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Abstract

In this paper we prove that the Hausdorff dimension of the set of (nondegenerate)

singular two-dimensional vectors with uniform exponent µ in (1/2, 1) is equal to 2(1−µ)

for µ ≥
√

2/2, whereas for µ <
√

2/2 it is greater than 2(1 − µ) and at most equal to

(3−2µ)(1−µ)/(1+µ+µ2). We also establish that this dimension tends to 4/3 (which is

the dimension of the set of singular two-dimensional vectors) when µ tends to 1/2. These

results improve upon previous estimates of R. Baker, joint work of the first author with

M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for

the packing dimension, which appears to be strictly greater than the Hausdorff dimension

for µ ≥ 0.565 . . . .
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1. Introduction and results

1·1. Overview of known results

Let θ be a (column) vector in Rn. We denote by |θ|∞ the maximum of the absolute

values of its coordinates and by

‖θ‖ = min
x∈Zn

|θ − x|∞

the maximum of the distances of its coordinates to the rational integers.

Let m,n be positive integers and A a real n×m matrix. Dirichlet’s Theorem implies

that, for any X > 1, the system of inequalities

‖Ax‖ ≤ cX−m/n, 0 < |x|∞ ≤ X (1.1)

has a solution x in Zm when c = 1. This leads to the following two definitions. The first

was introduced by Davenport and Schmidt [14] and the second by Kkintchine [22].

Definition 1. Let m,n be positive integers and A a real n×m matrix. We say that

Dirichlet’s Theorem can be improved for the matrix A if there exists a positive constant

c < 1 such that the system of inequalities (1.1) has a solution x in Zm for any sufficiently

large X.

Definition 2. Let m,n be positive integers and A a real n×m matrix. We say that

the matrix A is singular if, for every positive real number c, the system of inequalities

(1.1) has a solution x in Zm for any sufficiently large X. A matrix which is not singular

is called regular.

Given a n×m matrix A, if there exists a subgroup G in Zm and a subgroup H in Zn

such that

∀x ∈ G, ∀z ∈ H, Ax · z ∈ Z,
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then, arguing as in the proof of Dirichlet’s Theorem, it is possible to show that there

exists a real number C such that for any X > 1, the system of inequalities

‖Ax‖ ≤ CX−m
′/n′ , 0 < |x|∞ ≤ X

has a solution x ∈ G, where m′ = rankG and n′ = n − rankH. Hence, the matrix A is

singular when m′/n′ > m/n. This latter inequality is equivalent to

n rankG+m rankH > nm. (1.2)

In several of the questions considered below, we have to exclude this degenerate situation,

thus we are led to introduce the set M∗n,m(R) of n×m matrices for which there are no

subgroups G and H with (1.2).

It is not difficult to prove that the set of n×m singular matrices has mn-dimensional

Lebesgue measure zero (see [8]). The following theorem is stronger.

Theorem A. For any positive integers m,n, the set of real n×m matrices for which

Dirichlet’s Theorem can be improved has mn-dimensional Lebesgue measure zero and

Hausdorff dimension mn.

The first assertion of Theorem A has been established by Davenport and Schmidt

[15] when min{m,n} = 1. According to Kleinbock and Weiss [23], their proof can be

generalized to n×m matrices. Actually, a more general result is proved in [23].

As for the latter assertion of Theorem A, Davenport and Schmidt [14] showed that,

for (m,n) = (1, 2) or (2, 1), Dirichlet’s Theorem can be improved for the n ×m matrix

A if A is badly approximable. They noted on page 117 that this assertion is true for

arbitrary integers m,n. Combined with a result of Schmidt [31] on the size of the set of

badly approximable matrices, this gives the latter assertion of Theorem A.
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A natural question is then to determine the Hausdorff dimension of the set of singular

n ×m real matrices A. The case n = m = 1 is easy: there is no irrational real number

ξ such that the matrix (ξ) is singular (recall that (1.1) has no integer solutions for

arbitrarily large values of X). The case n = 2,m = 1 was solved by Cheung [10]. For

an integer n ≥ 2, we often use the terminology n-dimensional (column) vector instead of

n× 1 matrix.

Theorem B. The Hausdorff dimension of the set of singular two-dimensional vectors

is equal to 4
3 .

Cheung’s result was very recently extended to n-dimensional vectors, for an arbitrary

integer n ≥ 2, by Cheung and Chevallier [11].

Theorem C. For every integer n ≥ 2, the Hausdorff dimension of the set of singular

n-dimensional vectors is equal to n2

n+1 .

However, the following question remains unsolved.

Problem 1. Let m,n be integers at least equal to 2. What is the Hausdorff dimension

of the set of singular n×m matrices ?

Kadyrov et al. [20] established that this dimension is bounded from above by mn(m+n−1)
m+n

and it is conjectured that there is in fact equality. In [13], Das et al. announced a proof

of this conjecture as a consequence of a “variational principle”.

We can further discriminate between the singular matrices by introducing exponents

of uniform Diophantine approximation. We keep the notation from [6].

Definition 3. Let n and m be positive integers and let A be a real n×m matrix. We

denote by ω̂n,m(A) the supremum of the real numbers w for which, for all sufficiently
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large real numbers X, the system of inequalities

‖Ax‖ ≤ X−w, 0 < |x|∞ ≤ X (1.3)

has a solution x in Zm.

For ω in (0,+∞], let Singn,m(ω) (resp. Sing∗n,m(ω)) denote the set of matrices A in

Mn,m(R) (resp., in M∗n,m(R)) such that

ω̂n,m(A) ≥ ω,

and Sing
n,m

(ω) (resp. Sing∗
n,m

(ω)) denote the set of matrices A in Mn,m(R) (resp., in

M∗n,m(R)) such that (1.3) has a solution for all sufficiently large real numbers X. Observe

that the set Sing
n,m

(ω) is included in Singn,m(ω).

For a real n×m matrix A, Dirichlet’s Theorem implies that

ω̂n,m(A) ≥ m

n
. (1.4)

Furthermore, we have equality in (1.4) for almost all matrices A, with respect to the

Lebesgue measure on Rmn, as follows from the Borel–Cantelli Lemma. Any real matrix

A satisfying ω̂n,m(A) > m
n is singular, and there exist singular matrices A with ω̂n,m(A) =

m
n .

Since, for any real irrational number ξ, there are arbitrarily large integers X for which

the system of inequalities (1.1) has no solutions, we deduce that, for any n ≥ 1, any real

n × 1 matrix A satisfies ω̂n,1(A) ≤ 1. Khintchine [21] established that, for any integer

n ≥ 2, there exist matrices A such that ω̂n,1(A) = 1 and, for any integer m ≥ 2 and any

integer n ≥ 1, there exist matrices A such that ω̂n,m(A) = +∞.

The following problem complements Problem 1. It has been considered by R. C. Baker

[1, 2], Yavid [34], and Rynne [30, 29].
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Problem 2. Let m,n be positive integers. Let ω be in [mn ,+∞] with ω ≤ 1 if m = 1.

Determine the Hausdorff dimension of the set of n×m matrices A inM∗n,m(R) satisfying

ω̂n,m(A) ≥ ω (resp. ω̂n,m(A) = ω).

Before stating our new results, which deal with the case (n,m) = (2, 1), we summarize

what is known towards the resolution of Problem 2.

We first point out a result of Jarńık [18] asserting that any real 1 × 2 matrix A in

M∗1,2(R) satisfies

ω̂2,1(tA) = 1− 1

ω̂1,2(A)
. (1.5)

Thus, the cases (n,m) = (1, 2) and (n,m) = (2, 1) are equivalent.

Let τ > 2 be a real number. Baker [1, 2] proved that

2

τ
≤ dimH Sing∗1,2(τ) ≤ 6

τ + 1
, (1.6)

thus

dimH Sing∗1,2(+∞) = 0.

Bugeaud and Laurent [7] observed that a direct combination of (1.5) with a result of

Dodson [16] yields the slightly sharper upper bound

dimH Sing∗1,2(τ) ≤ 3τ

τ2 − τ + 1
, (1.7)

which was improved to (2τ + 2)/(τ2 − τ + 1) by Laurent in an unpublished manuscript.

We deduce from (1.5) that (1.6) and (1.7) give, for µ ≥ 1/2,

2(1− µ) ≤ dimH Sing∗2,1(µ) ≤ 3(1− µ)

µ2 − µ+ 1
. (1.8)

Observe that for µ = 1/2 the right-hand side of (1.8) is equal to 2, while Theorem B
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implies that limµ→ 1
2

dim Sing∗2,1(µ) ≤ 4/3. This shows that the right hand inequality in

(1.8) is certainly not best possible for µ > (
√

105− 5)/8 = 0.655 . . .

For m ≥ 3, combining results of Baker [2] and Rynne [29], one gets that

m− 2 +
m

τ
≤ dimH Sing∗1,m(τ) ≤ m− 2 + 2

m+ 1

τ + 1

holds for any real number τ > m, thus

dimH Sing∗1,m(+∞) = m− 2,

for m ≥ 2.

1·2. New results

The purpose of the present paper is to address Problem 2 for the pair (n,m) = (2, 1).

Our first result improves the right hand inequality in (1.8) for every value of µ in (1/2, 1).

Theorem 1. For any real number µ in (1/2,
√

2/2], we have

dimH Sing∗2,1(µ) ≤ (3− 2µ) (1− µ)

µ2 − µ+ 1
.

For any real number µ in [
√

2/2, 1), we have

dimH Sing∗2,1(µ) ≤ 2(1− µ).

Observe that our upper bound for dimH Sing∗2,1(µ) is a continuous function of µ in

(1/2, 1).

Combined with (1.8), Theorem 1 yields the exact value of the dimension when µ is

sufficiently large.

Corollary 2. For any real number µ in [
√

2/2, 1), we have

dimH Sing∗2,1(µ) = 2(1− µ).
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Our second result improves the left hand inequality in (1.8) for every value of µ in

(
√

2/2, 1).

Theorem 3. For any real number µ in (1/2,
√

2/2), we have

dimH Sing∗
2,1

(µ) ≥ (1− µ) sup
b>0

2b2 + 2bµ+ b+ (2− µ)(2µ− 1)

(b+ 2µ− 1) (µ2 − µ+ b+ 1)
,

and thus

dimH Sing∗
2,1

(µ) ≥ 2(1− µ).

A combination of Theorems 1 and 3 yields the following corollary.

Corollary 4. We have

lim
µ→1/2, µ> 1

2

dimH Sing∗
2,1

(µ) =
4

3
.

By Theorem B, the set of singular two-dimensional vectors has dimension 4
3 . Corollary

4 shows that there is no jump of Hausdorff dimension.

Remark 1·1. For a fixed µ in ( 1
2 ,

1√
2
), it is not difficult to compute the positive real

number b0 giving the maximum of the rational fraction

b 7−→ 2b2 + 2bµ+ b+ (2− µ)(2µ− 1)

(b+ 2µ− 1) (µ2 − µ+ b+ 1)
.

It satisfies a quadratic equation. Unfortunately, the lower bound we obtain does not

match with the upper bound established in Theorem 1.

Remark 1·2. For real numbers µ, τ ≥ 1/2, denote by Sing
2,1

(µ, τ) the set of matrices

A in Sing
2,1

(µ) such that there are arbitrarily large real numbers X for which the system

of inequalities

‖Ax‖ ≤ X−τ , 0 < |x|∞ ≤ X

has a solution x in Z.
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The proof of Theorem 3 enables us to state a more precise result, namely

dimH Sing∗
2,1

(µ, τ) ≥ (1− µ)
2b2 + 2bµ+ b+ (2− µ)(2µ− 1)

(b+ 2µ− 1) (µ2 − µ+ b+ 1) ,

where τ = 1
(1−µ)(b+1)

(
µ2 − µ+ b+ 1

)
− 1 and b is any positive real number (this is a

consequence of Lemma 25).

Remark 1·3. It is very likely that

dimH{A ∈M∗2,1(R) : ω̂2,1(A) = µ} = 2(1− µ)

for every µ in [
√

2/2, 1). However, this does not follow from our results and it seems to

us that a proof would require additional ideas.

Finally, we also prove a result about the packing dimension.

Proposition 5. For every real number µ in ( 1
2 , 1), we have

dimP Sing∗
2,1

(µ) ≥ sup
b>0

2b2 + 2bµ+ b+ (2− µ)(2µ− 1)

(µ+ 1 + 2b) (b+ 2µ− 1) ,

thus, in particular,

dimP Sing∗
2,1

(µ) ≥ 1.

Remark 1·4. Using Theorem 3 and Proposition 5 and some numerical experiments

it is easy to see that

dimP Sing∗
2,1

(µ) > dimH Sing∗
2,1

(µ)

for µ ≥ 0.565 . . . However Theorem 3 and Proposition 5 are not strong enough to get the

strict inequality for µ ≤ 0.565 . . .

When min{m,n} ≥ 2, important contributions towards Problem 2 are announced

without proofs by T. Das, L. Fishman, D. Simmons and M. Urbański, see [13]. Tedious
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calculation shows that the lower bound given in Theorem 3 agrees with the formula given

in Theorem 1.9 of [13].

Sketch of the proofs

Since the proofs deal only with the sets Sing 2,1(µ), we will drop the subscript 2,1

when there is no ambiguity. For convenience, we replace column vectors by row vectors.

We use also the following notation. We take θ in R2 and consider elements x = (p, q) in

Z2 × Z≥1, where p = (p1, p2) is a pair of integers. Then, pq denotes the pair (p1q ,
p2
q ). We

also write |x| = q.

The strategy of our proofs follows closely the one of [11]. As in this work, the guideline

for the proofs relies on two simple results. For each primitive vector x = (p, q) of the

lattice Z3 with p in Z2 (we keep this notation throughout this paper) and q in Z>0, let

λ1(x) denote the length of the shortest vector of the lattice Λx = Z2 +Zp
q . Roughly, the

first result is: θ in R2 is in Sing(µ) if and only if for n large enough,

λ1(xn) ≤ |xn|−µ

where xn = (pn, qn) is the n-th term of the the sequence of best approximation vectors of θ

and |xn| = qn (see Section 3 and Corollary 12 for an exact statement). The second result

is a multidimensional extension of Legendre’s Theorem about convergents of ordinary

continued fraction expansions: if x = (p, q) is a best approximation vector of θ, then

θ ∈ B(pq ,
2λ1(x)
|x| ) and conversely, if θ ∈ B(pq ,

λ1(x)
2|x| ), then x is a best approximation vector

of θ (see Lemma 10). Then we use the standard strategy for computing the Hausdorff

dimension of Cantor sets defined by a nested tree of intervals. Precisely, defining the

children of an interval as the immediate successors with respect to the partial order

induced by inclusion of intervals, the diameter of one interval raised to the power s has



Hausdorff dimension and uniform exponents in dimension two 11

to be compared with the sum over all the children intervals of their diameters raised to

the power s.

For the upper bound, consider a set σµ(x) for each primitive vector x = (p, q) in

Z2×Z>0 with λ1(x) ≤ |x|−µ. This set plays the role of the children of x. The first idea is

to take for σµ(x) the set of all possible primitive vectors y in Z2×Z>0 with λ1(y) ≤ |y|−µ

such that x and y are two consecutive best approximation vectors of some θ in Rd. If for

all x,

∑
y=(u,v)∈σµ(x)

(
diamB

(
u

v
,

2λ1(y)

|y|

))s
≤
(

diamB

(
p

q
,

2λ1(x)

|x|

))s
then the Hausdorff dimension of Sing(µ) is at most equal to s. We make this statement

more precise by using self-similar covering introduced by the second author (see [10]

and Theorem 6). However the above inequality does not hold and as in [10] and [11]

we modify the definition of the set σµ(x) with an “acceleration” by considering only a

subsequence of the sequence of best approximations (see Definition 6). Note that the

subsequence is not the same as that in [11]. Another point is that it is better to use a

radius larger than 2λ1(x)
|x| (see Corollary 17), because it avoids the second acceleration used

in [10]. The choice of a good radius is more delicate than in [11]. With these ingredients

the proof of the upper bound follows readily; see Section 4.

The lower bound is trickier. The idea is to find a Cantor set included in Sing∗(µ).

This Cantor set has an “inhomogeneous” tree structure. For each x = (p, q) such that

λ1(x) ≤ |x|−µ, we define a finite set σ(x) and a ball B(x) such that for all z = (u, v) in

σ(x), we have both λ1(z) ≤ |z|−µ and

B(z) ⊂ B
(u
v
,
λ1(z)

2 |z|

)
⊂ B(x).

The above inclusions ensure that x and z are best approximation vectors of all θ in B(z)
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which in turn will be helpful to show that the Cantor set defined by the sets σ(x) and

the balls B(x) is included in Sing∗(µ) (see Proposition 26). Then, the inequality

∑
z∈σ(x)

(diamB (z))
s ≥ (diamB (x))

s

together with a condition about the distribution in B(x) of the points z in σ(x) imply

that the Hausdorff dimension of Sing∗(µ) is at least equal to s. However, this program is

not straightforward because the condition about the distribution of the elements of σ(x)

used in [11] does not work in our context (see Theorem 3.6 of [11]).

To overcome this problem, we use a more flexible condition which is an adaptation of

the mass distribution principle to self-similar covering; see Theorem 7. This more flexible

condition, together with a careful study of the geometric positions of the points of σ(x)

in the ball B(x) (see Lemmas 19 and 27), finally lead to the lower bound.

1·3. Questions and problems

In this subsection, we gather some suggestions for further research closely related to

the present work.

Maybe, it is possible to adapt the methods of [15, 23] to solve the following problem,

which seems to be rather difficult.

Problem 3. Let c be a real number with 0 < c < 1. What is the Hausdorff dimension

of the set of n ×m matrices such that (1.1) has a solution x in Zm for any sufficiently

large X? Is this a continuous function of c?

All the results quoted above are concerned with approximation of independent quan-

tities in the sense that we assume that the entries of the matrices A are independent.

It is a notorious fact that questions of approximation of dependent quantities are much
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more delicate. An emblematic example in the case of n × 1 matrices is given by the

Veronese curve (ξ, ξ2, . . . , ξn). At present, we do not know the Hausdorff dimension of

the set of real numbers ξ such that the pair (ξ, ξ2) is singular. In 2004 Roy [28] showed

that this set is nonempty. In the oppposite direction, Shah [32, 33] has obtained several

striking results on the size of sets of matrices with dependent entries for which Dirichlet’s

Theorem cannot be improved.

Problem 4. Let n ≥ 2 be an integer. What is the Hausdorff dimension of the set of

real numbers ξ such that (ξ, ξ2, . . . , ξn) is singular?

The latter problem is deeply connected with the following famous conjecture of Wirsing

on approximation to real numbers by algebraic numbers of bounded degree. Recall that

the height of an algebraic number α, denoted by H(α), is the maximum of the absolute

values of the coefficients of its minimal defining polynomial over Z.

Problem 5. (Wirsing) Let n ≥ 2 be an integer and ξ be a transcendental real number.

For any positive ε, there exist algebraic numbers α of degree at most n and of arbitrarily

large height such that

|ξ − α| < H(α)−n−1+ε.

It follows from results established in [6] that the Hausdorff dimension of the set of

counterexamples to the Wirsing conjecture on the approximation by algebraic numbers

of degree at most n is at most equal to the Hausdorff dimension of the set of real numbers

ξ such that (ξ, ξ2, . . . , ξn) is singular. See Chapter 3 of [4] for a survey of known results

towards Wirsing’s conjecture.

A further line of research is Diophantine approximation on fractal sets. Rather than
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assuming that A is an arbitrary real n×m matrix, we restrict our attention to matrices

in a given fractal set.

Problem 6. What is the Hausdorff dimension of the set of singular pairs whose entries

belong to the middle third Cantor set?

Our results on the packing dimension motivate the following questions.

Problem 7. Is the packing dimension of Sing∗(µ) strictly greater than the Hausdorff

dimension for all µ > 1/2? What is the value of the packing dimension of the set of

singular pairs? Is it equal to its Hausdorff dimension, that is, to 4/3?

2. Definitions and results about self-similar coverings

We recall the definitions of self-similar coverings. This definition appeared in [9] for

the first time and was inspired by [26]. This origin explains the name self-similar cover

though the self similarity is not so apparent in the definition.

Definition 4. Let Y be a metric space. A self-similar structure on Y is a triple

(J, σ,B) where J is countable, σ is a subset of J2, and B is a map from J into the set of

bounded subsets of Y . A σ-admissible sequence is a sequence (xn)n∈N in J such that

(i) for all integers n, (xn, xn+1) ∈ σ.

Let X be a subset of Y . A self-similar covering of X is a self-similar structure (J, σ,B)

such that, for all θ in X, there exists a σ-admissible sequence (xn)∈N in J satisfying

(ii) limn→∞ diamB(xn) = 0,

(iii)
⋂
n∈NB(xn) = {θ}.

The set covered by a self-similar structure (J, σ,B) is the set of all θ in Y such that

there exists an admissible sequence (xn)n∈N satisfying the two above properties.
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Notation. We denote by σ(x) the set of y in J such that (x, y) ∈ σ.

Definition 5. By a strictly nested self-similar structure we mean a self-similar struc-

ture (J, σ,B) that satisfies limn→∞ diamB(xn) = 0, for all σ-admissible sequence (xn)n∈N,

and B(y) ⊂ B(x), for all x in J and all y in σ(x).

2·1. Upper bound for the Hausdorff dimension

We refer the reader to [17] chapter 3, for the definition of the Hausdorff dimension.

We quote a result from [10].

Theorem 6. ([10]) Let Y be a metric space, let X be a subset of Y that admits a

self-similar covering (J, σ,B) and let s be a positive real number. If

∑
y∈σ(x)

diamB(y)s ≤ diamB(x)s,

holds for all x in J , then dimH X ≤ s.

2·2. Lower bound for the Hausdorff dimension

There already exist results providing lower bounds for the Hausdorff dimension of self

similar structures, see [10] or [11]. However these results are not suitable for our purpose.

An adaptation of the mass distribution principle to self similar structures leads to a more

flexible statement.

Let (J, σ,B) be a self-similar structure on a complete metric space (Y, d). For a subset

F of Y and x in J , we set

σF (x) = {y ∈ σ(x) : F ∩B(y) 6= ∅}.

Theorem 7. Let (J, σ,B) be a strictly nested self-similar structure on a complete met-

ric space (Y, d). Suppose that, for all x ∈ J , the set B(x) is nonempty, bounded and closed.

Let s be a positive real number and suppose that
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i. for all x in J , diamB(x) > 0 and
∑
y∈σ(x)(diamB(y))s ≥ (diamB(x))s,

ii. for all x in J , σ(x) is nonempty and finite, and the sets B(y), y ∈ σ(x), are

disjoint,

iii. there exists a constant C such that for all x in J and all subsets F in Y such that

δ(x) = min
y 6=y′∈σ(x)

d(B(y), B(y′)) ≤ diamF ≤ diamB(x),

we have ∑
y∈σF (x)(diamB(y))s

(diamF )s
≤ C

∑
y∈σ(x)(diamB(y))s

(diamB(x))s
,

Then the Hausdorff dimension of the set covered by (J, σ,B) is ≥ s.

We need an auxiliary Lemma. Let (J, σ,B) be a self-similar structure on a complete

metric space (Y, d). For x0 in J , we consider the set Ωx0
of all admissible sequences

starting at x0 and, for a finite admissible sequence a0 = x0, a1 . . . , an in J , we denote by

[a1, . . . , an] = {(xn)n∈N ∈ Ωx0
: xi = ai, i = 1, . . . , n}

the associated cylinder. We endow Ωx0
with the topology induced by the product topology

on JN.

Lemma 8. Let (J, σ,B) be a strictly nested self-similar structure on a complete metric

space (Y, d). Suppose that, for all x ∈ J , the set σ(x) is finite and the set B(x) is

nonempty bounded and closed. Then Ωx0
is a compact subset of JN and for all sequences

(xn)n∈N in Ωx0
there exists a unique point a in the intersection of the closed sets B(xn),

n ∈ N. Furthermore the map ϕ : Ωx0 → Y defined by ϕ((xn)n∈N) = a is continuous and

the sequence

Dn = max{diamϕ([x1, . . . , xn]) : x1, . . . , xn ∈ J}

goes to zero when n goes to infinity.
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Proof of the Lemma The only thing which is not clear is the last point. Consider the

sequence of functions (dk)k≥1 defined by

dk((xn)n∈N) = diamϕ([x1, . . . , xk])

for a sequence (xn)n∈N in Ωx0
. By the definition of the topology, each dk is continuous

on the compact set Ωx0
. Clearly the sequence (dk)k is non-increasing and by assumption

limk→∞ dk((xn)n∈N) ≤ limk→∞ diamB(xk) = 0 for all (xn)n∈N in Ωx0
, hence by Dini’s

theorem, the sequence (dk)k≥1 converges uniformly to zero.

Proof of Theorem 7 We keep the notations of the Lemma. The set E := ϕ(Ωx0
) is a

compact subset of Y . By the mass distribution principle, it is enough to prove that there

exists a probability measure ν on Y supported by E such that for every Borel subset F

of Y , we have

ν(F ) ≤ C(diamF )s

for some absolute constant C.

A map µ defined on the set of cylinders with values in R≥0 can be extended to a

probability measure on Ωx0
if µ(Ωx0

) = 1 and if for all cylinders [x1, . . . , xn] we have the

additive formula

∑
x∈σ(xn)

µ([x1, . . . , xn, x]) = µ([x1, . . . , xn]).

For all x in J set M(x) =
∑
y∈σ(x)(diamB(y))s. The following recursion formulas

µ([x1]) =
(diamB(x1))s

M(x0)
,

µ([x1, . . . , xn+1]) =
(diamB(xn+1))s

M(xn)
µ([x1, . . . , xn]),

define a measure µ on the set of cylinders. Clearly the additive formula holds, hence µ

extends to a probability measure.
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Call ν the image of µ by the map ϕ. The support of ν is included in E.

We want to check that ν(F ) ≤ C(diamF )s for all Borel subset F of Y . We can suppose

that F ⊂ E.

First, let us show by induction that for all cylinders [x1, . . . , xn], we have the inequality,

µ([x1, . . . , xn]) ≤ (diamB(xn))s

(diamB(x0))s
.

For all x1 ∈ σ(x0),

µ([x1]) =
(diamB(x1))s

M(x0)

≤ (diamB(x1))s

(diamB(x0))s
,

and since M(xn) ≥ (diamB(xn))s,

µ([x1, . . . , xn+1]) =
(diamB(xn+1))s

M(xn)
µ([x1, . . . , xn])

≤ (diamB(xn+1))s

(diamB(xn))s
× (diamB(xn))s

(diamB(x0))s

≤ (diamB(xn+1))s

(diamB(x0))s
.

Let F be a subset of E. If F is reduced to one point a = ϕ((xn)n∈N), we have to check

that ν(F ) = 0. By the disjointness assumption ϕ is one to one and

ν(F ) ≤ ν(ϕ([x1, . . . , xn])) = µ([x1, . . . , xn]) ≤ (diamB(xn))s

(diamB(x0))s
,

which goes to zero because the self-similar covering is strictly nested.

Suppose now that diamF > 0. By the last point of the above lemma there is a cylinder

C =[x1, . . . , x = xn] of maximal length whose image ϕ(C) contains F (C can be Ωx0
). By

maximality, there exists y 6= y′ in σ(x) such that F intersects both B(y) and B(y′), hence

diamF ≥ δ(x). Therefore,∑
y∈σF (x)(diamB(y))s

(diamF )s
≤ C

∑
y∈σ(x)(diamB(y))s

(diamB(x))s
= C

M(x)

(diamB(x))s
.
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By the definition of σF , we have

F ⊂ (∪y∈σF (x)B(y)),

ν(F ) ≤
∑

y∈σF (x)

ν(B(y)),

and, by the definition of ν and by the disjointness assumption,

∑
y∈σF (x)

ν(B(y)) =
∑

y∈σF (x)

µ([x1, . . . , x, y])

=
∑

y∈σF (x)

µ([x1, . . . , x])
(diamB(y))s

M(x)
.

Hence, we deduce from the above inequality about cylinders that

ν(F ) ≤
∑

y∈σF (x)

(diamB(x))s

(diamB(x0))s
(diamB(y))s

M(x)

≤ C

(diamB(x0))s
(diamF )s.

2·3. Lower bound for the packing dimension

We recall the definition of the packing dimension and refer the reader to [17] for further

details. Let (Y, d) be a metric space and let s be a positive real number.

For ε > 0 and any subset E in Y , set

Psε (E) = sup
{∑

i

(diamBi)
s : {Bi} is a collection of disjoint balls

with centers in E and radii ≤ ε
}
.

Then, set Ps0(E) = limε→0 Psε (E), and

Ps(E) = inf
{∑

i

Ps0(Ei) : E ⊂
∞⋃
i=1

Ei
}
.

Actually, Ps is an outer measure on Y and is call de s-dimensional packing measure. At
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last, the packing dimension of E is defined by

dimP E = inf
{
s : Ps(E) = 0

}
= sup

{
s : Ps(E) =∞

}
.

Lemma 9. Let (J, σ,B) be a strictly nested self-similar structure on a complete metric

space Y and let s be a positive real number. Suppose that we have a map x 7→ x̂ from J

to Y and a map B′ : x 7→ B′(x) = B(x̂, r(x)) from J to the set of closed balls in Y . We

also make the following assumptions:

(i) for all x in J , σ(x) is finite,

(ii) there exists k < 1 such that B(x) ⊂ B(x̂, kr(x)) for all x in J ,

(iii) for all x in J , the balls B′(y), y ∈ σ(x), are disjoint and included in B′(x),

(iv) for all σ-admissible sequence (xn)∈N in J , we have limn→∞ diamB′(xn) = 0,

(v) for all x in J , diamB′(x) > 0 and
∑
y∈σ(x)(diamB′(y))s ≥ (diamB′(x))s.

Then, the packing dimension of the set covered by (J, σ,B) is at least equal to s.

Proof. Like in the previous section we choose x0 ∈ J and consider the set Ωx0
of all

admissible sequences starting at x0, the map ϕ : Ωx0
→ Y defined in Lemma 8 and the

set E = ϕ(Ωx0). We are going to show that

dimP E ≥ s.

Let ε be a positive real number. As in the proof of Lemma 8, Dini’s theorem implies that

lim
p→∞

sup{diamB′(xp) : (xn)n∈N ∈ Ωx0
} = 0.

Therefore, there exists an integer qε such that

sup{diamB′(xqε) : (xn)n∈N ∈ Ωx0
} ≤ ε.

For a positive integer q, let Jq be the set of x in J such that there exists a σ-admissible

sequence x0, x1, . . . , xq with xq = x. The disjointness property in item (iii) implies that
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the sets σ(x), x ∈ Jq, are disjoint. Hence, we have a disjoint union Jq+1 = ∪x∈Jqσ(x).

An easy induction together with item (v) implies that for all q,

∑
x∈Jq

(diamB′(x))s ≥ (diamB′(x0))s,

hence we would have shown that the ε-packing pre-measure satisfies

Psε (E) ≥ (diamB′(x0))s,

if the balls B′(x), x ∈ Jqε , were centered at points in E = ϕ(Ωx0
). Now, by item ii, the

set ϕ([x0, . . . , xq]) is included in the ball B′(x̂q, kr(xq)), hence there is a point y(xq) ∈ E

such that the ball B(y(xq), (1 − k)r(xq)) is included in the ball B(x̂q, r(xq)). It follows

that

∑
x∈Jq

(diamB(y(x), (1− k)r(x)))s ≥ ((1− k) diamB′(x0))s,

which in turn implies that Ps′0 (E) =∞ for all s′ < s. It remains to show that the packing

measure Ps′(E) does not vanish. Actually, using Bair’s Theorem in the complete metric

space Y , we are going to show that Ps′(E) = Ps′0 (E) = ∞. If (Ei)i∈ N is any covering

of E, then, by Baire’s Theorem, one of the closure Fi = Ēi, say Fq, contains a subset of

E of nonempty relative interior. It follows that there exists a cylinder C = [a0, . . . , aj ] of

Ωx0
such that ϕ(C) ⊂ Fq. Now, the previous way of reasoning implies that

Ps0(ϕ(C)) ≥ ((1− k) diamB′(aj))
s,

hence, for all s′ < s,

Ps
′

0 (Fq) = Ps
′

0 (Eq) =∞

and Ps′(E) =∞.



22 Y. Bugeaud, Y. Cheung and N. Chevallier

3. Farey Lattices and best approximants

From now on we suppose that R2 is equipped with the standard Euclidean norm ‖.‖e.

Let the set of primitive vectors in Z3 corresponding to rationals in Q2 in their “lowest

terms representation” be denoted by

Q = {(p1, p2, q) ∈ Z3 : gcd(p1, p2, q) = 1, q > 0}.

Given x = (p, q) ∈ Q, where p ∈ Z2, we use the notation

|x| = q and x̂ =
p

q
.

For x in Q, let

Λx := Z2 + Zx̂ = πx(Z3)

where πx : R3 → R2 is the “projection along the lines parallel to x” given by the formula

πx(m,n) = m− nx̂ for (m,n) ∈ R2 × R.

Convention. In the following we shall identify R2 with the subset R2×{0} in R3 and

we shall use the following abuse of notation: for α ∈ R2 and x ∈ R3, α+ x = (α, 0) + x.

So that we see Λx as a subset in R3.

Observe that vol Λx = |x|−1
. We denote the successive minima of Λx by λi(x) and the

normalized successive minima by

λ̂i(x) := |x|1/2 λi(x) for i = 1, 2.

We collect without proof a few lemmas the proof of which can be found in [10] and

[11].
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3·1. Inequalities of best approximation

The ordinary continued fraction expansion is a very efficient tool for the study of

Diophantine exponents of a single real number. In higher dimensions, it is convenient to

replace the ordinary continued fraction expansion by the sequence of best Diophantine

approximations vectors because a weak form of many properties of the one-dimensional

expansion still hold.

Recall that the sequence (qn)n≥0 of best simultaneous approximation denominators of

θ ∈ R2 (with respect to the norm ‖ · ‖e) is defined by the recurrence relation

q0 = 1, qn+1 = min{q ∈ N : q > qn,dist(qθ,Z2) < dist(qnθ,Z2)}.

By definition, the sequence (qn)n≥0 is strictly increasing, while the sequence (rn)n≥0

where rn = dist(qnθ,Z2), is strictly decreasing. These sequences are infinite if and

only if θ ∈ R2 \ Q2. For each n ≥ 0, we choose pn so that ‖qnθ − pn‖e = rn and

set xn = (pn, qn) ∈ Z2 × Z>0. It is customary to refer to (xn)n≥0 as the sequence of best

simultaneous approximation vectors, even though the choice of pn needs not be unique.1

See [12, 24, 25, 27] for more about best approximations. In what follows we shall often

write best approximation instead of best simultaneous approximation vector.

First we qote a result that generalizes Legendre’s Theorem: p/q is a convergent of

α ∈ R as soon as |α − p/q| < 1/2q2. Denote by µ2 the supremum of λ1(L) over all

2-dimensional lattices L ⊂ R2 of covolume 1.

Lemma 10 (Thm. 2.11 of [10]). For x ∈ Q, let ∆(x) = {θ : x̂ is a best approximation of θ}.
1 It is unique as soon as qn is large enough, e.g. if qn > (4µ2/λ1(Z2))2. See [24] or Remark 2.13

of [10].
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If |x| >
(

µ2

λ1(Z2)

)2

, then

B̄

(
x̂,
λ1(x)

2 |x|

)
⊂ ∆(x) ⊂ B

(
x̂,

2λ1(x)

|x|

)
,

where B̄ denote the closed ball.

The unimodular property, |pn+1qn − qn+1pn| = 1, which holds for two consecutive

convergents pn
qn

and pn+1

qn+1
of the ordinary continued fraction expansion cannot be extended

to best Diophantine approximations in higher dimensions (see [12] and [27]). However

(i) of Lemma 11 can be seen as a weak form of the unimodular property.

The notation x �2 y means 1
2y ≤ x ≤ 2y.

Lemma 11 ([10], [11]). Let xn = (pn, qn), n ≥ 0, be the sequence of best approximation

vectors of θ ∈ R2. Then

(i) ‖x̂n − x̂n+1‖e < 4λ1(xn+1)
|xn| .

(ii) For all k ≥ 0, ‖x̂n − x̂n+k‖e < 4λ1(xn)
|xn| .

(iii) For all y = (p, q) ∈ Z2+1 with 0 < q < |xn|, ‖p− qθ‖e �2 ‖p− qx̂n‖e.

The previous lemma allows to almost characterize the set Sing(µ) with best approxi-

mation vectors.

Corollary 12. Let µ′ > µ > 0 and let θ be in R2. Call xn = (pn, qn), n ≥ 0, the

sequence of best approximation vectors of θ ∈ R2. If θ ∈ Sing(µ′), then for all n large

enough

λ1(xn) ≤ ‖qn−1x̂n − pn−1‖e ≤ |xn|
−µ

.

Conversely, if

λ1(xn) ≤ |xn|−µ
′

for all n large enough, then θ ∈ Sing(µ).



Hausdorff dimension and uniform exponents in dimension two 25

Proof. By Lemma 11 (iii), if θ ∈ Sing(µ′), then for all n large enough

λ1(xn) ≤ ‖qn−1x̂n − pn−1‖e

≤ 2 ‖qn−1θ − pn−1‖e

≤ 2(qn − 1)−µ
′

≤ |xn|−µ .

Conversely, if λ1(xn) ≤ |xn|−µ
′
, then by Lemma 11 (iii) and (i), for all qn−1 ≤ q < qn,

we have

d({θ, . . . , qθ},Z2) = ‖qn−1θ − pn−1‖e

≤ 2 ‖qn−1x̂n − pn−1‖e

≤ 8λ1(xn)

≤ 8q−µ
′

n ≤ q−µ,

when n is large enough.

3·2. The subspace Hx

Call xn = (pn, qn), n ∈ N, the sequence of best approximation vectors of θ ∈ R2.

Corollary 12 shows that if θ is in Sing(µ) with µ > 1
2 , then λ̂1(xn) → 0 when n goes

to ∞. It follows that the shortest vector of the lattice Λxn is very small compared to

λ2(xn) when n is large. So, at the scale of the second minimum, the lattice Λxn looks like

an evenly spaced union of lines parallel to the shortest vector, with very closed points

evenly spaced in these lines. This picture is helpful and shows that the line defined by

the shortest vector should play an important role. The subspace Hx defined below could

have been defined with the shortest vector of the lattice Λx. However as in [11] we use

the volume instead of the length because it works in any dimension.
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For each x in Q we fix once and for all a co-dimension one sub-lattice of Λx of minimal

volume and call it Λ′x. Let Hx = π−1
x H ′x where H ′x is the real span of Λ′x. Thus,

Λ′x = Λx ∩H ′x.

The two Lemmas below are easy and proved in [11].

Lemma 13. Let x and y be in Q. Then, y ∈ Hx if and only if ŷ ∈ x̂+H ′x .

Lemma 14. Let x and y be in Q. Suppose that |x| ≤ |y| , y ∈ Hx, and ‖x̂−ŷ‖e ≤ 4λ1(x)
|x| .

Then λ2(x) � λ2(y).

3·3. The first minimum of Λy

In one dimension, when x̂n = pn
qn

and x̂n+1 = pn+1

qn+1
are two consecutive convergents

of a real number, the unimodular property of the ordinary continued fraction algorithm

implies the two equivalent properties:

(i) πxn(pn+1, qn+1) = pn+1−qn+1x̂n is one of the two primitive elements of the lattice

Λxn ,

(ii) πxn+1
(pn, qn) = pn − qnx̂n+1 is a shortest vector of Λxn+1

.

In higher dimensions, lattices have infinitly many primitive elements. So, a priori, given

one best approximation vector x there are infinitely many possible primitive elements

α ∈ Λx that could be the projection α = πx(y) of the next best approximation vector y.

Moreover property (i) no longer implies property (ii). Lemma 15 below gives an additional

condition which, together with (i), imply (ii).

Given x ∈ Q and a primitive element α in Λx, we let

Λα⊥ = π⊥α (Λx),
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where π⊥α is the orthogonal projection of R2 onto the subspace α⊥ of vectors of R2

orthogonal to α.

For any y ∈ Q such that πx(y) = α, the 1-volume of Λα⊥ satisfies

vol(Λα⊥) =
vol(Λx)

‖α‖e
=

1

‖α‖e |x|
=

1

|x ∧ y|
.

Here, the quantity |y ∧ z| is the 2-volume of the orthogonal projection of y ∧ z ∈ Λ2R3

onto the subspace spanned by e1 ∧ e3 and e2 ∧ e3. Equivalently, (see §2 of [9])

|y ∧ z| = |y| |z| d(ŷ, ẑ).

Denote the first minimum of Λα⊥ by λ1(α). The following lemma was proved in [11].

Lemma 15. Let x ∈ Q and α be a primitive element of Λx. Suppose that y is an

element in Q such that πx(y) = α. Then |x∧y||y| ≤ λ1(α) implies λ1(y) = |x∧y|
|y| = ‖πy(x)‖e.

4. Upper bound for the Hausdorff dimension

Let µ0 > µ > 0 be two real numbers. We want to define a self-similar covering (J, σ,B)

of the set Sing∗(µ0). Since the sequence of best approximation vectors (xn)n∈N of any

θ ∈ R2 converges to θ, it is natural to choose a self similar structure such that all the

sequences of best approximations vectors of the θ ∈ Sing∗(µ0) are admissible. Moreover,

according to Corollary 12, all the best approximation vectors of θ ∈ Sing∗(µ0) are in the

set

Qµ = {x ∈ Q : λ1(x) ≤ |x|−µ},

hence J = Qµ is a natural choice. The maps σ and B are more difficult to define. Using

the extension to higher dimensions, of Legendre’s Theorem (Lemma 10) it is tempting to

define the map B with B(x) = B
(
x̂, 2λ1(x)

|x|

)
. However, by a result of Jarńık [19], if the

uniform exponent ω̂1,2(θ) is ≥ µ, then the standard exponent of approximation ω1,2(θ)
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is larger than

µ2

1− µ
.

Therefore using subsequences of sequences of best approximation vectors, it should be

possible to define the sets B(x) with smaller diameters. The precise definition involves

the subspaces Hx defined section 3·2.

Notation.

E(x) = {y ∈ Qµ : |y| > |x| , y /∈ Hx, ‖πy(x)‖e ≤
1
|y|µ , πx(y) is primitive in Λx},

D(y) = {z ∈ Qµ : |z| ≥ |y| , z ∈ Hy, ‖ŷ − ẑ‖e ≤ 4λ1(y)
|y| }.

Definition 6. We set σµ(x) = ∪y∈E(x)D(y) and Bµ,c(x) = B
(
x̂, c

(λ2(x)µ|x|)
1

1−µ

)
.

Remark 4·1. In [11], the roles of D and E were permuted and σ(x) was defined as

σµ(x) =
⋃

y∈D(x)

E(y).

Remark 4·2. When λ1(x) ≤ |x|−µ, using the second Minkowski Theorem, it is easy

to see that the radius of the ball Bµ,c(x) is

� |x|−(1+ µ2

1−µ )

which is precisely what is expected from the result of Jarńık quoted above.

Theorem 1 is a consequence of the following two lemmata.

Lemma 16. When c is large enough, (Qµ, σµ, Bµ,c) is a self-similar covering of Sing∗(µ0)

for all µ0 > µ.

Proof. Let θ ∈ Sing∗(µ0) and let ((pn, qn))n≥0 be the sequence of best approxima-

tions of θ. For n ≥ 0, set xn = (pn, qn). By Corollary 12 and removing the first best

approximation vectors if necessary, we can suppose that xn ∈ Qµ for all n. Consider a
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subsequence (xni)i≥0 such that for all i ≥ 1,

xni+1 /∈ Hxni
, xni+1, . . . , xni+1

∈ Hxni+1
, xni+1+1 /∈ Hxni+1

.

Such a subsequence exists since the sequence (xn)n≥0 must leave each subspace Hxk :

otherwise the coordinates of the point θ together with 1 would be rationally dependent.

Observe that

Hxni+1
= Hxni+2

= . . . = Hxni+1
6= Hxni+1+1

.

Let i be an integer. Set x = (p, q) = xni , y = (u, v) = xni+1 and z = xni+1
. We have

y /∈ Hx and, by Corollary 12,

‖qŷ − p‖e ≤
1

|y|µ
.

Since x and y are consecutive best approximation vectors, πx(y) is primitive in Λx, hence

y ∈ E(x). Let (e1, e2) be a reduced basis of Λx and α = πx(y). Since y /∈ Hx we have

α = ae1 + be2, where b is a nonzero integer. We have

‖α‖e |x|
|y|

=
|x ∧ y|
|y|

= ‖qŷ − p‖e ≤ |y|
−µ

,

hence

|y| ≥ (‖α‖e |x|)
1

1−µ

and

|y|
|x|
≥ (‖α‖e |x|

µ
)

1
1−µ .

It follows that y = α + kx, where the real number k satisfies |k| ≥ (‖α‖e |x|
µ
)

1
1−µ .

Moreover,

ŷ = x̂+
α

|y|
.
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Since ‖α‖e � λ2(x), we get

d(x̂, ŷ)�
‖α‖e

(‖α‖e |x|)
1

1−µ
=

1

(‖α‖µe |x|)
1

1−µ

� 1

(λ2(x)µ |x|)
1

1−µ
.

Furthermore, θ ∈ B(ŷ, 2λ1(y)
|y| ) and

λ1(y)

|y|
� 1

|y|1+µ ≤
1

(‖α‖e |x|)
1+µ
1−µ

� 1

(λ2(x)µ |x|)
1

1−µ
× 1

(λ2(x) |x|µ)
1

1−µ
.

Since µ ≥ 1
2 , we deduce from Minkowski’s Theorem that

λ2(x) |x|µ ≥ λ2(x) |x|1−µ � 1,

which implies that θ is in B
(
x̂, c

(λ2(x)µ|x|)
1

1−µ

)
when c is large enough. The last thing to

check is that z ∈ D(y), but this follows from Lemma 11 (ii).

It appears that in some cases, it is better to use a larger radius for the balls Bc,µ. This

observation has already been done in [11]. Since λ2(x) � |x|µ−1
for x ∈ Qµ, a convex

interpolation between the exponents of λ2(x) and |x|µ−1
yields

Corollary 17. For γ ∈ [0, 1] and x ∈ Qµ set

Bµ,c,γ(x) = B(x) = B
(
x̂,

c

(λ2(x)(1−γ)µ |x|(µ−1)µγ+1
)

1
1−µ

)
.

When c is large enough, (Qµ, σµ, Bµ,c,γ) is a self-similar covering of Sing∗(µ0) for all

µ < µ0.

Lemma 18. Let a and b be real numbers with b > 2 and b−1
1−µ−a > 2. Then, for x ∈ Qµ

with |x| large enough, we get

∑
z∈σµ(x)

1

λ2(z)a |z|b
� 1

λ2(x)A |x|B
,
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where A = b−1
1−µ − a− 2 and B = µ b−1

1−µ − a− 1 + b.

Proof. Step 1. For z ∈ D(y), we have z ∈ Hy and ‖ŷ− ẑ‖e ≤ 4λ(y)
|y| , hence by Lemma

14, λ2(z) � λ2(y). It follows that

S1(y) =
∑

z∈D(y)

1

λ2(z)a |z|b

�
∑

z∈D(y)

1

λ2(y)a |z|b
.

Let k be a positive integer. For z = (p, q) ∈ D(y) with |z| < (k + 1)|y|, we have

‖πy(z)‖e = ‖p− qŷ‖e = q ‖ŷ − ẑ‖e ≤ 4q
λ1(y)

|y|
≤ 8kλ1(y),

and since πy(z) ∈ Λ′y, the number of such projections is � k. Moreover, since y is

primitive, for each projection α, there is exactly one z ∈ Z3 with πy(z) = α and k |y| ≤

|z| < (k + 1) |y|. Therefore the number of elements in

Dk(y) = {z ∈ D(y) : k |y| ≤ |z| < (k + 1) |y|}

is � k. It follows that

S1(y) �
∑
k≥1

∑
z∈Dk(y)

1

λ2(y)a |z|b
=

1

λ2(y)a |y|b
∑
k≥1

∑
z∈Dk(y)

( |y|
|z|

)b
� 1

λ2(y)a |y|b
∑
k≥1

1

kb−1
.

Since b > 2, we get

S1(y)� 1

λ2(y)a |y|b
.
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Step 2. By the definition of σµ(x) and by step 1, we have

S(x) =
∑

z∈σµ(x)

1

λ2(z)a |z|b
=

∑
y∈E(x)

∑
z∈D(y)

1

λ2(z)a |z|b

�
∑

y∈E(x)

1

λ2(y)a |y|b

=
∑

α∈Λx\H′x
α primitive

∑
y∈E(x) : πx(y)=α

1

λ2(y)a |y|b
.

By the definition of E(x), if y = (u, v) ∈ E(x), then we have ‖πy(x)‖e ≤
1
|y|µ and

‖α‖e =
|x ∧ y|
|x|

=
‖u− vŷ‖e |y|

|x|
=
‖πy(x)‖e |y|
|x|

,

hence

‖α‖e |x| ≤ |y|
1−µ

and

|y|
|x|
≥ (‖α‖e |x|

µ
)

1
1−µ .

Since
|x|‖α‖e
|y| = ‖πy(x)‖e ≥ λ1(y), we deduce from Minkowski’s Theorem that

λ2(y)� 1

‖α‖e |x|

holds for all y ∈ E(x) such that πx(y) = α. Call λ1(α) the first minimum of the orthogonal

projection of Λx on the line orthogonal to α. By Lemma 15, if |x∧y||y| < λ1(α) then

λ1(y) = |x∧y|
|y| =

|x|‖α‖e
|y| , which implies that λ2(y) � 1

‖α‖e|x|
. Now λ1(α) = 1

‖α‖e|x|
and

µ > 1
2 , hence, for |x| large enough,

|y| > (‖α‖e |x|)
1

1−µ ⇒ |y| > (‖α‖e |x|)
2

⇒
‖α‖e |x|
|y|

<
1

‖α‖e |x|

⇒ |x ∧ y|
|y|

< λ1(α).
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It follows that

S(x)�
∑

α∈Λx\H′x

∑
y∈E(x):πx(y)=α

1

( 1
|x|‖α‖e

)a |y|b
.

Since the y ∈ Z3 such that πx(y) = α are of the shape y = α + y0 + kx with k ∈ Z, we

obtain

S(x)�
∑

α∈Λx\H′x

∑
k≥(‖α‖e|x|

µ)
1

1−µ

(|x| ‖α‖e)a

|x|b kb

�
∑

α∈Λx\H′x

(|x| ‖α‖e)a

|x|b (‖α‖e |x|
µ
)
b−1
1−µ

�
∑

‖α‖e≥λ2(x)

1

|x|µ
b−1
1−µ−a+b ‖α‖

b−1
1−µ−a
e

.

Now by assumption b−1
1−µ − a > 2, therefore, by Lemma 2.4 of [11] about sums over

lattices,

S(x)� 1

|x|µ
b−1
1−µ−a+b

vol Λxλ2(x)
b−1
1−µ−a−2

=
1

λ2(x)A |x|B
,

where B = µ b−1
1−µ − a− 1 + b and A = b−1

1−µ − a− 2.

Completion of proof of Theorem 1

Let µ0 be in ( 1
2 , 1).

Case 1. Assume that µ0 >
1√
2
. By Lemma 16, (Qµ, σµ, Bµ) is a self-similar covering of

Sing∗(µ0) for all µ such that 1√
2
< µ < µ0. Let s > 2(1 − µ). Set t = s

1−µ , a = µt and

b = t. For x ∈ Qµ, set

S(x) =
∑

z∈σµ(x)

(diamB(z))s.

With these notations, (diamB(x))s = (2c)s

λ2(x)a|x|b for all x ∈ Qµ, hence by Lemma 18, we
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have

S(x)

(diamB(x))s
� 1

λ2(x)A−a |x|B−b

provided that b > 2 and b−1
1−µ − a > 2.

Straightforward calculations give

A− a =
b− 1

1− µ
− 2a− 2

=
1

1− µ
(
t(1− 2µ+ 2µ2) + 2µ− 3

)
and

B − b = µ
b− 1

1− µ
− a− 1

=
tµ2 − 1

1− µ
.

By assumption t > 2 and µ2 > 1
2 , so B − b is positive. If A − a < 0, then S(x) ≤

(diamB(x))s when |x| is large enough. Otherwise we use that λ2(x) � |x|µ−1
and we

get

1

λ2(x)A−a |x|B−b
� 1

|x|C
,

with

C = (µ− 1)(A− a) + (B − b)

=
2µ− 1

1− µ
(
t(1− µ+ µ2) + µ− 2

)
>

2µ− 1

1− µ
(−µ+ 2µ2) > 0.

We conclude that S(x) ≤ (diamB(x))s when |x| is large enough. Therefore, by Theorem

6,

dimH Sing∗(µ0) ≤ s
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and since this holds for all s > 2(1− µ) and all 1√
2
< µ < µ0, we obtain

dimH Sing∗(µ0) ≤ 2(1− µ0).

Case 2. Assume that µ0 ≤ 1√
2
. We use Corollary 17 instead of Lemma 16 with µ < µ0

and a suitable choice of γ. Set t = s
1−µ , a = (1− γ)µt and b = (1 + γ(µ− 1)µ)t. The idea

is to find a value of γ such that the constraints

b > 2,
b− 1

1− µ
− a > 2, B − b > 0

are satisfied with t minimal. A small calculation gives that the inequality b−1
1−µ − a > 2

implies t > 3−2µ
1−µ+µ2 . For t = 3−2µ

1−µ+µ2 and γ = 1−2µ2

µ(1−µ)(3−2µ) , it happens that b = 2,

b−1
1−µ − a = 2, and B − b = 0. It follows that if t > 3−2µ

1−µ+µ2 the three strict inequalities

hold. The last thing to check is that with this value of γ and t > 3−2µ
1−µ+µ2 we have

A− a ≤ 0. Now, if t = 3−2µ
1−µ+µ2 we have A− a = 1

µ−1 (2µ− 1) < 0, hence A− a < 0 for t

close to 3−2µ
1−µ+µ2 which implies that S(x) ≤ 1 for |x| large enough.

5. Lower bounds for the Hausdorff dimension: tools

5·1. The counting/diameter function

We will use Theorem 7 when all the diameters of the sets B(z), z ∈ σ(x), have the

same order. In that case we can replace the sums
∑
z∈σF (x)(diamB(z))s in condition (iii)

of Theorem 7 by an equivalent sum

(diamB(z))s × card{z ∈ σ(x) : B(z) ∩ F 6= ∅}.

So, we want to bound the ratio card{z∈σ(x):B(z)∩F 6=∅}
(diamF )s from above. This will be done in

the next Lemma when the z ∈ σ(x) are on line segments through some points in almost

lattice positions.
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Definition 7. Let C0 ≥ 1, H > 0 and V > 0 be real numbers. A C0-distorted

H × V -tiling of a subset B in R2 is a finite collection of subsets Ri, i ∈ I, such that

1. each Ri is included in B,

2. the intersection of Ri and Rj has measure zero for all i 6= j,

3. each Ri contains a rectangle of horizontal length 1
C0
H and of vertical length 1

C0
V ,

4. each Ri is contained in a rectangle of horizontal length C0H and of vertical length

C0V .

Assumptions of Lemma 19. Let C0 ≥ 1 be a real number, let R0 > R1 > R2 > R3

and H,V be real numbers such that

R0

C0
≥ H, V ≥ R1

C0
,

and let E be a finite subset of R2. Assume that (Ry)y∈E is a C0-distorted H × V

tiling of the ball B(x,R0) such that each set Ry contains the corresponding y of E .

Furthermore assume that, for each y ∈ E , the ball B(y,R1) contains a set of balls

B(z1, R3), . . . , B(zky , R3), ky ≤ b 2R1

R2
c, which are disjoint and whose centers zi are in a

same line going through y, the distance between consecutive centers being at least R2.

Call Dy the set of all the zi and set

S = ∪y∈EDy.

Lemma 19. Set f(r) = maxa∈R2
cardS∩B(a,r)

rs .

1. If 1 ≤ s ≤ 2, then

max
R3≤r≤R0

f(r) ≤ 72C4
0 max

{ 1

Rs3
,
R1R

2
0

V HR2
× 1

Rs0

}
.
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2. If s < 1, then

max
R3≤r≤R0

f(r) ≤ 72C4
0 max

{ 1

Rs3
,
R1

R2Rs1
,
R1R

2
0

V HR2
× 1

Rs0

}
.

Proof. We can assume that V ≤ H.

Observe first that a 4C0H × 4C0V rectangle can meet at most 36C4
0 tiles Ry because

the union of all these tiles is included in a 6C0H×6C0V rectangle and these tiles have an

area at least equal to C−2
0 HV . Next, if a ball B(a, r) meets a ball B(y,R1) with y ∈ E ,

then the ball B(a, r + R1) meets the tile Ry. Since a ball B(a, r + R1) with r ≤ C0V is

included in a 4C0H × 4C0V rectangle, it follows that a ball B(a, r) with r ≤ R1 meets

at most 36C4
0 balls B(y,R1), y ∈ E .

Case 1. R3 ≤ r ≤ R2.

Since, for a given y in E , a ball B(a, r) contains at most two points z in Dy, by the above

observation we have

f(r) ≤ 72C4
0 × r−s = g(r),

which is a decreasing function of r.

Case 2. R2 ≤ r ≤ R1.

Since, for a given y in E , a ball B(a, r) contains at most 2r
R2

points z in Dy, by the above

observation we have

f(r) ≤ 36C4
0

rs
× 2× r

R2
= 72C4

0 ×
r1−s

R2
= g(r),

which is an increasing function of r if s ≤ 1, and a decreasing function otherwise.

Case 3. R1 ≤ r ≤ C0V .
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By the above observation we have

f(r) ≤ 36C4
0 ×

2R1

R2
× r−s = g(r),

which is a decreasing function of r.

Case 4. C0V ≤ r ≤ C0H.

We need first to refine the above observation. A 2(r+R1)× 2(r+R1) square is included

in a 4C0H × 4r
C0V

C0V rectangle and all the tiles meeting this rectangle are included in a

( 4r
C0V

+ 2)C0V × 6C0H rectangle. It follows that the 2(r+R1)× 2(r+R1) square meets

at most

(
6r

C0V
× 6)C2

0

V H

C−2
0 V H

= 36C4
0 ×

r

C0V

tiles Ry. Hence

f(r) ≤ 36C4
0 ×

r

C0V
× 2R1

R2
× r−s = 72C3

0

R1

V R2
r1−s = g(r),

which is an increasing function of r if s ≤ 1, and a decreasing function otherwise.

Case 5. C0H ≤ r ≤ R0.

The number of tiles meets by 2(r +R1)× 2(r +R1) square is at most
36C2

0r
2

HV , hence

f(r) ≤
36C2

0r
2

HV × 2R1

R2

rs
= 72C2

0 ×
R1

V HR2
r2−s = g(r)

which is an increasing function of r.

Conclusion.

If s ≥ 1, then f(r) ≤ g(r) ≤ max(g(R3), g(R0)) ≤ 72C4
0 max{ 1

Rs3
,
R1R

2
0

V HR2
× 1

Rs0
}.

If s ≤ 1, the maximum of g might be reach at r = R1 on top of r = R3 and r = R0.
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5·2. A first step in the definition of the self-similar structure: definition of σ and of Qσ

Let µ > 1
2 be fixed. We want to define a self-similar structure (J, σ,B) that covers a

subset of Sing∗(µ). In this subsection we only define J and σ.

We denote by c1, c2, . . . some constants that will be chosen later. These constants might

depend only on µ. The constants involved in �, �, or in � depends only on µ but not

on c1, c2, . . .

For each x in Q, let u1 = u1(x) be a shortest vector of Λx and let u2 = u2(x) be a

shortest vector of Λx which is linearly independent with u1. When λ1(x) = λ2(x), the

vector u1 is chosen in H ′x so that Hx is always spanned by u1 and x (see the definition

of Hx in Section 3). The basis (u1, u2) of Λx will be called reduced.

Let E1(x) be the set of y = α+ kx ∈ Q with α = αm = πx(y) = mu1 +u2 in the “first

level” u2 +H ′x, ‖mu1‖e ≤ λ2(x) and |y| ∈ (‖α‖e |x|)
1

1−µ [c0, 2c0] where c0 = 32
1

1−µ . This

value of c0 will be used in the proof of Proposition 26.

Fix a positive real number b. Let y be in E1(x). Let D1(y) be the set of z in Q such

that |z| ≥ |y| , z ∈ Hy,

1

2
|y|b ≤ |z|

|y|
≤ |y|b ,

‖ŷ − ẑ‖e ≤ c1
λ1(y)

|y|
,

where c1 ≤ 1
4 is small enough and will be chosen after Lemma 27.

For each x in Q, set

σ(x) =
⋃

y∈E1(x)

D1(y)
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and

J = Qσ =
⋃

x∈Q, |x|≥c

σ(x),

where c is a constant. The remaining Propositions and Lemmas hold when |x| is large

enough, so the constant c will be chosen so that all these results hold.

5·3. A few Calculations

Let x be in Qσ, y be in E1(x) and z be in D1(y). Since πx(y) = α = mu1 + u2 with

‖mu1‖e ≤ λ2(x), we have ‖α‖e � λ2(x). So if we can evaluate λ2(x), we will then be able

to estimate the height of y, the height of z and also λ1(x). However, the direct estimate

of λ2(x) given by the second Minkowski theorem:

λ2(x)2|x| ≥ λ1(x)λ2(x)|x| � 1,

leads to λ2(x)� |x|− 1
2 . This is useful to bound below ‖α‖e|x| and its power

(‖α‖e|x|)
1

1−µ � |x|
1

2(1−µ) = |x|exponent>1,

but will be insufficient. That’s why we estimate λ1(y) first and then improve the lower

bound λ2(x)� |x| 12 .

5·3·1. Minima of Λy

Lemma 20. Let x be in Q and y in E1(x). Then λ1(y) = |x∧y|
|y| � |y|

−µ
and λ2(y) �

|y|µ−1
when |x| is large enough.

Proof. Let λ1(α) denote the first minimum of the orthogonal projection of Λx on the

line orthogonal to α. By Lemma 15, if |x∧y||y| ≤ λ1(α), then λ1(y) = |x∧y|
|y| = ‖α‖e

|x|
|y| . Now

λ1(α) = det Λx
‖α‖e

= 1
‖α‖e|x|

≥ |x∧y||y| is equivalent to

|y| ≥ (‖α‖e |x|)
2
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and, by definition of E1(x), we have |y| ≥ c0(‖α‖e |x|)
1

1−µ , therefore λ1(y) = |x∧y|
|y| when

|x| is large enough.

It follows that

λ1(y) = ‖πy(x)‖e = ‖α‖e
|x|
|y|
� (|x| ‖α‖e)

1− 1
1−µ � |y|−µ

and, by Minkowski’s Theorem,

λ2(y) � 1

|y|λ1(y)
� |y|µ−1

.

5·3·2. Minima of Λx and Λz

Lemma 21. Let x be in Q and z in σ(x). We have λ1(z) � |z|−
µ+b
1+b and λ2(z) � |z|

µ−1
1+b

when |x| is large enough. Consequently, if x ∈ Qσ, λ1(x) � |x|−
µ+b
1+b and λ2(x) � |x|

µ−1
1+b .

Proof. Let y be in E1(x) such that z is in D1(y). By definition of D1(y), we get

|z| � |y|1+b
. Since c1 ≤ 1/4, by Lemma 14 and by the definition of D1(y), and then by

Lemma 20, we have

λ2(z) � λ2(y) � |y|µ−1 � |z|
µ−1
1+b ,

λ1(z) � |z|−1−µ−1
1+b = |z|−

µ+b
1+b .

If x ∈ Qσ, then x = z∗ ∈ σ(x∗) for some x∗ ∈ Q and the above estimates hold for x.

5·3·3. Distance from x̂ to ŷ

Lemma 22. Let x be in Qσ and y in E1(x). Then, when |x| is large enough, we have

d(x̂, ŷ) � |x|r0 ,

where

r0 = −µ
2 − µ+ b+ 1

(1− µ) (b+ 1)
.
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Proof. Let α = πx(y). Since y = α+ |y|
|x|x, we have ŷ = α

|x| + x̂. Thus, by definition of

E1(x),

d(x̂, ŷ) =
‖α‖e
|y|
�

‖α‖e
(|x| ‖α‖e)

1
1−µ

=
1

(|x| ‖α‖µe )
1

1−µ
� 1

(|x|λµ2 (x))
1

1−µ
.

Therefore, by Lemma 21, we have

d(x̂, ŷ) � 1

(|x| |x|
µ−1
1+b µ)

1
1−µ

� 1

|x|
1

1−µ (1+
µ(µ−1)

1+b )
= |x|r0 .

5·3·4. Growth rate of |y|

Lemma 23. Let x be in Qσ and y in E1(x). Then, when |x| is large enough, we get

|y| � |x|ey ,

where

ey =
µ+ b

(1− µ)(1 + b)
.

Proof. By the definition of E1(x) and by Lemma 21, we have

|y| � (|x|λ2(x))
1

1−µ � (|x| |x|
µ−1
1+b )

1
1−µ .

5·4. A nested self-similar structure

We want to define a self-similar structure (J, σ,B). Since J = Qσ and σ have already

been defined, we have only to define the map B.
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5·4·1. Definition of B(x)

For each x ∈ Qσ, set

B(x) = B
(
x̂, c2 |x|r0

)
,

where the constant r0 is defined in Lemma 22. The constant c2 will be chosen in the

proof of Lemmas 25 and 27.

Lemma 24. For x in Qσ,

B(x) ⊂ B
(
x̂,
λ1(x)

2 |x|

)
,

when |x| large enough, and therefore x is a best approximation vector of all θ in B(x).

Proof. By Lemma 21, λ1(x) � |x|−
µ+b
1+b and

−µ+ b

1 + b
− 1 + r0 = −µ+ 2b+ 1

1 + b
+
µ2 − µ+ b+ 1

(1− µ) (b+ 1)
> 0,

Therefore c2 |x|r0 ≤ λ1(x)
2|x| when |x| is large enough. By Lemma 10, it follows that x is a

best approximation vector of all θ in B(x).

5·4·2. Nestedness

Lemma 25. Let x be in Qσ. Then for all z ∈ σ(x), B(z) ⊂ B(x) and z ∈ Qσ when |x|

is large enough. Moreover,

B(z) ⊂ B
(
ŷ,
λ1(y)

2 |y|

)
⊂ B

(
ŷ,

2λ1(y)

|y|

)
⊂ B(x),

where y is the element of E1(x) such that z ∈ D1(y).

Proof. By Lemma 22,

d(x̂, ŷ)� |x|r0 ,
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where r0 = − µ2−µ+b+1
(1−µ)(b+1) . Moreover, by Lemmas 20 and 23, λ1(y)

|y| � |x|
− (µ+b)(1+µ)

(1−µ)(1+b) and

r0 +
(µ+ b)(1 + µ)

(1− µ)(1 + b)
=

2µ− 1 + bµ

(1− µ)(1 + b)
> 0.

Therefore

B
(
ŷ,

2λ1(y)

|y|

)
⊂ B(x),

for all y ∈ E1(x) when c2 and |x| are large enough.

Now let y be in E1(x) and z be in D1(y). By definition we have d(ŷ, ẑ) ≤ 1
4
λ1(y)
|y| , so in

order to prove that B(z) ⊂ B(ŷ, λ1(y)
2|y| ) ⊂ B(x) it is enough to prove that c2 |z|r0 ≤ 1

4
λ1(y)
|y| .

Since λ1(y) � |y|−µ (by Lemma 20), we are reduced to check that

c2 |y|(1+b)r0 � c2 |z|r0 ≤
1

4 |y|1+µ ,

which holds when |y| is large enough because

−(1 + b)r0 − (1 + µ) =
1

1− µ
((2µ− 1)µ+ b) > 0.

Proposition 26. The self-similar structure (Qσ, σ, B) is strictly nested and covers a

subset of Sing∗(µ).

Proof. The nestedness is ensured by the previous Lemma and the fact that limn→∞ diamB(xn) =

0 for all admissible sequences (xn)n≥0 is an immediate consequence of the inequality

|z| > |x| for all z ∈ σ(x).

Let (xn)n≥0 be an admissible sequence and let θ be the unique point in ∩n≥0B(xn).

We have to show that θ ∈ Sing(µ) and that Zθ + Z2 is everywhere dense in R2. Let Q

be an integer. We want to prove that there exists an integer q ≤ Q such that

d(qθ,Z2) ≤ Q−µ.
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Let n be the integer defined by |xn| ≤ Q < |xn+1|. Set x = xn. By the definition of σ,

there exists y ∈ E1(x) such that z = xn+1 ∈ D1(y).

Case 1: |xn| ≤ Q < |y|.

By Lemma 25, θ ∈ B(z) ⊂ B(ŷ, λ1(y)
2|y| ), hence y is a best approximation vector of θ. By

Lemma 11 (iii), for all (p, q) in Z3 with 0 < q < |y|, we have

‖p− qθ‖e ≤ 2 ‖p− qŷ‖e .

Now by the definition of E1(xn) we have |y| ≥ c0(‖α‖e |x|)
1

1−µ where α = πx(y). With

x = (p, q), this implies that (recall that c0 = 32
1

1−µ )

1

|x|
‖p− qŷ‖e = ‖ŷ − x̂‖e =

‖α‖e
|y|
≤ |y|−µ

c1−µ0 |x|
≤ |y|

−µ

32|x|

and therefore,

‖p− qθ‖e ≤ 2 ‖p− qŷ‖e ≤ |y|
−µ ≤ Q−µ.

Case 2: |y| ≤ Q < |z|.

Since d(ẑ, ŷ) ≤ 1
4
λ1(y)
|y| ≤

λ1(y)
2|y| , by Lemma 10, y is a best approximation vector of ẑ.

Let y0 = y = (p0, q0), y1 = (p1, q1), . . . , yk = (pk, qk) = z be all the intermediate best

approximation vectors of ẑ.

Let us show that all the yi are in Hy. For i = 0, . . . , k, by the definition of best

approximation and by Lemma 11, (ii), we have

‖πz(yi)‖e = ‖pi − qiẑ‖e ≤ ‖p0 − q0ẑ‖e ≤ 4λ1(y).

Each projection πz(yi) is in Λz = πz(Z3) which is included in the union of lines H =

H ′y+Λy. Since the distance between these lines is� λ2(y) and since by Lemma 20, λ1(y)

is small compared to λ2(y) when |x| is large enough, πz(yi) must be in H ′y. It follows that

the intermediate best approximation vectors are all in Hy, which implies that Λyi ⊂ H ,



46 Y. Bugeaud, Y. Cheung and N. Chevallier

i = 0, . . . , k and that

λ1(yi)e(H) =
1

|yi|
,

where e(H) is the distance between two consecutive lines of H. Since e(H) ≥
√

3
2 λ2(y),

and λ1(y)λ2(y) ≥ 1
|y| (the minima are associated with an Euclidean norm),

λ1(yi) =
1

e(H) |yi|
≤ 2√

3

λ1(y) |y|
|yi|

≤ 2
1

c1−µ0

|y|−µ |y|
|yi|
≤ 2

1

c1−µ0

|yi|−µ .

Hence, by Lemma 11 (i) and (iii), for |yi−1| ≤ Q < |yi|, i = 1, . . . , k,

d({ẑ, . . . , Qẑ},Z2) ≤ 2d({ŷi, . . . , Qŷi},Z2)

≤ 2 ‖qi−1ŷi − pi−1‖e ≤ 8λ1(yi)

≤ 16
1

c1−µ0

|yi|−µ ≤ 16
1

c1−µ0

Q−µ.

Now, by Lemma 24, z is a best approximation vector of θ, hence

d({θ, . . . , Qθ},Z2) ≤ 2d({ẑ, . . . , Qẑ},Z2) ≤ 32
1

c1−µ0

Q−µ,

which is equal to Q−µ by the choice of c0.

It remains to see why Zθ + Z2 is everywhere dense. This simply follows from the fact

that e(H) ≤ λ2(y) and that λ2(y) tends to 0 for y ∈ E1(xn) when n goes to infinity.

5·5. A distorted tiling associated with the set of ŷ, for y in E1(x).

Let x be in Qσ and let (u1, u2) be the reduced basis of Λx. For each y in E1(x) there are

unique integers m and a, and 0 ≤ r < 1 such that y = mu1 +u2 + (a+ r)x. Observe that

r depends only on m and not on a. For given integers m and a, consider the trapezoid

T (m, a) with extreme points

x̂+
mu1 + u2

a |x|
, x̂+

(m+ 1)u1 + u2

a |x|
, x̂+

mu1 + u2

(a+ 1) |x|
, x̂+

(m+ 1)u1 + u2

(a+ 1) |x|
.
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For y = mu1 + u2 + (a+ r)x in E1(x) we set

Ry = Rŷ = T (m, a).

Let E(x) denote the set of ŷ, y in E1(x). We shall call the lines parallel to u1 horizontal

and the lines through the point x̂ different from x̂+H ′x, vertical.

Lemma 27. There exists a constant C0 such that for all x in Qσ with |x| large enough

and c2 large enough, the collection Rŷ, ŷ in E(x), is a C0-distorted H ×V -tiling of B(x)

with

H = |x|h = |x|−
(2−µ)(b+µ)
(1−µ)(b+1)

V = |x|v = |x|−
(1+µ)(b+µ)
(1−µ)(b+1) .

Moreover, every ŷ in E(x) lies on a vertical side of Ry and the minimal distance ρ(x)

between two elements in E(x) is � V � λ1(y)
|y| .

Proof. The trapezoid T (m, a) lies between the two vertical lines

Vm = x̂+ R(mu1 + u2), and Vm+1 = x̂+ R((m+ 1)u1 + u2)

and also between the two horizontal lines

Ha = x̂+
u2

a |x|
+ Ru1, and Ha+1 = x̂+

u2

(a+ 1) |x|
+ Ru1.

Therefore, the trapezoids Rŷ have intersections of Lebesgue measure zero.

Observe that for y in E1(x), by Lemma 23, a � |y|
|x| � |x|

ey−1
. On the one hand, by

definition of E1(x) and Lemma 20, the distance between two consecutive horizontal lines

is

� λ2(x)

a2 |x|
� |x|λ2(x)

|y|2
� |x ∧ y|
|y|2

=
λ1(y)

|y|
� |y|−1−µ � |x|−ey(1+µ) � |x|v .

On the other hand, the distance between the two vertical segments of T (m, a) is �
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‖u1‖e
a|x| �

λ1(x)
|y| which is � |x|h by Lemmas 23 and 21. Since h > v, diamRŷ � H. Since

h < r0, and since by Lemma 25, all the ŷ are in the ball B(x), we see that all the

trapezoids Rŷ are included in B(x) = B(x̂, c2|x|r0) when c2 is large enough.

Since ŷ = x̂ + mu1+u2

(a+r)|x| , ŷ is in the left vertical side of Rŷ and the nearest element

of E(x) is ŷ′ = x̂ + mu1+u2

(a±1+r)|x| in the same vertical line at a distance � V . Therefore

ρ(x) � λ1(y)
|y| .

5·5·1. Choice of the constants c, c1 and c2

The constant c2 in the defintion of the balls B(x) is chosen according to Lemmas 25

and 27. With this choice, we determine the constant c1 used in the definition of D1(y)

through the condition d(ẑ, ŷ) ≤ c1 λ1(y)
|y| . Since ρ(x) � λ1(y)

|y| , it is possible to take c1 small

enough in order that for all z in D1(y),

d(ŷ, ẑ) ≤ c1
λ1(y)

|y|
≤ 1

4
ρ(x).

The choice of the constant c involved in the definition of Qσ is done at the very end

taking all the “|x| large enough” into account.

5·5·2. Distance between the points ẑ for z in D1(y)

Lemma 28. Let x be in Qσ and y be in E1(x). If z 6= z′ are in D1(y), then

d(ẑ, ẑ′) ≥ λ1(y)

2 |y|1+2b
≥ 3 max

u∈σ(x)
diamB(u)

when |x| is large enough. Hence the balls B(z), z ∈ σ(x), are disjoint.

Proof. Choose a generator uy of Λ′y = Λy∩H ′y and y′ in Z3∩Hy such that πy(y′) = uy

and |y′| ≤ 1
2 |y| (such a point y′ exists because every segment of height |y| in the line

uy +Ry contains a point of Z3). We have y′ = uy + ry with |r| ≤ 1
2 . Moreover Z3 ∩Hy =
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Zy + Zy′ because Zy + Zy′ ⊂ Z3 ∩Hy and these two sub-lattices of Hy have the same

determinant.

Let z = ay′ + ky be in Q ∩Hy. We have z = auy + (ar + k)y, hence

ẑ =
a

(ar + k)

uy
|y|

+ ŷ,

and, since z is primitive, the pair (a, k) is primitive in Z2.

Now, if z = ay′ + ky is in D1(y) then

|a|λ1(y) = ‖auy‖e = ‖πy(z)‖e ≤
1

4

λ1(y)

|y|
× |z| ,

hence |a| ≤ 1
4
|z|
|y| . Moreover, |z| ≤ |k| |y|+ 1

2 |a| |y|, thus

|k| ≥ 1

|y|
(|z| − 1

2
|a| |y|) =

|z|
|y|

(
1− 1

8

)
≥ 1

2

|z|
|y|
.

Let z = ay′ + ky and z′ = a′y′ + k′y be two distinct points in D1(y). We have

ẑ − ẑ′ =
( a

(ar + k)
− a′

(a′r + k′)

)uy
|y|

=
( ak′ − a′k

(ar + k)(a′r + k′)

)uy
|y|
.

Since (a, k) and (a′, k′) are primitive, we have ak′ − a′k 6= 0. It follows that

d(ẑ, ẑ′) ≥ λ1(y)

|y|
× 1
|z|
|y| ×

|z′|
|y|

≥ λ1(y)

|y|1+2b
.

It remains to see that for all z with |z| large enough,

diamB(z) ≤ 1

3

λ1(y)

|y|1+2b
� 1

|y|1+2b+µ
.

Since diamB(z) � |z|r0 � |y|(1+b)r0 and since

−(1 + b)r0 − (1 + 2b+ µ) =
(b+ µ)(2µ− 1)

1− µ
> 0

we have diamB(z) ≤ 1
3
λ1(y)

|y|1+2b .

We have shown that the balls B(z), z ∈ D1(y), are disjoint. Now we show they are also
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disjoint for different y ∈ E1(x). Recall that the constant c1 has been chosen in order that

for all z in D1(y), d(ŷ, ẑ) ≤ 1
4ρ(x), the minimal distance between two points ŷ, where y

is in E1. It follows that the balls B(z) are disjoint provided that

max
z∈σ(x)

diamB(z) <
1

4
ρ(x).

This latter inequality holds because ρ(x) � λ1(y)
|y| and λ1(y)

|y|1+2b ≥ diamB(z).

5·5·3. Number of points in σ(x)

Lemma 29. Let x be in Qσ and y in E1(x). Then

cardD1(y) � |x|2bey = |x|d1 ,

cardE1(x) � |x|2
µ−1
1+b +ey = |x|e1 ,

and

cardσ(x) � |x|nx ,

where

nx = d1 + e1 =
1

(1− µ) (b+ 1)

(
2b2 + 2bµ+ b+ (2µ− 1) (2− µ)

)
when |x| is large enough.

Proof. It is not difficult to see that the number of points z in Hy ∩ Z3 such that

‖ŷ − ẑ‖e ≤ c1
λ1(y)

|y|
and

1

2
|y|b ≤ |z|

|y|
≤ |y|b

is � |y|2b. Indeed, the condition ‖ŷ − ẑ‖e ≤ c1
λ1(y)
|y| is equivalent to ‖πy(z)‖e ≤ c1

|z|
|y|λ1(y)

which means that there are � |z||y| � |y|
b

possible values for α = πy(z). Moreover, the set

of integer points on each of the lines π−1
y (α) is a translate of Zy and therefore there are

|y|b possible z for each α. The fact that many of such z are primitive is less clear; in fact,
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by Lemma 7.11 of [11], we have

cardD1(y) � |y|2b � |x|2bey .

Recall that E1(x) is the set of y = α + kx = mu1 + u2 + kx ∈ Q with ‖mu1‖e ≤ λ2(x)

and |y| ∈ (‖α‖e|x|)
1

1−µ [c0, 2c0]. Using Lemma 21, we obtain

cardE1(x) � λ2(x)

λ1(x)
× |y|
|x|
� λ2

2(x) |x|ey � |x|2
µ−1
1+b +ey .

It then follows by Lemma 23, that the number of points in σ(x) satisfies

cardσ(x) � |x|2bey × |x|2
µ−1
1+b +ey = |x|nx ,

where

nx = 2
µ− 1

1 + b
+ (1 + 2b)

µ+ b

(1− µ)(1 + b)

=
1

(1− µ) (b+ 1)

(
2b2 + 2bµ+ b+ (2µ− 1) (2− µ)

)
.

6. Lower bounds for the Hausdorff dimension: proofs

Proof of Theorem 3

Let s be a positive real number. Suppose that the following conditions hold:

•
∑
z∈σ(x)(diamB(z))s ≥ (diamB(x))s,

• Rs1 cardE1(x) � (diamB(x))s where R1 = maxy∈E1(x)
λ1(y)
|y| � |x|

−ey(µ+1) �

|x|r1 ,

for all x in Qσ with |x| large enough.

Let us show that such an s is a lower bound for dimH Sing∗(µ). We want to use Theorem

7 with the self-similar structure (Qσ, σ, B) which is strictly nested and covers a subset

of Sing∗(µ) by Proposition 26. The first condition above is just the first hypothesis of
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Theorem 7 and the second condition of Theorem 7 is implied by Lemma 28. So it remains

to check the last hypothesis of Theorem 7. For this last condition, we use Lemma 19 with

R0 = c2 |x|r0 and the sets B = B(x̂, R0), E = Ê1(x), Dŷ = D̂1(y), S = ∪ŷ∈EDŷ, R1

defined above, and

R2 = c3 |x|−ey(µ+1+2b) � |x|r2 , R3 = |x|ezr0 = |x|
µ+b

(1−µ) r0 = |x|r3 .

Let us first check the inequalities between R0, . . . , R3, H and V . By Lemma 27, H � |x|h

and V � |x|v. Looking at the exponents we find

r0 = −µ
2 − µ+ b+ 1

(1− µ) (b+ 1)
> h = − (2− µ)(b+ µ)

(1− µ)(b+ 1)
> v = r1 = − (1 + µ)(b+ µ)

(1− µ)(b+ 1)
>

r2 = − (µ+ 1 + 2b)(b+ µ)

(1− µ)(b+ 1)
> r3 = − (b+ µ)

(1− µ)
× µ2 − µ+ b+ 1

(1− µ) (b+ 1)
,

which show that the assumptions of Lemma 19 about the numbers R0, R1, R2, R3, H

and V are satisfied. Moreover, by Lemma 28 and for c3 small enough, we have

d(z, z′) ≥ λ1(y)

2 |y|1+2b
≥ R2,

for all z 6= z′ in D1(y). Together with Lemma 27, this imply that all the assumptions of

Lemma 19 hold.

With the notations of Lemma 19, we get

f(r)� max
{ 1

Rs3
,
R1

R2Rs1
,
R2

0R1

V HR2
× 1

Rs0

}
.

By Lemma 27 (or 29),
R2

0

V H � cardE1(x) and, since R1

R2
� |y|2b � cardD1(y), we see that

R2
0R1

V HR2
× 1

Rs0
� cardσ(x)

(diamB(x))s
.

With the first assumption
∑
z∈σ(x)(diamB(z))s ≥ (diamB(x))s and the definition of

R3 = |x|ezr0 � diamB(z), we get

1

Rs3
� R2

0R1

V HR2
× 1

Rs0
.
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With the second assumption Rs1 cardE1(x)� (diamB(x))s, we get

R1

R2Rs1
� R2

0

V H

1

Rs1 cardE1(x)
× R1

R2
� R2

0

V H

1

Rs0
× R1

R2
.

Therefore, for all r in [R3, R0], we have

cardσ(x) ∩B(a, r)

rs
� cardσ(x)

(diamB(x))s

and so, with F = B(a, r),

∑
z∈σF (x)

(diamB(z))s

(diamF )s
�

∑
z∈σ(x)

(diamB(z))s

(diamB(x))s
.

By applying Theorem 7 we conclude that the Hausdorff dimension of Sing∗(µ) is at least

equal to s.

The idea is now to show that the assumption
∑
z∈σ(x)(diamB(z))s ≥ (diamB(x))s is

more restrictive than the other assumption Rs1 cardE1(x)� (diamB(x))s.

The condition

sr3 + nx > sr0

implies the first assumption and the condition

sr1 + e1 > sr0

implies the second assumption. The first condition is equivalent to s < nx
r0−r3 = s1 and

the second is equivalent to s < e1
r0−r1 = s2. Therefore, to prove that s1 is a lower bound

for the Hausdorff dimension of Sing∗(µ), it is enough to check that s1 < s2 for all µ in

( 1
2 , 1) and all positive b.

Tedious calculations give

s1(b) =
(1− µ)

(
2b2 + 2bµ+ b+ (2− µ)(2µ− 1

)
)

(b+ 2µ− 1) (µ2 − µ+ b+ 1)
,

s2(b) =
1

2µ+ bµ− 1

(
−2µ2 + 5µ+ b− 2

)
,
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and

s2(b)− s1(b) = (b+ µ)

(
2µ2 − 2µ+ 1

)
b2 +

(
4µ2 − 2µ

)
b+ µ (2− µ) (2µ− 1)

2

(b− µ+ µ2 + 1) (b+ 2µ− 1) (2µ+ bµ− 1) ,

which is > 0 for µ in [ 1
2 , 1) and b > 0. It follows that

dimH Sing∗(µ) ≥ s1(b),

and the proof is complete.

Proof of corollaries 2 and 4

Clearly,

lim
b→∞

s1(b) = 2(1− µ)

It follows that

dimH Sing∗(µ) ≥ lim
b→∞

s1(b) = 2(1− µ).

Next we can compute the derivative of the function b 7→ s1(b). The numerator of this

derivative is

Num(b) = (1− µ)((2µ2 − 1)b2 + (8µ3 − 8µ2 + 2µ)b+ (6µ4 − 7µ3 + 3µ− 1)).

When µ > 1√
2
, Num(b) is positive for all positive b, hence the maximum of s1 is reached

when b goes to infinity. When µ < 1√
2
, Num(b) vanishes at the value

b0 =
1

1− 2µ2

(
µ− 4µ2 + 4µ3 +

√
(1− µ)3(2µ− 1)(2µ− 2µ2 + 1)

)
,

which is positive. Since Num(b) is negative for b large this implies that s1(b0) is larger

than the limit at infinity and therefore the Hausdorff dimension exceeds 2(1− µ).

Let us look at the limit when µ tends to 1
2 . With b = β(2µ− 1), we obtain

s1 = s1(µ, β) =
(1− µ)(2β2(2µ− 1) + 2βµ+ β + 2− µ)

(µ2 − µ+ 1 + β(2µ− 1))(β + 1)
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Therefore for all β > 0,

lim
µ→ 1

2

dimH Sing∗(µ) ≥
1
2 (2β + 3

2 )
3
4 (β + 1)

.

Letting β going to infinity this implies

lim
µ→ 1

2

dimH Sing∗(µ) ≥ 4

3
.

Proof of Proposition 5 We keep the notation of the proof of Theorem 3. We want to

use Lemma 9 with the strictly nested self-similar structure (Qσ, σ, B) and the map x 7→ x̂.

We need to define the map B′. For x in Qσ, we set

B′(x) = B(x̂, c4 |x|−
µ+1+2b

1+b ).

Since, for z ∈ σ(x),

|z|−
µ+1+2b

1+b � |x|−ey(1+µ+2b) � λ1(y)

2 |y|1+2b
� R2,

making use of Lemma 28, we see that the balls B′(z), z ∈ σ(x), are disjoint when c4 is

small enough. Moreover, since R2 is small compared to λ1(y)
|y| , Lemma 25 implies that for

all x ∈ Qσ, all y ∈ E1(x) and z ∈ D1(y), we have

B′(z) ⊂ B(ŷ,
2λ1(y)

|y|
) ⊂ B(x) ⊂ B′(x),

hence the third assumption of Lemma 9 holds. The second assumption of this lemma

holds because R3 is small compared to R2. The assumptions (i) and (iii) of Lemma 9 are

straightforward, hence we need only to verify (v), namely

∑
z∈σ(x)

(diamB′(z))s ≥ (diamB′(x))s,

needs to be checked. Since

diamB′(x) � (diamB(x))
µ+1+2b
|r0|(1+b) ,
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the fifth assumption holds provided that

µ+ 1 + 2b

|r0|(1 + b)
s ≤ s1.

Therefore,

dimP Sing∗(µ) ≥ |r0|(1 + b)

µ+ 1 + 2b
s1

=

(
2b2 + 2bµ+ b+ (2− µ)(2µ− 1

)
)

(µ+ 1 + 2b) (b+ 2µ− 1)
.

Letting b going to infinity, we obtain

dimP Sing∗(µ) ≥ 1.
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