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Abstract. We study the sets of values taken by the exponents of
quadratic approximation w2 and w∗2 evaluated at real numbers whose
sequence of partial quotients is generated by a finite automaton. Among
other results, we show that these sets contain every sufficiently large
rational number and also some transcendental numbers.

Résumé. Nous étudions les ensembles des valeurs prises par les ex-
posants d’approximation quadratique w2 et w∗2 évalués aux nombres
réels dont la suite des quotients partiels est engendrée par un automate
fini. Entre autres résultats, nous montrons que ces ensembles contien-
nent tout nombre rationnel suffisamment grand et également des nom-
bres transcendants.

1. Introduction and results

Throughout this paper, A denotes a finite or infinite set, called an alphabet, and A∗
denotes the set of finite words over A. If A is finite, a morphism is a map h from A∗
into itself such that h(xy) = h(x)h(y) for all finite words x, y in A∗. Let k be a positive
integer. The morphism h is called k-uniform if h(a) has exactly k letters for every a in
A. A sequence is k-automatic if it is the image, under a coding, of a fixed point of a
k-uniform morphism. We refer to [10] for equivalent definitions of an automatic sequence
and classical results.

Let b ≥ 2 be an integer. In 1968, Cobham [19] asked whether a real number whose
b-ary expansion can be generated by a finite automaton (in the sequel, such a real number
is called a b-ary automatic number) is always either rational or transcendental. A positive
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answer to Cobham’s question was given in [5], by means of a combinatorial transcendence
criterion established in [8]. In [1] we addressed the analogous question for continued
fraction expansions and gave a positive answer to it in [18]. Namely, we proved that a real
number whose continued fraction expansion can be generated by a finite automaton (in the
sequel, such a real number is called an automatic continued fraction) is either quadratic or
transcendental.

It is then natural to study the quality of algebraic approximations to transcendental
automatic continued fractions. This quality is measured by means of the functions wd and
w∗d introduced in 1932 by Mahler [23] and in 1939 by Koksma [21], respectively. Let d ≥ 1
be an integer and ξ be a real number. We let wd(ξ) denote the supremum of the real
numbers w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most d. Here, H(P )
stands for the näıve height of the polynomial P (X), that is, the maximum of the absolute
values of its coefficients. We let w∗d(ξ) denote the supremum of the real numbers w∗ for
which

0 < |ξ − α| < H(α)−w
∗−1

has infinitely many solutions in algebraic numbers α of degree at most d. Here, H(α)
stands for the näıve height of the minimal defining polynomial of α over Z. The exponents
w1 and w∗1 coincide and, for every real number ξ, we have

w∗2(ξ) ≤ w2(ξ) ≤ w∗2(ξ) + 1. (1.1)

For a proof of (1.1) and more results on wd and w∗d the reader is directed to Chapter 3
of [12].

Transcendence measures for non-quadratic automatic continued fractions (more pre-
cisely, upper bounds for the functions wd and w∗d evaluated at automatic continued frac-
tions) were obtained in [17]. For d ≥ 3, we applied a general method described in [6, 7],
while for d = 2 new arguments were needed, which appeared to have interesting applica-
tions to the comparison between Mahler’s and Koksma’s classifications. In particular, for
any δ in (0, 1], we gave [17] explicit examples of real numbers ξ defined by their continued
fraction expansion which satisfy w2(ξ) = w∗2(ξ) + δ. Furthermore, we established, in a
constructive way, that w∗2 (resp., w2) takes any value greater than or equal to (3 +

√
17)/2

(resp., (5 +
√

17)/2). The main purpose of the present work is to discuss Problem 5.4 of
[17], recalled below.

Problem 1.1. Determine the set of values taken by the exponents w2 and w∗2 at automatic
continued fractions.

Among other results, we give a proof of (a quantitative form of) the assertion following
the statement of that problem, claiming that any sufficiently large rational number is a
value taken by the functions w2 and w∗2 at automatic continued fractions.

Theorem 1.2. Let p/q be a rational number greater than (5+
√

17)/2. Then there exists
an automatic continued fraction ξp/q such that

w2(ξp/q) = w∗2(ξp/q) + 1 = p/q.

2



We suspect that every rational number greater than or equal to 2 is a value of w2

(resp., w∗2) evaluated at an automatic continued fraction. The analogous result for b-
ary automatic numbers, established in [13], asserts that, for every integer b ≥ 2, every
rational number greater than or equal to 1 is a value of w1 evaluated at a b-ary automatic
number. The key tool for the proof is the use of continued fractions. Since we do not know
any algorithm which would give us all the best quadratic approximations to an automatic
continued fraction, it seems to be a difficult problem to replace (5+

√
17)/2 in the statement

of Theorem 1.2 by a smaller value.
We address a related question.

Problem 1.3. To determine the set of values taken by w2 − w∗2 evaluated at automatic
continued fractions.

It follows from (1.1) that the set of real numbers defined in Problem 1.3 is contained
in the interval [0, 1]. We are able to prove that this set includes every rational number in
[0, 1].

Theorem 1.4. For any rational number ρ in [0, 1], there exists an automatic continued
fraction ξρ such that

w2(ξρ)− w∗2(ξρ) = ρ.

At present, we do not know a single example of a b-ary automatic number at which
w1 takes an irrational value. It is thus quite tempting to conjecture that the set of values
taken by w1 at irrational b-ary automatic numbers is equal to [1,+∞) ∩Q. Likewise, we
may suspect that the set of values taken by w2, w

∗
2 and w2 − w∗2 at automatic numbers

does not include irrational numbers. All this would be supported by a result of Schaeffer
and Shallit [28] on the Diophantine exponent of automatic sequences, recalled at the end
of Section 2.

However, the situation with automatic continued fractions is rather different from that
with b-ary automatic numbers.

Theorem 1.5. The set of values taken by any of the functions w2, w
∗
2 and w2 − w∗2

evaluated at automatic continued fractions includes transcendental numbers.

Theorem 1.5 seems, at first sight, quite surprising. The key observation is that a
Lévy constant (see Section 4) does not exist for an arbitrary automatic continued fraction.
Furthermore, the values of w2 and w∗2 may depend on the alphabet over which the auto-
matic word is expressed. A similar situation does not seem to occur in the case of b-ary
automatic numbers; see [16] for a discussion.

The proofs of Theorems 1.2, 1.4 and 1.5 are constructive.
We end this section by a further open question.

Problem 1.6. Does there exist an automatic continued fraction ξ for which w2(ξ) = 2?

The present paper is organized as follows. In Section 2 we recall the definitions of the
initial critical exponent and the Diophantine exponent of an irrational number, together
with their connections to the exponents w2 and w∗2 . Some results on continued fractions
are given in Section 3. Section 4 is devoted to a discussion of Lévy constants of automatic
continued fractions. In Section 5, we recall Liouville’s inequality, which bounds the distance
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between two distinct algebraic numbers from below, and an application. Sections 6 and
7 are devoted to the proofs of our theorem. Quadratic approximation to Thue–Morse
continued fractions is discussed in Section 8.

2. The initial critical exponent and the Diophantine exponent

The length of a word W over the alphabet A, that is, the number of letters composing
W , is denoted by |W |. For any positive integer k, we write W k for the word W . . .W
(k times repeated concatenation of the word W ). More generally, for any positive real
number x, we let W x denote the word W bxcW ′, where W ′ is the prefix of W of length
d(x− bxc)|W |e. Here, and in what follows, byc and dye denote, respectively, the floor and
ceiling of the real number y.

Let a = (a`)`≥1 be a sequence of elements from A that we identify with the infinite
word a1a2 . . . a` . . . The initial critical exponent of a, introduced by Berthé, Holton and
Zamboni [11] and denoted by ice(a), is the supremum of the real numbers x for which
there exist arbitrarily long prefixes of a that can be expressed in the form V x, for a finite
word V .

The Diophantine exponent of a, introduced in [4] and denoted by Dio(a), is the supre-
mum of the real numbers ρ for which there exist arbitrarily long prefixes of a that can
be expressed in the form UV x for some real number x and finite words U, V such that
|UV x|/|UV | ≥ ρ. It is clear from the definitions that

1 ≤ ice(a) ≤ Dio(a) ≤ +∞

and that the initial critical exponent of an ultimately periodic sequence is infinite. However,
it is easy to construct sequences whose Diophantine exponent is infinite but which are
not ultimately periodic. The Diophantine exponent of a can be viewed as a measure of
periodicity of a. We stress that both exponents are independent of the alphabet over which
a is expressed.

We define the initial critical exponent and the Diophantine exponent of an irrational
real number to be, respectively, the initial critical exponent and the Diophantine exponent
of its sequence of partial quotients.

Definition 2.1. Let ξ := [0; a1, a2, . . . , a`, . . .] be an irrational real number. The initial
critical exponent of ξ, denoted by ice(ξ), is the initial critical exponent of the infinite word
a1a2 . . . The Diophantine exponent of ξ, denoted by Dio(ξ), is the Diophantine exponent
of the infinite word a1a2 . . .

By truncating the continued fraction expansion of an irrational real number ξ and
using the truncation as the period of a periodic continued fraction, one constructs good
quadratic approximations to ξ which allow us to bound w∗2(ξ) from below. An easy calcu-
lation (see Section 11 in [17]) shows that

w∗2(ξ) ≥ Dio(ξ)− 1, (2.1)
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if (q
1/`
` )`≥1 converges, where (p`/q`)`≥1 denotes the sequence of convergents to ξ. If,

moreover, ξ has bounded partial quotients, then we also have

w2(ξ) ≥ Dio(ξ). (2.2)

and
w2(ξ) ≥ w∗2(ξ) ≥ 2 ice(ξ)− 1, (2.3)

as can be verified by an easy computation.
In all the explicit examples constructed in the present note, we have equality in (2.1)

and/or in (2.2). However, we do not have equality in (2.1), (2.2) and (2.3) for all automatic
continued fractions ξ. Indeed, the Diophantine exponent of an automatic continued fraction
can be less than 3, while, by a result of Davenport and Schmidt [20], we have w∗2(ξ) ≥ 2
for every real number ξ which is not algebraic of degree at most 2.

We conclude this section with an important result of Schaeffer and Shallit [28], already
alluded to in Section 1.

Theorem SS. The initial critical exponent and the Diophantine exponent of a transcen-
dental automatic continued fraction are always rational numbers.

Theorem SS speaks in favour of the conjectures discussed in Section 1.

3. Continued fractions

We assume that the reader is already familiar with the theory of continued fractions.
A classical reference is the monograph of Perron [25]. We just recall two results from [17]
and a classical lemma about continuants. Throughout this text, a (resp., a1, . . . , an) means
that the letter a (resp., the n letters a1, . . . , an) is repeated infinitely often.

In this section, the notation�a1,...,ah means that the implicit numerical constant only
depends on a1, . . . , ah.

Lemma 3.1. Let ξ be a quadratic real number with ultimately periodic continued fraction
expansion

ξ = [0; a1, . . . , ar, ar+1, . . . , ar+s],

and let ξ′ denote its Galois conjugate. Then we have

|ξ − ξ′| ≥ H(ξ)−1. (3.1)

Let (p`/q`)`≥1 denote the sequence of convergents to ξ. Assume that r ≥ 3 and s ≥ 1. If
ar−2, ar−1 and ar are not greater than M and if ar 6= ar+s, then we have

|ξ − ξ′| �M2 q−2r .

Proof. To establish (3.1), it is sufficient to note that, if the minimal defining polynomial
of ξ over Z is aX2 + bX + c, then

|ξ − ξ′| =
√
b2 − 4ac

a
.
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The last assertion of the lemma follows from Lemma 6.1 in [17].

Lemma 3.2. Let b, c and d be distinct positive integers. Let n ≥ 3 be an integer and
a1, . . . , an−2 be positive integers. Set

ξ := [0; a1, . . . , an−2, b, c, b].

Then the height of ξ satisfies
q2n �b,c H(ξ)�b,c q

2
n,

where qn is the denominator of the rational number pn/qn := [0; a1, . . . , an−2, b, c]. Let
m ≥ 3 be an integer and set

ζ := [0; a1, . . . , an−2, b, c, b, b, . . . , b, d],

where the periodic part b, b, . . . , b, d has length m. Then the height of ζ satisfies

qnqn+m �b,c,d H(ζ)�b,c,d qnqn+m.

where qn+m is the denominator of the rational number [0; a1, . . . , an−2, b, c, b, b, . . . , b, d].

Proof. This is Lemma 6.3 in [17].

If a1, . . . , am are positive integers, then, by definition, the continuant Km(a1, . . . , am)
is the denominator of the rational number [0; a1, . . . , am].

Lemma 3.3. For any positive integers a1, . . . , am and any integer k with 1 ≤ k ≤ m− 1,
we have

Km(a1, . . . , am) = Km(am, . . . , a1),

Km(a1, . . . , am) ≤ (1 + max{a1, . . . , am})m,
Km(a1, . . . , am) ≥ max{(min{a1, . . . , am})m, 2(m−1)/2},

and

Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am).

Proof. See, e.g., on page 15 of [25].

4. Lévy constants

Definition 4.1. Let ξ := [0; a1, a2, . . .] be an irrational real number and let (p`/q`)`≥1
denote the sequence of its convergents. The Lévy constant of ξ is the value

lim
`→+∞

log q`
`

,

if this limit exists and, otherwise, we say that ξ has no Lévy constant.

Lévy [22] established that π2/(12 log 2) is the Lévy constant of almost all real numbers,
in the sense of Lebesgue measure.

We omit the proof of the next lemma, which is a short and easy computation.
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Lemma 4.2. For every integer m ≥ 1 the Lévy constant of the quadratic number [0;m]
is

Km :=
m+

√
m2 + 4

2
.

M. Queffélec [27] proved that a wide class of automatic continued fractions have a
Lévy constant. Before stating her result, we need to recall some definitions. A morphism
h from A∗ into A∗ is called primitive if for all letters a, b in A there exists a positive
integer n such that b occurs in hn(a). An automatic sequence is minimal if the underlying
(uniform) morphism is primitive. By minimal automatic continued fraction, we mean a
real number whose continued fraction expansion can be generated by a primitive uniform
morphism. Note that an infinite word w is minimal if, and only if, corresponding to every
block W occurring in w, there exists an integer kW such that every block of length kW of
w contains at least one occurrence of W ; see Section 10.9 of [10] for additional results.

Theorem Q. Every minimal automatic continued fraction has a Lévy constant.

The conclusion of Theorem Q does not hold in general for an automatic continued
fraction which is not minimal.

Theorem 4.3. There exist automatic continued fractions which do not have a Lévy con-
stant.

We point out that there exist transcendental automatic continued fractions which are
minimal and have a Lévy constant; see below, in the proof of Theorem 1.2.

To establish Theorem 4.3, we explicitly construct an automatic continued fraction
which does not have a Lévy constant. This real number will subsequently be used in the
proof of Theorem 1.5.
Proof. Let a, b, c be distinct positive integers. Let u ≥ 1 and v ≥ 2 be integers and consider
the fixed point w beginning with c of the (u+ v)-uniform morphism

a 7→ au+v, b 7→ bu+v, c 7→ caubv−1,

namely
w := caubv−1au(u+v) . . .

Let ξ denote the continued fraction associated to w deprived of its first letter, namely

ξ := [0; a, . . . , a, b, . . . , b, a, . . .],

and let (p`/q`)`≥1 be the sequence of its partial quotients. It is easily seen that blocks of
the letter a and blocks of the letter b alternate. Precisely, we have

w(u+v)j = · · · = w(u+1)(u+v)j−1 = a

and
w(u+1)(u+v)j = · · · = w(u+v)j+1−1 = b,

for j ≥ 0.
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Let ε > 0. It follows from Lemma 3.3 that(
Ku
aK

v−1
b

)(1−ε)(u+v)j/(u+v−1) ≤ q(u+v)j ≤ (
Ku
aK

v−1
b

)(1+ε)(u+v)j/(u+v−1)
and(
Ku(u+v)
a Kv−1

b

)(1−ε)(u+v)j/(u+v−1) ≤ q(u+1)(u+v)j ≤
(
Ku(u+v)
a Kv−1

b

)(1+ε)(u+v)j/(u+v−1)
,

when j is large enough. Consequently,

u

u+ v − 1
logKa +

v − 1

u+ v − 1
logKb

and
u(u+ v)

(u+ 1)(u+ v − 1)
logKa +

v − 1

(u+ 1)(u+ v − 1)
logKb

are limit points of the sequence ((log q`)/`)`≥1.
Taking, for example, u = 1, v = 2, we get that

(KaKb)
1/2 and (K3

aKb)
1/4

are distinct limit points of (q
1/`
` )`≥1. This provides us with a family of explicit examples

of automatic continued fractions which do not have a Lévy constant.

5. Liouville’s inequality and an application

By Liouville’s inequality, we mean a non-trivial lower bound for the distance between
two distinct algebraic numbers. For instance, it follows from Theorem A.1 of [12] that

|α− β| ≥ 10−2 ·H(α)−2 ·H(β)−2 (5.1)

holds for distinct algebraic numbers α and β of degree at most two. When the Galois
conjugate of α is very close to α, then (5.1) can be considerably improved; see [17].

Furthermore, it is well known that if a real number ξ has a dense (in a suitable sense)
sequence of very good algebraic approximations, then w∗2(ξ) can be determined. A precise
statement, which relies on a refinement of (5.1), is Lemma 7.3 from [17], recalled below.
It also includes results on w2(ξ).

Lemma 5.1. Let ξ be a real number. Assume that there exist positive real numbers
c1, c2, c3, δ, ρ, θ and a sequence (αj)j≥1 of quadratic numbers such that

c1H(αj)
−ρ−1 ≤ |ξ − αj | ≤ c2H(αj)

−δ−1.

and
H(αj) ≤ H(αj+1) ≤ c3H(αj)

θ,
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for j ≥ 1. Set ε = 0 or assume that there exist c4 ≥ 1 and 0 < ε ≤ 1 such that

|αj − α′j | ≤ c4H(αj)
−ε,

for j ≥ 1, where α′j denotes the Galois conjugate of αj . Then we have

δ ≤ w∗2(ξ) ≤ ρ

when
(ρ− 1)(δ − 1 + ε) ≥ 2θ(2− ε).

Furthermore, if ε > 0, then we have

δ ≤ w∗2(ξ) ≤ ρ and w2(ξ) = w∗2(ξ) + ε,

when
(δ − 2 + ε)(δ − 1 + ε) ≥ 2θ(2− ε)

and

lim
j→+∞

log |αj − α′j |
logH(αj)

= −ε.

6. Proofs of Theorems 1.2 and 1.4

Proofs of Theorem 1.2 and the case ρ = 1 of Theorem 1.4.
Let p/q be a rational number greater than (5 +

√
17)/2 and let I be a closed interval

in ((5 +
√

17)/2, p/q), whose center θ is irrational. Let b be an integer such that θ + p−b

is in I. Let a ≥ 3 and J ≥ 3 be integers such that

θ < qpa−1(θ + p−b)−J < θ + p−b. (6.1)

These numbers exist since the sequence (pa/(θ+ p−b)J)a,J≥3 is dense in the set of positive
real numbers.

Set r0 := pb and r1 := dθpbe. For j = 2, . . . , J , set rj = dθrj−1e.
Observe that

rj − 1 < θrj−1 < rj , j = 1, . . . , J,

hence,

θ <
rj
rj−1

< θ +
1

rj−1
≤ θ + p−b, j = 1, . . . , J. (6.2)

Consequently,
r1
pb
,
r2
r1
, . . . ,

rJ
rJ−1

are all in I. Since
qpa+b−1

rJ
= qpa−1 × rJ−1

rJ
× · · · × r1

r2
× pb

r1
,
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we deduce from (6.1) and (6.2) that

θ < qpa−1(θ + p−b)−J ≤ qpa+b−1

rJ
≤ qpa−1θ−J < θ + p−b;

thus the rational number qpa+b−1/rJ belongs to the interval I.
Define the sequence y = (yn)n≥1 by setting yn = 2 if n is of the form pharj or

qp(h+1)a+b−1 for some integers h ≥ 0 and j = 0, . . . , J , and setting yn = 1 otherwise. It
follows from Theorem 5.6.3 of [10] that y is an automatic sequence. The first indices n at
which yn = 2 are

pb, r1, r2, . . . , rJ , qp
a+b−1, pa+b, par1, p

ar2, . . . , p
arJ , qp

2a+b−1, p2a+b, . . .

The quotient of any two consecutive elements of the latter sequence is always greater than
(5 +

√
17)/2 and at most equal to p/q, with equality for infinitely many indices. The

Diophantine exponent of y is then equal to p/q. Define

ξp/q := [0; y1, y2, . . . , yn, . . .] = [0; 1, 1, . . . , 1, 2, 1, . . .].

Let (nk)k≥1 denote the increasing sequence of integers n such that yn = 2. For k ≥ 1, set

ξk := [0; y1, . . . , ynk
, 1].

By Lemmas 4.2 and 4.3 and classical results on continued fractions, we have

qnk+1
� qnk

K
nk+1−nk

1 , H(ξk) � q2nk
and |ξp/q − ξk| � q−2nk+1

. (6.3)

Consequently, there exists an absolute constant c1 such that H(ξk+1) ≤ c1H(ξk)p/q. Define
ϕk by H(ξk+1) = c1H(ξk)ϕk . Observe that ϕk ≤ p/q and that ϕk > (5 +

√
17)/2 when k

is sufficiently large.
Let ζ be a quadratic real number with large height and let k be the integer defined

by H(ξk) ≤ H(ζ) < H(ξk+1). The constants c2, c3, . . . below are absolute. By (5.1) and
the triangle inequality, we have

|ξp/q − ζ| ≥ 10−2 ·H(ξk)−2 ·H(ζ)−2 − |ξp/q − ξk|

and we deduce that |ξp/q − ζ| ≥ c2H(ζ)−4 as soon as

H(ζ) ≤ c3H(ξk)ϕk−1. (6.4)

Likewise, using the inequality

|ξp/q − ζ| ≥ 10−2 ·H(ξk+1)−2 ·H(ζ)−2 − |ξp/q − ξk+1|,

we see that |ξp/q − ζ| ≥ c4H(ζ)−p/q whenever

H(ζ) ≥ c5H(ξk)2ϕk/(−2+p/q). (6.5)
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Since p/q ≥ ϕk > (5 +
√

17)/2 (here, we use that H(ξ), hence k, is sufficiently large), we
get

2ϕk < (−2 + p/q)(ϕk − 1).

By (6.4) and (6.5), this shows that every quadratic number ζ with sufficiently large height
and which does not belong to the sequence (ξk)k≥1 satisfies

|ξp/q − ζ| ≥ c6H(ζ)−p/q.

Furthermore, there are arbitrarily large integers k for which nk+1/nk = p/q and

|ξp/q − ξk| ≤ c7H(ξk)−p/q.

We conclude that w∗2(ξp/q) = p/q−1. It follows from Lemma 3.1 that |ξk−ξ′k| ≤ c8H(ξk)−1

for k ≥ 1. Thus, our construction shows that every very good quadratic approximation to
ξp/q has its Galois conjugate also very close to ξp/q, hence, we deduce that w2(ξp/q) = p/q,
as claimed. Also note that the automatic continued fraction ξ is not minimal, while (6.3)
implies that logK1 is the Lévy constant of ξ.

Proof of the case ρ = 0 of Theorem 1.4.
Let v ≥ 2 be an integer and let av = a1,va2,v . . . denote the fixed point of the (2v)-

uniform morphism
2 7→ (23)v, 3 7→ (23)v−124, 4 7→ 22v.

For k ≥ 0, let Uk denote the prefix of av of length 2 · (2v)k. Observe that U
2v−1/2
k is a

prefix of av.
Set ξk := [0;Uk, Uk, . . .]. Observe that

H(ξk) ≤ 5|Uk|

and
|ξ − ξk| ≤ 2−(4v−1)|Uk| ≤ 2−3v|Uk| ≤ 5−cv|Uk| ≤ H(ξk)−cv,

with c = (3 log 2)/(log 5). Note that, here and below, we make no effort to refine the
estimates.

Let ζ be a quadratic number of sufficiently large height and with ζ 6= ξk for every
k ≥ 1. Let k be such that

5|Uk| ≤ H(ζ) < 5|Uk+1| = 52v|Uk|.

We deduce from (5.1) that

|ξ − ζ| ≥ |ζ − ξk| − |ξ − ξk| ≥ 10−2 ·H(ζ)−25−2|Uk| − 5−cv|Uk|,

thus,
|ξ − ζ| ≥ 10−3 ·H(ζ)−4
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as soon as
H(ζ) ≤ 10−3 · 5(cv−2)|Uk|/2. (6.6)

On the other hand, assuming that v > 12c (which ensures that cv ≥ 3 + (8v/(cv− 2))), we
get again by (5.1) that

|ξ − ζ| ≥ |ζ − ξk+1| − |ξ − ξk+1|

≥ 10−2 ·H(ζ)−25−4v|Uk| − 5−2cv
2|Uk| ≥ 10−3 ·H(ζ)−25−4v|Uk|,

and we deduce that
|ξ − ζ| ≥ (103H(ζ))−2−8v/(cv−2)

when (6.6) does not hold.
Since cv ≥ 2+(8v/(cv−2)), the sequence (ξk)k≥1 comprises all the best approximants

to ξ and we get

w∗2(ξ) = lim sup
k→+∞

− log |ξ − ξk|
logH(ξk)

− 1.

We do not know the exact value of w∗2(ξ). We only know that, since the Galois conjugate
ξ′k of ξk is negative, it satisfies |ξk − ξ′k| ≥ 1/3. Combined with the fact that the other
approximants to ξ are much less good (since cv ≥ 3 + (8v/(cv − 2))), it follows from (1.1)
that w2(ξ) = w∗2(ξ).

Completion of the proof of Theorem 1.4.
To complete the proof of Theorem 1.4, it then remains for us to treat the case where

ρ is in (0, 1) ∩Q.
Let r/s be a rational number in (0, 1) with r and s positive, and set

η =
2(s− r)

r
.

Let a be a positive integer. We consider the sequence

ra, ra(1 + η), . . . , ra(1 +mη), r2a, r2a(1 + η), . . . , r2a(1 +mη), r3a, . . .

where m is the largest integer such that 1 + mη < ra, that is, the largest integer smaller
than r(ra − 1)/(2(s− r)).

Let (yn)n≥1 be the sequence defined by setting:
yn = 2, if there is an integer k ≥ 1 such that n = rak;
yn = 3, if there are integers j = 1, . . . ,m and k ≥ 1 such that n = rak(1 + jη);
yn = 1, otherwise.

It follows from Theorem 5.6.3 and Corollary 5.4.5 of [10] that (yn)n≥1 is an automatic
sequence. Set

ξ := [0; y1, y2, . . . , yn, . . .].

Let (p`/q`)`≥1 denote the sequence of convergents to ξ. For k ≥ 1,

ξk := [0; y1, y2, . . . , yrak−1, 2, 1, . . . , 1, 3]

12



is a good approximant to ξ. Let ε be a real number in (0, 0.1). By Lemmas 3.2 and 3.3
and the theory of continued fractions,

K
−2ra(k+1)(1+ε)
1 ≤ |ξ − ξk| ≤ K−2r

a(k+1)(1−ε)
1

and
K

(2+η)rak(1−ε)
1 ≤ H(ξk) ≤ K(2+η)rak(1+ε)

1

hold when k is sufficiently large. Furthermore, it follows from Lemma 3.1 that the Galois
conjugate ξ′k of ξk satisfies

K
−2rak(1+ε)
1 ≤ |ξk − ξ′k| ≤ K

−2rak(1−ε)
1 ,

provided that k is large enough. We deduce from Lemma 5.1 applied with θ = ra(1 + 3ε)
that

w∗2(ξ) =
2ra

2 + η
− 1 and w2(ξ) =

2ra − η
2 + η

,

when a is sufficiently large; thus,

w2(ξ)− w∗2(ξ) =
2

2 + η
=
r

s
.

The proof of Theorem 1.4 is complete.

7. Proof of Theorem 1.5

To show that the exponents w2 and w∗2 take transcendental values at some automatic
continued fractions, we consider the family of automatic continued fractions defined in the
proof of Theorem 4.3. We keep the same notation. For j ≥ 1, set

αj := [0;w1, . . . , w(u+v)j−1, a]

and
βj := [0;w1, . . . , w(u+1)(u+v)j−1, b].

It follows from Lemma 3.2 that

H(αj) � q2(u+v)j and H(βj) � q2(u+1)(u+v)j , (7.1)

where (as below) the numerical constants implied by � depend only on a and b. Observe
that

|ξ − αj | � q−2(u+1)(u+v)j � H(βj)
−1

and
|ξ − βj | � q−2(u+v)j+1 � H(αj+1)−1.

13



We need to precisely estimate the growth of the sequence (q`)`≥1. It follows from the
calculation performed in the proof of Theorem 4.3 that

α := lim sup
j→+∞

− log |ξ − αj |
logH(αj)

=
log(K

u(u+v)
a Kv−1

b )

log(Ku
aK

v−1
b )

and

β := lim sup
j→+∞

− log |ξ − βj |
logH(βj)

=
log(K

u(u+v)
a K

(u+v)(v−1)
b )

log(K
u(u+v)
a Kv−1

b )
.

We select u, v, a and b in such a way that α and β are both large. To do this, observe first
that αβ = u+ v, choose u large and set v = u+ 1. This gives

α =
log(K2u+1

a Kb)

log(KaKb)
and β =

log(K2u+1
a K2u+1

b )

log(K2u+1
a Kb)

.

Now choose b equal to ba
√
uc or ba

√
uc+ 1, in such a way that

√
a and

√
b do not belong

to the same quadratic field. Observe that α and β are then of the order of magnitude of√
u. Furthermore,

logH(αj) �
2(u+ v)j

u+ v − 1
(u logKa + (v − 1) logKb)

is of the order of magnitude of uj
√
u and

logH(βj) �
2(u+ v)j

u+ v − 1
(u(u+ v) logKa + (v − 1) logKb)

is of the order of magnitude of uj+1. The quotients

logH(βj)

logH(αj)
and

logH(αj+1)

logH(βj)

are both of the order of magnitude of
√
u. Lemma 5.1 then shows that, provided that u

is sufficiently large, all the best approximations to ξ belong to the sequences (αj)j≥1 and
(βj)j≥1. Keeping in mind that, by (7.1) and Lemma 3.1, the αj ’s and the βj ’s are very
close to their Galois conjugate, we get

w∗2(ξ) + 1 = w2(ξ) = max{α, β}.

Note that α and β are quotients of logarithms of real algebraic numbers greater than 1.
Thus, by the Gelfond–Schneider theorem, they are rational or transcendental. Here, they
are transcendental since

√
a and

√
b do not belong to the same quadratic field.

Similar ideas can be used to prove that the function w2 −w∗2 can take transcendental
values at automatic continued fractions.
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Let a, b, c, d be distinct positive integers. Let s, t, u be integers greater than or equal
to 2 and consider the fixed point w beginning with d of the (t+ su)-uniform morphism

a 7→ at+su, b 7→ bt+su, c 7→ bt+su−1c, d 7→ dat−1(bu−1c)s,

namely,
w := dat−1bu−1cbu−1c . . .

We assume that t is large compared to su.
Denote by ξ the continued fraction associated with w deprived of its first letter, namely

ξ := [0; a, . . . , a, b, . . . , b, c, b, . . .],

and let (p`/q`)`≥1 be its sequence of partial quotients. For j ≥ 0 and h = 0, 1, . . . , s − 1,
we have

w(t+su)j = · · · = wt(t+su)j−1 = a,

w(t+hu)(t+su)j = · · · = w(t+(h+1)u)(t+su)j−2 = b,

and
w(t+(h+1)u)(t+su)j−1 = c.

For j ≥ 1, set
γj := [0;w1, . . . , wt(t+su)j−1, b, . . . , b, c].

Let ε be a positive real number. Lemma 3.2 and a rapid calculation show that(
K2(t−1)(t+su)
a K2su+u

b

)(1−ε)(t+su)j/(t+su−1) ≤ H(γj)

≤
(
K2(t−1)(t+su)
a K2su+u

b

)(1+ε)(t+su)j/(t+su−1)
and (

K2(t−1)
a K2su

b

)(1−ε)(t+su)j+1/(t+su−1) ≤ − log |ξ − γj |

≤
(
K2(t−1)
a K2su

b

)(1+ε)(t+su)j+1/(t+su−1)
,

when j is large enough. Consequently,

lim
j→+∞

− log |ξ − γj |
logH(γj)

− 1 =
2(t− 1)(t+ su) logKa + 2su(t+ su) logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
− 1

=
(2su(t+ su− 1)− u) logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
.

(7.2)

Furthermore, the Galois conjugate γ′j of γj satisfies

(
K2(t−1)(t+su)
a K2su

b

)(1−ε)(t+su)j/(t+su−1) ≤ − log |ξ − γ′j |

≤
(
K2(t−1)(t+su)
a K2su

b

)(1+ε)(t+su)j/(t+su−1)
,
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again when j is large enough. Consequently, letting Pj(X) denote the minimal defining
polynomial of γj over Z, we get

lim
j→+∞

− log |P (γj)|
logH(γj)

=
2(t− 1)(t+ su) logKa + (2su(t+ su)− u) logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
.

Observe also that

lim
j→+∞

logH(γj+1)

logH(γj)
= t+ su.

Choosing our parameters in such a way that logKb exceeds t2 logKa, the limit in (7.2)
is greater than 2(t + su)/3. By Lemma 5.1, the sequence (γj)j≥1 comprises all the best
approximants to ξ. This implies that we have

w2(ξ) = lim
j→+∞

− log |P (γj)|
logH(γj)

and

w∗2(ξ) = lim
j→+∞

− log |ξ − γj |
logH(γj)

− 1.

In particular,

w2(ξ)− w∗2(ξ) =
2(t− 1)(t+ su) logKa + 2su logKb

2(t− 1)(t+ su) logKa + (2su+ u) logKb
.

By choosing a and b such that
√
a and

√
b do not belong to the same quadratic field

and applying the Gelfond–Schneider theorem, this proves that the function w2 −w∗2 takes
transcendental values at some automatic continued fractions.

8. The Thue–Morse continued fraction

The Thue–Morse sequence t = (tn)n≥0 on the alphabet {a, b} is defined as follows:
tn = a (respectively, tn = b) if the sum of binary digits of n is even (respectively, odd).
This sequence viewed as the infinite word

t = abbabaabbaababbabaababbaabbabaab . . .

was introduced by Thue [30] in 1912 and then considered nine years later by Morse [24] in
a totally different context. It is not ultimately periodic. This is an automatic sequence,
also defined as the fixed point beginning with a of the uniform morphism τ defined by

τ(a) = ab, τ(b) = ba.

More information on the Thue–Morse sequence can be found in [9]. Noticing that, for
n ≥ 1, the word τn(abbab) = τn(abb)τn(ab) is a prefix of t, we see that the initial critical
exponent of t is greater than or equal to 5/3.
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By a Thue–Morse continued fraction, we mean a real number whose sequence of partial
quotients is the Thue–Morse sequence on some alphabet {a, b}, where a and b are distinct
positive integers. Applying a deep result of Schmidt [29] stating that any real algebraic
number ζ of degree at least three satisfies w2(ζ) = w∗2(ζ) = 2, M. Queffélec [26] showed
in 1998 that the Thue–Morse continued fractions are transcendental. Subsequently [27],
she simplified her proof, by showing that any Thue–Morse continued fraction ξ has a Lévy
constant (see Theorem Q in Section 4 above). Combined with the fact that ice(t) ≥ 5/3,
this immediately gives, by (2.3),

w2(ξ) ≥ w∗2(ξ) ≥ 7/3, (8.1)

and hence, by [29], the transcendence of ξ.
An alternative proof was subsequently given in [2, 3], based on another result from [29]

on the simultaneous approximation of a real number and its square by rational numbers
with the same denominator and the fact that arbitrarily long prefixes of t are palindromes.
More precisely, for an irrational real number θ, we let λ2(θ) denote the supremum of the
real numbers λ for which the inequality

max{||qθ||, ||qθ2||} < q−λ

is satisfied for infinitely many positive integers q. Here, || · || denotes the distance to the
nearest integer. Schmidt [29] established that any real algebraic number ζ of degree at
least three satisfies λ2(ζ) = 1/2. As observed in [2, 3], if the continued fraction expansion
of θ begins with infinitely many palindromes, then we have

λ2(θ) ≥ 1, (8.2)

and we deduce from Schmidt’s result that θ is either quadratic or transcendental.
This point of view, together with a classical transference principle, allows us to improve

the lower bound for w2(ξ) given in (8.1).

Theorem 8.1. Let a = a1a2 . . . be an infinite word on a finite alphabet composed of
positive integers. If arbitrarily long prefixes of a are palindromes and if a is not ultimately
periodic, then the continued fraction

ξa := [0; a1, a2, . . .]

satisfies w2(ξa) ≥ 3. Thus, any Thue–Morse continued fraction ξ satisfies w2(ξ) ≥ 3.

Proof. It suffices to observe that Khintchine’s transference principle (see, e.g., Proposition
3.3 in [14]) implies that

w2(θ) ≥ 2λ2(θ) + 1,

for any real number θ not algebraic of degree at most two. Combined with (8.2) this proves
the theorem.

We conclude with an open question.
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Problem 8.2. Determine w2(ξ) and w∗2(ξ) when ξ is a Thue–Morse continued fraction.

The analogue of Problem 8.2 for real numbers whose b-ary expansion is a Thue–Morse
sequence was solved in [15].
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[30] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in Selected Mathematical
Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, 1977, pp. 413–478.

Yann Bugeaud
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