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Abstract. Let µ ≥ 2 be a real number and let M(µ) denote the set of real
numbers approximable at order at least µ by rational numbers. More than

eighty years ago, Jarńık and, independently, Besicovitch established that the

Hausdorff dimension of M(µ) is equal to 2/µ. We investigate the size of the
intersection ofM(µ) with Ahlfors regular compact subsets of the interval [0, 1].

In particular, we propose a conjecture for the exact value of the dimension of
M(µ) intersected with the middle-third Cantor set and give several results

supporting this conjecture. We especially show that the conjecture holds for

a natural probabilistic model that is intended to mimic the distribution of
the rationals. The core of our study relies heavily on dimension estimates

concerning the set of points lying in an Ahlfors regular set and approximated

at a given rate by a system of random points.

1. Introduction

In Section 2 of his paper Some suggestions for further research, Mahler [29] posed
the following problem.

Mahler’s Problem. How close can irrational elements of Cantor’s set be approxi-
mated by rational numbers

(i). in Cantor’s set, and
(ii). by rational numbers not in Cantor’s set?

Here, Cantor’s set is the middle-third Cantor set, that is, the set of all real
numbers of the form a13−1 + a23−2 + . . . + ai3

−i + . . ., with ai ∈ {0, 2} for every
integer i ≥ 1. This set is denoted by K, and is just called the Cantor set, in
all what follows. Let us emphasize that we do not make the explicit distinction
between the two items in Mahler’s Problem, i.e. we do not distinguish between the
intrinsic and the extrinsic approximation problems. Accordingly, we interpret here
Mahler’s Problem as merely asking whether there are elements in the Cantor set
with any prescribed irrationality exponent; see also [9, Problem 35]. Recall that the
irrationality exponent µ(ξ) of an irrational real number ξ is defined by

µ(ξ) = sup

{
µ ∈ R

∣∣∣∣∣
∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qµ
for i.m. (p, q) ∈ Z× N

}
,

where “i.m.” stands for infinitely many. The irrationality exponent of every irra-
tional number is greater than or equal to two and it is precisely equal to two for
Lebesgue almost all real numbers, see [33, Section 1]. Furthermore, when ξ is a
rational number, we set µ(ξ) = 1.

As a first step towards Mahler’s question, Weiss [36] established that the irra-
tionality exponent is also equal to two for almost every point in the Cantor set
K, with respect to the standard measure thereon. Levesley, Salp and Velani [26]
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constructed explicit elements of K having a prescribed irrationality exponent: for
µ greater than or equal to (3 +

√
5)/2, they showed that

µ

 ∞∑
j=1

2 · 3−bµ
jc

 = µ, (1)

where b · c denotes the integer part function. Subsequently, Bugeaud [11] used the
theory of continued fractions to prove that (1) also holds for all µ ≥ 2 and that there
are uncountably many elements in K with any prescribed irrationality exponent
greater than or equal to two. This gives a satisfactory answer to Mahler’s question:
irrational elements of the Cantor set can be approximated by rational numbers
at any prescribed rate. However, unfortunately, the method does not yield any
information on the size of the set of points in the Cantor set whose irrationality
exponent is at least equal to a given real number µ > 2. The starting point of the
present paper is to investigate this problem, by considering the Hausdorff dimension
of the intersection set M(µ) ∩K, where

M(µ) = {ξ ∈ R | µ(ξ) ≥ µ} ;

we refer to Section 2.1 below for the necessary recalls on the notion of Hausdorff
dimension. The size of the two sets forming the above intersection is very well
known. First, the Hausdorff dimension of the Cantor set K satisfies

dimHK = κ with κ =
log 2

log 3
= 0.6309298 . . . , (2)

see for instance [17]. Second, a famous result established independently by Jarńık [20]
and Besicovitch [5] asserts that

∀µ ≥ 2 dimHM(µ) =
2

µ
. (3)

Furthermore, for every µ ≥ 2, the set of all real numbers with irrationality exponent
exactly equal to µ has the same Hausdorff dimension as the setM(µ) ; this follows
from finer results subsequently obtained by Jarńık in [21].

Besides the irrationality exponent, we also consider the exponents vb which first
appeared in [1], but were already implicitly used in [26]. They provide information
on the lengths of blocks of digits 0 (or of digits b− 1) occurring in the expansion of
an irrational real number ξ to the integer base b ≥ 2, and are defined by

vb(ξ) = sup
{
v ∈ R

∣∣ ‖bjξ‖ < b−vj for i.m. j ∈ N
}
,

where ‖ · ‖ denotes the distance to the nearest integer. When ξ is rational, it is
convenient to adopt the convention that vb(ξ) = 0. For any irrational real number
ξ, it follows from the definition of µ(ξ) and vb(ξ) that

µ(ξ) ≥ vb(ξ) + 1. (4)

However, these inequalities are rarely sharp. As a matter of fact, an easy cover-
ing argument shows that the exponent vb vanishes for Lebesgue almost every real
number. Furthermore, for any real number v ≥ 0, the Hausdorff dimension of the
set

Vb(v) = {ξ ∈ R | vb(ξ) ≥ v} (5)

is equal to 1/(v + 1) ; this follows from a general result of Borosh and Fraenkel [6],
see also [1].

The triadic analog of the above question is then to determine the Hausdorff
dimension of the intersection of sets V3(v)∩K. This has been performed by Levesley,
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Salp and Velani [26], thereby shedding some new light on Mahler’s problem. To be
specific, Corollary 1 in [26] asserts that

dimH(V3(v) ∩K) =
κ

v + 1
, (6)

which can be seen as the product of the dimension of K by that of V3(v). It is
also proved in [26] that (6) still holds when V3(v) is replaced by the set of all real
numbers ξ such that v3(ξ) = v. This shows that there exist points in the Cantor
set that can be approximated at any prescribed order by rational numbers whose
denominators are powers of three, and gives a very satisfactory answer to the triadic
analog of Mahler’s problem. Note however that things are much easier with the
exponent v3 than with the irrationality exponent µ, mainly because of the following
reason: if a point ξ ∈ K is approximated at a rate v > 1 by a triadic number p/3j ,
that is, if ∣∣∣ξ − p

3j

∣∣∣ < 3−vj ,

then this triadic number p/3j necessarily lies in K. Let us also mention that, as
recently pointed out by Fishman and Simmons, (6) may be extended to the more
general situation where the sets V3(v) are replaced by Vb(v) for an arbitrary prime
value of b, and the Cantor set K is replaced by the fractal set composed of all the
real numbers whose b-ary digits belong to some fixed subset of {0, . . . , b − 1} ; we
refer to [19] for details and related results.

With the help of (4), let us now remark that the set M(µ) contains the set
V3(µ− 1) for any value of µ ≥ 2. Along with (6), this readily implies that

dimH(M(µ) ∩K) ≥ dimH(V3(µ− 1) ∩K) =
κ

µ
. (7)

Thus, in view of (2) and (3), the Hausdorff dimension of the intersection of the sets
K and M(µ) is bounded from below by half the product of their dimensions. As
regards the upper bound, Pollington and Velani [31] used a covering argument due
to Weiss [36] to establish that for every µ ≥ 2,

dimH(M(µ) ∩K) ≤ 2κ

µ
, (8)

so that the dimension of the intersection is bounded from above by the product of
the dimensions. We also refer to the work of Kristensen [25] for a similar result.

In view of the aforementioned results, Levesley, Salp and Velani [26] speculate
at the end of their paper that the dimension of the intersection of the sets K and
M(µ) is equal to the product of their dimensions, namely,

dimH(M(µ) ∩K) =
2κ

µ
. (9)

They also believe that the following weaker statement holds:

lim
µ↓2

dimH(M(µ) ∩K) = κ. (10)

The starting point of the present work is to discuss the validity of (9) and (10). We
agree with (10) but disagree with (9). As a matter of fact, we now propose another
conjectural dimension for the intersection set M(µ) ∩K.

Conjecture 1. For any real number µ ≥ 2, the set of points in the Cantor set
whose irrationality exponent is at least µ satisfies

dimH(M(µ) ∩K) = max

{
2

µ
+ κ− 1,

κ

µ

}
. (11)
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Figure 1. The solid curve shows the conjectured value (11) of
the Hausdorff dimension of the set M(µ) ∩K. The dashed curves
represent the known bounds (7) and (8). The critical value µc is
defined by (12).

We refer to Figure 1 for a graph representing the conjectured value (11) of the
Hausdorff dimension, along with the known bounds (7) and (8). We believe that
a proof of Conjecture 1 is very difficult, and requires a deep understanding of the
distribution of rational points near the Cantor set. Note that, according to this
conjecture, the Hausdorff dimension of the intersection set M(µ) ∩ K exhibits a
“phase transition” at the critical value

µc =
2− κ
1− κ

=
log(9/2)

log(3/2)
= 3.709511 . . . . (12)

The approach that we develop hereunder actually suggests the following behaviors:

• Below this critical value, the rational numbers that belong to the Cantor
set, or are very close thereto, do not play a privileged role in the approxi-
mation of the points of the Cantor set; as in many generic situations where
there is no particular interplay between two sets, the codimension of their
intersection is thus the sum of their codimensions, namely,

codimH(M(µ) ∩K) = codimHM(µ) + codimHK = 2− 2

µ
− κ,

see e.g. [17, Chapter 8] for such generic situations.
• Above the critical value, the aforementioned rational numbers become pre-

dominant when approximating the points of the Cantor set; the dimension
is thus equal to the lower bound (7) obtained by Levesley, Salp and Ve-
lani [26] which corresponds to restricting the approximating rationals to
being the triadic endpoints of the intervals occurring in the construction of
the Cantor set.

Various arguments supporting Conjecture 1 are given in Section 2 below. Therein,
we begin by giving heuristic arguments, and we also present a doubly metric point
of view that yields further evidence for Conjecture 1. We also present a randomized
version of the above problem; this consists in replacing the approximating rational
numbers by random points that are intended to mimic the distribution of the ratio-
nals while taking into account the fact that some rationals fall into the Cantor set
exactly, or are very close to it. In particular, we show that Conjecture 1 is verified
for this random model, see Section 2.4.
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The motivation behind the study of such randomized models starts from the
following observation. From the viewpoint of the metric theory of Diophantine
approximation, the points with rational coordinates and a sequence of random
points chosen independently and uniformly in a given nonempty compact set share
a lot of properties: for example, they both give rise to homogeneous ubiquitous
systems and the sets of points that they approximate share the same size and large
intersection properties, see [13, 15] and the references therein. Pushing further the
analogy, we also put forward a conjecture for the exponents vb when b is not a
power of three.

Conjecture 2. Let us assume that the integer b ≥ 2 is not a power of three. Then:

(1) for any real number ξ ∈ K,

0 ≤ vb(ξ) ≤
κ

1− κ
;

(2) for any real number v ∈ [0, κ/(1− κ)],

dimH(Vb(v) ∩K) =
1

v + 1
+ κ− 1.

In case b is not a power of three, we expect that there is so little interplay between
the expansions to the bases b and 3 that we are in the generic situation where the
codimension of the intersection of the sets K and Vb(v) is equal to the sum of their
codimensions. This is of course in stark contrast with the formula (6) obtained by
Levesley, Salp and Velani in the case where b = 3. The probabilistic arguments
supporting Conjecture 2 are given in Section 2.5.

In Section 3, which is actually the core of this paper, we put the study of the
probabilistic counterparts of the aforementioned number theoretical open questions
in a more general context. Specifically, for convenience we place ourselves on the
circle T = R/Z, endowed with the usual quotient distance d, and we develop a
general theory for the size of the intersection sets E(X, r) ∩G, where

E(X, r) =
{
ξ ∈ T

∣∣ d(ξ,Xn) < rn for i.m. n ≥ 1
}

and G is a nonempty compact subset of T. Here, X = (Xn)n≥1 is a sequence of
random variables in T and r = (rn)n≥1 is a sequence of real numbers in (0, 1]. In
particular, we give the probability with which the random set E(X, r) intersects
the compact set G, and we analyze the value of the Hausdorff measures of the
intersection E(X, r) ∩ G for general gauge functions. The random points Xn are
chosen according to the Lebesgue measure on the circle, and are often supposed to
have very few dependence on each other.

In Section 4, we consider the particular case where the approximating points Xn

are stochastically independent. This is what ultimately enables us to establish the
probabilistic counterpart of Conjecture 1 mentioned above. In Section 5, we allow
some weak dependence between those points, namely, we assume that Xn is the
fractional part of anX, where X is chosen according to the Lebesgue measure on
[0, 1) and (an)n≥1 is a sequence of positive integers that grows sufficiently fast. Our
findings lead to the following metrical statement: if the sequence (an)n≥1 grows fast
enough, for instance if an+1 ≥ nlog lognan for n ≥ 2, then for Lebesgue almost every
real number α and for every real number ν ≥ 1,

dimH

{
ξ ∈ K

∣∣∣∣ ‖anα− ξ‖ < 1

nν
for i.m. n ≥ 1

}
=

1

ν
+ κ− 1

if this value is nonnegative; otherwise, the above set is empty. We refer to Theo-
rem 8 for details. If the real numbers ξ are not restricted to the Cantor set, then



6 YANN BUGEAUD AND ARNAUD DURAND

one recovers a much easier situation already studied by various authors includ-
ing Bugeaud [8], Schmeling and Troubetzkoy [32], Fan, Schmeling, and Troubet-
zkoy [18], and also by Liao and Seuret [28]. Most of the proofs are postponed to
Sections 7 and 8, while Section 6 is devoted to concluding observations and a brief
discussion on further problems.

2. Various arguments supporting the conjectures

We begin by giving heuristic arguments to support Conjecture 1. We then intro-
duce a doubly metric point of view that shows further evidence for this statement
to hold. We also put forward a randomized version of the problem, and we show
that Conjecture 1 holds for this probabilistic model. Finally, we present an analo-
gous random model meant for supporting Conjecture 2. Before proceeding, we first
need to set up some notation and recall some facts that will be used throughout
the paper.

2.1. Notations and recalls. For convenience, we shall almost always place our-
selves on the circle T = R/Z. As a matter of fact, the function ξ 7→ µ(ξ) that maps
a real number to its irrationality exponent is one-periodic, so we may consider it
just on the interval [0, 1). With a slight abuse, we shall identify the elements of
this interval with those of the circle. Accordingly, if ξ is a rational number in the
circle, then µ(ξ) = 1. Likewise, the irrationality exponent of an irrational point
ξ ∈ T may be written in the form

µ(ξ) = sup
{
µ ∈ R

∣∣ d(ξ, p/q) < q−µ for i.m. (p, q) ∈ R
}
,

where d is the usual quotient distance on the circle. The set R appearing in the
above formula is defined by

R =
{

(p, q) ∈ Z× N
∣∣ 0 ≤ p < q and gcd(p, q) = 1

}
, (13)

so that every rational number in the circle T may be written in the form p/q for
a unique pair (p, q) ∈ R. Then, the intersection of the set M(µ) with the interval
[0, 1) may be identified with the set of all points ξ ∈ T such that µ(ξ) ≥ µ. For
simplicity, this subset of the circle will still be denoted by M(µ); this is also the
image of the original set under the projection modulo one. Plainly, the same kind
of analogy holds for the exponents vb(ξ) and the sets Vb(v). In addition, we still
denote by K the image of the Cantor set under the projection modulo one.

Let us now give a brief account of the notion of Hausdorff and packing measures
and dimensions; we refer for instance to [17, 30] for further details. Let m be
a positive integer. Let g denote a gauge function, that is, a nondecreasing right-
continuous function defined on [0,∞) which vanishes at zero, and only at zero. The
Hausdorff g-measure of a subset E of Tm is defined by

Hg(E) = lim
δ↓0
↑ Hgδ(E) with Hgδ(E) = inf

∞∑
n=1

g(|Un|),

where |U | denotes the diameter of the set U . Here, the infimum is taken over all
sequences (Un)n≥1 of subsets of Tm verifying E ⊆

⋃
n Un and |Un| < δ for all n ≥ 1.

Moreover, the symbol ↑ indicates that the value Hgδ(E) is nondecreasing when δ
decreases to zero. We shall sometimes assume that the gauge function is doubling,
that is, satisfies g(2r) ≤ Cg(r) for all r > 0 and some C > 0.

We shall also make use of the packing g-measures. Recall that the packing
premeasure associated with a gauge function g is defined by

P g(E) = lim
δ↓0
↓ P gδ (E) with P gδ (E) = sup

∞∑
n=1

g(|Bn|),
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where the supremum is taken over all sequences (Bn)n≥1 of disjoint closed balls of
Tm centered in E and with diameter less than δ. Here, the symbol ↓ indicates that
the value P gδ (E) is nonincreasing when δ decreases to zero. The packing g-measure
of a set E is then defined by

Pg(E) = inf
E⊆

⋃
n Un

∞∑
n=1

P g(Un).

It is know that Pg, as well as Hg, is a Borel measure on the torus Tm. However,
the premeasures P g are only finitely subadditive.

When the gauge function g is of the form r 7→ rs with s > 0, it is customary to
let Hs, P s and Ps stand for Hg, P g and Pg, respectively. These gauge functions
give rise to the notion of Hausdorff and packing dimensions. To be specific, the
Hausdorff dimension of a nonempty set E ⊆ Tm is defined by

dimHE = sup{s ∈ (0,m) | Hs(E) =∞} = inf{s ∈ (0,m) | Hs(E) = 0},

with the convention that sup ∅ = 0 and inf ∅ = m. Likewise, the packing dimension
dimPE is defined by replacing the Hausdorff measure Hs by the packing measure
Ps in the above formula. Moreover, one recovers the upper box-counting dimension
dimBE by considering the premeasures P s instead ofHs. All these dimensions thus
enable one to give an abridged description of the size properties of E. When the
set E is empty, we adopt the convention that these dimensions are all equal to −∞.

Finally, so as to make some of our statements more tangible, we often work under
the following regularity assumption when considering compact subsets of the circle.

Definition 1 (Ahlfors regularity). A compact subset G of the circle is Ahlfors
regular with dimension γ ∈ (0, 1] if there exists a real number c > 0 such that

∀x ∈ G ∀r > 0
rγ

c
≤ Hγ(G ∩ B(x, r)) ≤ crγ ,

where B(x, r) is the open arc centered at x with length 2r.

In view of the mass distribution principle for Hausdorff and packing measures,
if a compact set G is Ahlfors regular with dimension γ, we then have

0 < Hγ(G) ≤ Pγ(G) ≤ P γ(G) <∞,

so that the Hausdorff, box-counting and packing dimensions of G coincide and are
all equal to γ, see [17, 30]. We refer to [12] for more details on Ahlfors regularity
and important examples of regular sets; in particular, it is clear that T is regular
with dimension one and it is well known that the set K is regular with dimension
κ given by (2).

2.2. Heuristic arguments supporting Conjecture 1. Prior to stating rigorous
results, let us begin by giving some loose arguments towards Conjecture 1. Note
that for large values of µ, i.e. values that are larger than the critical µc defined
by (12), the conjectured dimension coincides with the lower bound (7) resulting from
the work of Levesley, Salp and Velani [26]. Therefore, the chief novelty brought by
Conjecture 1 concerns the small values of the approximation rate; the main purpose
of our discussion is then to explain why we expect (11) to hold, especially for small
values of µ. We actually focus our heuristic arguments towards the upper bound
on the Hausdorff dimension, because it is certainly the easiest to get a feel on.

To begin with, note that the density of a given subset R′ of the set R defined
by (13) may be measured by means of the parameter

σ(R′) = lim sup
j→∞

1

j
log3 #(R′ ∩Rj). (14)
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Here, log3 is the base three logarithm and Rj is the set of pairs (p, q) ∈ R such
that 3j ≤ q < 3j+1. Using standard estimates on the growth of Euler’s totient
function [2, Theorem 13.14], one easily checks that log3 #Rj is equivalent to 2j as
j goes to infinity. Thus, σ(R′) is bounded from above by two, and the closer σ(R′)
is to this bound, the denser R′ is in R.

To make the connection with Conjecture 1, let us consider the set R0
K formed

by the rational numbers that belong to the Cantor set K, namely,

R0
K = {(p, q) ∈ R | p/q ∈ K}. (15)

For any integer j ≥ 1, it is easy to see that the set R0
K ∩ Rj contains the pairs

(2 + 3a1 + . . .+ 3j−1aj−1, 3
j), for all possible choices of a1, . . . , aj−1 ∈ {0, 2}. As a

consequence, σ(R0
K) ≥ κ, where κ is the Hausdorff dimension ofK, see (2). A recent

conjecture of Broderick, Fishman and Reich asserts that there are not considerably
much more elements in R0

K ∩Rj than those specified above. To be precise, basing
themselves on computer simulations, these authors made the following conjecture:
for all ε > 0,

#(R0
K ∩Rj) = O(2(1+ε)j) as j →∞, (16)

see [7, Conjecture 1]; we also refer to [19] for heuristic arguments supporting this
conjecture. The validity of (16) would straightforwardly imply that

σ(R0
K) = κ. (17)

Moreover, let us consider a point ξ in the Cantor set K and a pair (p, q) in the set
Rj , and assume that d(ξ, p/q) < q−µ. Then, it is clear that the pair (p, q) belongs
to the set

Rµ,jK = {(p, q) ∈ Rj | d(p/q,K) < 3−µj},
where d( · ,K) denotes the distance to the Cantor set K. The points at a distance
less than 3−µj from K form a set with Lebesgue measure of the order of (3−µj)κ−1;
this is due to the fact that K is Ahlfors regular with dimension κ. Thus, assuming
that the rational numbers p/q, for (p, q) ∈ Rj , are evenly spread in the circle,
this value of the Lebesgue measure should give the proportion of pairs in Rj that
belong to Rµ,jK . This would imply that #Rµ,jK is of the order of 3(2−(1−κ)µ)j , up
to logarithmic factors. However, this estimate is too stringent when µ is large; we
must indeed take into account the fact that Rµ,jK necessarily contains R0

K ∩ Rj ,
which gives a lower bound on its cardinality. Combined with (17), the previous
arguments result in the following conjecture:

lim sup
j→∞

1

j
log3 #Rµ,jK ≤ max{2− (1− κ)µ, κ}. (18)

Verifying this conjecture would of course require a very good understanding of the
distribution of the rational numbers lying near the Cantor set. The conjecture sug-
gests that when µ is larger than the critical value µc defined by (12), the condition

defining Rµ,jK becomes so strict that the 3−µj-neighborhood of K cannot contain
considerably more rational numbers than K itself. This is probably what lies at
the root of the “phase transition” phenomenon mentioned in Section 1.

Finally, for any real number ε > 0 and any integer j0 ≥ 1, we clearly have

M(µ) ∩K ⊆
∞⋃
j=j0

⋃
(p,q)∈Rµ−ε,jK

B(p/q, 3−(µ−ε)j).

We may then apply the Hausdorff-Cantelli lemma, and deduce that the Hausdorff
dimension of M(µ) ∩K is bounded from above by any positive real number s for
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which the series
∞∑
j=1

#Rµ−ε,jK (3−(µ−ε)j)s

converges. Assuming that the conjectured estimate (18) holds, and letting ε go to
zero, we end up with the formula given in Conjecture 1.

2.3. A doubly metric point of view: rotating the Cantor set. In view of (7),
the intersection of the sets M(µ) and K cannot be too small, because the rational
endpoints of the Cantor set contribute to its Hausdorff dimension in a very special
way. We believe however that these rational endpoints lose their privileged status
in the approximation when the exponent µ is small. A drastic way of artificially
removing this privileged status is to rotate the Cantor set by a generic angle α;
indeed, the endpoints of the set α + K are generically not rational anymore, and
thus may not be used in the approximation. Here, α+K denotes the image under
the circle rotation with angle α of the set K. In order to study the size of the
intersection of the set M(µ) with the rotated Cantor set α + K, we may adopt a
doubly metric point of view: we analyze the set of pairs (ξ, α) in the torus such that
ξ belongs toM(µ)∩ (α+K). We also develop the same approach for the exponent
vb related to the expansion to a given base b ≥ 2. In both cases, the formulae that
we obtain for the dimension are similar to those expressed in Conjectures 1 and 2.

2.3.1. The irrationality exponent. A straightforward adaptation of the arguments
of Weiss [36] and Kristensen [25] implies that the bound (8) holds uniformly after
rotating the Cantor set by an arbitrary angle; specifically, for every real number
µ ≥ 2 and every angle α ∈ T,

dimH(M(µ) ∩ (α+K)) ≤ 2κ

µ
.

However, the next result gives a generic upper bound that is much more stringent
than the above uniform one.

Theorem 1. The following holds for Lebesgue almost every angle α ∈ T:

(1) for any irrational point ξ ∈ α+K,

2 ≤ µ(ξ) ≤ 2

1− κ
;

(2) for any real number µ ∈ [2, 2/(1− κ)],

dimH(M(µ) ∩ (α+K)) ≤ 2

µ
+ κ− 1.

Theorem 1 shows that codimension of the intersection of the setsM(µ) and α+K
is generically at least the sum of their codimensions. As mentioned previously, such
a situation is expected to occur when there is no particular interplay between the
two sets whose intersection is being taken, see e.g. [17, Chapter 8]. In other words,
the points of the generically rotated Cantor set do not have a specific status with
respect to the approximation by rationals. For small values of the exponent µ,
we expect that this observation remains valid when the Cantor set is not even
rotated. As a matter of fact, the bound given by Theorem 1 then matches that of
Conjecture 1.

The situation is very different for large values of µ. Indeed, the above result
ensures that the Hausdorff dimension ofM(µ)∩ (α+K) is at most zero for generic
values of α, but (7) shows that the dimension is positive when α vanishes. Therefore,
when µ is large, the rationals that belong to the Cantor set, or are very close thereto,
become predominant when approximating the points of the Cantor set. Still, they
lose their privileged status when the Cantor set is rotated in a generic manner.
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Let us now establish Theorem 1. This result actually follows from the general
statements that we give in Section 3 below. To be more specific, let (pn, qn)n≥1 de-
note an enumeration of the set R for which (qn)n≥1 is nondecreasing. Furthermore,
let r = (rn)n≥1 be the sequence defined by rn = 1/qn, and let X = (Xn)n≥1 be
the circle valued sequence defined by Xn = pn/qn−α. Note that when α is chosen
according to the Lebesgue measure, the points Xn are uniformly distributed in the
circle. It is now clear that we are in the framework considered in Section 3. Indeed,
observe that for any real number ε > 0,

M(µ) ∩ (α+K) ⊆ α+ (E(X, rµ−ε) ∩K), (19)

where the set E(X, rµ−ε) is defined as in (29) and rµ−ε denotes the sequence formed
by the real numbers rµ−εn . Given that K is Ahlfors regular with dimension κ, we
have Pκ(G) < ∞, and we may apply Theorem 5 on page 16. In this way, we find
that with probability one:

µ > ε+
2

1− κ
=⇒ E(X, rµ−ε) ∩K = ∅

and for every real number s > 0,

s >
2

µ− ε
+ κ− 1 =⇒ Hs(E(X, rµ−ε) ∩K) = 0.

Along with (19), these two implications straightforwardly lead to Theorem 1.
For the sake of completeness, let us also give a proof of the above theorem that

does not call upon the general results stated in Section 3. We actually obtain a
slightly weaker statement than Theorem 1, namely, for every real number µ ≥ 2
and Lebesgue almost every angle α ∈ T,

dimH(M(µ) ∩ (α+K)) ≤ max

{
2

µ
+ κ− 1, 0

}
. (20)

However, the advantage of this alternative proof is that it exhibits a connection
with a doubly metric statement which has its own interest. To proceed, observe
that for any angle α, the set M(µ) ∩ (α+K) may be regarded as the intersection
of the set

M×(µ) =
{

(ξ, α) ∈ T2
∣∣ ξ ∈ α+K and µ(ξ) ≥ µ

}
.

with the line of T2 formed by the points whose second coordinate is equal to α.
Thus, applying a classical slicing result such as [17, Corollary 7.10], we deduce that
for Lebesgue almost every angle α ∈ T,

dimH(M(µ) ∩ (α+K)) ≤ max{dimHM×(µ)− 1, 0}.

In order to obtain (20), we are thus reduced to estimating the Hausdorff dimension
of M×(µ), which is the purpose of the next statement.

Proposition 1. For any real number µ ≥ 2,

dimHM×(µ) =
2

µ
+ κ.

Proof. To begin with, let us observe that the mapping Ψ : (ξ, α) 7→ (ξ−α, α) from
T2 onto itself is bi-Lipschitz and satisfies

Ψ(M×(µ)) =
{

(ξ, α) ∈ T2
∣∣ ξ ∈ K and α ∈ −ξ +M(µ)

}
.

Hence, M×(µ) has the same Hausdorff dimension as the above set, which is easier
to handle. Moreover, the set K is Ahlfors regular with dimension κ, so we may
adapt the proof of [17, Proposition 7.9] to show that for all s > κ, there exists a
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constant c > 0, depending only on K and s, such that for any Borel subset E of
T2,

Hs(E) ≥ c
∫
K

Hs−κ(E ∩ Lξ0)Hκ(dξ0),

where Lξ0 is the set of points (ξ, α) ∈ T2 such that ξ = ξ0. We now apply this
result to the set Ψ(M×(µ)). It is easy to see that for each ξ0 ∈ T, there is a simple
isometry which maps the intersection with Lξ0 of this last set onto the product set
{0} ×M(µ). Consequently,

Hs(Ψ(M×(µ))) ≥ cHs−κ(M(µ))Hκ(K).

If s− κ is less than 2/µ, we deduce from (3) that Hs−κ(M(µ)) is infinite, so that
the Hausdorff measure appearing in the left-hand side is infinite as well. It follows
that the Hausdorff dimension of M×(µ) is bounded from below by 2/µ+ κ.

For the reverse inequality, it suffices to find an appropriate covering of Ψ(M×(µ)).
To proceed, let us consider a positive real number ε, and a point (ξ, α) in this last
set. The irrationality exponent of α + ξ is then larger than µ − ε, so that for any
integer q0 ≥ 1, there is a rational number p/q with denominator at least q0 such
that d(α + ξ, p/q) < q−µ+ε. Moreover, let j(q) be the integer part of the base
three logarithm of qµ−ε/2. The set K is naturally covered by 2j(q) closed arcs with
length 3−j(q); let xj(q),0, . . . , xj(q),2j(q)−1 denote their centers. Given that ξ belongs

to K, we have d(ξ, xj(q),k) ≤ 3−j(q)/2 for some k. Furthermore, making use of the
triangle inequality, we deduce that

d
(
α,
p

q
− xj(q),k

)
≤ d
(p
q
− α, ξ

)
+ d(ξ, xj(q),k) < q−µ+ε +

3−j(q)

2
≤ 3−j(q).

If T2 is equipped with the product distance, it follows that the point (ξ, α) belongs
to the open ball with radius 3−j(q) centered at (xj(q),k, p/q − xj(q),k), which is
denoted by Bq,p,k. As a result, for any ε > 0 and q0 ≥ 1,

Ψ(M×(µ)) ⊆
∞⋃
q=q0

q−1⋃
p=0

2j(q)−1⋃
k=0

Bq,p,k.

Let s and δ denote two positive real numbers. For q0 large enough, we deduce from
the above covering that

Hsδ(Ψ(M×(µ))) ≤
∞∑
q=q0

q2j(q)(2 · 3−j(q))s ≤ 3s22s−κ
∞∑
q=q0

q1+(µ−ε)(κ−s),

and the last series converges when s is larger than 2/(µ−ε)+κ. The required upper
bound on the Hausdorff dimension of M×(µ) now follows straightforwardly. �

2.3.2. The exponents vb. Given an integer b ≥ 2 and a real number v ≥ 0, the
above method enables one to study the size properties of the set

V×b (v) =
{

(ξ, α) ∈ T2
∣∣ ξ ∈ α+K and vb(ξ) ≥ v

}
,

which is the analog of the set M×(µ) for the exponent vb related to the expansion
to the base b. To be precise, making the obvious changes to the last proof, one
easily checks that the Hausdorff dimension of this set is given by

dimH V×b (v) =
1

v + 1
+ κ.

As a consequence, for almost every angle α ∈ T in the sense of Lebesgue measure,
we also plainly have

dimH(Vb(v) ∩ (α+K)) ≤ max

{
1

v + 1
+ κ− 1, 0

}
. (21)
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Again, this bound is much more stringent than the uniform bound which follows
from the arguments of Weiss [36] and Kristensen [25], specifically,

∀α ∈ T dimH(Vb(v) ∩ (α+K)) ≤ κ

v + 1
.

Finally, making use of the results of Section 3, we may establish the following analog
of Theorem 1, thereby obtaining a slightly more precise statement than (21).

Theorem 2. Let b ≥ 2 be an integer. The following holds for Lebesgue almost
every angle α ∈ T:

(1) for any point ξ ∈ α+K,

0 ≤ vb(ξ) ≤
κ

1− κ
;

(2) for any real number v ∈ [0, κ/(1− κ)],

dimH(Vb(v) ∩ (α+K)) ≤ 1

v + 1
+ κ− 1. (22)

When b is equal to three, the above result is of course in stark contrast with
the formula (6) obtained by Levesley, Salp and Velani, which corresponds to the
case of the original Cantor set where α = 0. This is again due to the fact that the
endpoints of the Cantor set, which are triadic rational numbers, lose their privileged
role in the approximation when the Cantor set is rotated.

When b is not a power of three, it is expected that there is very little interaction
between the expansions to the bases b and three. Hence, the points of the Cantor set
should not satisfy particular properties with respect to the approximation by b-adic
rationals. Therefore, the Hausdorff dimension of the intersection set Vb(v)∩(α+K)
should be the same for α = 0 as for a generic value of α. Conjecture 2 is thus
equivalent to the fact that Theorem 2 is still valid when α vanishes, and that (22)
is not only an upper bound, but an equality.

2.4. Conjecture 1 holds for a probabilistic counterpart of the irrational-
ity exponent. As mentioned in Section 1, from the viewpoint of metric number
theory, the points with rational coordinates and a sequence of random points cho-
sen independently and uniformly in a given nonempty compact set share a lot of
properties: they both lead to homogeneous ubiquitous systems, and to a variety of
sets which share the same size and large intersection properties, see [13, 15] and the
references therein. Starting from this remark, we shall replace the approximating
rational numbers by a sequence of random points which is intended to mimic the
distribution of rational numbers and to take into account the fact that some ratio-
nal numbers fall into the Cantor set exactly, or are very close to it; we shall then
show that Conjecture 1 is verified for this random model.

Let us now detail our model. Let RK denote a subset of the set R defined
by (13). To make the connection with Conjecture 1, we intend the set RK to
contain the pairs (p, q) in R such that the rational number p/q is exactly in K,
or very close thereto. In particular, we intend RK to contain the set R0

K defined
by (15). For this reason, and in view of (17), we assume from now on that RK is
a subset of R that satisfies

σ(RK) = κ. (23)

We may now consider a family (Yp,q)(p,q)∈R of independent random variables in
the circle such that:

• if (p, q) ∈ RK , then Yp,q is distributed uniformly in K, that is, according
to the κ-dimensional Hausdorff measure restricted to K;

• if (p, q) 6∈ RK , then Yp,q is distributed uniformly in T, that is, according to
the Lebesgue measure.
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Instead of considering the approximation by rational numbers, we shall study the
approximation by these random points Yp,q. Specifically, we are interested in the
size properties of the random subsets F(µ) of T defined by

F(µ) =
{
ξ ∈ T

∣∣ d(ξ, Yp,q) < q−µ for i.m. (p, q) ∈ R
}
. (24)

The mapping µ 7→ F(µ) is obviously nonincreasing, and for any point ξ ∈ T, we
may define

µ•(ξ) = sup{µ ≥ 0 | ξ ∈ F(µ)}, (25)

which is the analog of the irrationality exponent for the approximation by the
random points Yp,q.

The philosophy behind the above random model is the following. We believe that
the pairs (p, q) ∈ R such that p/q is exactly in, or very close to, the Cantor set K
form a set with density parametrized by κ. Thus, we choose a subset RK of R that
is intended to contain those pairs, and we assume that (23) holds. In particular,
RK has low density in R. We then randomize the situation: we replace the vast
majority of the rational numbers by random points that are chosen uniformly in the
circle T, and we also introduce a slight bias in the distribution in the sense that the
rational numbers that are indexed by a pair in RK are replaced by random points
that are chosen uniformly in K. The rate of approximation q−µ is left unchanged.

With the help of the results obtained in Section 4 below, we may now establish
Conjecture 1 above in this randomized situation. This amounts to proving that (11)
holds when the set M(µ) is replaced by its random counterpart

M•(µ) = {ξ ∈ T | µ•(ξ) ≥ µ} ;

this results in the following statement. Note that we may apply the results of
Section 4 because the set K is Ahlfors regular with dimension κ.

Theorem 3. The following holds with probability one:

(1) for any point ξ ∈ K,

µ•(ξ) ≥ 2 ;

(2) for any real number µ ≥ 2,

dimH(M•(µ) ∩K) = max

{
2

µ
+ κ− 1,

κ

µ

}
.

The remainder of this section is devoted to the proof of Theorem 3, modulo
Proposition 2 on page 20 and Proposition 3 on page 22. Let FK(µ) and FK{(µ)

denote the sets obtained when replacing R by RK and its complement R{
K , respec-

tively, in the definition (24) of F(µ). Then, we may decompose this last set in the
following manner:

F(µ) = FK(µ) ∪ FK{(µ).

Note that the two sets forming the above union are not necessarily disjoint. This
enables us to rewrite the exponent µ•(ξ) in the form

µ•(ξ) = max{µ•K(ξ), µ•
K{(ξ)},

where the exponents µ•K(ξ) and µ•
K{(ξ) are defined by replacing F(µ) by FK(µ)

and FK{(µ), respectively, in (25). The proof of Theorem 3 now reduces to showing
the next two lemmas.

Lemma 1. The following holds with probability one:

(1) for any point ξ ∈ K,

µ•K(ξ) ≥ 1 ;
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(2) for any real number µ ≥ 1,

dimH{ξ ∈ K | µ•K(ξ) ≥ µ} =
κ

µ
.

Proof. Let X = (Xn)n≥1 be a sequence of random points that are independently and
uniformly chosen in the Cantor set K, and r = (rn)n≥1 be the sequence defined
by rn = 1/qn, where (pn, qn)n≥1 is an enumeration of RK for which (qn)n≥1 is
nondecreasing. Note that (33) holds with ρ = σ(RK), because of the definition (14)
of this parameter. It is now easy to see that the sets FK(µ) are distributed as the
sets E(X, rµ) defined as in (29). As a consequence, the exponent µ•K(ξ) is distributed
as νX,r(ξ). The result follows from Proposition 3 below, along with (23). �

Lemma 2. The following holds with probability one:

(1) for any point ξ ∈ K,

2 ≤ µ•
K{(ξ) ≤ 2

1− κ
;

(2) for any real number µ ∈ [2, 2/(1− κ)],

dimH{ξ ∈ K | µ•K{(ξ) ≥ µ} =
2

µ
+ κ− 1.

Proof. The proof is very similar to that of Lemma 1. Let X = (Xn)n≥1 denote
a sequence of random points that are independently and uniformly chosen in the
circle T, and let r = (rn)n≥1 denote the sequence defined by rn = 1/qn, where

(pn, qn)n≥1 is an enumeration of R{
K for which qn is nondecreasing. One easily

checks that (33) holds with ρ = 2 and that the sets FK{(µ) are distributed as the
sets E(X, rµ). Hence, the exponent µ•

K{(ξ) is distributed as νX,r(ξ), and it just
remains to apply Proposition 2 below. �

The above approach is quite flexible in the sense that (23) may be adapted
in order to fit the true value of σ(R0

K). In accordance with Broderick, Fishman
and Reich [7], we conjectured above that σ(R0

K) is equal to κ. This lead us to
assume (23), and then to prove Conjecture 1 above for the present random model.
However, the authors of [7] formulated a weaker conjecture than (16) for which they
have even stronger evidence, namely, there exists a real number ς < 2 such that

#(R0
K ∩Rj) = O(2ςj) as j →∞,

see [7, Conjecture 2]. The last bound would readily imply that σ(R0
K) is between

κ and κς. This entices us to relax (23) by just assuming that the set RK satisfies

κ ≤ σ(RK) < 2κ.

Inspecting the above proofs, it is easy to see that Theorem 3(1) still holds under
this weaker assumption, whereas Theorem 3(2) has to be replaced by the following
statement: for any µ ≥ 2,

dimH(M•(µ) ∩K) = max

{
2

µ
+ κ− 1,

σ(RK)

µ

}
.

In particular, the validity of Conjecture 1 for the random model is equivalent to
that of (23).
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2.5. A probabilistic counterpart of the exponents vb and its connections
with Conjecture 2. Let us now modify the preceding ideas in order to put forward
a randomized situation that is adapted to the exponents vb. In this way, we shall
derive an analog of the dimension result (6) of Levesley, Salp and Velani [26] when
b is a power of three, and give some probabilistic arguments leading to Conjecture 2
otherwise.

For any integer j ≥ 1, let Kj denote the set of all integers k ∈ {0, . . . , bj − 1}
such that gcd(k, bj) = 1. Furthermore, let KjK denote the set of all integers k ∈ Kj
for which the rational number kb−j is in the Cantor set K. Now, given j ≥ 1 and
k ∈ Kj , we consider a random point Yj,k that is distributed uniformly in K when

k ∈ KjK , and uniformly in T otherwise. We also assume that the points Yj,k are
independently distributed. This enables us to introduce the sets

Fb(v) =
{
ξ ∈ T

∣∣ d(ξ, Yj,k) < b−(v+1)j for i.m. j ≥ 1 and k ∈ Kj
}
,

as well as, for any point ξ ∈ T, the exponent

v•b (ξ) = sup{v ∈ R | ξ ∈ Fb(v)},
which may be seen as a probabilistic counterpart of the exponent vb. Thus, in this
randomized setting, the analogs of the sets Vb(v) defined by (5) are merely the sets

V•b (v) = {ξ ∈ R | v•b (ξ) ≥ v}.

2.5.1. Case where b is a power of three. In that situation, for any integer j ≥ 1,
there are 2bj/3 integers in the set Kj . Moreover, there are exactly bκj rational
numbers with reduced denominator bj in the Cantor set K. In other words, the set
KjK has cardinality bκj . Making the obvious changes to the proof of Theorem 3, we
easily deduce the following statement.

Theorem 4. Let b be a power of three. The following holds with probability one:

(1) for any point ξ ∈ K,

v•b (ξ) ≥ 0 ;

(2) for any real number v ≥ 0,

dimH(V•b (v) ∩K) =
κ

v + 1
.

When b = 3, we thus recover the same formula for the Hausdorff dimension as
in the original context of the approximation by the triadic rational numbers, that
is, the formula for the mere exponent v3, see (6).

2.5.2. Case where b is not a power of three. Here, the cardinality of the set Kj is
again of the order of bj ; specifically, it is equal to bj times the product of 1 − 1/p
when p ranges over the prime factors of b. However, we do not know the cardinality
of the set KjK anymore. It is believed that the base b representation is essentially
independent of that in base three, on which the construction of K heavily relies;
this entices us to make the following conjecture: for all ε > 0,

#KjK = O(2εj) as j →∞. (26)

Assuming that (26) holds, and adapting the proof of Theorem 3, we then infer that
almost surely, for any point ξ ∈ K, the exponent v•b (ξ) is nonnegative. Moreover,
with probability one, for any real number v,

0 ≤ v ≤ κ

1− κ
=⇒ dimH(V•b (v) ∩K) =

1

v + 1
+ κ− 1. (27)

and

v >
κ

1− κ
=⇒ dimH(V•b (v) ∩K) ≤ 0. (28)
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In particular, with probability one, the set of points ξ in K for which the exponent
v•b (ξ) is at least equal to κ/(1 − κ) is nonempty. Moreover, the discussion that
precedes Proposition 2 actually implies that this set is dense in K.

The above approach does not enable us to determine whether or not the dimen-
sion in (28) is equal to zero, that is, whether or not there exists a point ξ ∈ K
such that v•b (ξ) ≥ v, when v is larger than κ/(1 − κ). However, a straightforward
adaptation of the proof of Theorem 3 implies that

∞∑
j=1

#KjK <∞ =⇒ a.s. ∀ξ ∈ K v•b (ξ) ≤ κ

1− κ
.

Thus, under a much stronger assumption than (26), our method shows that the
dimension in (28) is equal to −∞. In any case, deciding whether or not the dimen-

sion is zero in (28) certainly requires much more information on the sets KjK than
the mere (26).

As regards the original exponent vb, we suspect that the dimension in (28) is
equal to −∞, meaning that vb is bounded from above by κ/(1− κ) on the Cantor
set K. Combined with (27), this is what lead us to Conjecture 2 above.

3. Approximation by uniform random points: general results

The purpose of this section is to study the situation in which the sequence of
approximating points is chosen at random. For convenience, we work again on the
circle T = R/Z, endowed with the usual quotient distance d. Given a sequence
X = (Xn)n≥1 of random variables in the circle T and a sequence r = (rn)n≥1 of
real numbers in (0, 1], let us consider the random subset E(X, r) of T defined by

E(X, r) =
{
ξ ∈ T

∣∣ d(ξ,Xn) < rn for i.m. n ≥ 1
}
, (29)

and consisting of the points that are approximated at a rate given by rn by the
random points Xn. Our purpose is to study the probability with which the random
set E(X, r) intersects a given nonempty compact set G ⊆ T, and to describe the
size properties of the intersection in the situation where it is nonempty. Such a
description will be obtained by studying the value of the Hausdorff measures of
the intersection E(X, r) ∩G. Throughout this section, we assume that the random
points Xn are chosen according to the Lebesgue measure L on the circle T.

3.1. Size of the intersection with a compact set: upper bounds. At this
point, we do not make any assumption on the correlations between these random
points. Our first result gives an upper bound on the size of the intersection of the
random set E(X, r) with a fixed compact set G whose size is controlled in terms of
the finiteness of certain packing premeasures. We refer to Section 7.1 for its proof.

Theorem 5. Let G denote a nonempty compact subset of the circle, and let g be a
doubling gauge function such that P g(G) <∞.

(1) The following holds:

∞∑
n=1

rn
g(rn)

<∞ =⇒ a.s. E(X, r) ∩G = ∅.

(2) For any doubling gauge function h, the following holds:

∞∑
n=1

h(rn)rn
g(rn)

<∞ =⇒ a.s. Hh(E(X, r) ∩G) = 0.
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3.2. Size of the intersection with a compact set: lower bounds under a
weak dependence condition. Our purpose is now to give a converse to The-
orem 5(1), under the assumption that the random approximating points Xn are
independent or somewhat close to being so, in the following sense. First, for any
sequence B = (Bn)n≥1 of Borel subsets of the circle T with positive Lebesgue
measure, let us set

θ(X,B) = sup
n≥1

P(X1 ∈ B1, . . . , Xn ∈ Bn)

P(X1 ∈ B1) · . . . · P(Xn ∈ Bn)
.

Clearly, θ(X,B) is always at least one, and is equal to one regardless of the choice
of the sequence B when the variables Xn are independent. A way of relaxing the
independence assumption is then to impose a control on the maximal ratios θ(X,B)
by supposing that

Θ(X,B) = sup
B∈B

θ(X,B) <∞, (30)

where B denotes an appropriately chosen collection of sequences of Borel sets. Note
that the above condition is more stringent as B becomes larger.

The collection on which we shall impose a control is denoted by B(r) and is
defined as follows in terms of the sequence r that gives the approximation rate.
For any k ∈ {0, . . . , qn − 1}, let In,k denote the image of the interval [k/qn, (k +
1)/qn) under the projection modulo one. Here, we choose qn to be equal to d1/rne,
where d · e stands for the ceiling function. Then, B(r) is defined as the collection of
all sequences of the form (In,kn)n≥1, where (kn)n≥1 is a sequence of nonnegative
integers satisfying kn < qn.

Our assumption on the joint law of the points Xn is finally that Θ(X,B(r))
is finite. When the points Xn are independent, this condition is clearly satisfied
because Θ(X,B(r)) is then equal to one regardless of the choice of the sequence r.
Furthermore, if the series

∑
n rn converges, then the above finiteness assumption is

equivalent to the existence of a positive real number C such that

P

(
v⋂

n=1

{Xn ∈ In,kn}

)
≤ C

v∏
n=1

rn,

for any integer v ≥ 1 and any choice of the integers kn ∈ {0, . . . , qn − 1}, because
the points Xn are uniformly distributed. Our converse to Theorem 5(1) is now the
following result, which is proven in Section 7.2.

Theorem 6. Let G denote a nonempty compact subset of the circle T, and let g
be a gauge function such that Hg(G) > 0. Then,{

Θ(X,B(r)) <∞∑
n rn/g(rn) =∞

=⇒ a.s. E(X, r) ∩G 6= ∅.

The last result of this section gives a partial converse to Theorem 5(2), under
the same assumption as in the preceding result, i.e. the finiteness of Θ(X,B(r)).
Before stating this result, let us consider a compact subset G of the circle with
positive Hausdorff g-measure for a given gauge function g. The set E(X, r) ∩ G is
clearly smaller than G. Thus, in order to describe the size properties of this set in
terms of generalized Hausdorff measures, we may restrict our attention to the gauge
functions h that increase faster than g in the sense that g/h monotonically tends
to zero at the origin. An expected converse to Theorem 5(2) is then the following:

∞∑
n=1

h(rn)rn
g(rn)

=∞ =⇒ a.s. Hh(E(X, r) ∩G) > 0. (31)



18 YANN BUGEAUD AND ARNAUD DURAND

Theorem 7 below gives a slightly weaker form of this statement. In fact, we make
the additional assumption that h increases faster than g, with respect to a third
gauge function ϕ which is used as a proxy for g/h in the divergence condition above.
To be more precise, given three gauge functions g, h and ϕ, we say that h increases
ϕ-faster than g, and we write h ≺ϕ g, when g/h monotonically tends to zero at the
origin and satisfies

∞∑
j=1

g(2−j)

h(2−j)

(
1

ϕ(2−j)
− 1

ϕ(2−(j−1))

)
<∞. (32)

In that case, note that g/h coincides with a gauge function near zero.

Theorem 7. Let G denote a nonempty compact subset of the circle T, and let g
be a gauge function such that Hg(G) > 0. Then, for any gauge functions h and ϕ
such that h ≺ϕ g,{

Θ(X,B(r)) <∞∑
n rn/ϕ(rn) =∞

=⇒ a.s. Hh(E(X, r) ∩G) > 0.

Theorem 7 follows straightforwardly from Theorem 6 with the help of Lemma 3
below. Indeed, in view of this lemma, it suffices to show that E(X, r) intersects
every compact subset of the circle with positive Hausdorff ϕ-measure, a fact that
follows from Theorem 6, since Θ(X,B(r)) is finite and

∑
n rn/ϕ(rn) diverges.

Lemma 3. Let us consider a random subset E of the circle and let us assume that
there exists a gauge function ϕ such that for any compact set G ⊆ T,

Hϕ(G) > 0 =⇒ a.s. E ∩G 6= ∅.

Then, for any compact set G ⊆ T and any gauge function g,

Hg(G) > 0 =⇒ ∀h ≺ϕ g a.s. Hh(E ∩G) > 0.

Lemma 3 can be seen as an extension of [22, Lemma 3.4] to general Hausdorff
measures. Its proof, given in Section 7.3, relies on the remarkable properties sat-
isfied by a family of compact sets obtained via a variant of Mandelbrot’s fractal
percolation process that we introduce and study in Section 8.

Let us point out a very simple situation in which the condition h ≺ϕ g defined
by (32) is satisfied: it suffices to assume that the gauge function h increases faster
than g in the sense that h/g is monotonic near zero and satisfies∫ 1

0

h(r)

g(r)
π(dr) =∞

for some probability measure π on (0, 1]. Note that the function h may nevertheless
be very close to g near zero because the probability measure π may well concentrate
its mass near this point: for instance, if h(r) = g(r)(log◦p(1/r))ε for some ε > 0
and p ≥ 1, where log◦p denotes the p-th iterate of the logarithm, then the gauge
functions verify the above condition. Now, it is straightforward to check that (32)
holds if ϕ is a gauge function such that

1

ϕ(s)
− 1

ϕ(1)
=

∫
r∈(s,1]

h(r)

g(r)
π(dr),

for all s ∈ (0, 1]. Moreover, when ϕ is chosen as above, the Fubini-Tonelli theorem
ensures that

∞∑
n=1

rn
ϕ(rn)

≥
∫ 1

0

h(r)

g(r)

( ∞∑
n=1

rn1{rn<r}

)
π(dr).
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As a consequence, assuming the finiteness of Θ(X,B(r)) and considering a compact
set G with positive Hausdorff g-measure, Theorem 7 implies that∫ 1

0

h(r)

g(r)

( ∞∑
n=1

rn1{rn<r}

)
π(dr) =∞ =⇒ a.s. Hh(E(X, r) ∩G) > 0.

Note that the divergence of this integral implies that of the series arising in the
statement of Theorem 5(2). The above result is therefore slightly weaker than the
expected converse (31) to this theorem. To be specific, our approach leaves open
the case in which the series diverges, but the above integral is convergent for every
possible choice of the probability measure π.

4. Application to the approximation by independent points

4.1. Uniform distribution in the circle and intersection with a regular set.
As before, we suppose that the approximating points Xn are uniformly distributed
in the circle T, that is, are chosen according to the Lebesgue measure L. In addition,
we assume that these points are independent random variables. In particular, the
maximal ratios Θ(X,B) defined by (30) are equal to one, and the weak dependence
assumption that we made in order to derive the lower bounds in the previous section
is plainly satisfied. As a consequence, all the results stated in Section 3 apply in
the present setting.

Our purpose is now to deduce from these results simpler statements that only
involve Hausdorff dimensions and a probabilistic analog of the irrationality expo-
nent that is defined as follows. To proceed, let us make two additional assumptions
on the sequence r = (rn)n≥1 of approximation radii. First, since the joint law of
the approximating points Xn is invariant under rearrangement, there is no loss of
generality in assuming that the sequence r is nonincreasing. Second, we suppose
that there exists a critical value ρ ∈ (0,∞) such that{

ν < ρ =⇒
∑
n r

ν
n =∞

ν > ρ =⇒
∑
n r

ν
n <∞.

(33)

For any real number ν ≥ 0, let rν denote the sequence formed by the numbers rνn, so
that E(X, rν) is the set obtained by replacing rn by rνn in the definition (29) of the
set E(X, r). Observe that the mapping ν 7→ E(X, rν) is nonincreasing. Therefore,
for any point ξ ∈ T, we may define

νX,r(ξ) = sup{ν ≥ 0 | ξ ∈ E(X, rν)} ;

this may be seen as the analog of the irrationality exponent for the approximation
by the random points Xn with the rates rn.

Given that the points Xn are independently and uniformly distributed, we may
apply Shepp’s theorem on Dvoretzky’s covering problem [34], thereby inferring
that with probability one, the set E(X, rν) coincides with the whole circle when ν
is smaller than the critical value ρ defined by (33). As a result,

a.s. ∀ξ ∈ T νX,r(ξ) ≥ ρ. (34)

Moreover, Corollary 1 in [15] yields the value of the Hausdorff dimension of the set
E(X, rν), specifically, with probability one, for all ν ≥ ρ,

dimH E(X, rν) =
ρ

ν
,

from which it is straightforward to deduce that

a.s. ∀ν ≥ ρ dimH{ξ ∈ T | νX,r(ξ) ≥ ν} =
ρ

ν
. (35)
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In order to make our statements even more concrete, we further assume that
the compact set G with which the intersections are taken is Ahlfors regular with
dimension γ in (0, 1], see Definition 1. Applying Theorems 5 and 6, we infer that

P(E(X, rν) ∩G 6= ∅) =

1 if (1− γ)ν < ρ

0 if (1− γ)ν > ρ.
(36)

Moreover, Theorems 5 and 7 ensure that if (1−γ)ν < ρ, then with probability one,

dimH(E(X, rν) ∩G) =
ρ

ν
+ γ − 1. (37)

Here, we recover two results obtained recently by Li, Shieh and Xiao in [27]. More
precisely, building on the study of the limsup random fractals performed in [22],
these authors computed the hitting probabilities of the random set E(X, rν), and
the Hausdorff and packing dimensions of its intersection with a fixed analytic set,
see in particular Theorem 1.1 and Corollary 1.5 in [27].

When (1−γ)ν 6= ρ, we straightforwardly deduce that the right-hand side of (36)
gives the probability that νX,r(ξ) ≥ ν for some point ξ ∈ G. The critical case
where (1− γ)ν = ρ does not explicitly follows from either Theorems 5 and 6 above
or the results of [27]. However, inspecting the proof of Theorem 6, we see that
the sets E(X, rν−ε) ∩ G, for ε > 0, are almost surely dense in the complete metric
space G. Taking the intersection of these sets over a sequence (εn)n≥1 converging
to zero, and applying the Baire category theorem, we deduce that the set of points
ξ ∈ G such that νX,r(ξ) ≥ ν is almost surely dense in G as well, thereby being
nonempty. Furthermore, one easily checks that the right-hand side of (37) also
gives the Hausdorff dimension of these set of points. Thus, we end up with the
next statement.

Proposition 2. Let G be a compact subset of the circle T, and assume that G
is regular with dimension γ ∈ (0, 1]. If the variables Xn are independently and
uniformly distributed in T, then

a.s. ∀ξ ∈ G ρ ≤ νX,r(ξ) ≤
ρ

1− γ
.

Moreover, for any real number ν ≥ ρ such that (1− γ)ν ≤ ρ,

a.s. dimH{ξ ∈ G | νX,r(ξ) ≥ ν} =
ρ

ν
+ γ − 1.

The above result shows that the maximal rate at which the points of a regular
set may be approximated by a sequence of independently and uniformly distributed
points is directly controlled by the size of the set; indeed, the value of γ induces a
specific limitation on the rate with which the points in G may be approximated.

In addition, combined with (35), the previous result ensures that if (1−γ)ν ≤ ρ,
then the Hausdorff codimension of the intersection of the set of all ξ ∈ T with
νX,r(ξ) ≥ ν and the set G is the sum of their codimensions. Such a behavior is
expected to be somewhat generic and is in stark contrast with the special situation
of sets with large intersection (sometimes also termed as intersective sets) where
the Hausdorff dimension of the intersection of the sets is equal to the minimum of
their dimensions; we refer to Chapter 8 in [17], and to [10, 13, 16] for details. Let
us mention here that the set of all ξ ∈ T with νX,r(ξ) ≥ ν is known to be almost
surely intersective, as a consequence of Theorem 2 in [15]. In addition, when γ < 1,
the set G cannot be intersective (because an intersective subset of R has packing
dimension equal to one, see [16]), and this is consistent with the observation that

dimH{ξ ∈ G | νX,r(ξ) ≥ ν} = dimH{ξ ∈ T | νX,r(ξ) ≥ ν}+ dimHG− 1

< min {dimH{ξ ∈ T | νX,r(ξ) ≥ ν},dimHG}



DIOPHANTINE APPROXIMATION ON THE CANTOR SET 21

with probability one, under the further assumption that ν > ρ.

4.2. Uniform distribution in a regular set. We now suppose that the variables
Xn are uniformly distributed in a given compact subset G of the circle that is
assumed to be regular with dimension γ ∈ (0, 1]. The common law of the random
variables Xn is thus the normalized γ-dimensional Hausdorff measure restricted to
G. It is clear that the sets E(X, rν) are contained in G, so that νX,r(ξ) = 0 when
the point ξ does not belong to G. In addition, we have the following lower bound
on νX,r(ξ) when the point ξ is in G:

a.s. ∀ξ ∈ G νX,r(ξ) ≥
ρ

γ
.

This bound generalizes (34) and follows directly from the next lemma.

Lemma 4. If γν < ρ, then E(X, rν) = G with probability one.

Proof. Let ε denote a positive real number with γν(1+ε) < ρ. In view of (33), there
exists an infinite set N of integers n such that rn ≥ n−(1+ε)/ρ. Given n ∈ N , let us
now consider a collection of points ξ1, . . . , ξun in G such that the arcs B(ξj , n

−1/γ/2)

are disjoint, and assume that un is maximal for this property. The arcs B(ξj , n
−1/γ)

then cover G, so that

G 6⊆
n⋃
i=1

B(Xi, r
ν
i ) =⇒ ∃j ξj 6∈

n⋃
i=1

B(Xi, r
′
n),

where r′n = rνn − n−1/γ . Since the random points Xi are independent, this yields

P

(
G 6⊆

n⋃
i=1

B(Xi, r
ν
i )

)
≤

un∑
j=1

n∏
i=1

(1− P(ξj ∈ B(Xi, r
′
n))) . (38)

Moreover, the points Xi are uniformly distributed in the regular set G, so that

P(ξj ∈ B(Xi, r
′
n)) =

Hγ(G ∩ B(ξj , r
′
n))

Hγ(G)
≥ (r′n)γ

cHγ(G)
.

The fact that G is regular with dimension γ also implies that un ≤ c′n for some
constant c′ > 0. We deduce that the right-hand side of (38) is bounded from above
by

c′n exp

(
− n(r′n)γ

cHγ(G)

)
≤ c′n exp(−c′′n1−γν(1+ε)/ρ)

for some other constant c′′ > 0. Finally, letting n tend to infinity through N , we
deduce that

P

(
G 6⊆

∞⋃
i=1

B(Xi, r
ν
i )

)
= 0.

In other words, the arcs B(Xi, r
ν
i ), for i ≥ 1, cover the set G with probability one.

For any fixed i0 ≥ 1, we can obviously reproduce the same reasoning when only
considering the arcs indexed by i ≥ i0, thereby obtaining that these arcs also suffice
to cover G almost surely. The result follows. �

The case in which γν ≥ ρ is not covered by the previous result, and it is then
natural to ask for the size of the set E(X, rν). The purpose of the next statement
is to give a simple answer to this question.

Lemma 5. If γν ≥ ρ, then dimH E(X, rν) = ρ/ν with probability one.
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Proof. The upper bound follows from the obvious fact that the set E(X, rν) is
covered by the arcs B(Xn, r

ν
n), for n larger than any given integer. To be specific,

for ε > 0 and n0 ∈ N such that 2rνn0
< ε, it is clear that Hsε(E(X, rν)) is bounded

from above by
∑
n≥n0

(2rνn)s. In view of (33), this series converges for νs > ρ.

Letting n0 tend to infinity and ε go to zero, we then deduce that Hs(E(X, rν)) = 0.
In order to prove the lower bound, let us consider a positive real number s such

that νs < ρ. By virtue of Lemma 4, the set E(X, rνs/γ) coincides with the whole set
G with probability one. Given that G is regular with dimension γ, the general mass
transference principle of Beresnevich and Velani then ensures that the set E(X, rν)
has Hausdorff dimension at least s, see [4, Theorem 3]. �

It is now straightforward to deduce from the previous lemma the following gen-
eralization of (34) and (35), which has to be compared with Proposition 2.

Proposition 3. Let G be a compact subset of the circle T, and assume that G
is regular with dimension γ ∈ (0, 1]. If the variables Xn are independently and
uniformly distributed in G, then

a.s. ∀ξ ∈ G νX,r(ξ) ≥
ρ

γ
.

Moreover, for any real number ν ≥ ρ/γ,

a.s. dimH{ξ ∈ G | νX,r(ξ) ≥ ν} =
ρ

ν
.

5. Application to the approximation by fractional parts

Let { · } stand for the fractional part function. Identifying the circle T with the
interval [0, 1), we may also regard the mapping x 7→ {x} as the projection modulo
one from R onto T. The purpose of this section is to apply the general results stated
in Section 3 to the situation where the approximating points Xn are of the form
{anX}, where a = (an)n≥1 is a sequence of positive integers and X is a point chosen
uniformly in the interval [0, 1), that is, according to the Lebesgue measure thereon.
It is easy to see that we match the general framework of Section 3: the random
points Xn = {anX} are clearly distributed according to the Lebesgue measure on
the circle. This is due to the well known fact that, for any integer m ≥ 1, the
transformation x 7→ {mx} preserves the Lebesgue measure on [0, 1).

Given a sequence r = (rn)n≥1 of real numbers in (0, 1], the random subset of the
circle defined by (29) is now of the form

G(a, r) =
{
ξ ∈ T

∣∣ d(ξ, {anX}) < rn for i.m. n ≥ 1
}
.

All the hypotheses of Theorem 5 are fulfilled, so we may directly apply this result
to the above set G(a, r). In order to apply the other results of Section 3, we need
to show that the weak dependence condition is satisfied.

We shall show that if the sequence a = (an)n≥1 grows sufficiently fast, then the
random points {anX} are close enough to being independent to ensure that all
the results of Section 3 apply. Specifically, using the notations of Section 3.2, this
amounts to showing the finiteness of Θ(({anX})n≥1,B(r)), when the integers an
grow fast enough. This is the purpose of the next result.

Proposition 4. For any sequence a = (an)n≥1 of positive integers and any sequence
r = (rn)n≥1 of real numbers in (0, 1],

Θ(({anX})n≥1,B(r)) ≤ 3 exp

(
4

∞∑
n=1

an
rnan+1

)
.
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Proof. Making use of the notations of Section 3.2, let qn = d1/rne and let In,k
denote the image of the interval [k/qn, (k + 1)/qn) under the projection onto the
circle. We now have

Θ(({anX})n≥1,B(r)) = sup
k

sup
v≥1

P

(
v⋂

n=1

{
{anX} ∈ In,kn

}) v∏
n=1

qn,

where the outer supremum is taken over the set of sequences k = (kn)n≥1 of nonneg-
ative integers less than qn. The random variables {anX} are uniformly distributed
on the circle; the probability arising above is thus equal to∫ 1

0

v∏
n=1

1[kn/qn,(kn+1)/qn)({anx}) dx ≤
(

1 +
2

a1

) v∏
n=1

(
1

qn
+

2an
an+1

)
.

We conclude by remarking that qn ≤ 2/rn for any n ≥ 1, and that 1 + x ≤ ex for
any real number x. �

Proposition 4 directly shows that when the sequence of integers (an)n≥1 grows
fast enough to ensure the convergence of the series

∑
n an/(rnan+1), then the de-

pendence between the random points {anX} is sufficiently weak to guarantee that
all the results of Section 3 are applicable. In that situation, this leads us to a rather
precise description of the size of the intersection of the random set G(a, r) with a
fixed compact subset of the circle. By way of illustration, we shall now determine
the Hausdorff dimension of such an intersection in the case where the compact set
is regular, keeping in mind that the results of Section 3 actually yield much finer
statements.

To this end, let G denote a compact subset of the circle T, and let us suppose
that G is regular with dimension γ ∈ (0, 1]. Let us also assume that the sequence r
satisfies (33) for some real number ρ > 0. The convergence of the aforementioned
series is then guaranteed when

lim inf
n→∞

log(an/an+1)

log rn
> 1 + ρ. (39)

In that situation, we may apply all the results of Section 3. Therefore, when
ρ + γ < 1, Theorem 5 ensures that the intersection G(a, r) ∩ G is almost surely
empty. When ρ+ γ is equal to one, the intersection is empty with probability one
or zero, according to the convergence or divergence of the series

∑
n r

ρ
n, respectively;

this is due to Theorems 5 and 6. Finally, when ρ+ γ > 1, Theorem 6 implies that
the intersection is almost surely nonempty; by virtue of Theorems 5 and 7, its
Hausdorff dimension then satisfies

a.s. dimH (G(a, r) ∩G) = min{ρ, 1}+ γ − 1.

In order to establish a connection with existing results from metric number
theory, let us consider the particular case where the radii rn are of the form n−ν ,
where ν is a positive real number. The critical exponent coming into play in (33)
is then given by ρ = 1/ν. Furthermore, the condition (39) is verified regardless of
the value of ν when the integers an grow superexponentially fast, in the sense that

lim
n→∞

log(an+1/an)

log n
=∞, (40)
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which we assume in what follows. In view of the above discussion, we deduce that
with probability one,

dimH

(
G(a, (n−ν)n≥1) ∩G

)
=


γ if ν ≤ 1

1/ν + γ − 1 if 1 < ν ≤ 1/(1− γ)

−∞ if ν > 1/(1− γ).

An emblematic situation is when the compact set G is the Cantor set K, which is
regular with dimension κ given by (2). Furthermore, in the mere situation where
G is the whole circle T, considering sequences a = (an)n≥1 that grow superexpo-
nentially fast is also new. In those two cases, adopting notations that are more
customary in the metric theory of Diophantine approximation, we may rewrite the
previous result as follows.

Theorem 8. Let (an)n≥1 be a sequence of positive integers such that (40) holds.
Then, for Lebesgue almost every real number α and for every real number ν ≥ 1,

dimH

{
ξ ∈ R

∣∣∣∣ ‖anα− ξ‖ < 1

nν
for i.m. n ≥ 1

}
=

1

ν

and

dimH

{
ξ ∈ K

∣∣∣∣ ‖anα− ξ‖ < 1

nν
for i.m. n ≥ 1

}
=

1

ν
+ κ− 1

if this value is nonnegative; otherwise, the latter set is empty.

Note that a simple example of a sequence (an)n≥1 for which (39) is verified is

given by an = bn(1+ρ+ε)nc for n ≥ 1, where ε is any fixed positive real number.
In addition, one easily checks that the more stringent condition (40) is satisfied for
instance by the sequences of the form an = nnbn , where (bn)n≥1 is an auxiliary
sequence of positive integers that monotonically diverges to infinity.

Our approach fails when the condition (40) is not verified, because there may be
too much dependence between the fractional parts {anα}, n ≥ 1, for typical values
of α. This is the case in particular when (an)n≥1 has a linear or geometric growth.
In those cases, however, the situation is well understood if one is not interested
in taking the intersection with the Cantor set. In fact, when an = n, it is shown
in [8, 32] that, for every irrational real number α and every real number ν ≥ 1,

dimH

{
ξ ∈ R

∣∣∣∣ ‖nα− ξ‖ < 1

nν
for i.m. n ≥ 1

}
=

1

ν
.

The case in which an = 2n has been investigated by Fan, Schmeling, and Troubet-
zkoy [18], and also by Liao and Seuret [28]. In particular, these authors determined
the value of

dimH

{
ξ ∈ R

∣∣∣∣ ‖2nα− ξ‖ < 1

nν
for i.m. n ≥ 1

}
when the real number α is chosen according to a variety of invariant Gibbs measures
associated with the doubling map.

6. Concluding remarks and further problems

6.1. Approximation by algebraic numbers of bounded degree. One natural
way to extend the theorem of Jarńık and Besicovitch is the study of the approxi-
mation to real numbers by algebraic numbers of bounded degree. For n ≥ 1, the
accuracy with which real numbers are approximated by algebraic numbers of de-
gree at most n is measured by means of the exponents w∗n, introduced in 1939 by
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Koksma [24]. (Although we do not introduce Mahler’s exponents wn, we prefer to
keep the standard notation w∗n for Koksma’s exponents.)

Recall that the height H(P ) of an integer polynomial P (X) is the maximum
of the moduli of its coefficients, and the height H(a) of an algebraic number a is
the height of its minimal polynomial over Z. For any integer n ≥ 1 and any real
number ξ, the exponent w∗n(ξ) is defined as the supremum of the real numbers w∗

for which the inequality

0 < |ξ − a| ≤ H(a)−w
∗−1 (41)

is satisfied for infinitely many algebraic numbers a of degree at most n. Clearly,
every real number ξ satisfies

µ(ξ) = w∗1(ξ) + 1.

This shows that the exponents w∗n with n ≥ 2 extend in a natural way the irra-
tionality exponent µ.

The introduction of the exponent −1 in (41) is explained on [9, p. 48]. The reader
is referred to this monograph for results on the exponents w∗n. We only mention here
that w∗n(ξ) = min{n, d− 1} for every real algebraic number ξ of degree d and that
Lebesgue almost all real numbers ξ satisfy w∗n(ξ) = n for all n ≥ 1. In 1970, Baker
and Schmidt [3] extended the theorem of Jarńık and Besicovitch to the exponents
w∗n. They established that, for every integer n ≥ 1 and every real number w∗ ≥ n,
the set

Un(w∗) = {ξ ∈ R | w∗n(ξ) ≥ w∗}
satisfies

dimH Un(w∗) =
n+ 1

w∗ + 1
. (42)

Note that (3) and (42) coincide, as expected, for n = 1. Some further metric
properties of the sets Un(w∗) were obtained in [10, 13]; in particular, it is proven in
those two papers that the above sets are intersective in the sense of Falconer [16].

The result due to Weiss that is mentioned at the very beginning of Section 1 was
extended to the exponents w∗n by Kleinbock, Lindenstrauss and Weiss; they proved
that, with respect to the standard measure on the Cantor set, almost all points ξ
satisfy

∀n ≥ 1 w∗n(ξ) = n,

see [23, Proposition 7.10]. This motivates the following open question.

Problem 1. Let n ≥ 1 be an integer and w∗ ≥ n be a real number. To determine
the Hausdorff dimension of the set

Un(w∗) ∩K = {ξ ∈ K | w∗n(ξ) ≥ w∗}.

As regards this problem, we believe that the following natural extension of Con-
jecture 1 holds.

Conjecture 3. For any integer n ≥ 1 and any real number w∗ ≥ n, the set of
points in the Cantor set which are approximable at order at least w∗+1 by algebraic
numbers of degree at most n satisfies

dimH(Un(w∗) ∩K) = max

{
n+ 1

w∗ + 1
+ κ− 1,

κ

w∗ + 1

}
. (43)

A noteworthy result towards this conjecture was established by Kristensen [25].
Specifically, extending the covering argument used in [31, 36], he proved the follow-
ing upper bound:

dimH(Un(w∗) ∩K) ≤ 2nκ

w∗ + 1
. (44)
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Furthermore, when n is fixed and h varies, the number of algebraic numbers with
degree at most n and height equal to h that belong to the circle T is of the order of
hn. Therefore, in the light of the approach developed in Section 2.3, the following
extension of Theorem 1 plainly holds: for Lebesgue almost every angle α ∈ T, we
have both

w∗n(ξ) ≤ n+ 1

1− κ
− 1

for all points ξ ∈ α+K, and

dimH(Un(w∗) ∩ (α+K)) ≤ n+ 1

w∗ + 1
+ κ− 1

for all real numbers w∗ between n and (n + 1)/(1 − κ) − 1. Note that this last
generic bound is much more stringent than (44).

Let us mention that virtually all the ideas developed in this paper may be
adapted to the setting of the approximation by algebraic numbers. In particular,
as in Section 2.4, one may define an appropriate probabilistic counterpart of the
exponents w∗n and establish the corresponding version of Conjecture 3. Likewise,
the same heuristic arguments as those put forward in Section 2.2 suggest that (18)
can be extended to

lim sup
j→∞

1

j
log3 #An,w

∗,j
K ≤ max{n+ 1− (1− κ)(w∗ + 1), κ},

where An,w
∗,j

K denotes the set of all algebraic numbers a ∈ T with degree at most

n that satisfy both 3j ≤ H(a) < 3j+1 and d(a,K) < 3−(w
∗+1)j . Such an upper

bound would obviously be in favor of the validity of Conjecture 3.

6.2. A more general framework. All the number theoretical problems discussed
above can be put in a same general framework. We consider the following question.
Let x = (xn)n≥1 be a sequence of points in T. Given a real number ν ≥ 1, let us
consider the set

H(x, ν) = {ξ ∈ T | d(ξ, xn) < n−ν for i.m. n ≥ 1}.

When the sequence x forms a regular system in the sense of [9, Chapter 5], we have

dimHH(x, ν) =
1

ν
.

Note that this general statement includes (42) after having suitably numbered the
algebraic numbers in T of degree at most n, see [9, Lemma 5.4].

The general problem that we are concerned with is the estimation of the Haus-
dorff dimension of the set

H(x, ν) ∩G = {ξ ∈ G | d(ξ, xn) < n−ν for i.m. n ≥ 1},

where G is a compact subset of the circle T which, for simplicity, is supposed to
be regular with dimension γ ∈ (0, 1). Here, we take the intersection of two null
sets of very different nature. The set G is compact and nowhere dense, whereas
when x forms a regular system, the set H(x, ν) is an intersective set in the sense of
Falconer [16], see [10, 13]. Even giving an accurate upper bound on the Hausdorff
dimension of the intersection set H(x, ν) ∩G is challenging.

Problem 2. Find reasonable conditions under which one can prove either of the
upper bounds

dimH(H(x, ν) ∩G) ≤ γ

ν
or dimH(H(x, ν) ∩G) ≤ 1

ν
+ γ − 1.
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Note in passing that the latter bound is more stringent than the former. More-
over, a preliminary step towards the first bound in Problem 2 would be to under-
stand for which sequences x one can apply the arguments of [31, 36]. As regards
Problem 2, the only general result that may be deduced from the present paper is
again an extension of Theorem 1, namely: for Lebesgue almost every angle α ∈ T,

dimH(H(x, ν) ∩ (α+G)) ≤ 1

ν
+ γ − 1 ;

in particular, the intersection set is empty if the last bound is negative. This means
that the second bound in Problem 2 holds when the compact set G is rotated in
a generic manner. Moreover, inspecting the proof of Theorem 1, we see that the
above result still holds when G is not regular but only satisfies P g(G) <∞.

Restricting to the case where G is the Cantor set K, one may also point out the
following question.

Problem 3. Compare the values of the Hausdorff dimensions

dimHH(x, ν) and dimH(H(x, ν) ∩K).

The following two examples show that there is no hope of getting a general
answer to Problem 3; we in fact have two extremal cases:

(1) Assume that x = (xn)n≥1 denotes the natural enumeration of the rational
numbers in T of the form p/3j such that gcd(3, p) = 1 and p has only digits
0 and 2 in its ternary representation. Then, the denominator of xn is of
the order of n1/κ, and Corollary 1 in [26] implies that for all ν ≥ 1/κ,

dimHH(x, ν) = dimH(H(x, ν) ∩K) =
1

ν
.

Note that we even have H(x, ν) ∩K = H(x, ν).
(2) Now, assume that x = (xn)n≥1 is the natural enumeration of the rational

numbers in T of the form p/3j−1/(2 ·3j) such that gcd(3, p) = 1 and p has
only digits 0 and 2 in its ternary representation. Then, the denominator of
xn is still of the order of n1/κ and for all ν ≥ 1/κ,

dimHH(x, ν) =
1

ν
.

However, each point xn is very far from K, namely, at a distance of the
order of n1/κ. Thus, in this case, the set H(x, ν)∩K is empty for ν > 1/κ.

7. Proof of the main results

7.1. Proof of Theorem 5. Recall that the set In,k is defined in Section 3.2 as the
image of the interval [k/qn, (k+1)/qn) under the projection modulo one. Through-
out the proof of Theorem 5, we choose qn to be equal to the integer part of 1/rn,
that is, qn = b1/rnc. The circle T may thus be seen as the disjoint union over
k ∈ {0, . . . , qn − 1} of the sets In,k. Then, let Kn(G) denote the set of integers
k for which the compact set G intersects In,k. In addition, let I ′n,k be the closed
subinterval of T which has the same midpoint as In,k and is three times larger. It
is now easy to check that

∀n ≥ 1 B(Xn, rn) ∩G ⊆
⋃

k∈Kn(G)

Xn∈I′n,k

In,k, (45)

where B(Xn, rn) denotes the open interval centered at Xn with radius rn.
Furthermore, note that for any k ∈ Kn(G), there exists a point ξk ∈ G ∩ In,k.

Thus, there exists a subset K ′n(G) of Kn(G) with cardinality at least #Kn(G)/2
such that d(ξk, ξk′) > 1/qn for any distinct k and k′ in K ′n(G). In view of [35,
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Lemma 4], the finiteness of P g(G) ensures that there exists a finite Borel measure
χ such that χ(B(x, r)) ≥ g(r) for all x ∈ G and r ∈ (0, 1). As a result,

χ(T) ≥
∑

k∈K′n(G)

χ(B(ξk, 1/(2qn))) ≥ #Kn(G)

2
g

(
1

2qn

)
.

Since the gauge function g is nondecreasing and doubling, we deduce that

∃C > 0 ∀n ≥ 1 #Kn(G) ≤ C

g(rn)
. (46)

We may now prove the second statement of the theorem. Let us consider a
doubling gauge function h such that the series

∑
n h(rn)rn/g(rn) converges. For

any real number δ ∈ (0, 1/2) and any integer n0 ≥ 1, the inclusion (45) ensures that
the set E(X, r) ∩G is covered by the intervals In,k indexed by the integers n ≥ n0
and k ∈ Kn(G) for which Xn ∈ I ′n,k. All these intervals have diameter 1/qn, which
is smaller than δ for n large enough, due to the convergence of the aforementioned
series. As a consequence,

Hhδ (E(X, r) ∩G) ≤
∞∑

n=n0

h

(
1

qn

) ∑
k∈Kn(G)

1{Xn∈I′n,k}.

From (46), the fact that the variables Xn are uniformly distributed, and the fact
that h is doubling, we deduce that

E[Hhδ (E(X, r) ∩G)] ≤
∞∑

n=n0

h

(
1

qn

)
#Kn(G)

3

qn
≤ 6CC ′

∞∑
n=n0

h(rn)rn
g(rn)

,

where C ′ depends on h only. We may now let n0 tend to infinity, and then let δ
tend to zero. Fatou’s lemma then implies that Hh(E(X, r)∩G) has mean zero, and
the second part of the theorem follows.

The constant function equal to one is not, strictly speaking, a gauge function in
the sense of our definition. However, this function may be used instead of h above,
thereby leading to the first statement of the theorem. Indeed, in that situation, the
Hausdorff measure is just the counting measure, and the previous arguments imply
that #(E(X, r) ∩G) has mean zero.

7.2. Proof of Theorem 6. By virtue of Frostman’s lemma, see for instance [30,
Theorem 8.8], the positivity of Hg(G) implies that there exists a Borel measure χ
such that

∀x ∈ T ∀r ∈ (0, 1) χ(B(x, r)) ≤ g(r). (47)

Moreover, the support of the measure χ is a nonempty compact subset of G that
is denoted by G′ in what follows.

Thanks to a Baire category argument appearing in [22, p. 12], we only need to
show that for any fixed open interval I of the circle that intersects G′, the event

EI = {d(Xn, G
′ ∩ I) < rn for i.m. n ≥ 1}

holds with probability one. Here, d(Xn, G
′∩ I) denotes the distance from the point

Xn to the set G′ ∩ I. Indeed, assuming that this holds and letting I run through a
countable base of open intervals that generate the topology on T, we deduce that,
with probability one, all the events EV , for V running through the open sets that
intersect G′, hold simultaneously. As a result, with probability one, for any open
subset V of the circle and any integer u ≥ 1,

G′ ∩ V 6= ∅ =⇒ G′ ∩ V ∩
∞⋃
n=u

B(Xn, rn) 6= ∅,
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which means that the above union is dense in the complete metric space G′. The
Baire category theorem then ensures that the set E(X, r)∩G′ is almost surely dense
in G′, and therefore nonempty. It follows that the set E(X, r) ∩G is almost surely
nonempty as well.

Let us now consider an open interval I that intersects G′ and show that the
event EI holds with probability one. We shall make use of the same notations as in
the proof of Theorem 5, except that we choose qn to be equal to d1/rne, where d · e
stands for the ceiling function. In addition to these notations, let In(G) denote the
union over k ∈ Kn(G) of the intervals In,k. On easily checks that for every n ≥ 1,

Xn ∈ In(G) =⇒ d(Xn, G
′ ∩ I) < rn.

Therefore, it suffices to show that with probability one, Xn ∈ In(G) for infinitely
many integers n ≥ 1.

To this purpose, let us begin by observing that the complement of the set In(G) is

the union over k ∈ Kn(G){ of the sets In,k, where Kn(G){ denotes the complement
of Kn(G) in {0, . . . , qn − 1}. Thus, for u ≤ v,

P

(
v⋂

n=u

{Xn 6∈ In(G)}

)
=

∑
ku,...,kv

P

(
v⋂

n=u

{Xn ∈ In,kn}

)
where each index kn arising in the sum runs over the set Kn(G){. All the terms
in this sum are bounded from above by Θ(X,B(r))/(qu · . . . · qv), so that the whole
sum is bounded from above by

Θ(X,B(r)) ·
v∏

n=u

#Kn(G){

qn
.

Using that 1− y ≤ e−y and qn < 2/rn, we get

v∏
n=u

#Kn(G){

qn
≤ exp

(
−1

2

v∑
n=u

#Kn(G) rn

)
.

In addition, recall that the intersection of the sets G and In,k is nonempty if and
only if k belongs to Kn(G). Moreover, in that situation, this intersection contains
a point xn,k and is therefore included in the closed interval B(xn,k, rn) with radius
rn centered at this point. With the help of (47), we deduce that

χ(T) =
∑

k∈Kn(G)

χ(G ∩ In,k) ≤
∑

k∈Kn(G)

χ(B(xn,k, rn)) ≤ #Kn(G) g(rn).

As a consequence, the cardinality of the set Kn(G) is bounded from below by
χ(T)/g(rn). We infer that

P

( ∞⋃
n0=1

∞⋂
n=n0

{Xn 6∈ In(G)}

)
≤

∞∑
n0=1

exp

(
−χ(T)

2

∞∑
n=n0

rn
g(rn)

)
= 0,

in view of the divergence of the series
∑
n rn/g(rn). The result follows.

7.3. Proof of Lemma 3. The proof relies on the existence of a family of compact
sets Qg indexed by the gauge functions such that Proposition 5 below holds. These
compact sets are obtained through a slight generalization of Mandelbrot’s fractal
percolation process that we introduce and study in Section 8. In the next statement,
we make use of the notation h ≺ϕ g defined by (32), and we also write h ≺≺ g to
indicate that two gauge functions g and h satisfy

∞∑
j=1

g(2−j)

(
1

h(2−j)
− 1

h(2−(j−1))

)
<∞.
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Proposition 5. There exists a family of compact sets Qg ⊆ T indexed by the gauge
functions such that for any set E ⊆ T, and any gauge function g, the following
properties hold:

(1) Let us assume that Hg(E) = 0. Then,

a.s. E ∩Qg = ∅.
(2) Let us assume that E is Borel and Hg(E) > 0. Then, for every gauge

functions h and ϕ,{
h ≺≺ g =⇒ P(E ∩Qh 6= ∅) > 0

h ≺ϕ g =⇒ P(Hϕ(E ∩Qh) > 0) > 0.

The above result is established in Section 8; this is actually a straightforward
consequence of Lemmas 6–8 therein. Let us now give the proof of Lemma 3. Let ϕ
denote a gauge function, and let E be a random subset of the circle which intersects
almost surely every fixed compact set having positive Hausdorff ϕ-measure. Now,
let G denote a compact subset of the circle, and let g be a gauge function such that
Hg(G) > 0. In addition, let h be a gauge function such that h ≺ϕ g. Our purpose
is now to show that Hh(E ∩G) > 0 almost surely.

To proceed, let (Qnh)n≥1 denote a sequence of independent copies of the fractal
percolation set Qh that are also independent of the random set E, and let

Q̂h =

∞⋃
n=1

Qnh.

Proposition 5(2) ensures that each set G ∩Qnh has Hausdorff ϕ-measure zero with
a probability which does not depend on n and is smaller than one. Thus, in view
of the subadditivity of Hausdorff measures, we have

a.s. Hϕ(G ∩ Q̂h) > 0.

Therefore, in view of [17, Theorem 4.10], the set G ∩ Q̂h almost surely contains a
compact set with positive Hausdorff ϕ-measure. This compact subset thus intersects
the random set E with probability one. Therefore,

a.s. E ∩G ∩ Q̂h 6= ∅.
On top of that, if Hh(E∩G) = 0, then Proposition 5(1) ensures that the probability
that the set E∩G intersects any of the copies Qnh is equal to zero. As a consequence,

a.s. E ∩G ∩ Q̂h 6= ∅ =⇒ Hh(E ∩G) > 0,

and Lemma 3 follows.

8. A generalized fractal percolation process

This section is devoted to the construction and the study of the family of compact
sets Qg that we use in the proof of Lemma 3, see Section 7.3 above. These sets
are obtained by dint of a slight generalization of Mandelbrot’s fractal percolation
process. To begin with, recall that the infinite complete binary tree may naturally
be encoded by the set

T =

∞⋃
j=0

{0, 1}j .

Here, we adopt the convention that {0, 1}0 is reduced to the singleton containing
only the root ∅. Specifically, every node u ∈ T with generation 〈u〉 = j may be
seen as a finite word u = u1 . . . uj over the alphabet {0, 1}, with child nodes the
two words u1 . . . uj0 and u1 . . . uj1, and with parent node the word←−u = u1 . . . uj−1
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in the case where j is positive. The tree structure is then recovered by endowing
the vertex set T with the arcs (←−u , u), for u 6= ∅.

Now, given a gauge function g, let us consider the following inhomogeneous per-
colation process on the edges of the above tree: the edge connecting a given node
u 6= ∅ to his parent is retained with a probability equal to g(2−〈u〉)/g(2−〈u〉+1),
independently of the other edges. Then, we say that a node u survives the perco-
lation if all the edges between u and the root ∅ are retained. We always assume
that the root itself survives the percolation. The random subtree of T composed
by the nodes that survive the percolation is denoted by Tg. Note that every given

node u survives the percolation with probability g(2−〈u〉)/g(1).
Furthermore, recall that the vertices of the tree T lead to a natural parametriza-

tion of the dyadic intervals of the circle T. In fact, the dyadic interval associated
with a node u = u1 . . . uj in T is the image, denoted by λ(u), of the interval
(u12−1 + . . .+ uj2

−j) + [0, 2−j) under the projection modulo one. In addition, the
interval associated with the root is chosen to be the whole circle, that is, λ(∅) = T.
This enables us to consider the random compact subset of the circle

Qg =
∞⋂
j=1

↓
⋃
u∈Tg
〈u〉=j

λ(u),

where · stands for closure. The set Qg may be seen as an extension to the in-
homogeneous setting of the compact set obtained through Mandelbrot’s fractal
percolation process, see [14] and the references therein.

Let us recall that Proposition 5 above contains all the important properties
satisfied by the sets Qg that we use in the proof of Lemma 3. This proposition may
naturally be split into three separate lemmas that we now state and prove. The
first two lemmas discuss the probability with which the random set Qg intersects
a given subset of the circle.

Lemma 6. For any set E ⊆ T and any gauge function g,

Hg(E) = 0 =⇒ a.s. E ∩Qg = ∅.

Proof. Let δ > 0 and let (Un)n≥1 be a sequence of subsets of T such that E ⊆
⋃
n Un

and |Un| < δ for all n ≥ 1. Let N0 be the set of all integers n ≥ 1 for which the
diameter of Un vanishes, and let N1 denote its complement in N. Then, the set E
may be decomposed as the union of the sets

E0 = E ∩
⋃
n∈N0

Un and E1 = E ∩
⋃
n∈N1

Un.

On the one hand, it is easy to check that any point of the circle that is fixed in
advance belongs to the set Qg with probability zero. Since the set E0 is at most
countable, it follows that its intersection with Qg is almost surely empty.

On the other hand, for any integer n ∈ N1, the set Un is contained in four dyadic
intervals of length at most |Un|. Accordingly, there exists a family of nodes un,i in
T , with n ∈ N1 and i ∈ {1, 2, 3, 4}, such that{

Un ⊆ λ(un,1) ∪ λ(un,2) ∪ λ(un,3) ∪ λ(un,4)

max{|λ(un,1)|, |λ(un,2)|, |λ(un,3)|, |λ(un,4)|} ≤ |Un|

for all n ∈ N1. As a result, E1 ∩Qg is covered by the sets λ(un,i) ∩Qg for n ∈ N1

and i ∈ {1, 2, 3, 4}. Note that, with probability one, the set Qg cannot contain any
dyadic point, that is, any point of the form k2−j . Thus, this last intersection is
empty if un,i does not survive the percolation. This implies that one of these nodes
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necessarily survives the percolation when the set E1 ∩Qg is nonempty. Hence,

P(E1 ∩Qg 6= ∅) ≤
∑
n∈N1

i∈{1,2,3,4}

P(un,i ∈ Tg) =
∑
n∈N1

i∈{1,2,3,4}

g(2−〈u
n,i〉)

g(1)
≤ 4

g(1)

∞∑
n=1

g(|Un|).

Taking the infimum over all the possible coverings (Un)n≥1, and then letting δ
go to zero, we deduce that

P(E ∩Qg 6= ∅) ≤ P(E0 ∩Qg 6= ∅) + P(E1 ∩Qg 6= ∅) ≤
4

g(1)
Hg(E),

and the result follows. �

Lemma 7. For any Borel set E ⊆ T and any gauge function g,

Hg(E) > 0 =⇒ ∀h ≺≺ g P(E ∩Qh 6= ∅) > 0.

Proof. Since Hg(E) is positive, Frostman’s lemma implies that there exists a Borel
measure χ with support included in E such that (47) holds. For any node u ∈ T ,
set ψ(u) = χ(λ(u)). Moreover, for any integer j ≥ 0, set hj = h(2−j) and

Zj =
1

hj

∑
u∈Th
〈u〉=j

ψ(u),

and let Gj denote the σ-algebra generated by the events {u ∈ Th} for 〈u〉 ≤ j.
It is then easy to check that (Zj)j≥0 is a nonnegative martingale with respect to
the filtration (Gj)j≥0, thereby converging almost surely to some random variable
Z∞ ∈ L1. Furthermore, for any integer j ≥ 1,

E[Z2
j ] =

1

h2j

∑
u,v∈T
〈u〉=〈v〉=j

ψ(u)ψ(v)P(u ∈ Th and v ∈ Th).

The probability that two nodes u and v both survive the percolation is clearly equal
to (h〈u〉h〈v〉)/(h0h〈u∧v〉), where u ∧ v denotes their lowest common ancestor in the
tree T . As a consequence,

E[Z2
j ] =

∑
w∈T
〈w〉≤j

1

h0h〈w〉

∑
〈u〉=〈v〉=j
u∧v=w

ψ(u)ψ(v)

Note that the inner sum is equal to ψ(w)2 if the node w has generation j, and to
2ψ(w0)ψ(w1) if w has generation less than j. Therefore,

E[Z2
j ] =

∑
w∈T
〈w〉≤j

1

h0h〈w〉

(
ψ(w)2 − 1{〈w〉≤j−1}(ψ(w0)2 + ψ(w1)2)

)
,

from which it follows that

E[Z2
j ] =

ψ(∅)2

h20
+

1

h0

∑
w∈T

0<〈w〉≤j

ψ(w)2
(

1

h〈w〉
− 1

h〈w〉−1

)
.

In view of (47) and the fact that h ≺≺ g, we deduce that

sup
j≥0

E[Z2
j ] ≤ χ(T)2

h(1)2
+
χ(T)

h(1)

∞∑
j=1

g(2−j)

(
1

h(2−j)
− 1

h(2−(j−1))

)
<∞.

This ensures that the martingale (Zj)j≥0 converges to Z∞ in L2. In particular,
the expectation of Z∞ is equal to that of Z0, specifically, χ(T)/h(1), so that Z∞ is
positive with positive probability. On top of that, note that if Z∞ is positive, then
for any integer j ≥ 0, there is a node u ∈ Th with generation equal to j such that



DIOPHANTINE APPROXIMATION ON THE CANTOR SET 33

λ(u) intersects the support of the measure χ. In that case, Cantor’s intersection
theorem ensures that the limit set Qh intersects E, and the result follows. �

The third and last lemma about the sets Qg concerns the size of their intersection
with a given Borel subset of the circle.

Lemma 8. For any Borel set E ⊆ T and any gauge functions g and ϕ,

Hg(E) > 0 =⇒ ∀h ≺ϕ g P(Hϕ(E ∩Qh) > 0) > 0.

Proof. Let us assume that the set E has positive Hausdorff g-measure, and that
h ≺ϕ g. Then, g/h coincides with a gauge function ψ satisfying ϕ ≺≺ ψ. In
particular, hϕ ≺≺ g and Lemma 7 implies that the random set Qhϕ intersects E with
positive probability. Furthermore, it is easy to see that the set Qhϕ is distributed
as Qh∩Qϕ, where Qh and Qϕ are independent. Thus, the set Qϕ intersects E∩Qh
with positive probability as well. The result now follows from Lemma 6. �
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8628, Bâtiment 425, 91405 Orsay Cedex, France

E-mail address: arnaud.durand@math.u-psud.fr


	1. Introduction
	2. Various arguments supporting the conjectures
	2.1. Notations and recalls
	2.2. Heuristic arguments supporting Conjecture 1
	2.3. A doubly metric point of view: rotating the Cantor set
	2.4. Conjecture 1 holds for a probabilistic counterpart of the irrationality exponent
	2.5. A probabilistic counterpart of the exponents vb and its connections with Conjecture 2

	3. Approximation by uniform random points: general results
	3.1. Size of the intersection with a compact set: upper bounds
	3.2. Size of the intersection with a compact set: lower bounds under a weak dependence condition

	4. Application to the approximation by independent points
	4.1. Uniform distribution in the circle and intersection with a regular set
	4.2. Uniform distribution in a regular set

	5. Application to the approximation by fractional parts
	6. Concluding remarks and further problems
	6.1. Approximation by algebraic numbers of bounded degree
	6.2. A more general framework

	7. Proof of the main results
	7.1. Proof of Theorem 5
	7.2. Proof of Theorem 6
	7.3. Proof of Lemma 3

	8. A generalized fractal percolation process
	References

