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Abstract. Only very little is known on the expansions of
a real number to several integer bases. We establish various
results showing that the expansions of a real number in two
multiplicatively independent bases cannot both be simple, in
a suitable sense. We also construct explicitly a real number
ξ which is rich to all integer bases, that is, with the property
that, for every integer b ≥ 2, every finite block of letters on the
alphabet {0, 1, . . . , b− 1} occurs in the b-ary expansion of ξ.
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1. Introduction

Throughout this paper, bxc denotes the greatest integer less than or
equal to x and dxe denotes the smallest integer greater than or equal to x.
Let b ≥ 2 be an integer. For a non-zero real number ξ, write

ξ = bξc+
∑
k≥1

ak
bk

= bξc+ 0.a1a2 . . . ,

where each digit ak is an integer from {0, 1, . . . , b− 1} and an infinity of the
ak are not equal to b − 1. The sequence (ak)k≥1 is uniquely determined by
the fractional part of ξ. With a slight abuse of notation, we call it the b-ary
expansion of ξ.

We begin by introducing several notions which are commonly used to
measure the complexity of the b-ary expansion of a real number. For a
positive integer n, let p(n, ξ, b) denote the total number of distinct blocks of
n digits in the b-ary expansion of ξ, that is,

p(n, ξ, b) = Card{(aj+1, . . . , aj+n) : j ≥ 0}.

Obviously, we have 1 ≤ p(n, ξ, b) ≤ bn, and both inequalities are sharp. If ξ
is rational, then its b-ary expansion is ultimately periodic, thus, the numbers
p(n, ξ, b), n ≥ 1, are uniformly bounded by a constant depending only on
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ξ and b. If ξ is irrational, then, by a classical result of Morse and Hedlund
[18, 19], we know that p(n, ξ, b) ≥ n + 1 for every positive integer n, and
this inequality are sharp. Furthermore, since

p(n+ n′, ξ, b) ≤ p(n, ξ, b) · p(n′, ξ, b) (1.1)

holds for every positive integers n, n′, the sequence (log p(n, ξ, b))n≥1 is sub-
additive, thus the sequence ((log p(n, ξ, b))/n)n≥1 converges.

Definition. Let b ≥ 2 be an integer. A real number ξ is rich to base b
if p(n, ξ, b) = bn for every n ≥ 1. The entropy of ξ to base b, denoted by
E(ξ, b), is defined by

E(ξ, b) = lim
n→+∞

log p(n, ξ, b)

n
.

The notion of richness (also called disjunctiveness) was considered for
instance by Compton [11] and Hertling [15]. Note that the terminology
‘rich’ is used since 2008 in combinatorics on words with a different meaning;
see [12].

It follows from (1.1) that E(ξ, b) = log b if, and only if, p(n, ξ, b) = bn

for every n ≥ 1, that is, if, and only if, ξ is rich to base b. Observe that the
entropy of a real number to base b belongs to [0, log b]. Furthermore, the set
of real numbers ξ such that E(ξ, b) = 0 for some b ≥ 2 has zero Hausdorff
dimension; see e.g. [17].

The first result of the present paper asserts that there are irrational real
numbers that are not rich to every integer base.

A real number ξ is simply normal to base b if every digit from {0, 1, . . . , b−
1} occurs in its b-ary expansion with the same frequency 1/b. It is normal
to base b if it is simply normal to each base bm with m ≥ 1. A well-known
theorem of Borel [6] asserts that almost every real number is normal to every
integer base. Furthermore, any real number normal to base b is clearly rich
to base b.

Two positive integers x and y are called multiplicatively independent if the
only pair of integers (m,n) such that xmyn = 1 is the pair (0, 0). Answering
a question of Steinhaus, Cassels [10] (for b = 3) and Schmidt [21] (for every
b), independently, established the following result.

Theorem CS. Let b and b′ be two integers ≥ 2. Normality to base b implies
normality to base b′ if, and only if, b and b′ are multiplicatively dependent.

The conclusion of Theorem CS holds if normality is replaced by richness,
as shown by El-Zanati and Transue [14] (actually, the ‘only if’ sense of the
next result was previously established in [21]).
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Theorem EZT. Let b and b′ be two integers≥ 2. Richness to base b implies
richness to base b′ if, and only if, b and b′ are multiplicatively dependent.

Starting with the Champernowne number

0.1234567891011121314 . . . ,

several explicit examples of real numbers normal to a given base have been
constructed; see [9] for references. However, it remains an open question to
construct explicitly a real number which is normal to two multiplicatively
independent bases; see, however, [25, 22] and [4, 5] for computable construc-
tions of real numbers normal to all integer bases. The situation is much
better understood when normality is replaced by the weaker property of
richness. Namely, Hertling [15] has given explicit examples of real numbers
rich to infinitely many pairwise multiplicatively independent bases, and not
rich to some given base. Our second result, inspired by his work, gives an
explicit construction of a real number rich to every integer base.

Apart from the results stated above, very few is known on the expansion
of a given irrational number in two multiplicatively independent bases. We
address the following question.

Problem 1. Are there irrational real numbers having a ‘simple’ expansion
in two multiplicatively independent bases?

We have to explain what we mean by ‘simple’, since there are several
ways to measure the complexity of ξ. If we use the notion of entropy, then
Problem 1 can be rephrased as follows.

Problem 2. Are there irrational real numbers having zero entropy in two
multiplicatively independent bases?

We are unable to answer Problem 2. However, Theorem 1 below gives
some (very) partial information in this direction.

A different point of view for ‘simplicity’ was taken in [3]. For an integer
b ≥ 2, a real number ξ, and a positive integer n, we count the number of
non-zero digits of ξ among its n first b-ary digits by setting

NZ(n, ξ, b) = Card{1 ≤ k ≤ n : ak 6= 0}.

An irrational real number ξ could be considered ‘simple’ to base b ifNZ(n, ξ, b)
is small for every large integer n (which means that ξ has only few non-zero
digits).

A third point of view, addressed in [8], aims to estimate the asymp-
totic behaviour of the number of digit changes in the b-ary expansion of ξ.
Following [8], we define the function DC, ‘number of digit changes’, by

DC(n, ξ, b) = Card{1 ≤ k ≤ n : ak 6= ak+1},
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for any positive integer n. An irrational real number could be considered
‘simple’ to base b if it has only few digit changes in its b-ary expansion.

Since
DC(n, ξ, b) ≤ 2NZ(n, ξ, b) + 1, (1.2)

a lower bound for DC(n, ξ, b) implies a lower bound for NZ(n, ξ, b). How-
ever, the converse does not hold.

Our third result asserts that, if ξ is non-zero and the bases b and b′ are
coprime, then, for n sufficiently large, DC(n, ξ, b) and DC(n, ξ, b′) cannot be
simultaneously very small.

The present paper is organized as follows. Our results are stated in
Section 2 and proved in Sections 3 to 6.

2. Main results

We begin by establishing the existence of real numbers whose entropy to
base b is strictly less than log b, for every b ≥ 2. This is a straightforward
consequence of a result of Akhunzhanov [1, 2]. Combined with arguments
from [7], we obtain a slightly stronger statement.

Theorem 1. Let ε be a positive real number and b0 ≥ 2 be an integer.
There exist a positive real number c, depending only on ε and b0, and un-
countably many real numbers ξ such that

E(ξ, b0) < ε

and

E(ξ, b) ≤ log b− 1

bcb(log b)
, for every b ≥ 2.

The main ingredient in the proof of Theorem 1 is the notion of (α, β)-
game, introduced by Schmidt [23].

Theorem 1 implies the existence of real numbers which are not rich to
every integer base. In the opposite direction, we give below an explicit
construction of a real number which is rich to every integer base.

Let b be an odd prime number. For an integer j ≥ 2, let Wj be an integer
whose representation in base j comprises each digit from {0, 1, . . . , j − 1}
exactly once and whose representation in base b finishes by the digit 1.
Clearly, we have

Wj ≤ jj.

Let (aj)j≥2 be a sequence of integers ≥ 2 such that aj = 2 for every even
index j and a2j+1 = bj for j ≥ 1.

For j ≥ 2 not a power of b, let (pk,bj/qk,bj)k≥1 denote the sequence of
convergents to the irrational number (log bj)/(log j).
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Put c2 = 1 and n2 = 2. Let j be a positive integer such that c2, . . . , c2j
and n2, . . . , n2j have been constructed. To shorten the notation, set `j :=
dbj log(bj)e and mj = d(log bj)/(log j)e. Note that the b-ary expansion of
Wbj has less than `j digits. If j is not a power of b, then set

n2j+1 = p6(`j+mj logn2j)+1,bj, c2j+1 = Wbj.

If j is a power of b, then set

n2j+1 = n2
2j + `j + 2, c2j+1 = Wbj.

In every case, set

n2j+2 = dbn2j+1 log je, c2j+2 = 1.

We are ready to state our second result.

Theorem 2. Let b be an odd prime number. With the sequences (cj)j≥2
and (nj)j≥2 defined above, the real number

ξ =
∑
j≥2

cj
bnj

is rich to every integer base.

Now, we turn our attention to Problem 1 and we show that a real number
cannot have too few digit changes simultaneously in two coprime bases.

Theorem 3. Let b and b′ be multiplicatively independent positive integers.
Let ξ be an irrational real number. If b and b′ are coprime, then there exist
an integer n0 and a positive real number c such that

DC(n, ξ, b) +DC(n, ξ, b′) ≥ c log n, for n ≥ n0, (2.1)

and
NZ(n, ξ, b) +NZ(n, ξ, b′) ≥ c log n, for n ≥ n0. (2.2)

If b and b′ are not coprime, then there are a positive real number c and
arbitrarily large integers n such that

DC(n, ξ, b) +DC(n, ξ, b′) ≥ c log n (2.3)

and
NZ(n, ξ, b) +NZ(n, ξ, b′) ≥ c log n. (2.4)
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The assumption that the bases b and b′ are multiplicatively indepen-
dent is necessary. Indeed, for a very rapidly increasing sequence (nk)k≥1 of
positive integers, and b ≥ 2, m and ` positive integers, the number

∑
k≥1

1

bm`nk
=
∑
k≥1

1

(b`)mnk
=
∑
k≥1

1

(bm)`nk

has only few non-zero digits in base b` and in base bm.
It should be pointed out that, if b and b′ are not coprime, then there

are irrational real numbers ξ for which (2.3) and (2.4) do not hold for every
large integer n. Indeed, take for example b = 6, b′ = 10 and

ξ =
∑
k≥1

1

2nk
,

for a very rapidly increasing sequence (nk)k≥1 of positive integers. Then,
there exist integers ak,h in {0, 1, . . . , 5} and bk,h in {0, 1, . . . , 9} such that

ξ =
∑
k≥1

3nk

6nk
=
∑
k≥1

dnk(log 3)/(log 6)e∑
h=0

ak,h
6nk−h

=
∑
k≥1

5nk

10nk
=
∑
k≥1

dnk(log 5)/(log 10)e∑
h=0

bk,h
10nk−h

.

Consequently, if nk > 4nk−1, then among the first nk/4 digits of ξ written
in base 6 or in base 10, there are at most nk−1 non-zero digits, and

NZ(nk/4, ξ, 6) +NZ(nk/4, ξ, 10) ≤ nk−1,

DC(nk/4, ξ, 6) +DC(nk/4, ξ, 10) ≤ nk−1.

Since nk can be chosen arbitrarily large, this proves our claim.
In particular, Theorem 3 asserts that an irrational real number cannot

have very few non-zero digits simultaneously in base 2 and in base 3. This
gives a very partial answer to Problem 1.

A related question has been investigated in 1973 by Senge and Straus
[24], who proved that the number of integers, the sum of whose digits in each
of the bases b and b′ lies below a fixed bound, is finite if, and only if, b and
b′ are multiplicatively independent. Their proof rests on the Thue–Siegel–
Roth theorem and, hence, is ineffective. Using Baker’s theory of linear forms
in logarithms, Stewart [26] succeeded in establishing an effective version of
Senge and Straus’ theorem. He showed that if b and b′ are multiplicatively

6



independent, then, for every c ≥ 1, each integer m whose sum of digits in
base b as well as in base b′ is bounded by c satisfies

m < exp exp{κc log(3c)}, (2.5)

where κ is a positive constant which is effectively computable in terms of b
and b′ only. A similar result holds for the number of digit changes. Note
that, when b and b′ are not coprime, then an elementary argument based on
the consideration of p-adic valuations, for a prime number p dividing b and
b′, gives a slight strengthening of (2.5).

We highlight a much weaker question than Problem 2.

Problem 3. Let b and b′ be multiplicatively independent positive integers.
Let ξ be an irrational real number. Is it true that

p(n, ξ, b) + p(n, ξ, b′) ≥ 2n+ 3, (n ≥ 1)?

A positive answer to Problem 3 would mean that no real number can
have a Sturmian expansion in two multiplicatively independent bases.

Our last result is a metric statement concerning simple normality to
distinct bases. Apparently, Hertling [16] was the first to establish the correct
analogue of Theorem CS when normality is replaced by simple normality.

Theorem H. Simple normality to base b implies simple normality to base
b′ if and only if b is a power of b′.

More precisely, Hertling proved that, for integers b and b′ both ≥ 2 such
that b is not a power of b′, the set of real numbers which are simply normal
to base b, but not simply normal to base b′, is uncountable. Our last theorem
is a refinement of his result.

Theorem 4. Let a and b be integers ≥ 2 such that a is not an integer power
of b. Then, the set of real numbers which are simply normal to base a but
not simply normal to base b has full Hausdorff dimension.

When a and b are multiplicatively independent integers, Theorem 4 has
been proved by Nagasaka [20]. Thus, we are only concerned with multiplica-
tively dependent integers a and b. Our proof differs from that of the weaker
result established in [16]. We make use of a classical theorem of Eggleston
[13], see Theorem E in Section 6.

3. Proof of Theorem 1

Before giving an outline of the proof of Theorem 1, we claim that, for a
real number ξ, an integer b ≥ 2, and positive integers n and t, we have

p(tn, ξ, b) ≤ tbtp(n, ξ, bt). (3.1)
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To see this, observe that any block of tn consecutive digits of ξ to base b is
composed of t1 digits of ξ to base b followed by n − 1 digits of ξ to base bt

and by t− t1 digits of ξ to base b, for some integer t1 with 0 ≤ t1 ≤ t− 1.
The key ingredient of the proof of Theorem 1 is the notion of Schmidt’s

game, introduced in [23]. By means of a suitable modification of the original
procedure, Akhunzhanov [1, 2] proved that there are real numbers ξ such
that

||bnξ|| ≥ exp{−5000b(log b)2}, for every n ≥ 1 and every b ≥ 2, (3.2)

where || · || denotes the distance to the nearest integer. Let ξ be with this
property and b ≥ 2 be an integer. Set

t = d5000b(log b)e.

Property (3.2) implies that ξ has (at least) one missing digit in its expansion
to base bt, yielding that

p(n, ξ, bt) ≤ (bt − 1)n, for n ≥ 1.

We deduce from (3.1) that

p(tn, ξ, b) ≤ tbt(bt − 1)n,

and, by taking the logarithm, dividing by tn and letting n tend to infinity,
it follows that

E(ξ, b) ≤ log(bt − 1)

t
≤ log b− 1

tbt
. (3.3)

We can do slightly better by combining [1, 2] with ideas from [7], where
the Schmidt game is played on a Cantor set. Let ε be a positive real number.
Let b0 ≥ 2 be an integer. Let t be a positive integer, and consider the Cantor
set Ct composed of the numbers ξ in [0, 1] having only the digits 0 and bt0−1
in base bt0. Then, clearly,

p(n, ξ, bt0) ≤ 2n.

We deduce from (3.1) that

p(tn, ξ, b0) ≤ tbt02
n,

and

E(ξ, b0) ≤
log 2

t
< ε, (3.4)

if t is chosen large enough.
Instead of playing the Schmidt game on a real interval of length 2 as in

[1, 2], we play it on the set Ct. The analogue of Lemma 4 from [2] shows
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that a countable intersection of winning sets on Ct is also winning on Ct.
There is no additional difficulty, therefore we omit the details of the proof.
Proceeding in this way, we establish that there are uncountably many ξ
satisfying (3.4) and (3.3) for every b ≥ 2. This proves the theorem.

4. Proof of Theorem 2

The proof of Theorem 2 depends on a series of lemmas, some of which
having been already established by Hertling [15].

Lemma 1. Let b be an odd prime number. Let a ≥ 2 be an integer coprime
with b. Let µb be the order of a modulo b and `b be the greatest integer
` such that b` divides aµb − 1. For any positive integer n exceeding `b and
any integer c prime to b, every block on {0, 1, . . . , a − 1} of length at most
(n− `b) loga b occurs in the a-ary expansion of c/bn.

Although this lemma can be found in [15], we give a proof.
Proof. The length of the periodic part of the a-ary expansion of c/bn is at
most equal to the order of a modulo bn, thus it is less than bn. Let 0.a1a2 . . .
be the a-ary expansion of the fractional part of c/bn. Let w be a word of
length L := b(n− `b) loga bc on {0, 1, . . . , a− 1} and set

Iw := {ξ ∈ [0, 1) : the a-ary expansion of ξ begins with w}.

For every m ≥ 0, we have am+1 . . . am+L = w if, and only if, cam modulo bn

lies in the interval bn · Iw ⊂ [0, bn). Since the length of bn · Iw ⊂ [0, bn) is at
least equal to

bn · a−L ≥ bn · b−n+`b = b`b ,

there exists an integer in {0, 1, . . . , bn − 1} which is congruent to c modulo
b`b and belongs to bn · Iw. On the other hand, the subgroup of (Z/bnZ)∗

generated by aµb is equal to the set of classes x in (Z/bnZ)∗ which are
congruent to 1 modulo b`b . Since b and c are coprime, we have

{c · aµbj mod bn : j ≥ 0} = {x mod bn : x ≡ c mod b`b},

and there exists an integer j such that c · aµbj modulo bn lies in bn · Iw. This
shows that the word w occurs in the a-ary expansion of c/bn.

The next lemma is a version of Lemma 5.1 of Hertling [15].

Lemma 2. Let a ≥ 2 and b ≥ 2 be coprime integers. Let (mi)i≥1 be an
increasing sequence of positive integers. For i ≥ 1, let di be an integer
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coprime with b and satisfying 0 < di ≤ bmi/2. If for some positive integers
M and j we have

mj+1 ≥ 2(M logb a+mj + 2 + logb a),

then the prefixes of length M of the a-ary expansions of
∑j
i=1 dib

−mi and∑
i≥1 dib

−mi coincide.

Proof. As pointed out in the proof of Lemma 5.1 of [15], the a-ary expansion
of any rational number d/bmj , where the integer d is coprime with b, cannot
have b(loga b)mjc+ 1 consecutive digits (a− 1). Denoting by d′1, . . . , d

′
M the

first M digits of the a-ary expansion of
∑j
i=1 dib

−mi , this shows that

j∑
i=1

di
bmi

<
M∑
i=1

d′i
ai

+
1

aM
− 1

aM+1+b(loga b)mjc

≤
M∑
i=1

d′i
ai

+
1

aM
− 1

aM+1bmj
.

Combined with the inequalities∑
i≥j+1

dib
−mi ≤

∑
i≥j+1

b−mi/2 ≤ b−mj+1/2(1 + b−1/2 + b−1 + . . .)

≤ 4b−mj+1/2 ≤ a−M−1b−mj ,

this proves the lemma.

Lemma 3. Let b and j be multiplicatively independent positive integers.
Let (pk/qk)k≥1 denote the sequence of convergents to (log bj)/(log j). For any
k ≥ 3bj and any positive integer d with d < (bj)(k log 2)/2, the representation
in base bj of djp2k+1 begins with the representation of d in base bj.

Proof. Since j and b are multiplicatively independent, the real number
(log bj)/(log j) is irrational and we have

− 1

q22k+1

<
log bj

log j
− p2k+1

q2k+1

< 0,

for every k ≥ 1. This implies that, for k ≥ 3bj, we have

jp2k+1 > (bj)q2k+1

and

jp2k+1 < (bj)q2k+1j1/q2k+1 < (bj)q2k+1(1 + 2(log j)/q2k+1)

< (bj)q2k+1 + (bj)q2k+1−2−(log q2k+1)/(2 log bj).
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Since q2k+1 ≥ 2k, this shows that the representation in base bj of jp2k+1 begins
with a digit 1 followed by at least d(k log 2)/(2 log bj)e zeros. Consequently,
for any positive integer d with d < (bj)(k log 2)/2, the representation in base
bj of djp2k+1 begins with the representation of d in base bj.

The next lemma, whose proof is omitted, is an easy observation.

Lemma 4. Let b ≥ 2 and j ≥ 2 be integers. Let d and n be positive integers
with d < bn. Then the bj-ary expansion of d/bn terminates and, setting

d

bn
=

djn

(bj)n
:=

∑
k≥1

dk
(bj)k

,

we have dk = 0 for k ≥ n+ 1 and for k ≤ n−b(n log j+ log d)/ log(bj)c− 1.

Completion of the proof of Theorem 2.

We keep the notation of Section 2. Let a ≥ 2 be an integer. Let w be
a finite word on {0, 1, . . . , a− 1} of length L. We have to distinguish three
cases.

Assume first that a = b. Since b ≥ 3, the b-ary expansion of Wbj has
no more than `j digits for j ≥ 2, and it follows from Lemma 4 that the
b-ary expansion of ξ is the concatenation of blocks of digit 0 and of the b-ary
expansions of cj for j ≥ 2. From the definition of WbL , it follows that w
occurs in the b-ary expansion of ξ. Consequently, ξ is rich to any base which
is an integral power of b.

Assume now that b does not divide a, that is, that a and b are coprime.
Let J be a large integer. Note that b and c2J+1 are coprime since the last
digit in the representation of c2J+1 in base b is the digit 1. Consequently, the
denominator of the lowest form of the rational number

∑2J+1
j=1 cj/b

nj is bn2J+1

and the a-ary expansion of this rational is purely periodic. By Lemma 1, if J
is large enough, then w occurs in the a-ary expansion of

∑2J+1
j=1 cj/b

nj , which
is of length at most bn2J+1 . Again, for J large enough, our choices of n2J+2

and c2J+2 imply that the assumption of Lemma 2 is satisfied with j = 2J+1
and M = bn2J+1 . This implies that w occurs in the a-ary expansion of ξ.

Finally, assume that b divides a, but that a is not a power of b. Set
J = aL/b. By Lemma 4, we may assume that L is large enough to guarantee
that the a-ary expansions of cj/b

nj , j ≥ 2J , do not overlap. Note that

c2J+1

bn2J+1
=

c2J+1

bp6(`J+mJ logn2J )+1,bJ
= c2J+1 ·

(aL/b)
p6(`J+mJ logn2j)+1,bJ

ap6(`J+mJ logn2J )+1,bJ
.

It then follows from Lemma 3 that the representation in base aL of the
rational integer c2J+1(a

L/b)
p6(`J+mJ logn2j)+1,bJ begins with the representation
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in base aL of c2J+1. Since w can be viewed as a letter to base aL, our
choice of c2J+1 and the definition of WbJ imply that the a-ary expansion of
c2J+1/b

n2J+1 contains w.
This completes the proof of Theorem 2.

5. Proof of Theorem 3

We use repeatedly the elementary fact that, if the b-ary expansion of a
rational number ζ reads

0.a1a2 . . . anaaa . . . ,

with a, a1, . . . an in {0, 1, . . . , b− 1} and a 6= an, then

{bnζ} = 0.aa . . . =
a

b− 1

and there exists an integer r such that ζ = r/(bn(b− 1)). A difficulty arises
since the latter rational number may not be written under its lowest form.
To see this, just observe that

ζ =
an + an−1b+ . . .+ a1b

n−1

bn
+

a

bn(b− 1)

=
(an − a) + b(an − an−1) + . . .+ bn−1(a2 − a1) + a1b

n

bn(b− 1)
,

and an − a has no reason to be coprime with b. Note however that, since
a is not equal to an, there exists a prime number p and a positive integer
v such that pv divides b, but pv does not divide an − a. This shows that if
ζ = A/B in its reduced form, then pn divides B.

Set λ = (log b)/(log b′) and c = 2 + d2/λe.
Assume that b and b′ are coprime. Let N be a large positive integer

such that DC(N, ξ, b) = DC(2N + c, ξ, b). This implies that the (N + 1)-th,
(N +2)-th, . . ., until the (2N + c+1)-th digit in the b-ary expansion of ξ are
all the same. Let n be the smallest positive integer such that the (n+ 1)-th,
(n+ 2)-th, . . ., until the (2N + c+ 1)-th digit in the b-ary expansion of ξ are
all the same. We have n ≤ N and there exists an integer r such that∣∣∣∣ξ − r

bn(b− 1)

∣∣∣∣ ≤ 1

b2N+c+1
.

Let h be the integer defined by the inequalities

h+ 1 ≤ λ(2N − n+ c− 1) < h+ 2. (5.1)
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If the rational integer r′ satisfies

r(b′)h(b′ − 1) = r′bn(b− 1), (5.2)

then our choice of n and the discussion at the beginning of this section
imply that there exists a prime number p dividing b such that pn divides
(b′)h(b′ − 1). Since b and b′ are coprime, p does not divide b′, and we get
that n is bounded by a constant depending only on b and b′. This shows
that if N is sufficiently large, in terms of b, b′ and ξ, then (5.2) holds for no
rational integer r′. Observe that

2bn(b′)h(b− 1)(b′ − 1) ≤ 2bn+1b2N−n+c−1 ≤ b2N+c+1.

Consequently, if N is large enough, then for any rational integer r′, the
triangle inequality gives∣∣∣∣ξ − r′

(b′)h(b′ − 1)

∣∣∣∣ ≥ ∣∣∣∣ r

bn(b− 1)
− r′

(b′)h(b′ − 1)

∣∣∣∣− ∣∣∣∣ξ − r

bn(b− 1)

∣∣∣∣
≥ 1

bn(b′)h(b− 1)(b′ − 1)
− 1

b2N+c+1

≥ 1

2bn(b′)h(b− 1)(b′ − 1)

≥ 1

(b′)λ(n+1)+h+2
.

This implies that, in the b′-ary expansion of ξ, the (h+1)-th, (h+2)-th, . . .,
until the (λ(n+ 1) + h+ 2)-th digit cannot be all the same, whence

DC(λ(n+ 1) + h+ 1, ξ, b′) ≥ DC(h, ξ, b′) + 1.

It then follows from (5.1) that

DC(2λN + λc, ξ, b′) ≥ DC(λN + (c− 1)λ− 2, ξ, b′) + 1

≥ DC(λN, ξ, b′) + 1,

since n ≤ N and (c− 1)λ− 2 > 0, by our choice of c.
Set u1 = 1 and un+1 = 2un + c for n ≥ 1. A rapid calculation shows that

un ≤ (c+ 1)2n for n ≥ 1. We thus have proved that

DC(un+1, ξ, b)−DC(un, ξ, b) +DC(λun+1, ξ, b
′)−DC(λun, ξ, b′) ≥ 1,

for every integer n large enough. Consequently, setting λ′ = max{1, λ}, we
get

DC(λ′(c+ 1)2n, ξ, b) +DC(λ′(c+ 1)2n, ξ, b′) ≥ n,
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for every integer n large enough. This implies (2.1). Using (1.2), we get
immediately (2.2).

Assume now that the bases b and b′ are not coprime. We keep the above
notation. If, for every large integer N , equality (5.2) holds for no integer r′,
then we can proceed exactly as above to get the same result.

Consequently, we assume that there are integers n, h, r, r′ with

h+ 1 ≤ λ(2N − n+ c− 1) < h+ 2

and
r(b′)h(b′ − 1) = r′bn(b− 1). (5.3)

We make the further assumption that there exists a prime number p that
divides b but does not divide b′. Set u = vp(b), where vp is the p-adic
valuation. It follows that

vp(r) = un+ δ, (5.4)

for some integer δ exceeding −(log b′)/(log p).
Observe also that, by our choice of n, there are d in {0, 1, . . . , b− 1} and

an integer R < bn such that

r

bn(b− 1)
=
R

bn
+

d

bn(b− 1)
, (5.5)

thus
r = (b− 1)R + d. (5.6)

We study the representation of R in base b. Write

R =
n−1∑
j=0

djb
j, (5.7)

where dj is in {0, 1, . . . , b− 1}.
Let t be a real number strictly greater than (log b)/(u log p). Let J be a

positive integer such that dJ = dJ+1 = . . . = dH , where H = bt(J + 2)c. We
observe that

d+ (b− 1)
J−1∑
j=0

djb
j − dJbJ 6= 0,

since, by the choice of n, the digits d and d0 are different. Furthermore, we
check that

vp

(
d+ (b− 1)

J−1∑
j=0

djb
j − dJbJ

)
≤ (J + 2)

log b

log p
,
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(b− 1)
H∑
j=J

djb
j − dHbH+1 + dJb

J = 0,

and

vp

(
(b− 1)

n−1∑
j=H+1

djb
j + dHb

H+1
)
≥ u(H + 1) ≥ ut(J + 2).

Recall that we have

vp

(
d+ (b− 1)

n−1∑
j=0

djb
j
)

= un+ δ.

By (5.5), (5.6), (5.7), and our choice of t, we get a contradiction if (J +
2)(log b) < (un+ δ)(log p). Consequently, for every positive integer J satis-
fying the latter inequality, there exists j with J ≤ j ≤ t(J+2)−1 such that
dj and dj+1 are different. This shows that there are at least some constant
times log n digit changes in the b-ary expansion of R. This proves (2.3) and
(2.4) when there is a prime dividing b but not dividing b′.

It remains for us to explain why the same argument works if b and b′ have
the same set of prime divisors. Assume that b = pe11 · · · pe`` and b = pf11 · · · p

f`
` ,

where the pi are distinct primes and the ei and fi are positive integers. Since
b and b′ are multiplicatively independent, we may assume that the quotients
e1/f1 and e2/f2 are different. Looking at (5.3), we see that for at least one
of the primes p1 or p2 we have an equality of type (5.4). Namely, there is
i ∈ {1, 2} and a positive integer c such that vpi(r) ≥ cn. We then continue
exactly as above and get the same conclusion.

6. Proof of Theorem 4

We recall a result of Eggleston [13].

Theorem E. Let b ≥ 2 be an integer. Let p0, p1, . . . , pb−1 be non-negative
real numbers whose sum is equal to 1. Then, the set of real numbers ξ in
(0, 1) whose b-ary expansion 0.a1a2a3 . . . satisfies

lim
N→+∞

Card{1 ≤ n ≤ N : an = j}
N

= pj for j = 0, . . . , b− 1

has Hausdorff dimension

− 1

log b

b−1∑
j=0

pj log pj.

Taking into account the results of Nagasaka [20], Theorem 4 is an imme-
diate consequence of Theorem 5 below.
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Theorem 5. Let b ≥ 2 be an integer. Let m,n be coprime positive integers
with n ≥ 2. The set of real numbers which are simply normal to base bm

but not simply normal to base bn has Hausdorff dimension 1.

Proof. Recalling that simple normality to base b`m implies simple normality
to base bm, we assume that m is greater than n. We work in base B = b2mnb

m
.

Let w be a word on {0, 1, . . . , b− 1} obtained as the concatenation of 2n− 2
copies of 0m, of 2n− 1 copies of 1m, and of 2n copies of each other word of
length m on {0, 1, . . . , b− 1}. Clearly, the length of w is then

m(4n− 3) + 2nm(bm − 2) = 2nmbm − 3m.

Put
w0 = w0m1m0m and w1 = w02m1m.

The words w0 and w1 have length 2nmbm, thus they can be written to base
bn as words of length 2mbm. Writing 2m + h = jn and m − h′ = j′n
with 0 ≤ h, h′ < n and j, j′ integers, the last jn digits of w0 to base b
are 0h1n−h, 1n, . . . , 1n, 1n−h

′
0h

′
, 0n, . . . , 0n, while the last jn digits of w1 to

base b read 0n, . . . , 0n, 0n−h
′
1h

′
, 1n, . . . , 1n. Since n does not divide m, we

have h′ 6= 0, thus, at least one word among w0 and w1 cannot be written
as a concatenation, in some order, of 2m copies of every letter to base bn.
Without any loss of generality, we may assume that w0 shares this property.

Let B be the set of real numbers ξ whose expansion to base B has the
property that every letter, except w0, occurs with the same frequency 1/(B−
1). Then, by Theorem E, this set has Hausdorff dimension log(B−1)/ logB.

Our choice of w0 implies that each element of B is simply normal to base
bm, but not simply normal to base bn. Recalling that simple normality to
base b`m implies simple normality to base bm, we get our result by replacing
m by an arbitrarily large multiple of m coprime with n.

Acknowledgements: I am pleased to thank the referees for their careful
reading.
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