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Abstract. We prove that, for any fixed base x ≥ 2 and sufficiently large prime q, no perfect q-th

powers can be written with 3 or 4 digits 1 in base x. This is a particular instance of rather more

general results, whose proofs follow from a combination of refined lower bounds for linear forms in

Archimedean and non-Archimedean logarithms.

1. Introduction

A celebrated theorem of Mihăilescu [18] asserts that 8 and 9 are the only consecutive perfect powers

of positive integers. One way of interpreting this result is that 9 is the only perfect power which can

be written in the form 10 . . . 01 (with at least one digit 0) in some integer base. A (closely) related

Diophantine problem is the search for perfect powers N having only digits 1 in some integer base other

than N or N − 1 (observe than N is written 11 in base N − 1). We know precisely three numbers

with this property, namely

34 + 33 + 32 + 3 + 1 = 112, 73 + 72 + 7 + 1 = 202 and 182 + 18 + 1 = 73,

and it is widely believed that the corresponding Diophantine equation

(1)
xn − 1

x− 1
= yq, in integers x > 1, y > 1, n > 2, q ≥ 2,

commonly termed the Nagell–Ljunggren equation, has no solutions beyond the three listed above.

Remarkably, with current technology, it is not even known whether this equation has finitely many

solutions in the four variables. For a given fixed value of x, however, it is always possible to solve

(1), at least in principle; this has been done for x ≤ 106, see [6, 8, 9] and the survey [7]. The key
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theoretical tools used to bound q in equation (1), for given x, are estimates for linear forms in two non-

Archimedean logarithms. Refinements of this theory developed in [2, 3] enable one to solve equation

(1) for large infinite families of x.

The starting point of the present paper is the following related problem. We fix an integer base

x ≥ 2 and aim to determine all the perfect powers whose representation in base x has relatively few

non-zero digits. While an apparently simple question, for the situation where we allow more than

three such digits, it does not appear to be a routine matter to determine whether the corresponding

set of powers is finite or infinite (but see [12] for the case x = 2 with at most 4 digits). Since

(1 + x`)2 = 1 + 2x` + x2` for ` ≥ 1, there are infinitely many squares having only three non-zero

digits in base x. From a result of Corvaja and Zannier [10], for x fixed, all but finitely many squares

with this property can be classified by means of polynomial identities. The dependence in the proof

of this fact on the Subspace Theorem, however, renders the finiteness statement ineffective (i.e. one

may bound the cardinality of the finite exceptional set, but not the heights of its elements). It is still

an open question to determine whether squares having only four non-zero digits in base x > 2 can be

classified likewise.

In the case of base x = 2, a completely explicit characterization of odd squares with three binary

digits has been obtained by Szalay [22]. Furthermore, Luca [16], extending work of Scott [19], showed

that there are no squares of the form pa + pb + 1, where p is an odd prime and a > b > 0.

In the present paper, we establish a number of more general results along these lines. We prove

that, for any fixed base x ≥ 2 and sufficiently large prime q, no perfect q-th powers can be written

with 3 or 4 digits 1 in base x. The key tool in our proof is the theory of linear forms in two logarithms,

and especially a refinement in the non-Archimedean case obtained in [2, 3] (which, roughly speaking,

allows one to replace the product of the heights occurring in the classical estimates by their sum,

at least under certain technical hypotheses). This is the first application of this refinement which

really utilizes its full strength. Additionally, our method applies to more general equations of the

form xa1 + xb2 + xc3 + 1 = yq, where x1, x2, x3 are fixed positive integers: under the assumption that

x1, x2, x3 have a common prime divisor p 6≡ 1 (mod q), we establish that q is effectively bounded in

terms of x1, x2, x3.

The same assumption of non-coprimality also appears in the work of Corvaja and Zannier [10],

where, amongst other results, it is shown that, for any fixed prime q, the Diophantine equation

6a + 2b + 1 = yq

has only finitely many solutions.
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As noted by Corvaja and Zannier (see page 169 of [11]), the rather curious problems we consider here

fit into a more general framework, as solutions to such polynomial-exponential equations correspond

to S-integral points on certain projective varieties, for suitable sets of primes S. Viewed in this light,

finiteness statements for these equations would follow from essentially the simplest open case of a deep

conjecture of Lang-Vojta on Zariski denseness of S-integral points on varieties of log-general type (see

e.g. page 486 of [13]).

The outline of this paper is as follows. The statements of our theorems are gathered in Section 2.

Section 3 is devoted to collecting a number of lower bounds for linear forms in two logarithms from

the existing literature. Our results themselves are proved in Section 4. We conclude the paper with

a number of remarks and open problems.

2. Results

Throughout this paper, we denote by φ the Euler totient function. For a prime number p and a

nonzero integer x, we write νp(x) for the largest power of p dividing x, and, for nonzero rational x/y,

set νp(x/y) = νp(x) − νp(y). We begin with a result on the representation of perfect powers in base

x with digits in {0, 1} :

Theorem 1. There exists an absolute effective constant C with the following property. Let x be a

positive integer and suppose that there exist integers a, b, y and a prime q such that

xa + xb + 1 = yq, a > b > 0.

Then q < C or q divides φ(x).

What is of interest here is that, subject to the coprimality of q and φ(x), the upper bound for q is

independent of x. As will be apparent from our proofs, this coprimality condition can be replaced by

the weaker assumption that y is congruent to 1 modulo each of the prime divisors (other than q) of

x. A like condition appeared already in the study of the Nagell–Ljunggren equation (1); see Theorem

1 of [9].

In point of fact, the techniques we employ here, with additional arguments, enable us to treat

rather more general equations, provided only that the “bases” have a common divisor.

Theorem 2. There exists an absolute effective constant C with the following property. Let x1 and x2

be positive integers with gcd(x1, x2) > 1. If there exist nonnegative integers a, b, y and an odd prime

q, with q coprime to (p− 1) for some prime p dividing gcd(x1, x2), such that

(2) xa1 + xb2 + 1 = yq,
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then q ≤ C log2 max{x1, x2}.

Theorem 3. There exists an absolute effective constant C with the following property. Let x1, x2 and

x3 be positive integers with gcd(x1, x2, x3) > 1. If there exist positive integers a, b, c, y and an odd

prime q, with q coprime to (p− 1) for some prime p dividing gcd(x1, x2, x3), such that

(3) xa1 + xb2 + xc3 + 1 = yq,

then q ≤ C log4 max{x1, x2, x3}.

In the preceding two theorems, the exponents 2 and 4 present in the quantities

log2 max{x1, x2}, log4 max{x1, x2, x3}

are included to provide a flavour of what can be obtained. They are far from optimal and, as exami-

nation of our proofs suggest, may be readily reduced.

Our proofs demonstrate the power of the theory of linear forms in non-Archimedean logarithms;

in some sense, they represent the first application of the techniques of [2, 3] to fully utilize the

improvements inherent therein.

In a companion paper [1], we make a number of these results entirely explicit, solving completely,

for example, the Diophantine equation xa + xb + 1 = yq for x ∈ {2, 3} and q ≥ 2, and showing that

neither of the equations 6a + 2b + 1 = yq and 2a + 2b + 2c + 1 = yq has a solution with q ≥ 5 prime.

3. Linear forms in two logarithms

In this section, we gather estimates for linear forms in two logarithms, both in Archimedean and

in non-Archimedean settings.

We begin with a very special version of a corollary obtained in [15]; here and henceforth, if r is a

nonzero rational with r = m/n for m and n coprime integers, we define the logarithmic height of r as

h(r) = max {log |m|, log |n|, 1}.

Theorem 4. Let α1 and α2 be multiplicatively independent positive rational numbers, and b1 and b2

be positive integers. Define

Λ = |b2 logα2 − b1 logα1| .

Then

log Λ ≥ −25.2
(
max

{
log b′ + 0.38, 10

})2
h(α1)h(α2),
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where

b′ =
b1

h(α2)
+

b2
h(α1)

.

A more complicated statement, involving an additional parameter E, is given in [15]. This param-

eter allows us to considerably sharpen the lower estimate when α1 and α2 are very close to 1. Since

this assumption is not fulfilled in the present work, we have chosen to quote this simplified statement.

We now turn our attention to non-Archimedean results. Suppose we are given two multiplicatively

independent positive rational numbers α1 and α2. We define g to be the smallest positive integer such

that both νp(α
g
1 − 1) and νp(α

g
2 − 1) are positive. Further, choose E so that

νp(αi − 1) ≥ E >
1

p− 1
, for i = 1, 2.

As a special case of Theorem 2 of [2], we have

Theorem 5. Let α1 and α2 be multiplicatively independent positive rational numbers, and b1 and b2

be positive integers. Consider the “linear form”

Λ = αb22 − α
b1
1 .

Then, for any fixed prime number p,

(4) νp(Λ) ≤ 36.1 g

E3(log p)4
(
max{log b′ + log(E log p) + 0.4, 6E log p, 5}

)2
(logA1) (logA2) ,

if p is odd or if p = 2 and ν2(α2 − 1) ≥ 2, where

b′ =
b1

logA2
+

b2
logA1

and logAi ≥ max{h(αi), E log p}.

If p = 2 and ν2(α2 − 1) ≤ 1, then

νp(Λ) ≤ 208
(
max{log b′ + 0.04, 10}

)2
(logA1) (logA2) .

No parameter E occurs in the earlier bounds for the p-adic distance between two powers of rational

numbers. By taking E = 1 in Theorem 5, we recover essentially an estimate proved in [5]. When

the parameter E is large compared with the heights of α1 and α2, however, the results of [5] may

be substantially improved. Indeed, if E is as large as min{logA1, logA2} (it cannot be much larger),

then the quantity (logA1)(logA2)/E becomes max{logA1, logA2}. Thus, the product (logA1)(logA2)

arising in the classical estimates [5] is replaced by max{logA1, logA2}.

Theorem 5 was subsequently generalized in [3] to treat simultaneously several non-Archimedean

places. The assumptions of the next theorem (a special case of Theorem 3 of [3]) are very restrictive,
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but are satisfied (and easy to check) in our context. Note that if m = pj11 · · · p
jk
k where the pi’s are

distinct primes and ji ∈ N, we define, for a nonzero integer x,

νm(x) = min
1≤i≤k

[
νpi(x)

ji

]
.

Theorem 6. Let α1 and α2 be positive rational numbers with α1 6= 1, b1 and b2 be positive integers

and set

Λ = αb22 − α
b1
1 .

For any set of distinct primes p1, . . . , pk and positive integers j1, . . . , jk, we set m = pj11 · · · p
jk
k and

suppose that there exists a positive integer g such that for each i, we have

νpi(α
g
1 − 1) ≥ ji and νpi(α

g
2 − 1) ≥ 1, if pi ≥ 2,

and also

νpi(α
g
1 − 1) ≥ 2 and νpi(α

g
2 − 1) ≥ 2, if pi = 2.

Then, if m, b1 and b2 are relatively prime, we have

νm(Λ) ≤ 66.8 g

(logm)4
(
max{log b′ + log(logm) + 0.64, 4 logm}

)2
(logA1) (logA2) ,

where

b′ =
b1

logA2
+

b2
logA1

and logAi ≥ max{h(αi), logm}.

For an odd prime number p, the choice of m = pE illustrates that Theorem 6 is really a general-

ization of Theorem 5; we have included the latter result for sake of clarity. We stress that α1 and α2

need not be multiplicatively independent in Theorem 6; indeed, under this additional assumption, the

constant 66.8 in the upper bound for νm(Λ) may be improved to 53.6.

4. Proofs

We first state a useful elementary lemma, which will be applied in several places.

Lemma 7. Let y ≥ 2 be an integer and q be a prime. Assume that yq ≡ 1 (mod q). Then y ≡

1 (mod q) and yq ≡ 1 (mod q2). Moreover, if in addition q ≥ 3, then νq(y − 1) = νq(y
q − 1)− 1.

To prove the lemma, observe that the binomial theorem gives

yq − 1

y − 1
=

((y − 1) + 1)q − 1

y − 1
= (y − 1)q−1 +

(
q

1

)
(y − 1)q−2 + . . .+

(
q

q − 2

)
(y − 1) + q

= (y − 1)q−1 +Kq(y − 1) + q,

for a suitable positive integer K.
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Throughout our proofs, the constants implicit in the Vinogradov symbols � and � are absolute

and positive. We assume that q is suitably large and show how to derive an upper bound for q.

4.1. Proof of Theorem 2. We will begin by proving the somewhat general Theorem 2. Let us

suppose that there exist positive integers x1, x2, a, b, y and q satisfying equation (2), with gcd(x1, x2) =

d > 1. Without loss of generality, we may assume that x1 ≥ x2 ≥ 2, and that q � 1.

Suppose first that a and b satisfy xa1 > x2b2 . Then

(5) 0 < q log y − a log x1 < 1− xa1y−q = y−q(xb2 + 1) < y−q
(
x
a/2
1 + 1

)
< y−q

(
yq/2 + 1

)
,

whereby, setting Λ = |a log x1 − q log y|,

(6) log Λ� −q log y.

We use this inequality, in conjunction with lower bounds for linear forms in two complex logarithms,

to determine an upper bound for q.

Let us apply Theorem 4 with b1 = q, b2 = a, α1 = y and α2 = x1. Here, x1 and y are multiplicatively

independent since the fact that gcd(x1, x2) > 1 implies the existence of a prime p dividing x1 and x2,

but not y (via the equation xa1 + xb2 + 1 = yq). Note that the inequality a log x1 < q log y implies that

b′ � q

log x1
.

Applying Theorem 4 to inequality (6), we thus have either

log

(
q

log x1

)
� 1,

or

q log y � log2

(
q

log x1

)
log y log x1.

We thus conclude, in either case, that q � log x1, where the implied constant is absolute.

Similarly, if we assume that a and b are such that xb2 > x2a1 , we may apply Theorem 4 to the linear

form Λ = |b log x2 − q log y| to reach a like conclusion. We may therefore suppose that a and b satisfy

(7) x
a/2
1 ≤ xb2 ≤ x2a1 .

Since d > 1, there exists a prime p dividing both x1 and x2. By assumption we may suppose that q is

coprime to (p−1). To deduce an upper bound upon q is this situation, we will appeal to lower bounds

for linear forms in p–adic logarithms. Specifically, we apply Theorem 5 with α2 = y, b2 = q, b1 = 1

and either α1 = xa1 + 1 or α1 = xb2 + 1, chosen to guarantee that α1 and y are multiplicatively

independent. Note that if all three of y, xa1 + 1 and xb2 + 1 are pairwise multiplicatively dependent,
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then, from the equation xa1 + xb2 + 1 = yq, every prime dividing y necessarily divides both x1 and x2,

an immediate contradiction. We thus have g = 1 and may assume that ab ≥ 2. If q = p, then, Lemma

7 and νq(y
q − 1) ≥ 1 give that νq(y

q − 1) ≥ 2, whereby min{a νp(x1), b νp(x2)} ≥ 2 and hence we

may take E = min{a νp(x1), b νp(x2)} − 1. Otherwise, since q fails to divide (p − 1), we may choose

E = min{a νp(x1), b νp(x2)}. If (p,E) 6= (2, 1), then applying Theorem 5 yields

E � M2

E3 log4 p
log y logα1,

where

M = max

{
log

(
1

log y
+

q

logα1

)
+ log(E log p) + 0.4, 6E log p, 5

}
.

Notice that (7) implies α1 >
1
2 y

q/2, whereby M = 6E log p since q � 1, and so

E2 log2 p� log y logα1 � q log2 y.

From inequality (7), we have

a log x1 � q log y, b log x2 � q log y.

Recalling that x1 ≥ x2,

E ≥ min{a, b} − 1� q log y

log x1
,

and hence q � log2 x1, as desired. In case (p,E) = (2, 1), then min{a, b} = 1 and so (7) and the fact

that x1 ≥ x2 imply that a = 1, whereby yq ≤ x21 + x1 + 1 and q � log x1. This completes the proof

of Theorem 2.

4.2. Proof of Theorem 3. Our approach is similar to that of the preceding subsection. Suppose that

there exist positive integers x1, x2, x3, a, b, c, y and q satisfying equation (3), with gcd(x1, x2, x3) > 1,

and fix a prime p | gcd(x1, x2, x3) such that q does not divide (p− 1). Without loss of generality, we

may assume that

(8) a νp(x1) ≥ b νp(x2) ≥ c νp(x3),

and that q � 1. Suppose first that a, b and c are such that

xa1 >
(
xb2 + xc3

)2
.

Then we have

|a log x1 − q log y| < y−q(xb2 + xc3 + 1) < y−q
(
x
a/2
1 + 1

)
< y−q

(
yq/2 + 1

)
< 2 y−q/2.
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Applying Theorem 4 and arguing as in Section 4.1 leads, again, to the conclusion that

q � log2 max{x1, x2, x3}.

Similarly, we reach an identical conclusion if either xb2 > (xa1 + xc3)
2

or xc3 >
(
xa1 + xb2

)2
. We will thus

suppose that

(9) max
{
xa1 , x

b
2, x

c
3

}
≤ min

{(
xa1 + xb2

)2
, (xa1 + xc3)

2
,
(
xb2 + xc3

)2}
.

Notice that inequality (9) implies that

max{b, c} � q log y

log max{x1, x2, x3}
,

where the implicit constant is absolute, whereby, from (8),

(10) b� q log y

log2 max{x1, x2, x3}
.

We turn now to consideration of non-Archimedean valuations. On the one hand, we have

νp(y
q − (xc3 + 1)) ≥ b νp(x2) ≥ b� q log y

log2 max{x1, x2, x3}
.

Let ` = νp(x3). By (10) we may assume that bνp(x2) ≥ 2. If p = q, it then follows from Lemma 7

that yp ≡ 1 (mod p2), whence `c ≥ 2 and y ≡ 1 (mod p`c−1). Otherwise, from the fact that q does

not divide (p− 1), it follows that y ≡ 1 (mod p`c). Since we do not know a priori whether or not the

integers y and xc3 + 1 are multiplicatively independent, it is more convenient to apply Theorem 6 with

m = p`c−1 and g = 1 or 2, than Theorem 5 with E = `c− 1. We conclude that

νp(y
q − (xc3 + 1))� `cνm(yq − (xc3 + 1))� 1

`3c2 log4 p
M2 log y log x3,

where

M = max

{
log

(
1

log y
+

q

`c log x3

)
+ log(`c log p) + 0.64, 4`c log p

}
� max{log q, `c log p}.

If q > p`c, then we have

q

log2 q
� log x3 log2 max{x1, x2, x3}

`3c2 log4 p
� log3 max{x1, x2, x3},

and so q � log4 max{x1, x2, x3}. If, on the other hand, q ≤ p`c, then

q � log x3 log2 max{x1, x2, x3}
` log2 p

� log3 max{x1, x2, x3}.

This concludes the proof of Theorem 3.
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4.3. Proof of Theorem 1. In this section, we will show that the upper bound upon q inherent in

the equation xa1 + xb2 + 1 = yq can be made (essentially) absolute, in the case x1 = x2 = x. Here, we

will appeal to lower bounds for linear forms in m-adic logarithms, due to the second author [3].

Since a > b, we have yq ≡ 1 (mod xb). If q divides x, we deduce from Lemma 7 that yq ≡

1 (mod q2). Furthermore, denoting by q` the largest power of q dividing x, this implies that b` =

νq(y
q−1) ≥ 2 and that y ≡ 1 (mod qb`−1), by Lemma 7 again and using that q ≥ 3. Since we suppose

q to be coprime to φ(x) (actually, assuming that q is coprime to φ(x/qmax{0,νq(x)−1}) is sufficient), we

derive that y ≡ 1 (mod xb/q) if q divides x, while, otherwise, y ≡ 1 (mod xb). In any case, we may

conclude that log y > b log x− log q ≥ (b log x)/2.

We apply Theorem 6 with α1 = y, α2 = xb + 1, b1 = q, b2 = 1 and m = xb/q or m = xb, depending

on whether q divides x or not. Observe that logm ≥ (b log x)/2 in either case. If x is odd or if b ≥ 2,

we may choose g = 1; otherwise, take g = 2. Since log y > (b log x)/2, Theorem 6 implies that

νm
(
yq − (xb + 1)

)
�

log2
(

2q
b log x

)
log y

b3 log3 x
+

log y

b log x
.

Considering the cases where q
b log x < xb and q

b log x ≥ x
b, separately, the inequality

νm
(
yq − (xb + 1)

)
=
[a
b

]
� q log y

b log x

implies, in either situation, that q � 1. This completes the proof of Theorem 1.

5. Concluding remarks

Remark 1. The techniques of the preceding sections may be readily modified to treat equations

of the shape (by way of example)

d1x
a
1 + d2x

b
2 + d3x

c
3 + 1 = yq,

for where d1, d2 and d3 are fixed integers and, as previously, x1, x2 and x3 share a nontrivial common

factor. To make such statements explicit requires recourse to lower bounds for linear forms in three

logarithms; the corresponding theory is somewhat less well-developed than that for two logarithms.

Remark 2. We are unable to bound q in general, for the equation

xa + xb + xc + xd + 1 = yq,

where a > b > c > d > 0. It is possible to do so, however, under the additional assumption that b is

not too large compare to c, say c ≥ κb for κ be a positive real number. Indeed, assuming that q is
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coprime to φ(x), Theorem 4 again implies that q � 1 if a ≥ 2b. Then, we may assume that b ≥ a/2

and proceed exactly as in Section ??, using that y ≡ 1 (mod xd). Since y > xd, we find that

[ c
d

]
� log y

d log x
+

log2
(

q
d log x

)
log y

d3 log3 x
.

From the inequality c ≥ κb, we thus obtain κq log y � c log x and hence conclude that q is bounded

by a constant depending only on κ. The same conclusion remains true for the more general equation

xa1 + xa2 + . . .+ xak−1 + xak + 1 = yq,

where q is coprime to φ(x) and a1 > a2 > . . . > ak > 0 are such that ak−1 ≥ κa2. The upper bound

obtained again depends on κ.

Remark 3. We briefly discuss a related question. Let x, y ≥ 2 be integers. In 1973, Senge and

Straus [20] proved that the number of integers, the sum of whose digits in each of the bases x and

y lies below a fixed bound, is finite if, and only if, x and y are multiplicatively independent. Their

proof rests on the Thue–Siegel–Roth theorem and, hence, is ineffective. Using Baker’s theory of linear

forms in logarithms, in 1980 Stewart [21] succeeded in establishing an effective version of Senge and

Straus’ theorem. He showed that if x and y are multiplicatively independent, then, for every c ≥ 1,

each integer m > 25 whose sum of digits in base x as well as in base y is bounded by c satisfies

log logm

log log logm+ c1
< 2c+ 1,

where c1 is a positive constant which is effectively computable in terms of x and y only (see also [17]).

This means that a positive integer cannot have simultaneously very few digits in base x and in base

y, when x and y are multiplicatively independent. Furthermore, for any given positive integer c, one

is able, in principle, to determine the (finite) set of positive integers having no more than c digits in

base x and in base y. Examples of complete resolution of the corresponding equations are given in,

for instance, [4] and [23]. An open problem of a similar flavour is a conjecture of Erdős to the effect

that there should be at most finitely many powers of 2 whose ternary representation contains only

the digits 0 and 1. This appears to be well out of reach, at present; the interested reader is directed

to the paper of Lagarias [14].

Acknowledgements: The authors would like to thank Umberto Zannier for providing us with his
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and obscure points.
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