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Abstract: Ricci-parallel Riemannian manifolds have a diagonal Ricci endomorphism Ric
and are therefore, at least locally, a product of Einstein manifolds. This fails in the pseudo-
Riemannian case. Using, on the one side, a general result in linear algebra due to Klingenberg
(see [Kli54]) and on the other side, a theorem on the holonomy of pseudo-Riemannian ma-
nifolds (see [Wu67]), this work classifies the different types of pseudo-Riemannian manifolds
whose Ricci tensor is parallel.
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Foreword: The first section discusses de Rham – Wu’s theorem, its consequences in
our problem, and the reasons why the pseudo-Riemannian case allows specific phenomena.
The main theorem, that classifies these phenomena, is stated in section 2 and is proven in
sections 3 and 4. Section 5 considers the complex case, i.e. complex manifolds with a complex
Riemannian structure, which appears as a special case of the main theorem. Finally, section
6 gives some details on certain low-dimensional cases, on the holonomy decomposition as
compared with the Ricci-decomposition, on the number of (linearly independant) metrics
with the same connection (hence the same Ricci curvature), together with some symmetric
examples.

The authors want to thank the referees for their (very) careful reading of the manuscript
and helpful suggestions to improve it.

Notations: If (M, g) is a Riemannian or pseudo-Riemannian manifold, R is its (3,1)-
curvature tensor and ric its Ricci tensor, i.e. ric is a bilinear symmetric form on each tangent
space defined by ric : u, v 7→ trR(u, .)v. We will also denote by < ., . > the metric g, and
by Ric the g-selfadjoint endomorphism induced by ric, i.e. the endomorphism such that
ric(., .) =< Ric ., . >. We denote by H the restricted holonomy group of M , simply called
“holonomy group” here, and classical Lie algebras by old german letters: o, so.

1 Motivation : a look at the Riemannian case

The main tool of this work is a theorem by Wu, linking decomposition of the holonomy and
Riemannian products (see [Wu67]). This is a generalization to pseudo-Riemannian geometry
of a well-known theorem due to de Rham. We give in this section only a part of the result
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(existence theorem), and postpone to section 6.2 all questions about uniqueness.

Theorem (de Rham – Wu) Let (M, g) be a complete, simply connected pseudo-

Riemannian manifold and x ∈ M . Suppose that TxM = E1

⊥
⊕ E2 is a holonomy stable

decomposition of TxM . Then there is a unique couple ((M1, g|M1
), (M2, g|M2

)) of submani-
folds of M containing x and a unique isometry f such that:

• TxM1 = E1 and TxM2 = E2,

• M1 × M2
f
→ M ,

• f|M1×{x} = IdM1
and f|{x}×M2

= IdM2
.

Remarks: 1) Here “ M1 × M2 ” stands for the Riemannian product of M1 and M2.
2) By hypothesis, E1 and E2 are holonomy-stable, mutually orthogonal. So there exist Σ1

and Σ2 two mutually orthogonal parallel distributions equal to E1 and E2 at x, respectively.
M1 and M2 are the maximal integral manifolds of Σ1 and Σ2, containing x. They are g-
non-degenerate. The other maximal integral manifolds of Σ1 and Σ2 are isometric to M1

and M2, so M1 and M2 do not depend of the choice of x, up to isometry.
3) Without requiring the completeness and the simple connectedness, the same result holds
with a local isometry.

Corollary If (M, g) is a complete, simply connected Riemannian manifold with a parallel
Ricci tensor ric, then M splits canonically into a Riemannian product of Einstein manifolds.
That is to say, there is a unique sequence of reals (λi)

n
i=1, a unique sequence of Riemannian

Einstein manifolds (Mi)
n
i=1, [such that ric = λig on each Mi], and an isometry f mapping

the Riemannian product
∏n

i=1 Mi onto M . That isometry f is unique up to composition
with a product of isometries of each factor Mi.

In particular, simply connected Riemannian symmetric spaces are all a canonical prod-
uct of Einstein factors. Once again, without completeness and simple connectedness, these
results hold locally.

The above corollary is a classical and immediate consequence of de Rham – Wu’s theo-
rem. Nevertheless, in view of future comparison, we recall the

Proof of the corollary: Ric is g-selfadjoint and g is positive definite, so Ric is diagonal-
izable. Let us denote by Ei,x = ker(Ric−λi Id) the eigenspaces of Ric at a point x, then we
have an orthogonal product:

TxM =
⊥
⊕
i
Ei,x.

By assumption now, ric is parallel, g too, and thus Ric and the Ei,x are parallel. The de-
composition of each TxM is thus holonomy-stable. As it is also orthogonal, de Rham – Wu
theorem gives an isometry f : M →

∏
i Mi, where the Mi are maximal integral submani-

folds of the parallel distributions generated by the Ei,x. Ric|Mi
has the only eigenvalue λi,

and is diagonalizable, thus ric|Mi
= λ.g|Mi

, i.e. the Mi are Einstein. The decomposition
TxM = ⊕Ei,x is canonical, so the corresponding values of λi and the associated Mi too (up
to isometry).
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The uniqueness of f is not a deep result here but requires a few technical lines. Let us
suppose f and h are two isometries mapping

∏
i Mi onto M ; let us denote by a the n-uple

(ai)
n
i=1 = f−1(x) and by b the n-uple (bi)

n
i=1 = h−1(x). By definition, Ta(

∏
i Mi) = ⊕iTai

Mi

is the decomposition of Ta(
∏

i Mi) into the eigenspaces of its Ricci operator. And similarly
with h and b. So, necessarily: ∀i, df(Tai

Mi) = Ei,x and ∀i, dh(Tbi
Mi) = Ei,x. Now, for each

i:

• {a1} × . . . × {ai−1} × Mi × {ai+1} × . . . × {an} is by definition the maximal integral
submanifold of the parallel distributions generated by Tai

Mi,

• Mi is by definition the maximal integral manifold of the parallel distribution generated
by Ei,x.

Since f is an isometry, necessarily, f({a1}× . . .×{ai−1}×Mi ×{ai+1}× . . .×{an}) = Mi,
and similarly with h: h({b1}× . . .×{bi−1}×Mi ×{bi+1}× . . .×{bn}) = Mi. So, in restric-
tion to the factor Mi, h−1 ◦ f is an isometry φi of this factor (mapping bi on ai). Finally,
f = h ◦ (φ1, . . . , φn). �

Notice that the above corollary is not true in the pseudo-Riemannian case.

Indeed, Ric is still a g-selfadjoint operator, but g is no longer positive definite, so Ric
is no longer necessarily diagonalizable. In particular, it may have pairs of non-real complex
conjugate eigenvalues and it may have a non-trivial nilpotent part. Now [Kli54], [this thesis,
next chapter] or [BBB] gives a complete description of what may be an endomorphism S of
a vector space [on any field], when S is selfadjoint with respect to a non-degenerate bilinear
form h. It gives a normal form for such an S, which is a particular Jordan form. When
the field is R, the signature of h and the nilpotence index of the nilpotent part of S are
linked, but both obstructions for S to be diagonalizable may occur: non-real eigenvalues
and a non-trivial nilpotent part. So a Ricci-parallel pseudo-Riemannian manifold is a priori
quite different from a product of Einstein manifolds. For example, there exists some pseudo-
Riemannian symmetric spaces with a Ricci endomorphism satisfying Ric 6= 0, Ric2 = 0.

However, some properties of the holonomy group and some consequences of [Kli54] pre-
vent Ric from being too complicated. A good part of the Riemannian result holds again:
Einstein factors appear in the Riemannian product, and two other new types of factors.
The main theorem below explains it in terms of (conditions on) the minimal polynomial of
the operator Ric. We recall that the minimal polynomial is the unique unitary polynomial
generating the ideal of all polynomials which annihilates the operator Ric. Notice that in
the Riemannian case, Ric is diagonalizable, so in these terms, the corollary above is the ge-
ometric counterpart of the fact that the minimal polynomial of Ric is a product of mutually
prime polynomials which are irreducible of degree one. In the pseudo-Riemannian case, the
minimal polynomial of Ric may have irreducible factors of degree two and also there may
be one irreducible factor to the power two. After the proof of the theorem, we will give in
section 5 a few more explanations of one of the new factor types and make a few remarks
on the low-dimensional cases in section 6.

2 The main result in the pseudo-Riemannian case

The Main Theorem Let (M, g) be a pseudo-Riemannian manifold with a parallel Ricci
tensor ric, and let µ be the minimal polynomial of Ric. Then:
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(i) µ =
∏

i Pi where:

• ∀i 6= j, Pi ∧ Pj = 1, [i.e. Pi and Pj are mutually prime],

• ∀i, Pi is irreducible or Pi = X2.

(ii) There is a canonical family (Mi)i of pseudo-Riemannian manifolds such that the mini-
mal polynomial of Rici = RicMi

on each Mi is Pi, and a local isometry f mapping the
Riemannian product

∏
i Mi onto M . f is unique up to composition with a product of

isometries of each factor Mi. If M is complete and simply connected, f is an isometry.

That is to say, M splits canonically into a Riemannian product, with factors Mi of one
of the four following types — we denote by Pi the minimal polynomial of Rici, the Ricci
endomorphism of Mi—:

• if Pi = (X − αi)
k (αi 6= 0), then k = 1, i.e. Mi is Einstein,

• if Pi = Xk, then k ≤ 2, so

? either k = 1, i.e. Mi is Ricci-flat, [which is a particular case of Einstein],

? or Rici is nilpotent of index 2,

• if Pi = (X2 + piX + qi)
k (power of an irreducible), then k = 1, so Rici has no nilpotent

part but is not diagonalizable on R. We will see in section 5 that Mi is then a complex
Riemannian manifold, which is Einstein for this structure.

The last two types do not appear in the Riemannian case.

Warning: the obtained decomposition is not the holonomy decomposition (see section 6.2).

3 Two algebraic lemmas

Lemma 1 Let E be a real or complex vector space endowed with a non-degenerate bilinear
form g =< ., . >. Let D be a totally isotropic subspace of E. Let R be a (3, 1)-tensor with
the algebraic properties of a curvature tensor, i.e. :

• R(x, y) = −R(y, x)

• R(x, y).z + R(y, z).x + R(z, x).y = 0 (“Bianchi identity”),

• < R(x, y).z, t >=< R(z, t).x, y > (which follows from the first two relations).

By definition, ric(u, v) = tr(x 7→ R(u, x).v), and Ric is the g-selfadjoint associated endo-
morphism, i.e. the endomorphism such that < Ric ., . >= ric(., .).
We assume that, for each couple (x, y) in E2, the endomorphism R(x, y) preserves D.
Then we have:

(i) ∀x ∈ D, ∀y ∈ D⊥, R(x, y) = 0
(this is true in particular for x and y in D because D ⊂ D⊥),

(ii) Ric preserves D (i.e. ric(D,D⊥) = {0}),

(iii) If β = (ei)
p
i=1 is a basis of D and (e′i)

p
i=1 a family such that: ∀i, j, < ei, e

′
j >= δi,j and

< e′i, e
′
j >= 0),

then ric(ei, e
′
j) = tr(R(e′j , ei)|D).
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Proof: (i) Let us take x ∈ D, y ∈ D⊥ and z, t ∈ E. Then < R(x, y).z, t >=< R(z, t).x, y >.
By assumption, R(z, t).x ∈ D, thus both terms are zero and (i) follows.
(ii) Let us take (ei)

p
i=1 a basis of D and (e′i)

p
i=1 a “dual” family of (ei)

p
i=1 as defined in (iii).

Let D′ be the vector space generated by the ei and the e′i, and (fi)
q
i=1 a pseudo-orthonormal

basis of D′⊥, i.e. such that ∀i, j, < fi, fj >= εiδi,j , with εi = ±1. Then, for i, j ∈ {1, .., p},
point (i) of the Lemma implies:

ric(ei, ej) =

p∑

k=1

< R(ei, ek).ej , e
′
k > +

q∑

k=1

εk < R(ei, fk).ej , fk > +

p∑

k=1

< R(ei, e
′
k).ej , ek >

=

p∑

k=1

< 0.ej , e
′
k > +

q∑

k=1

εk < 0.ej , fk > +

p∑

k=1

< R(ej , ek).ei, e
′
k >

= 0 + 0 +

p∑

k=1

< 0.ei, e
′
k > = 0

and for i ∈ {1, .., p} and j ∈ {1, .., q}:

ric(ei, fj) =

p∑

k=1

< R(ei, ek).fj , e
′
k > +

q∑

k=1

εk < R(ei, fk).fj , fk > +

p∑

k=1

< R(ei, e
′
k).fj, ek >

=

p∑

k=1

< 0.fj , e
′
k > +

q∑

k=1

εk < 0.fj , fk > +

p∑

k=1

< R(fj, ek).ei, e
′
k >

= 0 + 0 +

p∑

k=1

< 0.ei, e
′
k > = 0

For (iii), we will show a little more.

Claim: ∀i, j, k, l ∈ {1, .., p}, < R(e′i, ej).e
′
k, el >=< R(e′k, ej).e

′
i, el >.

Using again (i), this implies:

ric(ei, e
′
j) =

p∑

k=1

< R(ei, ek).e
′
j , e

′
k > +

q∑

k=1

εk < R(ei, fk).e
′
j , fk > +

p∑

k=1

< R(ei, e
′
k).e

′
j , ek >

= 0 + 0 −

p∑

k=1

< R(e′k, ei).e
′
j , ek >

= −

p∑

k=1

< R(e′j , ei).e
′
k, ek > =

p∑

k=1

< R(e′j , ei).ek, e′k >

= tr R(e′j , ei)|D

The initial claim follows from Bianchi identity:

< R(e′i, ej).e
′
k, el > = − < R(ej , e

′
k).e′i, el > − < R(e′k, e

′
i).ej , el >

= < R(e′k, ej).e
′
i, el > − < R(ej , el).e

′
k, e′i >

= < R(e′k, ej).e
′
i, el > − < 0.e′k, e

′
i >

= < R(e′k, ej).e
′
i, el > .

�
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Lemma 2 Let (E, g) be a vector space endowed with a non-degenerate symmetric bilinear
form g = < ., . >, let h be another symmetric bilinear form and let S be the g-selfadjoint
endomorphism induced by h: i.e. h(., .) = < S., . >.
Let P be the minimal polynomial of S and

∏
i P ni

i its decomposition into a product of powers
of prime polynomials Pi and let Ei = kerP ni

i (S) be the characteristic subspaces of S.
Then the Ei are both g- and h-orthogonal.

Proof: Let us take x ∈ Ei, y ∈ Ej (i 6= j), U and V in R[X] such that: UP ni

i +V P
nj

j = 1.

Then: g(x, y) = g((UP ni

i + V P
nj

j )(S).x, y)

= g(U(S)P ni

i (S).x, y) + g(x, V (S)P
nj

j (S).y)

= g(0, y) + g(x, 0) = 0,

and: h(x, y) = g((UP ni

i + V P
nj

j )(S).Sx, y)

= g(SU(S)P ni

i (S).x, y) + g(x, SV (S)P
nj

j (S).y)

= g(0, y) + g(x, 0) = 0. �

4 Proof of the theorem

4. a First part

We will first prove the following
Claim: Let µ =

∏
i P

ni

i be the decomposition of µ into a product of powers of mutually prime
irreducible polynomials. Then M is locally isometric to a canonical Riemannian product∏

i Mi, where the minimal polynomial of each RicMi
is P ni

i . This isometry is global if M is
moreover complete, simply connected.

Let us apply Lemma 2 to the tangent space (TxM, g) at each point x of M , with h = ric.

It splits TxM into a g-orthogonal sum of canonical subspaces: TxM =
⊥
⊕
i
Ex,i, where the

Ex,i = kerP ni

i are now the characteristic subspaces of Ric at the point x. By assumption, ric
is moreover parallel, and therefore Ric and the Ex,i too. Thus the obtained decomposition
of TxM is holonomy-stable. By de Rham – Wu theorem, M is locally isometric to the
Riemannian product

∏
i Mi, where the Mi are submanifolds such that: ∀x ∈ Mi, TxMi =

Ex,i (the Mi are integral submanifolds of the parallel distributions Ex,i).
By definition of the Ex,i, Rici = Ric|Mi

= Ric|Ei
has a minimal polynomial of the form

P ni

i , Pi prime. The uniqueness of the local isometry M '
∏

i Mi follows from that of the
decomposition of TxM = ⊕iEx,i and from the explanations detailed in the proof of the
corollary of section 1. So the first part is proved.

In the following, we will deal with one of the (Mi, g|Mi
) and forget the index i. That is

to say, we deal with a manifold (M, g), the Ricci endomorphism Ric of which has a minimal
polynomial of the form P n, where P is irreducible.

4. b Second part

We will prove here that n = 1, except possibly if P = X, in which case n ≤ 2. Points (i)
and (ii) of the theorem follow. Let us begin with a few notations.
• If deg P = 1, i.e. P (X) = (X − α), let E be the tangent space TxM of M at a certain
point x, and T = P (Ric). Remark: T is a nilpotent endomorphism.
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• If deg P = 2, i.e. P (X) = (X − α)(X − α), α ∈ C \ R, let F be the complexified space
of TxM . Let us denote again by g, R, ric, and Ric the complexified tensors. We take
E = ker(Ric−αIdF )n ⊂ F and T = Ric−αIdE on E. T is nilpotent.

Notice that by Lemma 2, E⊥ = ker(Ric−αId)n.

First Claim: if n > 1, then α = 0. [In particular, if n > 1, deg P = 1.]

Let us suppose n > 1. Let D = ImT n−1. D is totally isotropic: let x = T n−1u ∈ D,
y = T n−1v ∈ D, we have < x, y >=< T n−1u, T n−1v >=< T 2n−2u, v >=< 0, v >= 0.
Indeed, n > 1, so 2n − 2 ≥ n = nilpotence index of T . Let d = dimD, (ei)

d
i=1 a basis of D,

(e′i)
d
i=1 a dual family of (ei)

d
i=1 [in the sense of lemma 1 (iii)]. Applying Lemma 1, (iii) with

E, D and R:
ric(ei, e

′
j) = tr(R(e′j , ei)|D)

But D is endowed with a non-degenerate bilinear form: let g1 : (x, y) 7→< T n−1x, y >;
ker g1 = ker T n−1, so g1 is well defined, non-degenerate on the quotient space E/ ker T n−1.
Now, T n−1 : E/ ker T n−1 → D = ImT n−1 is an isomorphism, and so the following formula :

g′1(T
n−1 · , T n−1 · ) = g1( · , · )

defines a non-degenerate symmetric bilinear form g ′
1 on D. Now g1 is holonomy stable, and

ric is parallel by hypothesis. As a consequence, all the R(x, y) are g1- and ric-antiselfadjoint,
whether we are dealing with the complexified version of R or not. And so the same statement
holds for g′1 on D. Therefore ∀x, y ∈ E,R(x, y)|D ∈ o(g′1). But as g′1 is non-degenerate, the
elements of o(g′1) are trace free. So, ∀x, y ∈ E, tr(R(x, y)|D) = 0.

Now, from lemma 1,(ii), it follows that: ∀x ∈ D, ∀y ∈ D⊥, ric(x, y) = 0. Summing up
the results,

• ∀i ∈ {1, .., d}, ∀y ∈ D⊥, ric(ei, y) = 0

• ∀i ∈ {1, .., d}, ∀j ∈ {1, .., d}, ric(ei, e
′
j) = 0

But codim D⊥ = dimD = d, so we have reached: ∀i ∈ {1, .., d}, ∀x ∈ E, ric(ei, x) = 0.
That is to say, {0}  D ⊂ ker(ric). So ric is degenerate, and α = 0.

Second Claim: If α = 0, that is if P = Xn, then n ≤ 2.

Here T = Ric. We cut again the proof into two steps: n ≤ 3, and then n 6= 3.

n ≤ 3: Let us suppose n ≥ 4, and take D = ImRicn−2. We use exactly the same
arguments. D is totally isotropic: let x = Ricn−2 u ∈ D, y = Ricn−2 v ∈ D, we have:

< x, y > = < Ricn−2 u,Ricn−2 v > = < Ric2n−4 u, v > = < 0, v >= 0.

Indeed, n ≥ 4, so 2n − 4 ≥ n = nilpotence index of T . Let us define g2 by the formula:
g2(x, y) = < Ricn−2 x, y >. Then g2 is well defined, non-degenerate on E/ ker Ricn−2. As
above, Ricn−2 : E/ ker Ricn−2 → D = ImRicn−2 is an isomorphism, and so the following
formula :

g′2(Ricn−2 · ,Ricn−2 · ) = g2( · , · )

defines a non-degenerate symmetric bilinear form g ′
2 on D. By the same way: ∀x, y ∈

E, R(x, y)|D ∈ o(g′2), g′2 is non-degenerate on D, and so the R(x, y) are tracefree.
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By lemma one and the same remarks, this implies that D is Ricci-flat, i.e. that
ImRicn−1 = Ric(D) = {0}. But the nilpotence index of Ric is n, so it is impossible.
So n ≤ 3.

n 6= 3: Let us now suppose n = 3. ImRicn−2 is no longer totally isotropic. Let us now
take D = ImRic∩ ker Ric, which is totally isotropic.

Now is involved the purely algebraic result which was told about at the beginning. In
our case, [Kli54], [this thesis, next chapter] or [BBB] give the existence of some canonical
basis β which is both:
(1) Jordan for Ric, i.e.:

Matβ(Ric) =

E3︷︸︸︷ Ric(E2)︷ ︸︸ ︷ E2︷︸︸︷ Ric2(E1)︷ ︸︸ ︷ Ric(E1)︷ ︸︸ ︷ E1︷︸︸︷


0 0 0 0 0 0

0 0 In2
0 0 0

0 0 0 0 0 0

0 0 0 0 In1
0

0 0 0 0 0 In1

0 0 0 0 0 0




where n1 = dimE1 = dim [ker Ric∩ ImRic2],
n2 = dimE2 = dim [(ker Ric∩ ImRic)/(ker Ric ∩ ImRic2)] and
n3 = dimE3 = dim [ker Ric /(ker Ric∩ ImRic)].

(2) “canonical” for g, in the following sense:

Matβ(g) =




Ir3,s3
0 0 0 0 0

0 0 Ir2,s2
0 0 0

0 Ir2,s2
0 0 0 0

0 0 0 0 0 Ir1,s1

0 0 0 0 Ir1,s1
0

0 0 0 Ir1,s1
0 0




where Ip,q =

(
Ip 0
0 −Iq

)
and the ri and si are some integers satisfying ri + si = ni.

We do not need more here, but to be more precise, the three couples (ri, ni) character-
ize the couple (g, ric) of bilinear forms on E, up to pull back by a isomorphism U of E:
g  g(U., U.), ric ric(U., U.).

Remark: To avoid a misunderstanding, it is important to note that the subspaces E1, E2

and E3 are not canonical — but however, are not any Jordan subspaces.

Let us denote by (ek
i )nk

i=1 the vectors of β which generate each Ek, k = 1, 2 or 3. So
β = ((e3

i )
n3

i=1, (Ric e2
i )

n2

i=1, (e
2
i )

n2

i=1, (Ric2 e1
i )

n1

i=1, (Ric e1
i )

n1

i=1, (e
1
i )

n1

i=1). Then:
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±1 = < Ric2 e1
i , e

1
i > = ric(Ric e1

i , e
1
i ) = tr(v 7→ R(Ric e1

i , v).e1
i ) =

n1∑

j=1

±< R(Ric e1
i ,Ric2 e1

j).e
1
i , e

1
j >

︸ ︷︷ ︸
Ai,j

+

n1∑

j=1

±< R(Ric e1
i ,Ric e1

j ).e
1
i ,Ric e1

j >
︸ ︷︷ ︸

Bi,j

+

n1∑

j=1

±< R(Ric e1
i , e

1
j ).e

1
i ,Ric2 e1

j >
︸ ︷︷ ︸

Ci,j

+

n2∑

j=1

±< R(Ric e1
i ,Ric e2

j ).e
1
i , e

2
j >

︸ ︷︷ ︸
Di,j

+

n2∑

j=1

±< R(Ric e1
i , e

2
j ).e

1
i ,Ric e2

j >
︸ ︷︷ ︸

Ei,j

+

n3∑

j=1

±< R(Ric e1
i , e

3
j ).e

1
i , e

3
j >

︸ ︷︷ ︸
Fi,j

.

But all terms are zero. Indeed:

• From Lemma 1, (i):

• ∀i, j ≤ n1, Ric2 e1
j ∈ D and Ric e1

i ∈ D⊥, so R(Ric e1
i ,Ric2 e1

j ) = 0,

• ∀i ≤ n1, ∀j ≤ n2, Ric e2
j ∈ D and Ric e1

i ∈ D⊥, so R(Ric e1
i ,Ric e2

j ) = 0

• ∀i ≤ n1, ∀j ≤ n3, R(Ric e1
i , e

3
j ) = 0,

thus all the Ai,j , Di,j and Ei,j are zero.

• Using Bianchi identity:

Ci,j =< R(Ric e1
i , e

1
j ).e

1
i ,Ric2 e1

j >

= − < R(e1
j , e

1
i ).Ric e1

i ,Ric2 e1
j > − < R(e1

i ,Ric e1
i ).e

1
j ,Ric2 e1

j >

= − < R(Ric e1
i ,Ric2 e1

j )︸ ︷︷ ︸
=0 by lemma 1, (i)

.e1
j , e

1
i > + < R(e1

i ,Ric e1
i ).Ric2 e1

j , e
1
j >

=< R(e1
i ,Ric e1

i ).Ric2 e1
j , e

1
j >

As ric is parallel we have: ∀x, y, ric(R(x, y) . , . ) = − ric( . , R(x, y) . ), and thus its
g-selfadjoint associated endomorphism Ric commutes with all the R(x, y). So:

Ci,j =< R(e1
i ,Ric e1

i ).Ric2 e1
j , e

1
j >

=< Ric2 R(e1
i ,Ric e1

i ).e
1
j , e

1
j >

=< R(e1
i ,Ric e1

i ).e
1
j ,Ric2 e1

j >

= − < e1
j , R(e1

i ,Ric e1
i ).Ric2 e1

j >

= −Ci,j

and ∀i, j, Ci,j = 0

• With the previous remark on the commutation of Ric:

Fi,j =< R(Ric e1
i , e

3
j ).e

1
i , e

3
j >

=< R(e1
i , e

3
j ).Ric e1

i , e
3
j >

=< Ric(R(e1
i , e

3
j ).e

1
i ), e

3
j >

=< R(e1
i , e

3
j ).e

1
i ,Ric e3

j >

=< R(e1
i , e

3
j ).e

1
i , 0 > = 0.
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• With the same remark, and commuting this time the role of i and j:

Bi,j =< R(Ric e1
i ,Ric e1

j ).e
1
i ,Ric e1

j >

=< R(e1
i ,Ric e1

j ).Ric e1
i ,Ric e1

j >

=< R(e1
i ,Ric e1

j ).Ric2 e1
i , e

1
j >

= Cj,i = 0

Thus the case n = 3 is impossible, which completes the proof. �

5 The case where Ric has two complex conjugate eigenvalues

This part is devoted to the fourth case announced in section 2: the case where the minimal
polynomial P of Ric is irreducible of degree 2. So, Ric has no nilpotent part but is not
diagonalizable on R.

Proposition 1 Let (M, g) be a pseudo-Riemannian manifold whose Ricci tensor is parallel
and such that the minimal polynomial of Ric is of the form: [(X − α)(X − α)]k, α ∈ C \ R.
Let us denote by D the Levi-Civita connection of M . Then k = 1, and M , endowed with the
same connection D, admits a complex Riemannian structure, the real part of which is the
original metric. That is to say, M admits:

• For each x ∈ M , an endomorphism J ∈ End(TxM), such that J2 = − Id, integrable,

• h a complex non-degenerate bilinear symmetric form (warning: not a hermitian product)
such that D is its Levi-Civita connection ( i.e. Dh = 0), and such that g = <h.

Moreover, (MC, h) is Einstein with factor α
2 (or α

2 , it depends on the choice of h), i.e.
ricC = α

2 h. Finally, <(αh) = ricR, so M is Einstein for this —real— metric <(αh), that
admits the same connection D, so the same R and the same ric, as g.

Remark : With such a minimal polynomial for Ric, M is of even dimension 2n and any
real metric giving this ric has signature (n, n).

Proof: Let λ, µ ∈ R be such that α = λ + iµ. α 6∈ R, so µ 6= 0. Let J = 1
µ
(Ric−λ Id).

Then:

J2 =
1

µ2
((Ric−α Id) + iµ Id)((Ric−α Id) − iµ Id)

=
1

µ2
((Ric−α Id)(Ric−α Id) + iµα Id−iµα Id+µ2 Id)

=
1

µ2
(0 + 2<(iµα) Id +µ2 Id)

=
1

µ2
(−µ2 Id)

= − Id .

Since Ric is parallel and J is a polynomial in Ric, J is parallel. By Newlander and Nirenberg
theorem [NN57], the almost-complex structure induced by J is thus complex.
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Let now x be a point in M , let us define on TxM the following complex bilinear form:
h : u, v 7→ h(u, v) = g(u, v) − ig(u, J.v). J is g-selfadjoint, so h(u, v) = h(v, u). One easily
verifies that: ∀γ, δ ∈ R, h((γ + iδ)u, v) = γh(u, v)+ iδh(u, v). g is non-degenerate, thus so is
h; J being parallel, Dh = 0, so D is the Levi-Civita connection of h. By definition, g = <h.

Useful remark: If A ∈ EndR(TxM) commutes with J , i.e. is in EndC(TxM) too, then:

trC A =
1

2
(trR A − i trR(J.A)).

As a consequence, ricC(u, v) = trC R(u, .)v = 1
2 [trR R(u, .)v− i trR(J.R(u, .)v)]. J is parallel,

so commutes with all the R(a, b), and so trR(J.R(u, .)v) = trR(R(u, .)Jv). Finally,

ricC(u, v) =
1

2
(ricR(u, v) − i ricR(u, J.v)).

>From the main theorem one knows that k = 1 so Ric is semi-simple and one may find
a real basis β = (e1, e

′
1, . . . , en, e′n) of TxM such that:

Matβ(Ric) =




A 0 0

0
. . . 0

0 0 A


 , Matβ(g) =




K2 0 0

0
. . . 0

0 0 K2




and thus Matβ(ric) =




A′ 0 0

0
. . . 0

0 0 A′


 ,

where K2 =

(
0 1
1 0

)
, A =

(
λ −µ
µ λ

)
and A′ =

(
−µ λ
λ µ

)
.

Remark: with that basis, Matβ(J) =




J2 0 0

0
. . . 0

0 0 J2


, where J2 =

(
0 −1
1 0

)
.

Let β̃ = 1√
2
((e1 + e′1), . . . , (en + e′n)). That β̃ is a basis of TxM as C-vectorspace and,

using the formula linking ricC and ricR: Mateβ
(ricC) = α

2 Id. As Mateβ
(h) = Id, it follows:

ricC = α
2 h. Thus, (MC, h) is Einstein.

Now, if we let g′ = <(αh), ricR = 2< ricC = 2<(α
2 h) = g′, so (M, g′) is Einstein. Indeed,

g′ induces the same connection D as g, so the same Ricci tensor. �

6 Further remarks

6. a A few words about low dimensions

In low dimensions, we have more precise results.

Proposition 2 Let (M, g) be an indecomposable pseudo-Riemannian manifold of dimension
n whose Ricci tensor is parallel.

• If n ≤ 3, then M has constant curvature.
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• If n ≤ 6, and if the minimal polynomial of Ric is a power of an irreducible polynomial of
degree 2, then M is complex, locally symmetric. As complex manifold, it has constant
curvature.

Proof: This result is only a technical remark, short to explain with the following tools,
which are classical and can be found in for example in [Bes87], pp.47 and 49:

Definition If a and b are two symmetric bilinear forms, their Kulkarni-Nomizu product is
the following 4-tensor:

(a©∧ b)(x, y, z, t) = a(x, z)b(y, t) + a(y, t)b(x, z) − a(x, t)b(y, z) − a(y, z)b(x, t).

Lemma 3 Let (M, g) be a Riemannian, pseudo-Riemannian or complex Riemannian ma-
nifold with dimension n. Let us denote by s = trRic its scalar curvature. As in [Bes87], let
us denote (in this lemma) by R the (4,0) tensor associated to the curvature.
If n = 2, then R = s

4g©∧ g and ric = s
2g.

If n = 3, then R = s
12g ©∧ g + (ric− s

3g)©∧ g.

The first point of the proposition follows directly from the lemma: if n ≤ 3, M is Ricci-
parallel ⇔ D ric = 0 ⇒ DR = 0 ⇔ M is locally symmetric. M is irreducible, it has then
moreover constant curvature. In the case of the third point, proposition 1 and the previous
point imply that M is a complex manifold of dimension p = 2 or p = 3 (n = 2p), with a
complex Riemannian structure h. Applying again lemma 3, we conclude that M is locally
symmetric and that, as complex manifold, it has constant curvature. By proposition 1, the
real manifold M is moreover Einstein for a well-chosen metric. �

Examples All Ricci-parallel pseudo-Riemannian manifolds of dimension 6 or less, such
that Ric is non-degenerate and non-diagonalizable over R, are complex symmetric spaces.
So Berger’s classification of the irreducible symmetric spaces (see [Ber57]) give them; they
are:

SL2(C), of complex dimension 3,

SL2(C)/C?, of complex dimension 2.

As complex manifolds, they are Einstein for their “natural” metric, respectively h and h̃.
Here h is given by the complex Killing form of sl2(C) [up to some scaling] and h̃ is deduced
from h on the quotient SL2(C)/C?. As real manifolds, they are Einstein for the real metrics
g = <h and g̃ = <h̃ respectively, and not Einstein for the gα = <(αh) and g̃α = <(αh̃)
respectively, when α ∈ C \ R.

6. b Ricci decomposition and holonomy decomposition

The (local or global) product decomposition in Main Theorem is unique, but it may be
pursued. More precisely, each factor may be a (local or global) Riemannian product of
pseudo-Riemannian manifolds, and decomposing in that way, we get at the end only inde-
composable factors. This final decomposition is the holonomy decomposition, and it is not
unique in general, as indicated in Wu’s paper (see [Wu67], theorem 5 in Appendix I, p.390).
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On each factor on which Ric is non-degenerate, the decomposition is unique up to or-
dering of the factors (one may switch isometric factors).

Now, the factor M 0 on which Ric2 = 0 may have a further holonomy decomposition
too: M0 = M0

0 ×
∏

i∈I M0
i ×

∏
j∈J M0

j , with a flat M 0
0 , irreducible M 0

i and indecomposable-

reducible M 0
j . Then, if M 0

0 is non-trivial and if J is not empty, the way in which the factor

M0
0 may be inbedded in M 0 is not unique. On the other hand, if M 0

0 is only a point or if J is
empty (i.e. there is no indecomposable reducible factor), then the holonomy decomposition
is unique up to ordering.

6. c Families of metrics with the same connection

Proposition 3 Let M be an indecomposable pseudo-Riemannian manifold with a parallel,
non-degenerate Ricci tensor, and D its covariant derivative. Then, the metrics over M
associated to the same D are:

• either {λ ric /λ ∈ R∗},

• or {λ ric +µg/(λ, µ) ∈ R2\(0, 0)}, where g is a metric such that the minimal polynomial
of Ricg is irreducible of degree 2 (and then M admits a unique complex structure,
corresponding to this family of real metrics).

Proof: By hypothesis, g and ric are D-parallel, and D is torsion-free, so D is the Levi-Civita
connection of any non-degenerate pseudo-Riemannian metric λ ric +µg.

Conversely, let g be a metric on (M, g) inducing the same covariant derivative D.
M is irreducible and Ricci is non-degenerate, so, either Ric = λ Id and g is type 1 or
(Ric−α Id)(Ric−α Id) = 0, α ∈ C \ R and g is type 2. Then:

• If all such metrics are of type 1, we are in the first case of the proposition. Then, M
does not admit a parallel J with J 2 = − Id, else h : u, v 7→ g(u, v) − ig(u, J.v) is a
complex Riemannian structure of M and all the gβ = <(βh) for β ∈ C \ R are real
metrics of type 2.

• If there exists two metrics g and g′ of type 2 (with corresponding α, Ric, J , α′, Ric′ and
J ′), they both belong to the family {λ ric +µg} and J = J ′. Indeed, g and g′ give as in
Proposition 1 complex Riemannian metrics h and h′. But <(αh) = <(α′h′) = ric, so
αh = α′h′ and g′ = <( α

α′ h) = <((µ+λα)h) for some real numbers λ and µ, what gives

the result. Furthermore, ∀u, v, h(u, J.v) = ih(u, v) = i α′

α
h′(u, v) = α′

α
h′(u, J ′.v) =

h(u, J ′.v), so J = J ′. If M admits another J ′′, it induces other metrics of type 2,
which are then in the family below, and J ′′ = J . �

Remark: The assumption “Ric is non-degenerate” shall not be omitted. Indeed, there exist
indecomposable Ricci-parallel manifolds M that admit any number of linear independant
metrics associated to the same connection. For those cases, Ric is nilpotent. Such M may
even be choosen symmetric.
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6. d Some examples

A family of symmetric spaces due to Cahen and Wallach (cf. [CW70]) may be used here as
example.

As explained in [CP70], a simply connected pseudo-Riemannian symmetric space is as-
sociated to each pseudo-Riemannian symmetric triple (G, σ,< , >). Such a triple consists of
a finite dimensional Lie algebra G, a non-degenerate symmetric bilinear form < , > on G,
invariant by G, and an involutive automorphism σ of G, orthogonal for < , >, satisfying the
following property: [Q,Q] = H, where H = ker(σ− Id) and Q = ker(σ+Id). The associated
symmetric space M is a submanifold of the simply connected Lie group G associated to G.
Its tangent space at the point 0 is T0M = Q and its holonomy algebra is H, acting by Ad
on Q.

The announced examples are provided by a family of pseudo-Riemannian symmetric
triples characterized as follows: dimG = 2n+2, dimH = n and dimQ = n+2 = dimension of
the obtained symmetric space M . There is a basis (Ui)

n
i=1 of H, and a basis (Y ∗, (Xi)

n
i=1, Y )

of Q such that, if the basis (Y ∗, (Ui)
n
i=1, (Xi)

n
i=1, Y ) is denoted by β:

• Y ∗ is central,

• Matβ(AdY ) =




0 0 . . . 0 0 . . . 0 0

0 λ1 0
... 0

. . .
...

0 λn 0

0 −λ1 0
...

. . . 0
...

0 −λn 0

0 0 . . . 0 0 . . . 0 0




, (λi)
n
i=1 ∈ R∗n

(remark: turning some Xi into −Xi, one may then require: (λi)
n
i=1 ∈ R∗n

+ ),

• ∀(i, j) ∈ {1, . . . , n}, [Ui, Xj ] =< [Y,Ui], X > Y ∗,

• vect{Ui} and vect{Xj} are abelian subalgebras,

• H ⊥ Q for < , >,

• < Y, Y ∗ >= 1, < Y, Y >=< Y ∗, Y ∗ >= 0,

• ∀(i, j) ∈ {1, . . . , n}, < Ui, Uj >=< Xi, Xj >= δi,j and < Xi, Y >=< Xi, Y
∗ >= 0.

It is easy to check that:

• ∀V,W ∈ G, σ([V,W ]) = [σ(V ), σ(W )]

• σ is < , >-orthogonal and: ∀V ∈ G, AdV is < , >-skew symmetric,

• [Q,Q] = H.

Therefore, (G, σ,< , >) is a pseudo-Riemannian (here Lorentzian) symmetric triple. Let
(M,< , > ) be its associated pseudo-Riemannian symmetric space. H is the holonomy
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algebra of M , acting on Q ' T0M by Ad. Therefore, by this representation, H is identified
with the (abelian) subalgebra of so(Q, < , >) consisting of the matrices of the form:




0 X 0
0 0 −tX
0 0 0


 where X = (x1, . . . , xn) is some element of Rn,

in the basis (Y ∗, (Xi)
n
i=1, Y ). Here M is indecomposable, non-irreducible, the only eigenvalue

of Ric is 0, and Ric is nilpotent of order 2. More precisely, ∀i ∈ {1, . . . , n}, we have
Ric(Xi) = Ric(Y ∗) = 0 and Ric(Y ) = (

∑
λ2

i )Y
∗.

Now, (AdY )2 is diagonalizable in a < , >-pseudo-orthonormal basis, with the eigenvalues
{0,−λ2

1, . . . ,−λ2
n}. Each eigenspace Eλ associated to one of the λ2

i is of even dimension 2dλ

where: dλ = ]{i/λi = λ}). Eλ = (Eλ ∩ H) ⊕ (Eλ ∩ Q), each term being of dimension dλ.
Then, on each Eλ, < , > may be replaced by every scalar product < , >′:

• preserving the relation H ⊥ Q,

• such that AdY remains skew-symmetric, i.e. such that: ∀i, j ∈ {1, . . . , n},
< Ui, Uj >′=< Xi, Xj >′;

and (G, σ,< , >′) remains a pseudo-Riemannian symmetric triple, with the same brackets.
Actually, one reaches here all the scalar products satisfying this property. In the basis of Eλ

built with the Ui and the Xi, the matrix of < , >′ is:

(
S 0
0 S

)
, where S is some symmetric matric of Mdλ

(R).

So, each Eλ may be equipped of dλ(dλ+1)
2 linearly independant metrics, letting the brakets

unchanged, and thus the covariant derivative of the associated manifold M .

Notes: 1) These examples may be adapted to provide similar pseudo-Riemannian manifolds
of every signature (p + 1, q + 1). One take n = p + q, < Xi, Xj >= δi,j if i ≤ p, else
< Xi, Xj >= −δi,j ; [Y,Ui] = −λiXi if i ≤ p, else [Y,Ui] = λiXi. The other data are the
same. (AdY )2 is diagonalizable, with the eigenvalues {0,−λ2

1, . . . ,−λ2
p, λ

2
p+1, . . . , λ

2
n}. On

the E+
λ = ker[(Ad Y )2 + λ2 Id] (for one of the λi, i ≤ p), the phenomenon is the same;

whereas on the E−
λ = ker[(AdY )2 − λ2 Id] (for one of the other λi), the matrix of the other

possible < , >′ are:

(
S 0
0 −S

)
, where S is some symmetric matric of Mdλ

(R).

2) This provides a family of symmetric spaces such that Ric 6= 0 and Ric2 = 0. Another
such family is constructed in [CP70], pp.40 sq. See [CP80] too.
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