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Abstract. Let A be an n × m matrix with real entries. Consider the set BadA
of x ∈ [0, 1)n for which there exists a constant c(x) > 0 such that for any q ∈ Zm the
distance between x and the point {Aq} is at least c(x)|q|−m/n . It is shown that the
intersection of BadA with any suitably regular fractal set is of maximal Hausdorff
dimension. The linear form systems investigated in this paper are natural extensions
of irrational rotations of the circle. Even in the latter one-dimensional case, the
results obtained are new.

§1. Introduction. Consider initially a rotation of the unit circle through an
angle α. Identifying the circle with the unit interval [0, 1) and the base point of Q1

the iteration with the origin, we are considering the numbers 0, {α}, {2α}, . . . Q2

where {·} denotes the fractional part. If α is rational, the rotation is periodic. On
the other hand, it is a classic result of Weyl [24] that any irrational rotation of the
circle is ergodic. In other words, {qα}q∈N is equidistributed for irrational α.

Almost every orbit of an ergodic transformation visits any fixed set of positive
measure infinitely often. The “shrinking target problem” introduced in [11] for-
mulates the natural question of what happens if the target set—the set of positive
measure—is allowed to shrink with time. For example, and more precisely, is
there an optimal “shrinking rate” for which almost every orbit visits the shrinking
target infinitely often? In the specific case of irrational rotations of the circle, the
shrinking target sets correspond to subintervals of [0, 1) whose lengths decay
according to some specified function ψ . In other words, the problem translates
to considering inequalities of the type

‖qα − x‖<ψ(q), (1)

where x ∈ [0, 1) and ‖ · ‖ denotes the distance to the nearest integer. The
following statement dates back to Khintchine [12] and gives the “optimal” choice
of ψ in the non-trivial case where α is irrational and x 6= sα + t for any integers
s and t . The inequality

‖qα − x‖<
C(α)

q
(2)

is satisfied for infinitely many integers q with C(α) :=
√

1− 4λ(α)2/4; the
quantity λ(α) := lim infq→∞ q‖qα‖ is the Markoff constant of α. Note that λ(α)
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2 Y. BUGEAUD et al

is strictly positive whenever α is badly approximable by rationals. Thus, the
above statement strengthens a result of Minkowski [18], namely that (2) has
infinitely many solutions with C(α)= 1/4. In the trivial case where α is
irrational and x = sα + t for some integers s and t , the classic theorem of
Hurwitz implies that the inequality

‖qα − x‖<
1+ ε
√

5q
(ε > 0) (3)

is satisfied for infinitely many integers q. Since (3) is weaker than (2), it follows
that for any irrational α and any x the inequality (3) has infinitely many solutions.
We now describe a metrical statement in which the right-hand side of (3), and
indeed (2), can be significantly improved—at a cost!

Kurzweil [16] showed that for any non-increasing function ψ :N→R>0
such that

∑
ψ(q)=∞ and almost every irrational α, the set of x for which (1)

has infinitely many solutions is of full Lebesgue measure. This cannot be
improved upon in the sense that there exist irrational α and a function ψ for
which

∑
ψ(q)=∞ but the “full measure” conclusion fails to hold. Hence, the

“almost every” aspect of Kurzweil’s result does not extend to all irrationals α
without modification; the divergent sum condition is not enough.

Over the past few years, there has been much activity in investigating
the shrinking target problem associated with irrational rotations of the circle.
For example, when ψ(q) := q−v with v > 1, Bugeaud [3] and, independently,
Schmeling and Trubetskoy [21] obtained the Hausdorff dimension of the set
of x for which inequality (1) has infinitely many solutions. Fayad [10], Fan
and Wu [9], Kim [13] and Tseng [22, 23] have built upon the work of Kurzweil
in various directions. In particular, Kim proved that for any irrational α, the set
of x for which

lim inf
q→∞

q‖qα − x‖ = 0 (4)

has full measure. Rather surprisingly, Beresnevich et al [1] have shown that this
result and, indeed, the dimension result of Bugeaud, Schmeling and Trubetskoy
are consequences of the fact that for any irrational α and any x the inequality (3)
has infinitely many solutions.

The result of Kim is the underlying motivation for our work. In this paper we
investigate the complementary measure-zero set associated with (4), namely

Badα :=
{

x ∈ [0, 1) : ∃c(x) > 0 s.t. ‖qα − x‖ ≥
c(x)

q
∀q ∈N

}
. (5)

In fact, we will be concerned with more general actions than rotations of
the circle. Broadly speaking, there are two natural ways to generalize circle
rotations. One option is to increase the dimension of the torus, i.e. to consider
the sequence {qα} in [0, 1)n where α = (α1, . . . , αn)

T
∈Rn . The other option

is to increase the dimension of the group acting on the torus, i.e. to consider the
sequence {α · q} where α = (α1, . . . , αm) ∈Rm and q= (q1, . . . , qm)

T
∈ Zm .
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ON SHRINKING TARGETS FOR Zm ACTIONS ON TORI 3

It is possible to consider both of the aforementioned options at the same time
by introducing a Zm action on the n-torus by n × m matrices. Indeed, we may
consider the points {Aq} ∈ [0, 1)n where A ∈Matn×m(R) is fixed and q runs
over Zm . In this case, the natural analogue of Badα is the set

BadA :=

{
x ∈ [0, 1)n : ∃c(x) > 0 s.t. ‖Aq− x‖ ≥

c(x)
|q|m/n ∀q ∈ Zm

\{0}
}
.

Here and throughout this article, for a vector x in Rn we will denote by |x| the
maximum of the absolute values of the coordinates of x, i.e. the infinity norm
of x. Also, we write ‖x‖ :=miny∈Zn |x− y|.

The underlying goal of this paper is to show that no matter which of the
Zm actions defined above we choose, the set BadA is of maximal Hausdorff
dimension.

THEOREM 1. For any A ∈Matn×m(R),

dim BadA = n.

In the more familiar setting of irrational rotations of the circle, the theorem reads
as follows.

COROLLARY 1. For any α ∈R,

dim Badα = 1.

Note that if α is rational, the set Badα is easily seen to contain all points in
the unit interval bounded away from a finite set of points. Thus, for rational α,
not only is Badα of full dimension but it is of full Lebesgue measure. In higher
dimensions, similar phenomena occur in which the finite set of points is replaced
by a finite set of affine subspaces. The reader is referred to [5] and §5 below for
further details.

Inspired by the works of Kleinbock and Weiss [14] and Kristensen et al [15],
we shall deduce Theorem 1 as a simple consequence of a general statement
concerning the intersection of BadA with compact subsets of Rn . The latter
includes exotic fractal sets such as the Sierpinski gasket and the van Koch curve.

§2. The setup and main result. Let (X, d) be a metric space and let (�, d)
be a compact subspace of X which supports a non-atomic finite measure µ.
Throughout, B(c, r) will denote a closed ball in X with centre c and radius r .
The measure µ is said to be δ-Ahlfors regular if there exist strictly positive
constants δ and r0 such that for c ∈� and r < r0,

ar δ ≤ µ(B(c, r))≤ br δ

where 0< a ≤ 1≤ b are constants independent of the ball. It is easily verified
that if µ is δ-Ahlfors regular, then the Hausdorff dimension of � is δ, i.e.

dim�= δ. (6)
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4 Y. BUGEAUD et al

For further details, including the definition of Hausdorff dimension, the reader is
referred to [17].

In the above, take X =Rn and let L denote a generic (n − 1)-dimensional
hyperplane. For ε > 0, let L(ε) denote the ε-neighbourhood of L. The measureµ
is said to be absolutely α-decaying if there exist strictly positive constants C, α
and r0 such that for any hyperplane L, any ε > 0, any x ∈� and any r < r0,

µ(B(x, r) ∩ L(ε))≤ C

(
ε

r

)α
µ(B(x, r)).

It is worth mentioning that if µ is δ-Ahlfors regular and absolutely α-decaying,
then µ is an absolutely friendly measure as defined in [20].

Armed with the notions of Ahlfors regular and absolutely decaying, we are
in a position to state our main result.

THEOREM 2. Let K ⊆ [0, 1]n be a compact set which supports an
absolutely α-decaying, δ-Ahlfors regular measure µ such that δ > n − 1. Then,
for any A ∈Matn×m(R),

dim(BadA ∩ K )= δ.

In view of (6), the theorem can be interpreted as stating that within K the set
BadA is of maximal dimension. It is easily seen that Theorem 1 is a consequence
of Theorem 2: simply take K = [0, 1]n and µ to be n-dimensional Lebesgue
measure. Trivially, n-dimensional Lebesgue measure is n-Ahlfors regular and
absolutely 1-decaying. More exotically, the natural measures associated with
self-similar sets in Rn satisfying the open set condition are absolutely α-decaying
and δ-Ahlfors regular; see [14, 20]. Thus, Theorem 2 is applicable to these sets,
which in general are of fractal nature.

Although Theorem 2 constitutes our main result, we state an “auxiliary”
result in this section for the simple reason that it is new and of independent
interest. In short, it strengthens and generalizes a theorem of Pollington [19] and
de Mathan [7, 8] that answers a question of Erdős. A sequence

{yi } := {yi := (y1,i , . . . , yn,i )
T
∈ Zn
\{0}}

is said to be lacunary if there exists a constant λ > 1 such that

|yi+1| ≥ λ|yi | for all i ∈N.
Given a sequence {yi } in Zn , let

Bad{yi } := {x ∈ [0, 1]n : ∃c(x) > 0 s.t. ‖yi · x‖ ≥ c(x) ∀i ∈N}.
THEOREM 3. Let {yi } be a lacunary sequence in Zn . Furthermore, let

K ⊆ [0, 1]n be a compact set which supports an absolutely α-decaying, δ-
Ahlfors regular measure µ such that δ > n − 1. Then

dim(Bad{yi } ∩ K )= δ.

Upon taking n = 1, K = [0, 1] and µ to be one-dimensional Lebesgue measure,
Theorem 3 corresponds to the theorem of Pollington and de Mathan referred to
above.
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ON SHRINKING TARGETS FOR Zm ACTIONS ON TORI 5

§3. Preliminaries for Theorem 3. The proof of Theorem 3 makes use of the
general framework developed in [15] for establishing dimension statements
for a large class of badly approximable sets. In this section, we provide a
simplification of the framework that is geared towards the particular application
we have in mind. In turn, this will avoid excessive referencing to the conditions
imposed in [15] and thereby improve the clarity of our exposition.

As in §2, let (X, d) be a metric space and (�, d) a compact subspace of
X which supports a non-atomic finite measure µ. Let R := {Rα ∈ X : α ∈ J }
be a family of subsets Rα of X indexed by an infinite countable set J . The
sets Rα will be referred to as resonant sets. Next, let β : J →R>0 : α 7→ βα be
a positive function on J such that the number of α ∈ J with βα bounded above
is finite. Thus, βα tends to infinity as α runs through J . We are now ready to
define the badly approximable set

Bad(R, β) :=

{
x ∈� : ∃c(x) > 0 s.t. d(x, Rα)≥

c(x)

βα
∀α ∈ J

}
,

where d(x, Rα) := infa∈Rα d(x, a). Loosely speaking, Bad(R, β) consists of
points in� that “stay clear” of the family R of resonant sets by a factor governed
by β.

The goal is to determine conditions under which dim Bad(R, β)= dim�,
i.e. the set of badly approximable points in� is of maximal dimension. With this
in mind, we begin with some useful notation. For any fixed integer k > 1 and
any integer n ≥ 1, let Bn := {x ∈� : d(c, x)≤ 1/kn

} denote a generic closed
ball in � of radius 1/kn with centre c in �. For any θ ∈R>0, let θBn :=

{x ∈� : d(c, x)≤ θ/kn
} denote the ball Bn scaled by θ . Finally, let J (n) :=

{α ∈ J : kn−1
≤ βα < kn

}. The following statement is a simple consequence of
combining [15, Theorem 1 and Lemma 7] and realizes the above goal.

THEOREM KTV. Let (X, d) be a metric space and let (�, d) be a compact
subspace of X which supports a δ-Ahlfors regular measure µ. Let k be
sufficiently large. Then for any θ ∈R>0, any n ≥ 1 and any ball Bn , there exists
a collection C(θBn) of disjoint balls 2θBn+1 contained within θBn such that
#C(θBn)≥ κ1 kδ . In addition, suppose that for some θ ∈R>0 we also have

#
{

2θBn+1 ⊂ C(θBn) : min
α∈J (n+1)

d(c, Rα)≤ 2θk−(n+1)
}
≤ κ2kδ , (7)

where 0< κ2 < κ1 are absolute constants independent of k and n. Furthermore,
assume

dim
(⋃
α∈J

Rα

)
< δ. (8)

Then
dim Bad(R, β)= δ.

Note that this theorem, together with (6), implies that dim Bad(R, β)=

dim�.

Marked Proof Ref: 44524 mtk0113 March 23, 2010



PR
OOF

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

6 Y. BUGEAUD et al

§4. Proof of Theorem 3. We are given a lacunary sequence {yi }. For each
index i ∈N and any integer p, consider the hyperplane L p,i := {x ∈Rn

:

yi · x= p}. It is easily verified that Bad{yi } ∩ K is equivalent to the set of x in
K for which there exists a constant c(x) > 0 such that x avoids the (c(x)/|yi |2)-
neighbourhood of L p,i for every choice of i and p; that is,

Bad{yi } ∩ K =

{
x ∈ K : ∃c(x) > 0 s.t. min

y∈L p,i
|x− y|2

≥
c(x)
|yi |2
∀(p, i) ∈ Z×N

}
.

Here | · |2 denotes the standard Euclidean norm in Rn . With reference to §3, set

X :=Rn, � := K , d := | · |2, J := {(p, i) ∈ Z×N},
α := (p, i) ∈ J, Rα := L p,i and βα := |yi |2.

It follows that
Bad(R, β)= Bad{yi } ∩ K .

The upshot of this is that the proof of Theorem 3 is reduced to showing that the
conditions of Theorem KTV are satisfied.

For k > 1 and m ≥ 1, let Bm be a generic closed ball with radius k−m and
centre in K . For sufficiently large k and any θ ∈R>0, Theorem KTV guarantees
the existence of a collection C(θBm) of disjoint balls 2θBm+1 contained within
θBm such that

#C(θBm)≥ κ1kδ.

The positive constant κ1 is independent of k and n. We now endeavour to show
that the additional condition (7) on the collection C(θBm) is satisfied. To this
end, set θ := (2k)−1 and proceed as follows. Fix m ≥ 1 and assume there exists
an index i such that

km
≤ |yi |2 < km+1. (9)

If this were not the case, the left-hand side of (7) would be zero and the additional
condition would be trivially satisfied. Associated with the index i is the family
of hyperplanes {L p,i : p ∈ Z}. The distance between any two such hyperplanes
is at least |yi |

−1
2 > k−(m+1). The diameter of the ball θBm is k−(m+1). Thus, for

any element of the sequence {yi } satisfying (9), there is at most one hyperplane
passing through θBm . Assume that the hyperplane L p,i passes through θBm ,
and consider the counting function

ω(m, p, i) := #{2θBm+1 ⊂ C(θBm) : 2θBm+1 ∩ L p,i 6= ∅}.

The balls 2θBm+1 are disjoint and each is of diameter 4θk−(m+1). Thus, upon
setting ε := 8θk−(m+1), we have

ω(m, p, i) ≤ #
{
2θBm+1 ⊂ C(θBm) : 2θBm+1 ⊂ L(ε)

p,i

}
≤
µ(θBm ∩ L(ε)

p,i )

µ(2θBm+1)
.
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ON SHRINKING TARGETS FOR Zm ACTIONS ON TORI 7

On making use of the fact that µ is absolutely α-decaying and δ-Ahlfors regular,
it is readily verified that

ω(m, p, i)≤ κkδ−α.

The absolute constant κ is dependent only on α and δ. Next, let υ(m, {yi })

denote the number of elements of the sequence {yi } that satisfy (9). Since {yi } is
lacunary, we find that for k sufficiently large,

υ(m, {yi })≤ 1+ log(
√

nk)/log λ <
κ1

2 κ
kα.

Here, λ > 1 is the lacunarity constant and we have used the fact that |y| ≤ |y|2 ≤√
n |y| for y ∈ Zn . On combining the above upper bound estimates, we obtain

that

left-hand side of (7) < υ(m, {yi })× ω(m, p, i)

≤
κ1

2κ
kα × κkδ−α =

1
2
κ1kδ.

Thus, with θ := (2k)−1, the collection C(θBm) satisfies (7). Finally, note that
the collection {L p,i : (p, i) ∈ Z×N} of hyperplanes (resonant sets) is countable
and hence

dim
(⋃

L p,i

)
= n − 1.

We are given that δ > n − 1, so (8) is trivially satisfied. Thus, the conditions of
Theorem KTV are satisfied and Theorem 3 follows.

§5. Preliminaries for Theorem 2. The proof of Theorem 2 makes use of the
existence of “special” sequences which, for the most part, are constructed in [5].
Throughout, Mat∗n×m(R) will denote the collection of matrices A ∈Matn×m(R)
such that the associated group G := AT Zn

+ Zm has rank n + m. In [5, §3],
it is shown that for each matrix A ∈Mat∗n×m(R) there exists a sequence {yi } of
integer vectors yi = (y1,i , . . . , yn,i )

T
∈ Zn satisfying the following properties.

(i) 1= |y1|< |y2|< |y3|< · · · .
(ii) ‖AT y1‖> ‖AT y2‖> ‖AT y3‖> · · · .
(iii) For all non-zero y ∈ Zn with |y|< |yi+1| we have that ‖AT y‖ ≥ ‖AT yi‖.

Such a sequence {yi } is referred to as a sequence of best approximations to A.
In the one-dimensional case (n = m = 1), when A is an irrational number α,
the sequence of best approximations is precisely the sequence of denominators
associated with the convergents of the continued fraction representing α.

Let {yi } be a sequence of best approximations to a matrix A ∈Mat∗n×m(R).
A further property enjoyed by {yi } is that

‖AT yi‖ ≤ |yi+1|
−m/n for all i ∈N. (10)

This property is easily deduced via Dirichlet’s box principle; see [5, §3] for the
details.

The following result, which is taken from [5, §5], enables us to extract a
lacunary subsequence from a given sequence of best approximations. This will
allow us to utilize Theorem 3 in the course of establishing Theorem 2.
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8 Y. BUGEAUD et al

LEMMA BL. Let A ∈Mat∗n×m(R) and let {yi } be a sequence of best
approximations to A. Then there exists an increasing function φ :N→N such
that φ(1)= 1 and, for all i ≥ 2,

|yφ(i)| ≥
√

9n |yφ(i−1)| and |yφ(i−1)+1| ≥
|yφ(i)|

9n
. (11)

It is clear that the sequence {yφ(i)} is lacunary and that it also satisfies (10), i.e.

‖AT yφ(i)‖ ≤ |yφ(i)+1|
−m/n for all i ∈N. (12)

The next inequality follows directly from the definition of the norms involved.
For any x and y in Rk , we have that

‖x · y‖< k|x|‖y‖. (13)

We end this section with a short discussion that allows us to assume
A ∈Mat∗n×m(R) when proving Theorem 2. With this in mind, suppose A ∈
Matn×m(R) and that the rank of the associated group G := AT Zn

+ Zm is
strictly less than n + m. Then it is easily verified that {Aq : q ∈ Zm

} is restricted
to at most a countable family of positively separated, parallel hyperplanes in Rn .
Let F denote the set of these hyperplanes. Then

K\F = BadA ∩ K .

We are given that δ > n − 1, which, together with (6), implies that dim K is
strictly greater than dim F . Thus dim(K\F)= dim K , and the statement of
Theorem 2 follows for any A /∈Mat∗n×m(R).

§6. Proof of Theorem 2. Without loss of generality, assume that A ∈
Mat∗n×m(R) and let {yi } be a sequence of best approximations to A. In view
of Lemma BL, there exists a lacunary subsequence {yφ(i)} of the sequence of
best approximations. For any c > 0, let

B{yφ(i)}(c) := {x ∈ K : ‖yφ(i) · x‖ ≥ c ∀i ∈N}.

It is readily verified that Bad{yφ(i)} ∩ K =
⋃

c>0 B{yφ(i)}(c) and that

dim B{yφ(i)}(c)→ dim(Bad{yφ(i)} ∩ K ) as c→ 0.

For c sufficiently small, suppose for the moment that

B{yφ(i)}(c)⊆ BadA ∩ K . (14)

From Theorem 3, it follows that

dim(BadA ∩ K )≥ dim B{yφ(i)}(c)→ δ as c→ 0.

The upshot of this is that dim(BadA ∩ K )≥ δ. For the complementary upper
bound statement, trivially we have

dim(BadA ∩ K )≤ dim K
(6)
= δ.

This completes the proof of Theorem 2 modulo the inclusion (14).
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ON SHRINKING TARGETS FOR Zm ACTIONS ON TORI 9

To establish (14), fix a point x in B{yφ(i)}(c) and let q be any non-zero integer
vector. For c sufficiently small, there exists an index i ∈N such that

|yφ(i)| ≤ 9n

(
2m

c

)m/n

|q|m/n < |yφ(i+1)|. (15)

The existence of such an index is guaranteed by the first of the inequalities in (11)
as long as c is sufficiently small. By the definition of B{yφ(i)}(c) and the trivial
equality

yφ(i) · x= q · AT yφ(i) − yφ(i) · (Aq− x),

we immediately have that

0< c ≤ ‖yφ(i) · x‖ = ‖q · AT yφ(i) − yφ(i) · (Aq− x)‖. (16)

On applying the triangle inequality and making use of (13), it follows that

c ≤ m|q|‖AT yφ(i)‖ + n|yφ(i)|‖Aq− x‖. (17)

However,

m|q|‖AT yφ(i)‖
(12)
≤ m|q||yφ(i)+1|

−n/m

(15)
≤

m

(9n)n/m(2m/c)

(
|yφ(i+1)|

|yφ(i)+1|

)n/m
(11)
≤

c

2

and

n|yφ(i)|‖Aq− x‖
(15)
≤ 9n2

(
2m

c

)m/n

|q|m/n
‖Aq− x‖,

which, together with (17), yields that

‖Aq− x‖>
cm/n+1

9n2(2m)m/n
|q|−m/n.

In other words, for any c sufficiently small,

B{yφ(i)}(c)⊆
{

x ∈ K : ∃c(x) > 0 s.t. ‖Aq− x‖ ≥
c(x)
|q|m/n ∀q ∈ Zm

\{0}
}
.

The right-hand side is BadA ∩ K , and this establishes (14), which in turn
completes the proof of Theorem 2.
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