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Abstract. Let £ be an irrational, algebraic number and denote by
(Pn/qn)n>1 the sequence of its convergents. We give several results on
the arithmetical properties and on the growth of the sequences (pp)n>1
and (g )n>1. For coprime integers a and b with a > b > 1, we study the
length of the continued fraction expansions of the integral powers of the
rational number a/b. Most of the results surveyed here are consequences
of Roth’s theorem or of one of its relatives.

1. Introduction

The first result on the rational approximation of algebraic numbers goes back to 1844,
when Liouville [19, 20] showed that an algebraic number of degree d cannot be approxi-
mated by rationals at an order greater than d. Liouville’s theorem has been subsequently
improved upon by Thue [44], Siegel [40], Dyson [12], Gelfond [15] and, finally, by Roth
[36], who established that, like almost all real numbers (throughout the present paper,
‘almost all’ refers to the Lebesgue measure), the algebraic irrational numbers cannot be
approximated by rationals at an order greater than 2.

Theorem (Roth, 1955). Let 6 be an algebraic real number. Let € be a positive real
number. Then there are only finitely many rational numbers p/q with ¢ > 1 such that

1
q2+£ ’

0<‘0—Q‘< (1.1)

q

The same year, Davenport and Roth [11] gave a totally explicit estimate for the number

of rational solutions to (1.1). Shortly afterwards, Ridout [34, 35] established two different

generalizations of Roth’s theorem which incorporate non-Archimedean valuations. In the

sequel, for any prime number ¢ and any non-zero rational number z, we set |z|, ;= {7%,

where u is the exponent of £ in the prime decomposition of x. Furthermore, we set |0|; = 0.
With this notation, the main result of [34] reads as follows.
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Theorem (Ridout, 1957). Let S; and Sy be disjoint finite sets of prime numbers. Let
0 be a real algebraic number. Let € be a positive real number. Then there are only finitely
many rational numbers p/q with ¢ > 1 such that

D 1
‘9_ 5‘ : H |p|€ H |Q|f < q2_|_5' (12)

eSS, Le Sy

A partial result towards an improvement of Roth’s and Ridout’s theorems has been
obtained in 1958 by Cugiani [8] (see also [9, 10] and Appendix B of Mahler’s book [26]).
We refer the reader to Section 4 for a precise statement of a recent strengthening of this
result, now called the Cugiani-Mahler theorem.

The purpose of this survey is to show different applications of Roth’s theorem and its
relatives to various questions on the sequence of convergents (p,/gn)n>1 to an algebraic
number. Section 2 is devoted to the arithmetical properties of (p,)n>1 and (gn)n>1. It
includes an application of Ridout’s theorem and one of Baker’s theory of linear forms in
logarithms. The rate of growth of the sequence (¢,)n>1 is investigated in Section 3 by
means of a modern version of the theorem of Davenport and Roth that gives an explicit
upper bound for the number of rational solutions to (1.1). Finally, Section 4 deals with the
continued fraction expansions of the rational numbers (a/b)", with1 < b <aandn > 1. It
includes an application of Ridout’s theorem and a new application of the Cugiani—-Mahler
theorem.

Notation. Throughout the present paper, £ is an arbitrary irrational, real algebraic
number and (pn/qn)n>1 denotes the sequence of its convergents. The constants implied
by < and > depend at most on &, and we write <.g and >.g to emphasize that the
implicit constant is effectively computable.

2. Arithmetical properties of convergents

In this section, for an integer = with > 2, we denote by P[z] its greatest prime factor
and by Q[z] its greatest square-free factor. Without mentioning it, we assume that the
arguments of the function log (resp. loglog, logloglog,...) are greater than e (resp. e,

e, ).
Before considering algebraic numbers, we mention that Erdés and Mahler [13] proved
that for almost all real numbers 8 with 0 < 8 <1 we have

log s,,
Pls,] > — 2.1
[sn] 2 eXp{QOloglog sn} (21)

for every sufficiently large n, where s,, denotes the denominator of the nth convergent to
6. With the same notation, Shorey and Srinivasan [43] proved that for any positive real
number ¢, for almost all real numbers # with 0 < 6 < 1 we have

Q[sn] > sn(logs,) 172, (2.2)
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for every sufficiently large n. Perhaps, (2.1) and (2.2) hold for any irrational algebraic 6,
but we are very far away from being able to confirm this.

In the sequel of this section, £ is a real, irrational, algebraic number, and (p,/¢n)n>1
denotes the sequence of its convergents. Using his p-adic version of the Thue-Siegel theo-
rem, Mahler [23] proved that the greatest prime factor of p,¢, tends to infinity with n. He
also established that the greatest prime factor of p, (and also that of ¢,) is unbounded.
Subsequently, by working out a p-adic version of a result of Dyson [12] on rational approxi-
mation to algebraic numbers, Mahler [24] showed that, when £ is either quadratic or cubic,
then both P[p,] and P[g,] tend to infinity. Ridout’s theorem [34] allows one to extend the
latter result of Mahler.

Theorem R. For every irrational, real algebraic number, both P[p,| and Plq,] tend to
infinity with n.

Proof. We know from the theory of continued fractions that |£ — p,/qn| < g, 2 for n > 1.
If there exist an infinite sequence of positive integers n1 < no < ng < ... and an integer P
such that Plg,,] < P for j > 1, then we get a contradiction from Ridout’s theorem with
¢ = 1 by taking for S; the empty set and for S the set of prime numbers less than P. This
shows that P[g,] tends to infinity with n and a similar proof yields the same conclusion
for P[py]. O

Theorem R is ineffective, and it would be very desirable to get an effective estimate
for the growth of P[p,qn], P[pn], and P[qy].
Using Baker’s theory, Shorey [41] established a quantitative form of Mahler’s result.

Theorem S. For every irrational, real algebraic number we have

P[ann]>>eﬂ" log IOg dn-

It turns out that it is possible to slightly improve upon Theorem S, by using Matveev’s
recent estimate for linear forms in logarithms. We denote by |x| the integer part of the
real number x.

Theorem 1. For every irrational, real algebraic number & we have

logloglog g
log log log log g
Proof. We follow Shorey’s proof. Without any loss of generality, we assume that q is large

enough. Set p = [¢¢| and observe that 0 < |€ — p/q| < 1/q. To shorten the notation, for
any positive integer j, we write log; for the jth iterate of the function log. Assume that

Plq|g&]]>cq loglogq -

logs q
log, q
is satisfied for any 0 with 0 < 6 < 1. We will arrive at a contradiction for a certain value

of 6 depending only on £&. Let m be the number of distinct prime factors of pg. By the
Prime Number Theorem, we have

Plpq] <6 log, q

m < 2619829
log, q



Denoting by ¢1, ¢, . . . the increasing sequence of all the prime numbers, there exist positive

integers i1 < ... <t with k¥ < m and non-zero integers a;,, ..., a;, such that

A= |0 G — 1< 1/ (2.3)
By assumption, A is non-zero. Check that

li; < i, <0(logyq/logyq)logsq, ai;|<et logg (5 =1,...,k).

It then follows from Matveev’s theorem [27] that there exists an effectively computable
constant c;, depending only on &, such that

log A > —cf" (logs )™ (log, q). (2.4)
We then infer from (2.3) and (2.4) that
logy ¢ et mlogy q + logg g et 0 logy g + logs .
Selecting 6 small enough, we get a contradiction. O
Corollary 1. For every irrational, real algebraic number we have

logloglog ¢,
log log log log g,

P[ann]>>eff log lOg dn -

Corollary 1 does not give any effective lower bound for P[g,], nor for P[p,|. When
¢ is a quadratic surd, then its continued fraction expansion is ultimately periodic and the
sequences (pp)n>1 and (g, )n>1 are binary recurring sequences. Using again Baker’s theory,
we get in this case the effective lower bounds

P[pn]>>eff (logpn)1/37 P[Qn]>>eff (lOan)l/ga

log log p,, )? log log ¢,,)?
Qlpn] e 108182 oy o (log10gdn)”
logloglog py, log loglog g,
as proved by Gyéry, Mignotte, and Shorey [17].

Problem 1. To give an effective lower bound for Plq,]| (resp. for Plp,|) when £ is an
algebraic number of degree at least three.

To conclude this section, let us mention that Erd6s and Mahler [13] established that
P[¢n—1qnqn+1] tends to infinity with n. However, their result is not effective. Using Baker’s
theory of linear forms in logarithms, Shorey [42] proved that

Plgn—1qnqn+1]>es loglogqn

and
log Q[Qn71QnQn—|—1]>>eff log log gy,



3. On the growth of the denominators of convergents

Let £ be a real, irrational, algebraic number, and denote by (p/gn)n>1 the sequence
of its convergents. It immediately follows from the theory of continued fractions that the
rate of increase of (g, )n>1 is at least exponential. Our purpose in the present section is to
estimate it from above. Recall that Lévy [18] established in 1936 that, for almost all real
numbers 6, we have

log s, 72

—) 7’
n  n—+oo 12log?2

where s,, denotes the denominator of the nth convergent to 6.

It is well known that, when £ is quadratic, then the sequence (q}/ ")n>1 is bounded
and, even, converges. One generally believes that (q,l/ ")n>1 also remains bounded when
the degree of ¢ is greater than two. However, we seem to be very far away from a proof
(or a disproof).

The first general upper estimate for the rate of increase of (g,,)n>1 follows from Liou-
ville’s theorem, which easily yields that

loglog ¢, < n.
A slight sharpening, namely the estimate
log log g, = o(n),
can be deduced from Roth’s theorem.
In Roth’s joint work with Davenport [11], some steps from [36] are made totally explicit

in order to get an explicit upper estimate for the cardinality N (6, ¢) of the set of rational
solutions to (1.1). This enabled Davenport and Roth [11] to prove that

loglog g, < , (3.1)

logn

see also Mignotte [30].

A much better upper bound for N (6, ) was established by Bombieri and van der
Poorten [3] (see also Luckhardt [22], who used his result to improve upon (3.1), and Locher
[21]) and subsequently slightly refined by Evertse [14]. Before stating a result extracted
from the end of Section 6 of [14], we recall that the Mahler measure of an algebraic number
equals the leading coefficient of its minimal polynomial over the integers times the product
of the moduli of its complex conjugates of modulus at least 1.

Theorem E. Let 6 be an algebraic number of degree d with 0 < 6 < 1. Let ¢ be a positive
real number with ¢ < 1/5. The inequality

1
q2—|—€

‘0—1—’|<
q
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has at most
Ni(0,¢):=2-107 ¢ 3(loge')? (log 4d) (loglog 4d)

rational solutions p/q with ¢ > max{4/¢, M(6)}.

Theorem 4 of Mueller and Schmidt [31] implies that, regarding the dependence on d,
Theorem E is best possible up to, maybe, the factor (loglog4d).

In [1], Theorem E is used to strengthen (3.1). We give below the proof of the following
(very) slightly refined version of Theorem 4.1 of [1].

Theorem 2. Let £ be an arbitrary irrational, real algebraic number of degree d and let
(Pn/qn)n>1 denote the sequence of its convergents. Then we have

loglog g, < 4-107n%/3 (logn)?/? (loglogn) (log 4d)*/? (log log 4d)?, (3.2)

for all positive n with
n > max{60,4 log M(&),d}.

We point out that Theorem 2 is fully effective, although Roth’s theorem is not. The
constant 4 - 107 in (3.2) can be replaced by a smaller one: our aim was to state a fully
explicit upper bound and we made no effort for lowering this constant.

Clearly, inequality (3.2) holds with ¢,, replaced by the nth partial quotient of . This
strongly improves upon a result of Wolfskill [46] valid only for cubic irrationals.

Proof of Theorem 2. We follow the proof of Theorem 4.1 from [1] and we make every step
explicit. The basic idea is to introduce more parameters in the proof of Theorem 3 of [11].
Recall that we have .

< )
dndn+1

\5 P (33)

an

for n > 1.
Let N be an integer with N > max{60,4log M (&),d}. Let h be the smallest positive

integer with h > 6 and g, > max{16¥""", M (£)}. Since g, > 2"/2, we have
h < max{8N'/3 3log M(¢)}.
Put S = {h,h+1,...,N}. Let k > 3 be an integer and 1, ...,&, be real numbers with
O<N VB ce<ey<...<ep<1,

that will be selected later on. For j =1,...,k, let S; denote the set of positive integers n

such that h <n < N and ¢,+1 > q}frsj. Observe that So D S1 D ... D Sk. It follows from
(3.3) that, for n in S;, the convergent p,, /g, gives a solution to

1

i <=

q

By our choice of h, the cardinality of S; is at most N7 (&, ¢;).
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Write
So=(So\S1)U(S1\S2)U...U(Sk_1\Sk)U Sk.

Let j be an integer with 1 < j < k. The cardinality of Sy \ S; is obviously bounded by N
and, for j > 2, the cardinality of S;_1 \ S; is at most Nq(&,e;_1). Furthermore, for every
n in Sj,1 \Sj, we get
10g gn41
log gn
Recall that d denotes the degree of £&. The Liouville inequality as stated by Waldschmidt
[45], p.84, asserts that

§1+€j.

p 1
5‘Q‘Zz\ﬂs)-(zq)d’

for every rational number p/q. Consequently, we infer from (3.3) that

(3.4)

log dn+1

< 2d
log qn

holds if ¢, > M (§) and n > h.
Combining these estimates with the fact that Sy has at most N7 (€, &) elements, we

obtain that
loggn  loggn " log gn—1 v log gn+1

loggn, loggn_1  loggn—2 = loggn

k
<@ 4e)V T (0 +e) &) (a)Men),
j=2

Taking the logarithm and using the fact that log(1 + u) < u for any positive real number
u, we get

k
loglog gy —loglogq, < Ney + Z eiN1(&,ej-1) + N1(&, ex) - (log 2d). (3.5)
j=2
We now select ¢1,...,e. For j =1,... k, set

5] s N7(3k73j*1)/(3k+1,1) (10gN)2/3 (10g4d)(3k7j+1)/3k+17j.

We check that 0 < N=1/3 < ¢; < ... < ¢, < 1, and we easily infer from (3.5) and Theorem
E that

loglog gy — loglog g, < 2k107 N?/3 N2/ (log N)2/3 (log 4d)/? (log log 4d)

2/3 Ar2/3* 2/3 3k—141)/3k (3.6)
+ N2/3 N3 (log N)/3 (log 4d)®" +1/37,

Choosing for k the smallest integer greater than (loglog N) - (log™ loglog 4d), we get from
(3.6) that

log llog N < 3-107 N?/3 (log N)?/2 (loglog N) (log 4d)'/? (log log 4d) (log™ log log 4d).
08 dn



Here, the function log™ is defined on the set of positive real numbers by setting log™ z =
max{log z, 1}.
Our choice of h implies that g1 < M(£) + 16", Combined with (3.4), this gives

loglog ¢, < log(4d) + 2log N + 2loglog M (€).
Since M (¢) <2V and d < N, we get
logloggn < 4-107 N?/3 (log N)?/3 (loglog N) (log 4d)*/? (log log 4d)?.
This concludes the proof. |

As a consequence of our theorem, we get an estimate for the maximal growth of the
sequence of denominators of convergents to algebraic numbers of bounded degree.

Corollary 2. Let 6 be an irrational, real number and let (r,,/$,)n>1 denote the sequence
of its convergents. Let d > 2 be an integer. If

) loglog s,
lim sup

4-10°
n—too N2/3(logn)2/3 (loglogn) (log4d)1/3 (loglog 4d)? > ’

then 0 is transcendental or algebraic of degree greater than d.

Corollary 2 improves the Corollaire of Mignotte [30].

4. On the continued fractions of powers of rational numbers

Let a and b be coprime integers with 1 < b < a. Let € be a positive real number.
Applying Ridout’s theorem, Mahler [25] proved that

I(5)

holds for every sufficiently large integer n. Here, || - || denotes the distance to the nearest
integer. This implies that the first partial quotient of |[(a/b)™|| is less than 2°™ when n is
sufficiently large. As we shall see below, Ridout’s theorem also yields some information on
the other partial quotients of [|(a/b)"||.

A rational number r has exactly two continued fraction expansions. These are [r| and
[r — 1;1] if r is an integer and, otherwise, one of them has the form [ag; a1, ..., an—1, ay]
with a,, > 2, and the other one is [ag; a1, ..., an—1,a, — 1, 1]. In the sequel, we denote by
L(r) the length of the shortest continued fraction equal to r.

In 1973, Mendes France [28] asked whether

ili};l) L((a/b)") = +o0

> 276’”

holds for all coprime integers a and b with 1 < b < a. In a series of notes, Choquet [5]
gave an affirmative answer to this question. Independently, Pourchet [33] applied Ridout’s
theorem to obtain a stronger statement, quoted below.
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Theorem P. For all coprime integers a and b with 1 < b < a, for any positive real number
e, the partial quotients of |[(a/b)"|| are all less than 2°™ when n is sufficiently large. In
particular, we have

nli)rj{loo L((a/b)") = +o0.

Pourchet never published his result. Although some details of the proof have been
given by van der Poorten [32] (see also [7] and [47], Ex. I1.6), we include below a proof of
Theorem P. The function field analogue has been solved by Grisel [16].

Notice that the trivial upper bound

L((a/b)™) < 3nlogh

is valid for all positive integers a, b, n with 1 < b < a. Theorem P does not provide
any information on the speed of growth of £((a/b)™). This is due to the ineffectiveness
of Ridout’s theorem. However, it turns out that the use of another strengthening of
Roth’s theorem, namely the Cugiani-Mahler theorem, allows us to get some additional
information.

Theorem 3. For all coprime integers a and b with 1 < b < a, there exist a positive
constant C' and arbitrarily large integers n such that

L((a/b)") > C <ﬂ)1/4.

loglogn
We will use the following version of the Cugiani-Mahler theorem, that we extract from
Bombieri and Gubler [2] (see also Bombieri and van der Poorten [3]).

Theorem BG. Let S be a finite set of prime numbers. Let 6 be a real algebraic number
of degree d. For any positive real number t set

loglog(t + log4) ) 1/4

f(£) = 7 (log 4d)""* ( log(t + log4)

Let (r;/s;)j>1 be the sequence of rational solutions, written in reduced form, to

r 1
‘0 TSl H [msfe < 52+ /(log s)
LesS
ordered such that 1 < s; < sy < ... Then either the sequence (r;/s;);>1 is finite or
log 7

lim sup 28Tt _ oo (4.1)

j—+oo log rj
Proof. This follows from Theorem 6.5.10 of [2]. O
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Proof of Theorem P. Let p/q be a solution to

a\" p 1
G) i<

with p and ¢ coprime. Let € be a positive real number. Let S; (resp. S3) be the set of

prime divisors of a (resp. b). By Ridout’s theorem, there exists a positive real number
C(e) such that C(e) < 1/4 and

‘1 - % ca”" b > 20 (e)p 2 a e, (4.2)

p V£

since pb"™ < a®". The integers ga™ and pb™ may not be coprime, but this does not matter
since the integers p and ¢ occurring in the statement of Ridout’s theorem are not assumed

to be coprime. If
a\" p 1
-] -5 <= 4.
’(b> Q‘ a +3)

‘ (2) — ]—)' > C(e)qg 2a " (4.4)
q

Since (4.4) also holds if (4.3) is not satisfied, it implies that the partial quotients of (a/b)"
are all less than a*™/C(g), thus less than a?*™ if n is sufficiently large. Consequently, we
get that £((a/b)™) > 1/(2¢) for n large enough. This proves Theorem P. O

Proof of Theorem 3. Let S be the set of prime divisors of ab. We may assume that the
(ordered) sequence (r;/s;);>1 of rational solutions (written in their lowest form) to

T 1
‘1 5| H [rsle < 52+ (log s)

Les

is infinite. By (4.1), there exist arbitrarily large integers j and n such that ;1 > a*" and
r; < a™?. By Theorem P, if n is sufficiently large, then there exists a convergent Pl /4, to
(a/b)"™ with a™/3 < p/, < a™/?. Any convergent p/q to (a/b)"™ with p < p/, is a convergent
to pl,/q,,. Write ga™/(pb™) = r/s with r and s positive and coprime. Write rs = tt’, where
t' is the largest integer coprime with ab. Since a"/? <r < a®", the rational number r/s
does not belong to the sequence (r;/s;);>1, thus

‘1 _ ga” ot > g2 fllogs)
pb™
that is,
a Pl S P, —2-f(logs)
- == >%ts . 4.5
Kb) Q‘ q (45)
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We may assume that (4.3) holds (which is the case if ¢ > 2) and, since t’ < pq, we infer
from (4.5) that

A" 2l L o)

b q| ~ 2q2

Since s > a“™ for some positive real number ¢, there is a positive constant k, depending
only on a, such that

‘(9> - 1—9‘ > g2 g nloglogm/*logm) 1/, (4.6)

Observe that (4.6) remains true when (4.3) does not hold. Then, we get that every partial
quotient of p/, /¢/, is less than a"m(°glog n)t/*(logn) TH*, Consequently, the length of the
continued fraction expansion of p/, /¢/, is at least equal to some constant times (logn)/4 -
(loglogn)~/4. Since p/,/q,, is a convergent to (a/b)", this is also a lower bound for the
length of the continued fraction expansion of (a/b)". O

Theorem 3 is a small step towards the resolution of the following question.
Problem 2. To give an effective lower bound for £((a/b)™).

Theorem P has been extended by Corvaja and Zannier [7] to quotients of power sums.
Recall that the continued fraction expansion of a real number f is eventually periodic
if, and only if, 6 is a quadratic surd. Mendes France [29] asked whether for every real
quadratic irrational ¢ and every positive M, there exist integers n such that the length
of the period of the continued fraction expansion of £" exceeds M. This question was
completely solved by Corvaja and Zannier [6]. Furthermore, results on the length of the
period of the continued fraction for values of the square root of power sums have been
given by Bugeaud and Luca [4] and by Scremin [39].

The key tool for the proofs of the results from [4, 6, 7, 39] is a powerful, deep gen-
eralization of Roth’s theorem, namely the Schmidt Subspace Theorem [38] (and, more
precisely, its non-Archimedean extension, worked out by Schlickewei [37]). However, it
does not seem to us that the Subspace Theorem and its relatives could be of some help for
improving upon Theorems 1 to 3 from the present paper.
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