)a,b] (Lemma 2)
= —1tr[R(a,c)oT] (Lemma 4).

But T is parallel so it commutes with R(a,c); thus, T" being nilpotent, so is R(a,c)oT.
So R(a,c) oT is trace-free, what means that: Ve € T, M, ric(a,b) = 0, that is to say:
b € ker Ric. So we get (at any point):

ImT C kerRic.

That is the wanted result. Indeed if g is the minimal polynomial of Ric you can write:

p=XJxX -2
A

where A runs over the set of the nonzero eigenvalues of Ric and where «q is the — possibly
null — power of X in p. Then Ric is nondegenerate on ker [[], (Ric —A1d)**] so on this
space: Im7T = {0} i.e. T'= 0 i.e. all the ay for A a nonzero eigenvalue of Ric are 1. On
ker S = ker Ric™, T is equal to Ric so ImT C kerT i.e. ag < 2.

(ii) The decomposition and the tensor S are given by Proposition 2. Let us denote by
ric’ the Ricci curvature of the product connection D —.S and let us prove that ric’ = ric. Let
us take (xf)fgl, where n), = dim M, local coordinates on each My, in a neighbourhood
of p; ((1)™2,)aea are coordinates of M in a neighbourhood of p. Let ¢ be a point of M in
such a neighbourhood and ¢, its projection on M, for any A € A.

e From the definition of the product connection follows: riciq(@/@ac?7 0/037;\) =
riciqk(a/axg\, d/dx;\) for all 4, 5.

e By (4) applied to the distributions M) and the coordinate vectors 9/dz}: A # X =
Vi, 7, Da/ax?/a/amg\ = 0. In particular, the vectorfields 8/833? are D-parallel along any
path tangent to ©yz\My. Now ¢ and ¢, are joined by such a path so, as ric is D-
parallel by assumption, the parallel transport along this path gives: I‘iCm(@/@.T?, 0/03@?) =
ricm(@/@x;\, O/Ox;\) for all 4, j.

Besides, by construction, D and D — S coincide on each TM ), so either do their
Ricci curvatures ric and ric’ and therefore, for any A and any (i, j), riciq((’?/(’?x?, d/dx;\) =
riqq(a/axf,a/&r?). Finally, as the M, are mutually ric-orthogonal (by definition of the
M) and ric’- orthogonal (by definition of the product connection), ric = ric’.

The first property of .S comes from Proposition 1. Let us prove the factorization of S.
On the similar integral manifold M5 through any ¢, for X # 0, the nondegenerate bilinear
form ric ¢ is parallel for the product connection (], DA)|TM‘§ and for the original connec-
tion D of M. So these connections are both equal to the Levi-Civita connection of I‘iCM;z\.
So S|TM§ = 0. This gives, together with Proposition 2, the factorization of S.

After Lemma 6 above in this section, S satisfies the third property ¢ff D and D — S have
the same Ricci curvature, what has been shown.

This implies finally that: Im Ric C ker S. To see it, we show the following
Claim: Let D' be a symplectic connection on some integral manifold M¢ of My = ker Ric?

10



through some point ¢, inducing the same Ricci curvature as D and let S be the tensor such
that D' = D+ S’. Then: Im Ric C ker S’.

Let us indeed choose normal coordinates based at gq. Then, for (z,y, z) any triple of
coordinate vectors and ric being parallel:

2ric(DLy, z) = Ly ric(y, 2) + Ly ric(z, z) + L, ric(z, y),

by the same computations than those that give the expression of the Levi Civita connection
of a metric g. So ric(DLy, z) is fixed i.e. is equal to ric(Dyy, z). Therefore, ric(5’(.,.),.) =0
or, equivalently: w(S’(.,.),ImRic) = 0 by definition of Ric. By symmetry of S, it is again
equivalent to: S'(Im Ric,.) = 0. So the claim holds, which completes the proof. O

4 Ricci decomposition and holonomy decomposition.

4.1 A refinement of the decomposition given by the Main Theorem.

The decomposition of (M,w, D) appearing in the Main Theorem may be refined. Let us
introduce a definition.

Definition 1 A pseudo-Riemannian manifold is said weakly irreducible if the holonomy
group does not stabilize any nondegenerate proper subspace.

Remark. Obviously, the holonomy representation is weakly irreducible iff it does not admit
any decomposition into a direct orthogonal sum of stable subspaces.

De Rham’s theorem on the decomposition of the Riemannian manifolds into a product
of irreducible ones admits a pseudo-Riemannian generalization, in fact nearly the best that

could be expected, i.e. the elementary factors are weakly irreducible. We recall the result
of [13], appendix 1 p.389.

Theorem (de Rham, Wu) Let (M, g) be a geodesically complete, simply connected Rie-
mannian or pseudo-Riemannian manifold and p € M. We suppose that the maximal trivial
subspace Mg of H in T, M is nondegenerate. Then:

L .
(i) T,M admits a decomposition, unique up to order: T,M = & M,;, and H the
0<i<k

decomposition: H =~ [[ ;< Hi, where each H; acts weakly irreducibly on each M;; and
trivially on the M; for j # 1.

(ii) M is isometric to the Riemannian product [ [y, M;, where each M; is the max-
imal integral leaf through p of the parallel distribution M® generated by M;'. My is flat.

If (M, g) is not supposed to be geodesically complete and simply connected, the same
result holds, for the full holonomy group H as well as for the restricted group HY, except
that the isometry of point (ii) is only local.

A consequence of this theorem in our situation is the following

Proposition 3 Let (M, g) be a Riemannian or pseudo-Riemannian manifold and p € M.
We suppose that the mazimal trivial subspace MS of H in T,M is nondegenerate, and

denote by (M, g) ~ [locicr (M, gi) Wu’s decomposition of M.
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Suppose that (M, g) admits a parallel and nondegenerate symplectic form w. Then w;,
the restriction of w to TM;, is nondegenerate and :

(Mvng):H(Mivgiywi)-

Proof. We use here the notations introduced in Wu’s theorem above. It is sufficient to show
that the M, are in direct w-orthogonal sum: the statement follows by parallel transport.
Let us denote by €2 the element of so(ric) such that: w = g¢(.,2.). By definition:

MS ={zeT, M; Haz={z} }.
So, with z € MS:
H.Q(z) =Q(H.z) as Q is parallel, so commutes with the action of H,
= Q{z}) = {Q(=)},

therefore Q(z) € M), hence: Q(M}) C M, with equality as Q is nondegenerate.
By point (i) of Wu’s theorem, for ¢ > 1:

M:= (MOt n{z e T,M; Vj#i Hjx={z}}.
So similarly, for each i > 1: Q(M}) C M? & M;. Now Q € so(ric) so:
9(QMy), M) = —g(My, M) = —g(Mj, M) = {0},
so: Q(M}) C M} (with equality). By definition of €2, the wanted result follows. O
So Wu’s holonomy decomposition provides a refinement of the Ricci decomposition given
by the Main Theorem, at least a refinement of the decomposition of the factor on which ric is
nondegenerate. Indeed, on this factor, ric, on the one hand, is parallel and nondegenerate,

so is a (pseudo-)Riemannian metric, and, on the other hand, the trivial subspace of the
action of the holonomy group is {0}, which is nondegenerate. So:

Corollary 2 Let (M,w, D) a symplectic manifold with a symplectic connection D the Ricci
curvature of which is parallel and nondegenerate. Then (M,w, D) admits a unique decom-
position into a Riemannian product (with respect to ric, considered as a metric), such that
each factor is weakly irreducible. Moreover, this decomposition holds also for w:

(M, g,0) ~ [[(Mi, gi, 1)
3
with g standing here for ric, considered as the metric.
Being unique and maximal, this decomposition is necessarily a refinement of that of the

Main Theorem. Naturally, point (i) of the Main Theorem still applies and Ric is semi-simple
on each factor (in fact, of minimal polynomial one of the P).
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4.2 A more precise description of the weakly irreducible factors.

Using the Main Theorem, we can now now give a more precise description of the weakly
irreducible subfactors given by corollary 2. By the remark below, these factors are (pseu-
do-)Riemannian manifolds. We introduce also some vocabulary: paracomplex structures
and related notions. Their names are chosen by analogy with the corresponding complex
structures; other terminology is also used (“polarization” for a paracomplex structure for
example).

Important remark. On these subfactors, as ric is parallel and nondegenerate, ric is a
(pseudo-)Riemannian metric and D is its Levi-Civita connection. Moreover, such a mani-
fold is obviously Einstein in that point of view, with Einstein constant 1. So in the following,
symplectic manifolds with a symplectic connection such that ric is parallel and nondegen-
erate, will be viewed as Einstein non-Ricci flat manifolds admitting a parallel symplectic
form.

Definition 2 A paracomplex structure on a manifold M of dimension 2n is an endomor-

phism field L on M, integrable, satisfying L? = 1d with dim ker(L — Id) = dim ker(L + Id).
If (M, g) is pseudo-Riemannian, a paracomplex structure on M satisfying: g(Lz,y) =

—g(z, Ly) is said to be parahermitian. If moreover DL =0, it is said to be parakdhler.

Remarks. A paracomplex structure gives therefore two complementary distributions of
dimension n : ker(L + 1d). Like L, these distributions are integrable. Equivalently, a
paracomplex structure is given, up two sign, by the data of two such integrable distributions
Fand F': L = :E(IdE@ — IdEl).

For a parahermitian structure L, ker(L — Id) and ker(L + Id) are necessarily totally
isotropic, so the signature of the metric is necessarily (n,n).

Vocabulary. Let us also recall that a pseudo-K&hler manifold is a pseudo-Riemannian
manifold (M, g) admitting a g-orthogonal parallel complex structure J (in other words, a
K&hler manifold with indefinite metric).

Now, a Riemannian or pseudo-Riemannian manifold admitting a parallel symplectic
form is (pseudo-)Kédhler or parakdhler. The following proposition, using the Main Theorem
(section 2), describes more precisely the situation when the manifold is Einstein, non Ricci-
flat. The matrices of the different involved objects are also given, to make the situation
clearer for the reader.

Notation. For each integer k, J; will here denote the matrix: ( OI I(;g )
—1k

Proposition 4 Let (M, g) be a weakly irreducible Einstein non Ricci-flat Riemannian or
pseudo-Riemannian manifold and p € M. We suppose (M, g) admits a parallel symplectic
form w. Then, denoting dim M by 2n, M is in one of the three following situations:

(1) (M, g) has a parakdhler structure L such that w = Ag(., L.) with some X in R*. In
that case, g is of signature (n,n) and there is a basis of T, M in which:

Mat(g):(l(i IO”) Mat(L):(‘é” ](1) Mat(w):/\(_oln Ion)
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(ii) (M, g) has a (pseudo-)Kdihler structure J such that w = Ag(.,J.) with some X in
R*. In thal case, g is of signature (2p,2q) with p+ q = n and there is a basis of T,M in
which:

Mat(g) = ( ]ép _?QQ ) Mat(J) = ( JOP })q ) Mat(w) = A ( JOP _?]q )

(iii) (M, g) has a pseudo-Kdihler structure J and a parakdhler structure L such that:
JL = LJ and that: w = ag(., L.) + Bg(., J.) with (o, ) € R*2. In that case, n is even, g is
of signature (n,n) and, setting m = %n, there is a basis of T, M in which:

0 Iy, -1y, 0 Jn 0
Mat(g):(bm %) Mat(L):( 02 ]2m>, Mat(J):( 0 Jv),

_ 0 aIQm ‘l’ﬁJm
Mat(w) = ( —aly, + B, 0 ) .

Proof. After a possible rescaling, we may suppose that ¢ = ric. The decomposition (3),
given in section 1 (d), of T, M is stable under the action of H. So, by weak irreducibility of
M and as ric is nondegenerate, the minimal polynomial of the endomorphism Ric is equal
to a single factor P2 for some v € C* (with the definition given in (2), section 1). By point
(i) of the Main Theorem in section 2, o, = 1.

Let us discuss the situation for the different possible values of v.

(i) If v is real. Let us set L = %Ric; L is a parallel endomorphism of so(ric) with
minimal polynomial (X — 1)(X 4+ 1), as o, = 1. If 2,y € ker(L — eld) with ¢ = =£1,
ric(z,y) = eric(z, Ly) = —eric(Lz,y) = —ric(z, y) so ker(L — Id) and ker(L 4 Id) are both
ric-totally isotropic (that remark is also contained in lemma 3, section 1 (d)). As T,M =
ker(L—1d)@ker(L+1d) and ric is nondegenerate, these two spaces are of dimension n and ric
is of signature (n, n); so L is a parakdhler structure. Finally there is a basis of T, M as an-
nounced in the Proposition, with A = 1, and w = ric(., Ric™.) = Aric(., L7%) = Aric(,, L.)
as L =L7L

(i) If v is purely imaginary. Let us set J = —ﬁ Ric; J is a parallel endomorphism
of so(ric) with minimal polynomial (X — i)(X +1¢) = X? -1, as o, = 1,80 J? = —1d
and J is a Kéhler or pseudo-Kédhler structure (whether ric is definite or not). By the
same computation as above or by lemma 3, and extending ric to a bilinear complex form
on TyM @ C: ker(J — i1d) and ker(J + i1d) are both ric-totally isotropic; let n be their
dimension (M is then of dimension 2n). The complex conjugation e +— € being a linear
isomorphism of ker(J — 71d) to ker(.J + ¢1d) and ric being nondegenerate, the sesquilinear
form h : (e,€’) + ric(e,€) is nondegenerate on ker(J — ild) and on ker(J + ild). Its
signature on each of these spaces is the same, let us denote it by (p,¢). So if (e;)7 is a
h-(pseudo-)orthonormal basis of ker(J — ¢1d), and setting 8 = ((e;)"_,(€)",):

Matg(ric) = ( IO I%’q ) and: Matg(J) = ( ZOI _(z.] ) .

p,q

Now in the real basis (f;, f/)7_, of T, M defined by f; = %(ei—l—e_i) and f! = %(ei—e_i), the
1

matrices of ric, J and w have the announced form, with A = |17| Besides, w = ric(.,Ric™" .) =

Aric(.,J.) as J = —J 7L
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Otherwise. Let us set L = g (Ric+|v|*Ric™!) and J = 53-(Ric —[v|?Ric™"). As
«, = 1, a short computation gives:

L* —1d = J* +1d = P,(Ric) = 0.

Like in the previous point, using the nondegenerate hermitian form h : e — ric(e,€)
of T,M @ C and the fact that J and L commute, and denoting by n the dimension of
ker(L — Id) N ker(J — i1d), we obtain a basis (e;)*7 of ker(J — ild) such that, setting
B=((e)Zy, (€)%, (e_i)zzgm—l—h (ei)?;nm+1):

Matg(ric) = ( 0 I%m ) , Matg(L) = ( _{)Qm 0 ) and:

IQm IQm
o, 0 0 0
0 -, 0 0
Mats(/) = o " _i, o
0 0 0 i,

M is of dimension 4m and ric of signature (2m,2m). As L and J are moreover in so(ric)",
they are then, respectively, a parakdhler and a pseudo-Kdhler structure on (M, ric). Note
also that they commute.

Now in the real basis ((fi)",, (f)’,, (fi)fgnﬂ, (f;)fgnﬂ) of T,M defined by f; =

L (e;+7%) and f! = %(ei — €;), the matrices of ric, L, J and w have the announced form,

\/5 2
with a+ 108 = % Besides, w = aric(., L.) 4 Fric(., J.). O

5 Some remarks and examples.

5.1 An example with Ric* = 0 and Ric # 0.

The Main Theorem requires that ric is nondegenerate to ensure that Ric has no nilpotent
part. This assumption is necessary; it can be seen on a very simple example borrowed from
[7] p.40. Take (M,w) = (R? dz A dy) and, denoting the coordinate vectors by X and Y,
the connection defined by

DxX =Dy X =DxY =0, DyY =2zX.
In particular, X is stable by holonomy. By definition, D is torsion-free and we check:

(DaX-|—bYW) (X, Y) = a(DXw) (X, Y) + b(Dyw) (X, Y)
= a[Lx(w(X,Y)) —w(X,DxY)]+bLy(w(X,Y)) —w(X,DyY)]
=0
so D is symplectic. Now R(X,Y)X = 0 and R(X,Y)Y = —-X, so ric(Y,Y) = —1,

kerric = span(X) and Dric = 0. Actually, DR = 0 i.e. (M,w, D) is even symmetric.
Now, Ric(X) = 0 and Ric(Y) = X so Ric # 0 and Ric* = 0.

Remark. Examples where the minimal polynomial P\ of Ric corresponds to a A in R*,

iR* or C\ (R*U:R*) are numerous. They are the parakdhler and (pseudo-)kahler manifolds,
see prop. 4 in section 4.2. The next subsection gives symmetric examples of the three types.
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5.2 The low-dimensional cases.

Let us recall the following fact:

Proposition 5 Let (M, g) be

e cither a Riemannian or pseudo-Riemannian manifold of dimension 3 or less,

e or a “complex Riemannian” manifold (i.e. a complex manifold with a complex bilinear
— warning: not sesquilinear — symmetric form g) of complex dimension 3 or less,

then the (real) curvature tensor R of (M, g) is a linear function of ric.

A proof can be found in [1] pp. 47-49. Consequently a Ricci-parallel manifold of low
enough dimension, as required in the above proposition, is locally symmetric. So in the Main
Theorem, the weakly indecomposable subfactors of the factor on which ric is nondegenerate
are (locally) symmetric as soon as:

(i) they are of dimension two,

(ii) or they are of dimension four and admit a pseudo-K&hler structure .J and a parakihler
structure L. In this case indeed, LJ = JL defines on M a complex structure with
respect to which the complex form h(.,.) = g(.,.) —ig(., LJ.) is C-bilinear, symmetric.
Besides, as after Proposition 4 of section 4.2, manifolds of this type are of (real)
dimension multiple of 4, dimension 6 is here not concerned.

Then Berger’s list — you can find its restriction to the symplectic case, with which we deal
here, in [3] pp.267-268 — provides the list of the relevant simply connected symmetric spaces.
We give each time the structure of the algebra 50(9)h of the parallel endomorphisms, with
the following convention: L denotes a parakihler structure (L? = Id), .J a (pseudo-)Kahler
structure (J? = —1d). The spaces are (see [2] p.315):

Space Dimension  so(g)?  sign(ric)
SL(2,R)/R* 2 R.L (1,1)
SU(2)/50(2) 2 R.J (2,0)
SL(2,R)/S0O(2) 2 R.J (0,2)
SL(2,C)/C* 4 RL+R.J  (2,2)

Remark. To obtain the full list of the simply connected, simple, symplectic symmetric

spaces of dimension 4 or less, one has to add the ones of dimension 4 and with 5o(g)h =R.L
or s0(g)" = R..J:

Space Dimension  so(g)Y  sign(ric)
SL(3,R)/(SL(2,R) x R¥) 4 R.L (2,2)
SU(3)/(SU(2) x SO(2)) 4 R.J (4,0)
SU(1,2)/(SU(1,1) x SO(2)) 4 R.J (2,2)
SU(1,2)/(SU(2) x SO(2)) 4 R.J (0,4)

Thanks. I thank M. Cahen for his quick answer to a technical question and the referee for
his careful reading of the manuscript, which has helped me to make it clearer.
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