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Abstract

Let S = {p1, . . . , ps} be a finite, non-empty set of distinct prime
numbers. For a non-zero integer m, write m = pa11 . . . pass b, where
a1, . . . , as are non-negative integers and b is an integer relatively
prime to p1 · · · ps. Then we define the S-part [m]S of m by [m]S :=
pa11 . . . pass . In 2013, Gross and Vincent proved that if f(X) is a poly-
nomial with integral coefficients with at least two distinct roots, then
there exist effectively computable positive numbers κ1 and κ2, de-
pending only on f(X) and S, such that (*) [f(x)]S < κ2|f(x)|1−κ1 .
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for every integer x with f(x) 6= 0. Their proof uses a Baker-type es-
timate for logarithmic forms. Under the additional hypotheses that
f(X) has degree n ≥ 2 and no multiple roots, we deduce an ineffec-
tive analogue of (*), with instead of 1−κ1 an exponent 1

n+ε for every
ε > 0 and instead of κ2 an ineffective number depending on f(X), S
and ε. This is in fact an easy application of the p-adic Thue-Siegel-
Roth Theorem. We show that the exponent 1

n is best possible. Lastly,
we give an estimate for the density of the set of integers x for which
[f(x)]S is large, i.e., for every small ε > 0 we estimate in terms of B
the number of integers x with |x| ≤ B such that [f(x)]S ≥ |f(x)|ε.

We considerably extend both the result of Gross and Vincent, its
ineffective analogue, and the density result by proving similar results
for the S-parts of values of homogeneous binary forms and, more
generally, of values of decomposable forms at integer points, under
suitable assumptions.

1 Introduction

Let S = {p1, . . . , ps} be a finite, non-empty set of distinct prime numbers.

For a non-zero integer m, write m = pa11 . . . pass b, where a1, . . . , as are non-

negative integers and b is an integer relatively prime to p1 · · · ps. Then we

define the S-part [m]S of m by

[m]S := pa11 . . . pass .

The motivation of the present paper was given by the following result, es-

tablished in 2013 by Gross and Vincent [10].

Theorem A. Let f(X) be a polynomial with integral coefficients with at

least two distinct roots and S a finite, non-empty set of prime numbers. Then

there exist effectively computable positive numbers κ1 and κ2, depending only

on f(X) and S, such that for every non-zero integer x that is not a root of

f(X) we have

[f(x)]S < κ2|f(x)|1−κ1 .

We mention that earlier, Stewart [24] obtained a similar result, but only for

polynomials whose zeros are consecutive integers.

Gross and Vincent’s proof of Theorem A depends on the theory of linear

forms in complex logarithms, Under the additional hypotheses that f(X)

has degree n ≥ 2 and no multiple roots, we deduce an ineffective analogue

of Theorem A, with instead of 1−κ1 an exponent 1
n + ε for every ε > 0 and

instead of κ2 an ineffective number depending on f(X), S and ε. This is in

fact an easy application of the p-adic Thue-Siegel-Roth Theorem. We show
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that the exponent 1
n is best possible. Lastly, we give an estimate for the

density of the set of integers x for which [f(x)]S is large, i.e., for every small

ε > 0 we estimate in terms of B the number of integers x with |x| ≤ B such

that [f(x)]S ≥ |f(x)|ε.
We considerably extend both Theorem A, its ineffective analogue, and

the density result by proving similar results for the S-parts of values of

homogeneous binary forms and, more generally, of values of decomposable

forms at integer points, under suitable assumptions. In addition, in the

effective results we give an expression for κ1, which is explicit in terms

of S. For our extensions to binary forms and decomposable forms, we use

the p-adic Thue-Siegel-Roth Theorem and the p-adic Subspace Theorem

of Schmidt and Schlickewei for the ineffective estimates for the S-part. The

proof of the effective estimates is based on an effective theorem of Győry and

Yu [15] on decomposable form equations whose proof depends on estimates

for linear forms in complex and in p-adic logarithms. Lastly, the proofs of our

density results on the number of integer points of norm at most B at which

the value of the binary form or decomposable form under consideration has

large S-value are based on a recent general lattice point counting result of

Barroero and Widmer [1] and on work in the PhD-thesis of Junjiang Liu

[16].

For simplicity, we have restricted ourselves to univariate polynomials, bi-

nary forms and decomposable forms with coefficients in Z. With some extra

technical effort, analogous results could have been obtained over arbitrary

number fields.

In Section 2 we state our results, in Sections 3–6 we give the proofs, in

Sections 7 and 8 we present some applications, and in Section 9 we give

some additional comments on Theorem A.

2 Results

2.1 Results for univariate polynomials and binary forms

We use notation �a,b,..., �a,b,... to indicate that the constants implied by

the Vinogradov symbols depend only on the parameters a, b, . . . . Further,

we use the notation A �a,b,... B to indicate that both A �a,b,... B and

B �a,b,... A hold. We prove the following ineffective analogue of Theorem A

mentioned in the previous section.

Theorem 2.1. Let f(X) ∈ Z[X] be a polynomial of degree n ≥ 2 without

multiple zeros.
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(i) Let S = {p1, . . . , ps} be a non-empty set of primes. Then for every

ε > 0 and for every x ∈ Z with f(x) 6= 0,

[f(x)]S �f,S,ε |f(x)|(1/n)+ε.

(ii) There are infinitely many primes p, and for each of these p, there are

infinitely many integers x, such that f(x) 6= 0 and

[f(x)]{p} �f |f(x)|1/n.

For completeness, we give here also a more precise effective version of

Theorem A, which is a consequence of Theorem 2.5 stated below on the

S-parts of values of binary forms.

Theorem 2.2. Let f(X) ∈ Z[X] be a polynomial with at least two distinct

roots and suppose that its splitting field has degree d over Q. Further, let

S = {p1, . . . , ps} be a non-empty set of primes and put P := max(p1, . . . , ps).

Then for every integer x with f(x) 6= 0 we have

[f(x)]S ≤ κ2|f(x)|1−κ1 ,

where

κ1 =
(
cs1
(
P (log p1) · · · (log ps)

)d)−1

,

and c1, κ2 are effectively computable positive numbers that depend only on

f(X).

For variations on this result, and related results, we refer to Section 9.

For polynomials X(X + 1) and X2 + 7 and special sets S, Bennett,

Filaseta, and Trifonov [2, 3] have obtained stronger effective results.

As is to be expected, for most integers x, the S-part [f(x)]S is small

compared with |f(x)|. This is made more precise in the following result. For

any finite set of primes S and any ε > 0, B > 0, we denote by N(f, S, ε, B)

the number of integers x such that

(2.1) |x| ≤ B, f(x) 6= 0, [f(x)]S ≥ |f(x)|ε.

Denote by D(f) the discriminant of f and for a prime p, denote by gp the

largest integer g such that pg divides D(f).

Theorem 2.3. Let f(X) ∈ Z[X] be a polynomial of degree n ≥ 2 with

non-zero discriminant. Further, let 0 < ε < 1/n, and let S be a finite set

of primes. Denote by s′ the number of primes p ∈ S such that f(x) ≡
0 (mod pgp+1) is solvable and assume that this number is positive. Then

N(f, S, ε, B) �f,S,ε B1−nε(logB)s
′−1 as B →∞.
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Remarks.

1. If s′ = 0 then [f(x)]S is bounded, and so the set of integers x with

[f(x)]S ≥ |f(x)|ε is finite.

2. There are infinitely many primes p such that f(x) ≡ 0 (mod p) is solv-

able. Removing from those the finitely many that divide D(f), there remain

infinitely many primes p such that gp = 0 and f(x) ≡ 0 (mod p) is solvable.

We now formulate some analogues of the above mentioned results for

binary forms. Denote by Z2
prim the set of pairs (x, y) ∈ Z2 with gcd(x, y) = 1.

Theorem 2.4. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 2

with non-zero discriminant.

(i) Let S = {p1, . . . , ps} be a non-empty set of primes. Then for every

ε > 0 and every pair (x, y) ∈ Z2
prim with F (x, y) 6= 0,

[F (x, y)]S �F,S,ε |F (x, y)|(2/n)+ε.

(ii) There are finite sets of primes S with the smallest prime in S arbi-

trarily large, and for every one of these sets S infinitely many pairs

(x, y) ∈ Z2
prim, such that F (x, y) 6= 0 and

[F (x, y)]S �F,S,ε |F (x, y)|2/n.

Our next result is an effective analogue of Theorem 2.2 for binary forms.

It is an easy consequence of Theorem 2.10 stated below on decomposable

forms. The splitting field of a binary form is the smallest extension of Q
over which it factors into linear forms.

Theorem 2.5. Let F (X, Y ) be a binary form of degree n ≥ 3 with coef-

ficients in Z and with splitting field K. Suppose that F has at least three

pairwise non-proportional linear factors over K. Let again S = {p1, . . . , ps}
be a finite set of primes and [K : Q] = d. Then

[F (x, y)]S ≤ κ4|F (x, y)|1−κ3

for every (x, y) ∈ Z2
prim with F (x, y) 6= 0, where

κ3 =
(
cs2
(
(P (log p1) · · · (log ps)

)d)−1

and κ4, c2 are effectively computable positive numbers, depending only on

F .
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We obtain Theorem 2.2 on polynomials f(X) ∈ Z[X] by applying The-

orem 2.5 to the binary form Y 1+deg ff(X/Y ) with (x, y) = (x, 1) ∈ Z2
prim.

Let again F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 2 and of

non-zero discriminant. For any finite set of primes S and any ε > 0, B > 0,

we denote by N(F, S, ε, B) the number of pairs (x, y) ∈ Z2
prim such that

(2.2) max(|x|, |y|) ≤ B, F (x, y) 6= 0, [F (x, y)]S ≥ |F (x, y)|ε.

Denote by D(F ) the discriminant of F and for a prime p, denote by gp the

largest integer g such that pg divides D(F ).

Theorem 2.6. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 3

with non-zero discriminant. Further, let 0 < ε < 1
n , and let S be a finite set

of primes. Denote by s′ the number of primes p ∈ S such that F (x, y) ≡
0 (mod pgp+1) has a solution (x, y) ∈ Z2

prim and assume that this number is

positive. Then

N(F, S, ε, B) �F,S,ε B2−nε(logB)s
′−1 as B →∞.

Parts (i) of Theorems 2.1 and 2.4 are easy consequences of the p-adic

Thue-Siegel-Roth Theorem. Part (ii) of Theorem 2.1 is a consequence of

the fact that for a given non-constant polynomial f(X) ∈ Z[X] there are

infinitely many primes p such that f(X) has a zero in Zp. The proof of part

(ii) of Theorem 2.4 uses some geometry of numbers.

There are two main tools in the proof of Theorem 2.6. The first is a result

of Stewart [25, Thm. 2] on the number of congruence classes x modulo pk of

f(x) ≡ 0 (mod pk) for f(X) a polynomial and pk a prime power. The second

is a powerful lattice point counting result of Barroero and Widmer [1, Thm.

1.3]. The proof of Theorem 2.3 is very similar, but instead of the result of

Barroero and Widmer it uses a much more elementary counting argument.

2.2 Ineffective results for decomposable forms

We will state results on the S-parts of values of decomposable forms in m

variables at integral points, where m ≥ 2.

We start with some notation and definitions. Let K be a finite, normal

extension of Q. For a linear form ` = α1X1 + · · ·+ αmXm with coefficients

in K and for an element σ of the Galois group Gal(K/Q) we define σ(`) :=

σ(α1)X1 + · · ·+σ(αm)Xm and then for a set of linear forms L = {`1, . . . , `r}
with coefficients in K we write σ(L) := {σ(`1), . . . , σ(`r)}. A set of linear

forms L with coefficients in K is called Gal(K/Q)-symmetric if σ(L) = L for
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each σ ∈ Gal(K/Q), and Gal(K/Q)-proper if for each σ ∈ L we have either

σ(L) = L or σ(L)∩L = ∅. We denote by [L] the K-vector space generated

by L, and define rankL to be the dimension of [L] over K. Finally, we define

the sum of two vector spaces V1, V2 over K by V1 + V2 := {x + y : x ∈
V1, y ∈ V2}.

Recall that a decomposable form in Z[X1, . . . , Xm] is a homogeneous

polynomial that factors into linear forms in X1, . . . , Xm over some extension

of Q. The smallest extension over which such a factorization is possible is

called the splitting field of the decomposable form. This is a finite, normal

extension of Q.

Let F ∈ Z[X1, . . . , Xm] be a decomposable form of degree n ≥ 3 with

splitting field K. Then we can express F as

(2.3)



F = c`
e(`1)
1 · · · `e(`r)

r with

c a non-zero rational,

LF = {`1, . . . , `r} a Gal(K/Q)-symmetric set of pairwise
non-proportional linear forms with coefficients in K,

e(`1), . . . , e(`r) positive integers, with e(`i) = e(`j)
whenever `j = σ(`i) for some σ ∈ Gal(K/Q).

Lastly, define Zmprim to be the set of vectors x = (x1, . . . , xm) ∈ Zm with

gcd(x1, . . . , xm) = 1 and define ‖x‖ to be the maximum norm of x ∈ Zmprim.

Let S = {p1, . . . , ps} be a finite set of primes, and F ∈ Z[X1, . . . , Xm] a

decomposable form. For x ∈ Zmprim with F (x) 6= 0, we can write

(2.4) F (x) = pa11 · · · pass · b,

where a1, . . . , as are non-negative integers and b is an integer coprime with

p1 · · · ps. Then the S-part [F (x)]S is pa11 · · · pass . We may view (2.4) as a

Diophantine equation in x ∈ Zmprim and a1, . . . , as ∈ Z≥0, a so-called decom-

posable form equation. Schlickewei [23] considered (2.4) in the case that F is

a norm form (i.e., a decomposable form that is irreducible over Q) and for-

mulated a criterion in terms of F implying that (2.4) has only finitely many

solutions. Evertse and Győry [7] gave another finiteness criterion in terms

of F , valid for arbitrary decomposable forms. Recently [8, Chap. 9, Thm.

9.1.1], they refined this as follows. Call an integer S-free if it is non-zero,

and coprime with the primes in S.

Theorem B. Let F ∈ Z[X1, . . . , Xm] be a decomposable form with splitting

field K, given in the form (2.3), and let L be a finite set of linear forms

in K[X1, . . . , Xm], containing LF . Then the following two assertions are

equivalent:
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(i) rankLF = m, and for every Gal(K/Q)-proper subset M of LF with

∅⊂
6=
M⊂

6=
LF , we have

(2.5) L ∩
( ∑
σ∈Gal(K/Q)

[σ(M)] ∩ [LF \ σ(M)]
)
6= ∅;

(ii) for every finite set of primes S = {p1, . . . , ps} and every S-free integer

b, there are only finitely many x ∈ Zmprim and non-negative integers

a1, . . . , as such that

(2.6) F (x) = pa11 · · · pass b, `(x) 6= 0 for ` ∈ L.

This theorem was deduced from a finiteness theorem of Evertse [5] and van

der Poorten and Schlickewei [20, 21] on S-unit equations over number fields.

The following result gives an improvement of (ii). We denote by | · |∞ the

standard archimedean absolute value on Q, and for a prime p by | · |p the

standard p-adic absolute value, with |p|p = p−1. Further, ‖x‖ denotes the

maximum norm of x ∈ Zmprim.

Theorem 2.7. Let F ∈ Z[X1, . . . , Xm] be a decomposable form in m ≥ 2

variables with splitting field K and L ⊇ LF a finite set of linear forms in

K[X1, . . . , Xm], satisfying condition (i) of Theorem B. Further, let S be a

finite set of primes and let ε > 0. Then there are only finitely many x ∈ Zmprim

with

(2.7)


∏

p∈S∪{∞}

|F (x)|p ≤ ‖x‖(1/(m−1))−ε,

`(x) 6= 0 for ` ∈ L.

Chen and Ru [4] proved a similar result with L = LF the set of lin-

ear factors of F and with a stronger condition instead of (i), on the other

hand they considered decomposable forms with coefficients in an arbitrary

number field.

From Theorem 2.7 and Theorem B we deduce the following corollary.

Corollary 2.8. Let F ∈ Z[X1, . . . , Xm] be a decomposable form in m ≥ 2

variables with splitting field K and L ⊇ LF a finite set of linear forms in

K[X1, . . . , Xm].

(i) Assume that F and L satisfy condition (i) of Theorem B. Suppose F

has degree n. Let S be a finite set of primes and let ε > 0. Then for

every x ∈ Zmprim with `(x) 6= 0 for ` ∈ L we have

(2.8) [F (x)]S �F,L,S,ε |F (x)|1−(1/n(m−1))+ε.
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(ii) Assume that F and L do not satisfy condition (i) of Theorem B. Then

there are a finite set of primes S and a constant γ > 0 such that

[F (x)]S ≥ γ|F (x)|

holds for infinitely many x ∈ Zmprim with `(x) 6= 0 for all ` ∈ L.

Indeed, if F , L satisfy condition (i) of Theorem B, S is a finite set of primes

and ε > 0, then

|F (x)|
[F (x)]S

=
∏

p∈S∪{∞}

|F (x)|p � ‖x‖(1/(m−1))−ε � |F (x)|(1/n(m−1))−ε/n

holds for all x ∈ Zmprim with `(x) 6= 0 for all ` ∈ L, where the implied

constants depend on F , S and ε. This implies part (i) of Corollary 2.8. If

on the other hand F and L do not satisfy condition (i) of Theorem B then

there are a finite set of primes S and an S-free integer b such that (2.6) has

infinitely many solutions. This yields infinitely many x ∈ Zmprim such that

`(x) 6= 0 for all ` ∈ L and

[F (x)]S = |F (x)|/|b|.

Thus, part (ii) of Corollary 2.8 follows.

We can improve on Corollary 2.8 if we assume condition (i) of Theorem

B with L = LF , i.e.,

rankLF = m, and for every Gal(K/Q)-proper subset(2.9)

M of LF with ∅⊂
6=
M⊂

6=
LF we have

LF ∩
( ∑
σ∈Gal(K/Q)

[σ(M)] ∩ [LF \ σ(M)]
)
6= ∅

and in addition to this,

(2.10) F (x) 6= 0 for every non-zero x ∈ Qm.

Let D be a non-zero Q-linear subspace of Qm. We say that a non-empty

subsetM of LF is linearly dependent on D if there is a non-trivial K-linear

combination of the forms in M that vanishes identically on D; otherwise,

M is said to be linearly independent on D. Further, for a non-empty subset

M of LF we define rankDM to be the cardinality of a maximal subset of

M that is linearly independent on D, and then

qD(M) :=

∑
`∈M e(`)

rankDM
.
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For instance, rankD LF = dimD, so qD(LF ) = degF/ dimD. Then put

qD(F ) := max{qD(M) : ∅⊂
6=
M⊂

6=
LF , rankDM < dimD}.

Finally, put

(2.11) c(F ) := max
D

qD(F )

qD(LF )
= max

D
qD(F ) · dimD

degF
,

where the maximum is taken over all Q-linear subspaces D of Qm with

dimD ≥ 2. Lemma 5.2, which is stated and proved in Section 5 below,

implies that if F satisfies both (2.9) and (2.10), then c(F ) < 1. We will

not consider the problem how to compute c(F ), that is, how to determine

a subspace D for which qD(F )/qD(LF ) is maximal; this may involve some

linear algebra that is beyond the scope of this paper.

Given a decomposable form F ∈ Z[X1, . . . , Xm], a finite set of primes S,

and reals ε > 0, B > 0, we define N(F, S, ε, B) to be the set of x ∈ Zmprim

with [F (x)]S ≥ |F (x)|ε and ‖x‖ ≤ B.

Theorem 2.9. Let m ≥ 2 and let F ∈ Z[X1, . . . , Xm] be a decomposable

form as in (2.3) satisfying (2.9) and (2.10). Let c(F ) be defined as in (2.11).

Then c(F ) < 1 and

(i) for every finite set of primes S, every ε > 0 and every x ∈ Zmprim we

have

[F (x)]S �F,S,ε |F (x)|c(F )+ε;

(ii) there are infinitely many primes p, and for each of these primes p

infinitely many x ∈ Zmprim, such that

[F (x)]{p} �F,p |F (x)|c(F );

(iii) for every finite set of primes S and every ε with 0 < ε < 1 we have

N(F, S, ε, B)�F,S,ε B
m(1−ε) as B →∞.

Assertions (i) and (iii) follow without too much effort from work in Liu’s

thesis [16], while (ii) is an application of Minkowski’s Convex Body Theo-

rem.

The constants implied by the Vinogradov symbols in Theorems 2.7 and

part (i) of Theorem 2.9 cannot be computed effectively from our method of

proof. In fact, these constants can be expressed in terms of the heights of the

subspaces occurring in certain instances of the p-adic Subspace Theorem,
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but for these we can as yet not compute an upper bound. The constant in

(ii) can be computed once one knows a subspace D for which the quotient

qD(F )/qD(LF ) is equal to c(F ). The work of Liu from which part (iii) is

derived uses a quantitative version of the p-adic Subspace Theorem, giving

an explicit upper bound for the number of subspaces. This enables one to

compute effectively the constant in part (iii).

Likely, a result of the same type as part (iii) of Theorem 2.9 can be proved

in a similar way as Theorem 2.6 using the lattice point counting result of

Barroero and Widmer, thereby avoiding Liu’s work and the quantitative

Subspace Theorem. But such an approach would be less straightforward.

2.3 Effective results for decomposable forms

We consider again S-parts of values F (x), where F is a decomposable form

in Z[X1, . . . , Xm] and x ∈ Zmprim. Under certain stronger conditions on F , we

shall give an estimate of the form [F (x)]S ≤ κ6|F (x)|1−κ5 , with effectively

computable positive κ5, κ6 that depend only on F and S. For applications,

we make the dependence of κ5 and κ6 explicit in terms of S. The decom-

posable forms with the said stronger conditions include binary forms, and

discriminant forms of an arbitrary number of variables.

Let again S = {p1, . . . , ps} be a finite set of primes and b an integer

coprime with p1 · · · ps, and consider equation (2.4) in x ∈ Zmprim and non-

negative integers a1, . . . , as. Under the stronger conditions for the decom-

posable form F mentioned above, explicit upper bounds were given in Győry

[11, 12] for the solutions of (2.4), from which upper bounds can be deduced

for [F (x)]S. Later, more general and stronger explicit results were obtained

by Győry and Yu [15] on another version of (2.4). These explicit results

provided some information on the arithmetical properties of F (x) at points

x ∈ Zmprim. In this paper, we deduce from the results of Győry and Yu [15]

a better bound for [F (x)]S; see Theorem 2.10. This will give more precise

information on the arithmetical structure of those non-zero integers h0 that

can be represented by F (x) at integral points x; see Corollary 7.1.

To state our results, we introduce some notation and assumptions. Let

F ∈ Z[X1, . . . , Xm] be a non-zero decomposable form. Denote by K its

splitting field. We choose a factorization of F into linear forms with coef-

ficients in K as in (2.3), with LF a Gal(K/Q)-symmetric set of pairwise

non-propertional linear forms. Denote by G(LF ) the graph with vertex set

LF in which distinct `, `′ in LF are connected by an edge if λ`+λ′`′+λ′′`′′ = 0

for some `′′ ∈ LF and some non-zero λ, λ′, λ′′ in K. Let L1, . . . ,Lk be the
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vertex sets of the connected components of G(LF ). When k = 1 and LF has

at least three elements, LF is said to be triangularly connected ; see Győry

and Papp [14].

In what follows, we assume that F in (2.4) satisfies the following condi-

tions:

LF has rank m;(2.12)

either k = 1; or k > 1 and Xm can be expressed as a(2.13)

K-linear combination of the forms from Li, for i = 1, . . . , k.

We note that these conditions are satisfied by binary forms with at least

three pairwise non-proportional linear factors, and also discriminant forms,

index forms and a restricted class of norm forms in an arbitrary number of

variables. As has been explained in [8, Chap. 9], conditions (2.12), (2.13)

imply condition (i) of Theorem B.

As before, let S = {p1, . . . , ps} be a finite set of primes, and put P :=

max
1≤i≤s

pi. Further, let K denote the splitting field of F , and put d := [K : Q].

Then we have

Theorem 2.10. Under assumptions (2.12), (2.13), we have

(2.14) [F (x)]S ≤ κ6|F (x)|1−κ5

for every x = (x1, . . . , xm) ∈ Zmprim with F (x) 6= 0, and with xm 6= 0 if

k > 1, where

κ5 =
(
cs3
(
(P (log p1) · · · (log ps)

)d)−1 ≥ (cs3(2P (logP )s)d)−1

and κ6, c3 are effectively computable positive numbers, depending only on

F .

It is easy to check that if F ∈ Z[X, Y ] is a binary form with at least

three pairwise non-proportional linear factors over its splitting field, then it

satisfies (2.12), (2.13) with m = 2 and k = 1. Thus, Theorem 2.5 follows at

once from Theorem 2.10.

We shall deduce Theorem 2.10 from a special case of Theorem 3 of Győry

and Yu [15]. The constants κ5, κ6, c3 could have been made explicit by using

the explicit version of this theorem of Győry and Yu [15]. Further, Theorem

2.10 could be proved more generally, over number fields and for a larger

class of decomposable forms.

Weaker versions of Theorem 2.10 can be deduced from the results of

Győry [11, 12].
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3 Proofs of Theorems 2.1, 2.3, 2.4, 2.6

Let again S = {p1, . . . , ps} be a finite, non-empty set of primes. We denote

by | · |∞ the ordinary absolute value, and by | · |p the p-adic absolute value

with |p|p = p−1 for a prime number p. Further, we set Q∞ := R, Q∞ := C.

The following result is a very well-known consequence of the p-adic Thue-

Siegel-Roth Theorem. The only reference we could find for it is [18, Chap.IX,

Thm.3]. For convenience of the reader we recall the proof.

Proposition 3.1. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 2

and of non-zero discriminant. Then

|F (x, y)|
[F (x, y)]S

�F,S,ε max(|x|, |y|)n−2−ε

for all ε > 0 and all (x, y) ∈ Z2
prim with F (x, y) 6= 0.

Proof. We assume that F (1, 0) 6= 0. This is no loss of generality. For if

this is not the case, there is an integer b of absolute value at most n with

F (1, b) 6= 0 and we may proceed with the binary form F (X, bX + Y ). Our

assumption implies that for each p ∈ S ∪ {∞} we have a factorization

F (X, Y ) = a
∏n

i=1(X − βipY ) with a ∈ Z and βip ∈ Qp algebraic over Q for

i = 1, . . . , n. For every (x, y) ∈ Z2
prim with F (x, y) 6= 0 we have

|F (x, y)|
[F (x, y)]S · (max(|x|, |y|)n

=
( ∏
p∈S∪{∞}

|F (x, y)|p
)
/max(|x|, |y|)n

�F,S

∏
p∈S

min
1≤i≤n

|x− βipy|p
max(|x|p, |y|p)

�F,S

∏
p∈S∪{∞}

min
(

1, |xy − β1p|p, . . . , |xy − βnp|p
)
.

The latter is �F,S,ε max(|x|, |y|)−2−ε for every ε > 0 by the p-adic Thue-

Siegel-Roth Theorem. Proposition 3.1 follows.

Proof of Theorem 2.1. Let f(X) ∈ Z[X] be the polynomial from Theorem

2.1.

(i). The binary form F (X, Y ) := Y n+1f(X/Y ) has degree n + 1 and

non-zero discriminant. Now by Proposition 3.1, we have for every ε > 0 and

every sufficiently large integer x,

|f(x)|
[f(x)]S

�f,S,ε |x|n−1−nε �f,S,ε |f(x)|(n−1−nε)/n,
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implying [f(x)]S �f,S,ε |f(x)|(1/n)+ε.

(ii). There are infinitely many primes p such that f(x) ≡ 0 (mod p) is

solvable. Excluding the finitely many primes dividing the leading coefficient

or the discriminant of f(X), there remain infinitely many primes. Take

such a prime p. By Hensel’s Lemma, there is for every positive integer k an

integer xk such that f(xk) ≡ 0 (mod pk). We may choose such an integer

with pk ≤ xk < 2pk. Then clearly, x1 < x2 < · · · and for k sufficiently large,

f(xk) 6= 0 and f(xk) ≡ 0 (mod pk). Consequently,

[f(xk)]{p} ≥ pk ≥ 1
2
|xk| �f |f(xk)|1/n.

This proves Theorem 2.1.

Proof of Theorem 2.4. Let F (X, Y ) ∈ Z[X, Y ] be the binary form from

Theorem 2.4.

(i) By Proposition 3.1, we have for every ε > 0 and every pair (x, y) ∈
Z2

prim with F (x, y) 6= 0 and max(|x|, |y|) sufficiently large,

|F (x, y)|
[F (x, y)]S

�F,S,ε max(|x|, |y|)n−2−nε �F,S,ε |F (x, y)|1−(2/n)−ε.

(ii) We assume that F (1, 0) 6= 0 which, similarly as in the proof of

Proposition 3.1, is no loss of generality. By Chebotarev’s Density Theorem,

there are infinitely many primes p such that F splits into linear factors over

Qp. From these, we exclude the finitely many primes that divide D(F ) or

F (1, 0). Let P be the infinite set of remaining primes. Then for every p ∈ P ,

we can express F (X, Y ) as

F (X, Y ) = a
n∏
i=1

(X − βipY )

with a ∈ Z with |a|p = 1, βip ∈ Zp for i = 1, . . . , n and |βip − βjp|p = 1 for

i, j = 1, . . . , n with i 6= j.

We distinguish two cases. First assume that F does not split into linear

factors over Q. Take p ∈ P . Then without loss of generality, β1p 6∈ Q. Let

k be a positive integer. By Minkowski’s Convex Body Theorem, there is a

non-zero pair (x, y) ∈ Z2 such that

|x− β1py|p ≤ p−k, max(|x|, |y|) ≤ pk/2.

We may assume without loss of generality that gcd(x, y) is not divisible by

any prime other than p. Assume that gcd(x, y) = pu with u ≥ 0, and let

xk := p−ux, yk := p−uy. Then (xk, yk) ∈ Z2
prim and

|xk − β1pyk|p ≤ pu−k, max(|xk|, |yk|) ≤ p(k/2)−u.
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This clearly implies u ≤ k/2. We observe that if we let k →∞ then (xk, yk)

runs through an infinite subset of Z2
prim. Indeed, otherwise we would have a

pair (x0, y0) ∈ Z2
prim with |x0 − β1py0|p ≤ p−k/2 for infinitely many k which

is impossible since β1p 6∈ Q. Next we have F (xk, yk) 6= 0 for all k. Indeed,

suppose that F (xk, yk) = 0 for some k. Then xk/yk = βip for some i ≥ 2.

Since βip ∈ Zp we necessarily have |yk|p = 1. But then |xk−β1pyk|p = |βip−
β1p|p = 1, which is again impossible. Finally, since clearly |xk − βipyk|p ≤ 1

for i = 2, . . . , n, we derive that for each positive integer k,

[F (xk, yk)]{p} = |F (xk, yk)|−1
p ≥ pk−u ≥ max(|xk|, |yk|)2

�F,p |F (xk, yk)|2/n.

Next, we assume that F (X, Y ) splits into linear factors over Q. Then

F (X, Y ) = a
∏n

i=1(X − βiY ) with a ∈ Z, |a|p = 1 for p ∈ P , βi ∈ Q and

|βi|p ≤ 1 for p ∈ P , i = 1, . . . , n, and |βi−βj|p = 1 for p ∈ P , i, j = 1, . . . , n,

i 6= j. Pick distinct p, q ∈ P and let S = {p, q}. Then there is an integer u,

coprime with pq, such that uβ1, uβ2 and u/(β2−β1) are all integers. Choose

positive integers k, l. Then

x :=
u(β2p

k − β1q
l)

β2 − β1

, y :=
u(pk − ql)
β1 − β2

are integers satisfying x−β1y = upk, x−β2y = uql. By our choice of p, q ∈ P
and by direct substitution, it follows that the numbers x−βiy (i = 3, . . . , n)

have p-adic and q-adic absolute values equal to 1. Thus, |F (x, y)|p = p−k,

|F (x, y)|q = q−l and so [F (x, y)]S = pkql.

Clearly, g := gcd(x, y) is coprime with pq. Let xk,l := x/g, yk,l := y/g so

that (xk,l, yk,l) ∈ Z2
prim. Then clearly, [F (xk,l, yk,l)]S = pkql. We now choose

k, l such that pk, ql are approximately equal, say pk < ql < q · pk. Then

max(|xk,l|, |yk,l|) ≤ max(|x|, |y|)�F,S (pkql)1/2 and thus,

[F (xk,l, yk,l)]S �F,S max(|xk,l|, |yk,l|)2 �F,S |F (xk,l, yk,l)|2/n.

In the proofs of Theorems 2.3 and 2.6 we need a few auxiliary results.

Lemma 3.2. Let f(X) ∈ Z[X] be a polynomial of non-zero discriminant

and a an integer and p a prime. Denote by gp the largest non-negative

integer g such that pg divides the discriminant D(f) of f . For k > 0

denote by r(f, a, pk) the number of congruence classes x modulo pk with

f(x) ≡ 0 (mod pk), x ≡ a (mod p). Then r(f, a, pk) = r(f, a, pgp+1) for

k ≥ gp + 1.
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Proof. This is a consequence of [25, Thm. 2].

Given a positive integer h, we say that two pairs (x1, y1), (x2, y2) ∈ Z2
prim

are congruent modulo h if x1y2 ≡ x2y1 (modh). With this notion, for a given

binary form F (X, Y ) ∈ Z[X, Y ] we can divide the solutions (x, y) ∈ Z2
prim

of F (x, y) ≡ 0 (modh) into congruence classes modulo h.

Lemma 3.3. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 2

and of non-zero discriminant and p a prime. Denote by gp the largest non-

negative integer g such that pg divides the discriminant D(F ) of F . For

k > 0 denote by r(F, pk) the number of congruence classes modulo pk of

(x, y) ∈ Z2
prim with F (x, y)) ≡ 0 (mod pk). Then r(F, pk) = r(F, pgp+1) for

k ≥ gp + 1.

Proof. Neither the number of congruence classes under consideration, nor

the discriminant of F , changes if we replace F (X, Y ) by F (aX + bY, cX +

dY ) for some matrix
(
a b
c d

)
∈ GL2(Z). After such a replacement, we can

achieve that F (1, 0)F (0, 1) 6= 0, so we assume this henceforth. Let f(X) :=

F (X, 1) and f ∗(X) := F (1, X). The map (x, y) 7→ x · y−1 (mod pk) gives a

bijection between the congruence classes modulo pk of pairs (x, y) ∈ Z2
prim

with F (x, y) ≡ 0 (mod pk) and y 6≡ 0 (mod p) and the congruence classes

modulo pk of integers z with f(z) ≡ 0 (mod p). Likewise, the map (x, y) 7→ y·
x−1 (mod pk) establishes a bijection between the congruence classes modulo

pk of (x, y) ∈ Z2
prim with F (x, y) ≡ 0 (mod pk) and y ≡ 0 (mod p) and the

congruence classes modulo pk of integers z with f ∗(z) ≡ 0 (mod pk) and

z ≡ 0 (mod p). Further, our assumption F (1, 0)F (0, 1) 6= 0 implies that

D(F ) = D(f) = D(f ∗). Now an application of Lemma 3.2 yields that

r(F, pk) =
∑p−1

a=0 r(f, a, p
k) + r(f ∗, 0, pk) is constant for k ≥ gp + 1.

For a binary form F (X, Y ) ∈ R[X, Y ] and for positive reals B,M , we

denote by VF (B,M) the set of pairs (x, y) ∈ R2 with max(|x|, |y|) ≤ B

and |F (x, y)| ≤ M , and by µF (B,M) the area (two-dimensional Lebesgue

measure) of this set.

Our next lemma is a consequence of a general lattice point counting

result of Barroero and Widmer [1, Thm. 1.3].

Lemma 3.4. let n be an integer ≥ 2. Then there is a constant c(n) > 0

such that for every non-zero binary form F (X, Y ) ∈ R[X, Y ] of degree n,

every lattice Λ ⊆ Z2 and all positive reals B,M ,∣∣∣∣#(VF (B,M) ∩ Λ)− µF (B,M)

det Λ

∣∣∣∣ ≤ c(n) max(1, B/m(Λ)),
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where m(Λ) is the length of the shortest non-zero vector of Λ.

Proof. We write points in Rn+3 × R2 as (z0, . . . , zn, u, v, x, y). The set Z ⊆
Rn+3 × R2 given by the inequalities

|z0x
n + z1x

n−1y + · · ·+ zny
n| ≤ v, |x| ≤ u, |y| ≤ u

is a definable family in the sense of [1], parametrized by the tuple T =

(z0, . . . , zn, u, v). By substituting for this tuple the coefficients of F , respec-

tively B and M , we obtain the set VF (B,M) as defined above. The sum of

the one-dimensional volumes of the orthogonal projections of VF (B,M) on

the x-axis and y-axis is at most 4B, and the first minimum of Λ is m(Λ).

Now Lemma 3.4 follows directly from [1, Thm. 3.1].

A lattice Λ ⊆ Z2 is called primitive if it contains points (x, y) ∈ Z2
prim.

Lemma 3.5. Let again n be an integer ≥ 2. Then there is a constant

c′(n) > 0 such that for every binary form F ∈ Z[X, Y ] of degree n, every

primitive lattice Λ ⊆ Z2, and all reals B,M > 1,∣∣∣∣∣∣#(VF (B,M) ∩ Λ ∩ Z2
prim

)
−
( 6

π2

∏
p| det Λ

(1 + p−1)−1
)
· µF (B,M)

det Λ

∣∣∣∣∣∣
≤ c′(n)B log 3B.

Proof. In the proof below, p, pi denote primes.

Let F (X, Y ) ∈ Z[X, Y ] be a binary form, Λ ⊆ Z2 a primitive lattice, and

B,M reals > 1. Put d := det Λ. For a positive integer h, define the lattice

Λh := Λ ∩ hZ2. Since Λ is primitive, there is a basis {a,b} of Z2 such that

{a, db} is a basis of Λ. Hence {ha, lcm(h, d)b} is a basis of Λh, and so

(3.1) det Λh = h · lcm(h, d) = d · h2

gcd(h, d)
.

Further, the shortest non-zero vector of Λh has length

(3.2) m(Λh) ≥ h.

We define ρ(h) := #(VF (B,M)∩Λh). Then by the rule of inclusion and

exclusion,

#
(
VF (B,M) ∩ Λ ∩ Z2

prim

)
= ρ(1)−

∑
p≤B

ρ(p) +
∑

p1<p2: p1p2≤B

ρ(p1p2)− · · ·

=
∑
h≤B

µ(h)ρ(h),
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where µ(h) denotes the Möbius function. The previous lemma together with

(3.1), (3.2) implies∣∣∣∣∣#(VF (B,M) ∩ Λ ∩ Z2
prim

)
− µF (B,M)

d
·
∑
h≤B

µ(h) · gcd(d, h)

h2

∣∣∣∣∣
≤ c(n)B ·

∑
h≤B

|µ(h)|
h

,

hence ∣∣∣∣∣#(VF (B,M) ∩ Λ ∩ Z2
prim

)
− µF (B,M)

d
·
∞∑
h=1

µ(h) · gcd(d, h)

h2

∣∣∣∣∣
≤ µF (B,M)

d
·
∑
h>B

|µ(h)|gcd(d, h)

h2
+ c(n)B ·

∑
h≤B

|µ(h)|
h

≤ c′(n)B log 3B,

where we have used
∑

h>B |µ(h)|gcd(d,h)
h2 ≤ 2d/B, µF (B,M) ≤ 4B2, and∑

h≤B
|µ(h)|
h ≤ log 3B. Now the proof is finished by observing that

∞∑
h=1

µ(h) · gcd(d, h)

h2
=
∏
p|d

(1− p−1) ·
∏
p-d

(1− p−2) =
6

π2
·
∏
p|d

(1 + p−1)−1.

Lemma 3.6. Let α1, . . . , αt be positive reals. Denote by N(A) the number

of tuples of non-negative integers (u1, . . . , ut) with

(3.3) A ≤ α1u1 + · · ·+ αtut ≤ A+ 2(α1 + · · ·+ αt).

Then

N(A) �t,α1,...,αt A
t−1 as A→∞.

Proof. Constants implied by the Vinogradov symbols�,� will depend on

t, α1, . . . , αt.

For u = (u1, . . . , ut) ∈ Zt, denote by Cu the cube in Rt consisting of

the points y = (y1, . . . , yt) with ui ≤ yi < ui + 1 for i = 1, . . . , t. Let C
be the union of the cubes Cu over all points u with non-negative integer

coordinates satisfying (3.3). Put α := α1 + · · · + αt. Then C1 ⊆ C ⊆ C2,

where C1, C2 are the subsets of Rs given by

A+ α ≤ α1y1 + · · ·+ αtyt ≤ A+ 2α, y1 ≥ 0, . . . , yt ≥ 0,

A ≤ α1y1 + · · ·+ αtyt ≤ A+ 3α, y1 ≥ 0, . . . , yt ≥ 0,
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respectively. Clearly N(A) is estimated from below and above by the mea-

sures of C1 and C2, the first being � (A + 2α)t − (A + α)t � At−1, the

second being � At−1. The lemma follows.

We first give the complete proof of Theorem 2.6. The proof of Theorem

2.3 is then obtained by making a few modifications.

Proof of Theorem 2.6. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree

n ≥ 3 with non-zero discriminant, ε a real with 0 < ε < 1
n and S =

{p1, . . . , ps} a finite set of primes. Let S ′ = {p1, . . . , ps′} be the set of p ∈ S
such that F (x, y) ≡ 0 (mod pgp+1) has a solution in Z2

prim, and let S ′′ =

{ps′+1, . . . , ps} be the set of remaining primes. In what follows, constants

implied by Vinogradov symbols �, � and by the Landau O-symbol will

depend only on F , S and ε.

We first prove that

N(F, S, ε, B)�F,S,ε B
2−nε(logB)s

′−1 as B →∞.

The set of pairs (x, y) under consideration can be partitioned into sets Nh,
where h runs through the set of positive integers composed of primes from

S, and Nh is the set of pairs (x, y) ∈ Z2
prim with

max(|x|, |y|) ≤ B, [F (x, y)]S = h, |F (x, y)| ≤ h1/ε.

We first estimate #Nh from above by means of Lemma 3.5 where h is any

positive integer composed of primes from S. Notice that for (x, y) ∈ Nh
we have F (x, y) ≡ 0 (modh). By Lemma 3.3 and the Chinese Remainder

Theorem, the set of these (x, y) lies in � 1 congruence classes modulo h.

Each of these congruence classes is precisely the set of primitive points in a

set of the shape

{(x, y) ∈ Z2 : y0x ≡ x0y (modh)}

with (x0, y0) ∈ Z2
prim, which is a primitive lattice of determinant h. So Nh

is contained in � 1 primitive lattices of determinant h.

We next estimate the area µF (B, h1/ε) of V (B, h1/ε). There is a constant

cF > 0 such that

(3.4) |F (x, y)| ≤ cF (max(|x|, |y|)n for (x, y) ∈ R2.

If h ≥ (cFB
n)ε then the condition |F (x, y)| ≤ h1/ε is already implied by

max(|x|, |y|) ≤ B, and so µF (B, h1/ε) = 4B2. On the other hand, if h <
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(cFB
n)ε, we have, denoting by µ the area,

µF (B, h1/ε) ≤ µ
(
{(x, y) ∈ R2 : |F (x, y)| ≤ h1/ε}

)
= h2/nε · µ

(
{(x, y) ∈ R2 : |F (x, y)| ≤ 1}

)
� h2/nε,

since the set of (x, y) ∈ R2 with |F (x, y)| ≤ 1 has finite area (see for instance

[17]). Now invoking Lemma 3.5, we infer

(3.5) #Nh �
{
B2/h+O(B logB) if h ≥ (cFB

n)ε,
h(2/nε)−1 +O(B logB) if h < (cFB

n)ε.

Finally, from (3.4) it is clear that Nh = ∅ if h > cFB
n.

Let α := log(p1 · · · ps′). For j ∈ Z, let Mj be the union of the sets Nh
with

(3.6) e2jα(cFB
n)ε ≤ h < e(2j+2)α(cFB

n)ε.

We restrict ourselves to j with

(3.7) e2jα(cFB
n)ε ≤ cFB

n, e(2j+2)α(cFB
n)ε > 1,

since for the remaining j the set Mj is empty. Thus,

(3.8) N(F, S, ε, B)�
∑
j

#Mj,

where the summation is over j with (3.7).

We estimate the number of h with (3.6). Write h = h′pu11 · · · p
us′
s′ where h′

is composed of primes from S ′′. Then h′ divides
∏

p∈S′′ pgp , so we have � 1

possibilities for h′. By applying Lemma 3.6 with t = s′, A = e2jα(cFB
n)ε)/h′,

αi = log pi for i = 1, . . . , s′, we infer from Lemma 3.6 that for given h′ the

number of possibilities for (u1, . . . , us′) is � (logB)s
′−1. Hence the number

of h with (3.6) is � (logB)s
′−1. Now from (3.5) it follows that for j with

(3.7),

#Mj �
{
e−2jαB2−nε(logB)s

′−1 +O(B(logB)s
′
) if j ≥ 0,

e−2|j|α((2/nε)−1)B2−nε(logB)s
′−1 +O(B(logB)s

′
) if j < 0.

Finally, from these estimates and (3.8) we deduce, taking into consideration

that the number of j with (3.7) is � logB, and also our assumption 0 <

ε < 1
n ,

N(F, S, ε, B) �
(∑
j≥0

e−2jα +
∑
j<0

e−2|j|α((2/nε)−1)
)
·B2−nε(logB)s

′−1

+O(B(logB)s
′+1)

� B2−nε(logB)s
′−1.
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We next prove that

N(F, S, ε, B)� B2−nε(logB)s
′−1 as B →∞.

For i = s′ + 1, . . . , s, let ai be the largest integer u such that F (x, y) ≡
0 (mod pui ) is solvable in (x, y) ∈ Z2

prim. Let for the moment h be any integer

of the shape h = pu11 · · · puss where ui ≥ gpi + 1 for i = 1, . . . , s′ and ui = ai

for i = s′ + 1, . . . , s, and where h ≥ (cFB
n)ε. By Lemma 3.5 and the

Chinese Remainder Theorem, the number of congruence classes modulo h

of (x, y) ∈ Z2
prim with F (x, y) ≡ 0 (modh) is

r :=
s′∏
i=1

r(F, p
gpi+1

i ) ·
s∏

i=s′+1

r(F, paii ),

which is independent of h. As mentioned above, each of these congruence

classes is just the set of primitive points in a primitive lattice of determi-

nant h. Furthermore, since these lattices arise from different residue classes

modulo h of points in Z2
prim, the intersection of any two of these lattices does

not contain points from Z2
prim anymore. Since moreover by our assumption

h ≥ (cFB
n)ε the set V (B, h1/ε) has area (4B)2, an application of Lemma 3.5

yields that the set of (x, y) ∈ Z2
prim with max(|x|, |y|) ≤ B, |F (x, y)| ≤ h1/ε

and F (x, y) ≡ 0 (modh) has cardinality

cr · (4B)2

h
+O(B logB),

where c = (6/π2)
∏

p∈S0
(1 + p−1)−1, with S0 the set obtained from S by

removing those primes pi from S ′′ for which ai = 0. By the rule of inclusion

and exclusion, the set Nh, i.e., the set of (x, y) ∈ Z2
prim as above with F (x, y)

divisible by h but not by hp for p ∈ S ′, has cardinality

cr · (4B)2

h
−
∑
p∈S′

cr · (4B)2

ph
+

∑
p,q∈S′,p<q

cr · (4B)2

pqh
− · · ·(3.9)

+O(B logB)

= cr
∏
p∈S′

(1− p−1) · (4B)2

h
+O(B logB)� B2

h
+O(B logB).

We now consider the set of integers h of the shape pu11 · · · puss with ui ≥ gpi+1

for i = 1, . . . , s′ and ui = ai for i = s′ + 1, . . . , s, and with (cFB
n)ε ≤

h ≤ e2α(cFB
n)ε, where again α = log(p1 · · · ps′). By Lemma 3.6, there are

� (logB)s
′−1 such integers. Using again 0 < ε < 1

n , it follows that

N(F, S, ε, B) ≥
∑
h

#Nh � B2−nε(logB)s
′−1.

This completes the proof of Theorem 2.6.
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Proof of Theorem 2.3. Let f ∈ Z[X] be a polynomial of degree n ≥ 2 with

non-zero discriminant, ε a real with 0 < ε < 1
n and S = {p1, . . . , ps} a finite

set of primes. Similarly as above S ′ = {p1, . . . , ps′} is the set of p ∈ S such

that f(x) ≡ 0 (mod pgp+1) is solvable in Z and S ′′ = {ps′+1, . . . , ps}.
The proof is the same as that of Theorem 2.6 except from a few small

modifications. The main difference is that instead of Lemma 3.5 we use the

simple observation that if Vf (B,M) is the set of x ∈ R with |x| ≤ B and

|f(x)| ≤ M and µf (B,M) is the one-dimensional measure of this set, then

for all a, h ∈ Z with h > 0, the number of integers x ∈ Vf (B,M) with

x ≡ a (modh) is

(3.10) µf (B,M)/h+ error term, with |error term| ≤ c(n)

for some quantity c(n) depending only on n = deg f .

We first prove that

(3.11) N(f, S, ε, B)�f,S,ε B
1−nε(logB)s

′−1 as B →∞.

Let cf be a constant such that |f(x)| ≤ cf |x|n for x ∈ R. Consider the set

Nh of integers x with |x| ≤ B, [f(x)]S = h and |f(x)| ≤ h1/ε. Then if h ≥
(cfB

n)ε we have µf (B, h
1/ε) = 2B, while otherwise, µf (B, h

1/ε) � h1/nε,

since |f(x)| � |x|n if |x| � 1. Now a similar computation as in the proof

of Theorem 2.6, using Lemma 3.2 instead of Lemma 3.3, gives instead of

(3.5),

#Nh �
{
B/h+O(1) if h ≥ (cfB

n)ε,
h(1/nε)−1 +O(1) if h < (cfB

n)ε,

and then the proof of (3.11) is completed in exactly the same way as in the

proof of Theorem 2.6.

The proof of

(3.12) N(f, S, ε, B)�f,S,ε B
1−nε(logB)s−1 as B →∞

follows the same lines as that of Theorem 2.6. For i = s′ + 1, . . . , s let

ai be the largest integer u such that f(x) ≡ 0 (mod paii ) is solvable. Let

h = pu11 · · · puss with ui ≥ gpi + 1 for i = 1, . . . , s′ and ui = ai for i =

s′+ 1, . . . , s, and with h ≥ (cfB
n)ε. Then by combining (3.10) with Lemma

3.2 one obtains that the set of integers x with |x| ≤ B, f(x) ≡ 0 (modh)

and |f(x)| ≤ h1/ε has cardinality

rB/h+O(1)
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with r > 0 depending only on f , and then an inclusion and exclusion argu-

ment gives

#Nh � B/h+O(1).

Again, an argument completely similar to that in the proof of Theorem 2.6

gives (3.12).

4 Proof of Theorem 2.7

The theorem can be proved by modifying the arguments from [4]. We

prefer to follow [6, §8], which already contains the basic ideas. Let F ∈
Z[X1, . . . , Xm] be a decomposable form of degree n with splitting field K.

We take a factorization of F as in (2.3). Assume that F satisfies condition

(i) of Theorem B.

Let D be a linear subspace of Qm of dimension ≥ 2. Denote by D∗ the

K-vector space of linear forms in K[X1, . . . , Xm] that vanish identically on

D. Then a set of linear forms in K[X1, . . . , Xm] is linearly dependent on

D if some non-trivial K-linear combination of these forms belongs to D∗

and linearly independent on D if no such linear combination exists. The D-

rank rankDM of a set of linear formsM⊂ K[X1, . . . , Xm], is the maximal

number of linear forms in M that are linearly independent on D. We have

rankD LF = dimD.

We call a subset I of LF minimally linearly dependent on D, if I itself

is linearly dependent on D, but every proper, non-empty subset of I is

linearly independent on D. We define a(n undirected) graph GD as follows.

The set of vertices of GD is LF ; and {`, `′} is an edge of GD if there is a

subset of LF that is minimally linearly dependent on D and contains both

` and `′. Clearly, if {`, `} is an edge of GD, then so is {σ(`), σ(`′)} for each

σ ∈ Gal(K/Q), i.e., each σ acts on GD as an automorphism.

Lemma 4.1. Let D be a linear subspace of Qm of dimension ≥ 2 such

that none of the linear forms in L vanishes identically on D. Then GD is

connected.

Proof. Assume that GD is not connected. LetM be the vertex set of a con-

nected component of GD. Then ∅⊂
6=
M⊂

6=
LF . Clearly, for each σ ∈ Gal(K/Q),

σ(M) is also the vertex set of a connected component of GD, hence either

σ(M) =M, or σ(M) ∩M = ∅. That is, M is Gal(K/Q)-proper.

By assumption (i) of Theorem B, the K-vector space∑
σ∈Gal(K/Q)

[σ(M)] ∩ [LF \ σ(M)]
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contains a linear form from L, which, by assumption, does not lie in D∗.

Hence there is σ ∈ Gal(K/Q) such that [σ(M)] ∩ [LF \ σ(M)] contains a

linear form outside D∗. But since D∗ is defined over Q, we have σ(D∗) = D∗

and so [M]∩[LF \M] contains a linear form not in D∗, say `0. Take maximal

subsets M1, M2 of M and LF \ M, respectively, that are both linearly

independent on D. Then there are λ` ∈ K for ` ∈M1 ∪M2 such that∑
`∈M1

λ`` ≡
∑
`∈M2

λ`` ≡ `0 (modD∗).

This implies thatM1∪M2 is linearly dependent on D. We can take a subset

ofM1∪M2 that is minimally linearly dependent on D. This set necessarily

must have elements with both M1 and M2 in common. But then there

would be an edge connecting an element of M with one of LF \M, which

contradicts that M is the vertex set of a connected component of GD.

Lemma 4.2. Let D be a linear subspace of Qm of dimension d ≥ 2 and M
a non-empty subset of LF with rankDM < d. Then there is a subset I of

LF that is minimally linearly dependent on D, such that M∩ I 6= ∅ and

rankDM∪ I > rankDM.

Proof. LetM′ consist of all linear forms in LF that are linear combinations

of the linear forms in M and of the linear forms in D∗. Then rankDM′ =

rankDM < d, hence ∅⊂
6=
M′⊂

6=
LF . Take a maximal subset M1 of M that

is linearly independent on D; then it is also a maximal subset ofM′ that is

linearly independent on D. Let M2 be a maximal subset of LF \M′ that

is linearly independent on D.

By Lemma 4.1 there is a set J ⊆ LF that is minimally linearly dependent

on D and contains elements of both M′ and LF \M′. This gives a linear

combination
∑

`∈J λ`` ∈ D∗, with `0 :=
∑

`∈J∩M′ λ`` 6∈ D∗. Writing the

linear forms in J ∩M′ as linear combinations modulo D∗ of the linear forms

inM1, and the linear forms in J ∩(LF \M′) as linear combinations modulo

D∗ of the linear forms in M2, we obtain a relation
∑

`∈M1∪M2
µ`` ∈ D∗,

with
∑

`∈M1
µ`` ≡ `0 6≡ 0 (modD∗). Hence M1 ∪M2 is linearly dependent

on D. Take a subset I of M1 ∪M2 that is minimally linearly dependent

on D. We have I ∩M1 6= ∅ and I ∩M2 6= ∅ sinceM1 andM2 are linearly

independent on D. This implies I∩M 6= ∅. Further,M2∩M′ = ∅, therefore

each of the linear forms in M2 is linearly independent on D of the linear

forms in M. Hence rankDM∪ I > rankDM.

Denote by MK the set of places of K. We choose normalized absolute

values | · |v (v ∈MK) in such a way that if v lies above p ∈ {∞}∪{primes},



S-parts of values of polynomials 25

then |x|v = |x|[Kv :Qp]/[K:Q]
p for x ∈ Q. These absolute values satisfy the

product formula
∏

v∈MK
|x|v = 1 for x ∈ K∗. For a vector y = (y1, . . . , yr) ∈

Kr, we define

‖y‖v := max
1≤i≤r

|yi|v (v ∈MK), H(y) :=
∏
v∈MK

‖y‖v.

By the product formula, H(λy) = H(y) for y ∈ Kr, λ ∈ K∗.
For x ∈ Zmprim and a subset I of LF , we define

HI(x) :=
∏
v∈MK

max
`∈I
|`(x)|v.

Lemma 4.3. Let x ∈ Zmprim with `(x) 6= 0 for ` ∈ LF and let I, J be

subsets of LF with I ∩ J 6= ∅. Then

HI∪J (x) ≤ HI(x) ·HJ (x).

Proof. Let `0 ∈ I ∩ J . Then by the product formula,

HI∪J (x) =
∏
v∈MK

max
`∈I∪J

|`(x)/`0(x)|v

≤
( ∏
v∈MK

max
`∈I
|`(x)/`0(x)|v

)
·
( ∏
v∈MK

max
`∈J
|`(x)/`0(x)|v

)
= HI(x) ·HJ (x).

Lemma 4.4. Let D be a linear subspace of Qm of dimension ≥ 2 on which

none of the linear forms in L vanishes identically. Then for every x ∈
Zmprim ∩ D with `(x) 6= 0 for ` ∈ LF , there is a subset I of LF that is

minimally linearly dependent on D such that HI(x)�F,D ‖x‖1/(m−1).

Proof. Let x ∈ Zmprim ∩ D with `(x) 6= 0 for ` ∈ LF . Start with a linear

form `0 ∈ LF . By Lemma 4.2, there is a subset I1 of LF that is minimally

linearly dependent on D, that contains `0 and for which rankD I1 ≥ 2.

Using Lemma 4.2, we choose inductively subsets I2, I3, . . . of LF that are

minimally linearly dependent on D as follows: if rankD I1∪· · ·∪It < dimD,

we choose It+1 such that It+1∩(I1∪· · ·∪It) 6= ∅ and rankD I1∪· · ·∪It+1 >

rankD I1 ∪ · · · ∪ It. It is clear that for some s ≤ dimD − 1 ≤ m − 1 we

get rankD I1 ∪ · · · ∪ Is = dimD. Then X1, . . . , Xm can be expressed as

linear combinations modulo D∗ of the linear forms in I1∪ · · ·∪Is, implying

‖x‖ = H(x)�F,D HI1∪···∪Is(x). Now from Lemma 4.3 we infer

‖x‖ �F,D

s∏
i=1

HIi(x) ≤ max
1≤i≤s

HIi(x)s ≤ max
1≤i≤s

HIi(x)m−1.
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Proof of Theorem 2.7. Without loss of generality, we assume that the linear

forms in (2.3) have their coefficients in the ring of integers OK of K. We

prove by induction on d that if D is a linear subspace of Qm of dimension d

on which none of the linear forms in L vanishes identically, then (2.7) has

only finitely many solutions in Zmprim ∩D. For d = 1 this is clear.

Assume that d ≥ 2 and that our assertion holds true for all linear sub-

spaces of Qm of dimension smaller than d. Let D be a linear subspace of Qm

of dimension d on which none of the linear forms in L vanishes identically

and let 0 < ε < 1
m−1 . Take x ∈ Zmprim ∩D satisfying (2.7). Choose a subset

I of LF that is minimally linearly dependent on D such that

(4.1) HI(x)�F,D ‖x‖1/(m−1).

Let T be the set of places of K lying above the places in S∪{∞}. For v ∈ T ,

choose `v ∈ I such that |`v(x)|v = max`∈I |`(x)|v, and let Iv := I \ {`v}.
We have |`v(x)|v �F 1 for ` ∈ LF , v ∈ MK \ T since x ∈ Zm. So by the

product formula,
∏

v∈T |`(x)|v �F 1 for ` ∈ LF . Together with (4.1) this

implies ∏
v∈T

∏
`∈I

|`(x)|v �F

∏
v∈T

|F (x)|v ≤ ‖x‖(1/(m−1))−ε

�F,D HI(x)1−(m−1)ε,

and subsequently, dividing both sides by
∏

v∈T |`v(x)|v,

(4.2)
∏
v∈T

∏
`∈Iv

|`(x)|v �F,D HI(x)−(m−1)ε.

Write I = {`0, . . . , `u}. Then `0 ≡ β1`1 + · · ·+βu`u (modD∗) with βi 6= 0 for

i = 1, . . . , u Put yi := `i(x) for i = 1, . . . , u, and y = (y1, . . . , yu). Then y ∈
Ou
K . We can express `(x) (` ∈ Iv) as u linearly independent linear forms in

y, say `1,v(y), . . . , `u,v(y), taken from the set {Y1, . . . , Yu, β1Y1 + · · ·+βuYu}.
Now (4.2) translates into

∏
v∈T

u∏
i=1

|`i,v(y)|v �F,D H(y)−(m−1)ε, y ∈ Ou
K .

Thus, we can apply the p-adic Subspace Theorem [22], and conclude that

the vectors y lie in finitely many proper linear subspaces of Ku. It follows

that the solutions x ∈ Zmprim ∩ D of (2.7), corresponding to the same sets

Iv (v ∈ T ) in (4.2), lie in finitely many proper linear subspaces of D.

Since there are only finitely many possibilities for the sets Iv, it follows
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that the solutions x ∈ Zmprim ∩D altogether lie in only finitely many proper

linear subspaces of D. By applying the induction hypothesis to each of these

spaces, it follows that (2.7) has only finitely many solutions in Zmprim ∩ D.

This completes our proof.

5 Proof of Theorem 2.9

Let F ∈ Z[X1, . . . , Xm] be a decomposable form in m ≥ 2 variables with

a factorization as in (2.3), satisfying (2.9) and (2.10). Our first goal is to

prove that c(F ) < 1. We have used some arguments from [16, §3.3]. We

start with some preparations.

For a subset M of LF we put |M| :=
∑

`∈M e(`). Let D be a linear

subspace of Qm of dimension d ≥ 2. A subset M of LF is called D-critical

if qD(M) is maximal among all non-empty subsets of LF . AD-critical subset

is called minimal if none of its proper subsets is D-critical.

Lemma 5.1. Let M1, M2 be two D-critical subsets of LF .

(i) Assume that M1, M2 are minimal and M1 6=M2.

Then M1 ∩M2 = ∅.

(ii) Assume that M1 ∩M2 = ∅. Then M1 ∪M2 is D-critical.

Proof. We use that for any two subsets N1, N2 of LF we have

(5.1)

{
rankDN1 ∩N2 + rankDN1 ∪N2 ≤ rankDN1 + rankDN2,

|N1 ∩N2|+ |N1 ∪N2| = |N1|+ |N2|.

(i) Let q0 := maxM qD(M), where the maximum is taken over all non-

empty subsets M of LF . Assume M1 ∩M2 6= ∅. Then by (5.1),

rankDM1 ∩M2

≤ rankDM1 + rankDM2 − rankDM1 ∪M2

= q−1
0 |M1|+ q−1

0 |M2| − qD(M1 ∪M2)−1|M1 ∪M2|
≤ q−1

0 (|M1|+ |M2| − |M1 ∪M2|) = q−1
0 |M1 ∪M2|,

implying qD(M1 ∩M2) ≥ q0. This is clearly impossible.

(ii) Again by (5.1),

rankDM1 ∪M2 ≤ rankDM1 + rankDM2

= q−1
0 (|M1|+ |M2|) = q−1

0 |M1 ∪M2|,

which implies qD(M1 ∪M2) ≥ q0. Hence M1 ∪M2 is D-critical.
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Lemma 5.2. We have c(F ) < 1.

Proof. We have to prove that for every Q-linear subspace D of Qm of dimen-

sion ≥ 2 we have qD(F ) < qD(LF ) = n/d, where d = dimD and n = degF .

Assume that for some of these subspaces D we have qD(F ) ≥ n/d, i.e., there

is a subsetM1 of LF with rankDM1 < d and qD(M1) ≥ n/d. Without loss

of generality, we take for M1 a minimal D-critical subset of LF .

Let D∗ be the K-vector space of linear forms in K[X1, . . . , Xm] that

vanish identically on D. Then for each σ ∈ Gal(K/Q), σ(M1) is also a

minimal D-critical set since rankD σ(M1) = rankDM1 and |σ(M1)| =

|M1|, and so by Lemma 5.1, we have either σ(M1) =M1 or σ(M1)∩M1 =

∅. That is, M1 is Gal(K/Q)-proper. Let M1, . . . ,Mt be the distinct sets

among the σ(M1), σ ∈ Gal(K/Q). We first prove that

(5.2) LF =M1 ∪M2 ∪ · · · ∪Mt.

Suppose the contrary, i.e.,M0 :=M1 ∪ · · · ∪Mt⊂6= LF . By Lemma 5.1, the

set M0 is D-critical, hence qD(M0) ≥ d/n, which implies rankDM0 < d.

This, together with the fact thatM0 is Gal(K/Q)-symmetric, implies that

there is a non-zero x ∈ D with `(x) = 0 for ` ∈M0. This clearly contradicts

(2.10). So indeed, (5.2) holds. By Lemma 5.1 (ii), any non-empty unionM
of some of the sets Mi is D-critical, implying qD(M) = qD(LF ) = d/n.

As observed above, the set M1 is Gal(K/Q)-proper. So by assumption

(2.9), the K-vector space

∑
σ∈Gal(K/Q)

[σ(M1)] ∩ [LF \ σ(M1)] =
t∑
i=1

[Mi] ∩ [LF \Mi]

contains a linear form from LF . By assumption (2.10), this form does not

lie in D∗. Hence there is i ∈ {1, . . . , t} such that [Mi] ∩ [LF \Mi] contains

a linear form not in D∗. Moreover, qD(Mi) = qD(LF \Mi) = d/n. Hence

d = rankD LF < rankDMi + rankD (LF \Mi)

= d
n(|Mi|+ |LF \Mi|) = d,

which is impossible. Thus, our assumption that qD(F ) ≥ n/d is false.

We need a few other, much deeper auxiliary results, which are taken

from the literature. We keep the notation and assumptions from Theorem

2.9. For each p ∈ S ∪ {∞}, we choose an extension of | · |p to the splitting

field K of F .
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Lemma 5.3. Let D be a linear subspace of Qm of dimension d ≥ 2. Then

for every x ∈ Zmprim ∩ D, there are subsets Lp (p ∈ S ∪ {∞}) of LF of

cardinality d that are linearly independent on D, such that∏
p∈S∪{∞}

∏
`∈Lp

|`(x)|p(5.3)

�F,S,D

(( ∏
p∈S∪{∞}

|F (x)|p
)
· ‖x‖−(n−dqD(F ))

)1/qD(F )

.

Proof. In the case D = Qm this is a special case of [16, Lemma 2.2.4]. The

case of arbitrary D can be reduced to this by choosing a Z-basis {a1, . . . , ad}
of Zm∩D and working with the decomposable form F (ϕ(y)), where ϕ(y) =∑d

i=1 yiai. Note that ϕ establishes a bijection between Zdprim and Zmprim ∩
D.

Lemma 5.4 (p-adic Minkowski). Let p be a prime number. Further, let

`1, . . . , `m be linearly independent linear forms in m variables with real co-

efficients and `1,p, . . . , `m′,p (m′ ≤ m) linearly independent linear forms in

m variables with coefficients in Qp. Then there are constants γ1, γ2 > 1,

depending only on p, m, `1, . . . , `m, `1,p, . . . , `m′,p, such that if A1, . . . , Am,

B1, . . . , Bm′ are any positive reals with

(5.4) A1 · · ·AmB1 · · ·Bm′ ≥ γ1, Bi ≤ γ−1
2 for i = 1, . . . ,m′

then there is a non-zero x ∈ Zm with

(5.5) |`i(x)| ≤ Ai for i = 1, . . . ,m, |`ip(x)|p ≤ Bi for i = 1, . . . ,m′.

Proof. We augment `1,p, . . . , `m′,p to a linearly independent set of m linear

forms `1,p, . . . , `m,p with coefficients in Qp. Let C be the symmetric convex

body consisting of those x ∈ Rm with

|`i(x)| ≤ Ai for i = 1, . . . ,m

and Λ the lattice consisting of those x = (x1, . . . , xm) ∈ Qm such that

|`ip(x)|p ≤ Bi for i = 1, . . . ,m′,

|`i,p(x)|p ≤ γ−1
2 for i = m′ + 1, . . . ,m,

|xi|q ≤ 1 for i = 1, . . . ,m and all primes q 6= p,

with γ2 yet to be chosen. By choosing γ2 sufficiently large, we can guarantee

that Λ ⊆ Zm for all B1, . . . , Bm′ ≤ γ−1
2 and by choosing γ1 sufficiently

large, we can guarantee that vol(C)/ det Λ ≥ 2m for all A1, . . . , Am with

A1 · · ·AmB1 · · ·Bm′ ≥ γ1. Minkowski’s Theorem implies that for such Ai, Bi

there is a non-zero x ∈ C ∩ Λ. This x satisfies (5.5) and lies in Zm.
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Proposition 5.5. Let F ∈ Z[X1, . . . , Xm] be a decomposable form of de-

gree n with (2.9) and (2.10). Then the number of x ∈ Zmprim such that∏
p∈S∪{∞} |F (x)|p ≤M is �n,S M

m/n as M →∞.

Proof. Liu proved this in his thesis for all decomposable forms F with

c(F ) < 1 and with (2.10), see [16, Theorem 2.1.3]. As observed in Lemma

5.2, the condition c(F ) < 1 follows from (2.9) and (2.10). Liu’s theorem and

its proof are a p-adic generalization of Thunder’s theorem [27, Theorem 2]

and its proof.

Proof of Theorem 2.9. (i). Let 0 < ε < 1−c(F ). We prove by induction on d

that if D is any d-dimensional Q-linear subspace of Qm, then [F (x)]S �F,S,D

|F (x)|c(F )+ε for all x ∈ Zmprim ∩ D. For d = 1 this is clear. Let d ≥ 2, and

assume the assertion is true for all linear subspaces of Qm of dimension < d.

Let D be a Q-linear subspace of Qm of dimension d. Take x ∈ Zmprim ∩D for

which

(5.6) [F (x)]S ≥ |F (x)|c(F )+ε.

Then ∏
p∈S∪{∞}

|F (x)|p =
|F (x)|
[F (x)]S

≤ |F (x)|1−c(F )−ε �F,S,D ‖x‖n(1−c(F )−ε).

Take subsets Lp (p ∈ S ∪{∞}) of LF as in Lemma 5.4 and insert the above

inequality into (5.3). Then since c(F ) ≥ qD(F ) · d/n,∏
p∈S∪{∞}

∏
`∈Lp

|`(x)|p �F,S,D

(
‖x‖n(1−c(F )−ε) · ‖x‖−(n−dqD(F ))

)1/qD(F )

�F,S,D ‖x‖−nε/qD(F ).

By the p-adic Subspace Theorem, the points x ∈ Zmprim ∩ D with (5.6) lie

in finitely many proper linear subspaces of D. By applying the induction

hypothesis with each of these subspaces, we infer that for the points x ∈
Zmprim ∩ D with (5.6) we have [F (x)]S �F,S,D |F (x)|c(F )+ε. This completes

our induction step, and hence the proof of (i).

(ii). LetK = Q(θ). By Chebotarev’s Density Theorem there are infinitely

many primes p such that the minimal polynomial of θ over Q has all its

roots in Qp. Take such a prime p. Then in the factorization (2.3) we may

assume that the linear forms in LF have their coefficients in Qp. Let D be

a linear subspace of Qm of dimension d ≥ 2, and M a subset of LF with

rankDM =: d′ < d for which qD(M) · d/n = c(F ). Choose a subset M′
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of M of cardinality d′ that is linearly independent over D. By Lemma 5.4

there is for every sufficiently large Q a non-zero point x ∈ Zm∩D such that

‖x‖ � Q, |`(x)|p � Q−d/d
′

for ` ∈M′,

where here and below, the constants implies by� depend on F,D and p and

in fact only on F and p since D depends on F . Without loss of generality,

we may assume that the greatest common divisor of the coordinates of x

does not contain factors coprime with p. Let pk be the greatest common

divisor of the coordinates of x and put x′ := p−kx Then x′ ∈ Zmprim ∩ D,

pk � Q, and

(5.7)
‖x′‖ � p−kQ,

|`(x′)|p � pkQ−d/d
′
= (p−kQ)−d/d

′
(pk)1−(d/d′) for ` ∈M′.

Now if we let Q→∞, then x′ runs through an infinite set. Indeed, otherwise

there were a non-zero x′ ∈ Zmprim ∩ D such that (5.7) holds for arbitrarily

large Q. But by letting Q → ∞, we can make max(p−kQ, pk) arbitrarily

large and thus |`(x′)|p arbitrarily small for every ` ∈M′. But then it would

follow that `(x′) = 0 for ` ∈M′, which is however excluded by assumption

(2.10).

From the above we conclude that there are infinitely many x′ ∈ Zmprim∩D
such that

|`(x′)|p � ‖x′‖−d/d
′

for ` ∈M′.

Since the other linear forms in M are linear combinations modulo D∗ of

the linear forms in M′ , these x′ satisfy

|`(x′)|p � ‖x′‖−d/d
′

for ` ∈M,

and moreover, trivially, |`(x′)|p � 1 for ` ∈ LF\M. Using the decomposition

(2.3), it follows that these x′ satisfy

|F (x′)|p � ‖x′‖−(d/d′)|M| = ‖x′‖−dqD(M) = ‖x′‖−nc(F ),

hence

[F (x′)]{p} = |F (x′)|−1
p � |F (x′)|c(F ).

This proves (ii).

(iii) Let 0 < ε < 1 and B > 1. Then every x ∈ Zmprim with [F (x)]S ≥
|F (x)|ε and ‖x‖ ≤ B satisfies∏

p∈S∪{∞}

|F (x)|p =
|F (x)|
[F (x)]S

≤ |F (x)|1−ε �F,ε B
n(1−ε),
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where n := degF . Hence N(F, S, ε, B) is at most the number of solutions

in x ∈ Zmprim of this last inequality. Now Proposition 5.5 implies

N(F, S, ε, B)�F,S,ε (Bn(1−ε))m/n �F,S,ε B
m(1−ε)

as B →∞. This proves (iii).

6 Proof of Theorem 2.10

Theorem 2.10 will be deduced from Proposition 6.1 below, which is a special

case of a non-explicit version of Theorem 3 of Győry and Yu [15]. Its proof

is based on effective results of Győry and Yu [15] for unit equations, and

ultimately depends on Baker’s method, more precisely on explicit estimates

of Matveev [19] concerning linear forms in complex logarithms of algebraic

numbers and similar such estimates by Yu [28] for p-adic logarithms.

Let F ∈ Z[X1, . . . , Xm] be a decomposable form, S = {p1, . . . , ps} a finite

non-empty set of primes, and b a non-zero integer. Let ZS := Z[(p1 · · · ps)−1]

be the ring of S-integers in Q, and consider the equation

(6.1) F (x) = b in x ∈ ZmS .

Let p1, . . . , pt be the prime ideals in K that divide p1, . . . , ps, and let P ′ =

max
1≤i≤t

N(pi), where N(a) := #OK/a denotes the absolute norm of a non-zero

ideal a of OK . Further, denote by h the absolute logarithmic height.

Proposition 6.1. Let F be a decomposable form as above with properties

(2.12) and (2.13). With the above notation, every solution x = (x1, . . . , xm) ∈
ZmS of (6.1) with xm 6= 0 if k > 1 satisfies

(6.2)
max

1≤j≤m
h(xj) < ct4(P ′/ logP ′)

t∏
i=1

logN(pi)·

· (c5 + logN(p1 · · · pt) + h(b)),

where c4, c5 are effectively computable positive numbers that depend only on

F .

We mention that Theorem 3 of [15] implies Proposition 6.1 with explicit

expressions for c4, c5 in terms of the heights of the coefficients of F and the

degree and regulator of the splitting field K of F .

We now prove Theorem 2.10 by means of Proposition 6.1.
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Proof of Theorem 2.10. Let x ∈ Zmprim with F (x) 6= 0, and define b :=

F (x)/[F (x)]S. Then F (x) = pa11 · · · pass b for certain non-negative integers

a1, . . . , as. We can write ai = na′i + a′′i with a′i, a
′′
i ∈ Z≥0 such that a′′i < n

for each i. Then (2.4) implies that

(6.3) F (x′) = b′,

where

(6.4) x′ = x/p
a′1
1 · · · pa

′
s
s and b′ = bp

a′′1
1 · · · pa

′′
s
s .

Here x′ = (x′1, . . . , x
′
m) is a solution of (6.3) in ZmS .

We apply now Proposition 6.1 to the equation (6.3). Let p1, . . . , pt and

P ′ as above. Then we get

max
1≤j≤m

h(x′j) < C1,

for every solution x = (x′1, . . . , x
′
m) ∈ ZmS of (6.3) with x′m 6= 0 if k > 1,

where C1 denotes the upper bound occuring in (6.2) but with b replaced by

b′.

Since t ≤ sd, P ′ ≤ P d where d = [K : Q], and h(b′) ≤ ns logP + log |b|,
we infer that

(6.5) max
1≤j≤m

h(x′j) < C2(c6 + log |b|),

where C2 = cs7(P (log p1) · · · (log ps))
d and c6, c7 are effectively computable

positive numbers that depend only on F . It is easy to deduce from (6.5)

and (6.4) that

p
a′1
1 · · · pa

′
s
s ≤ C3|b|mC2 ,

where C3 = emC2c6 . This gives

pa11 · · · pass < (p1 · · · ps)n(p
a′1
1 · · · pa

′
s
s )n ≤ C4|b|mnC2

with C4 = P snCn
3 . Multiplying both sides by (pa11 · · · pass )mnC2 and then

raising to the power 1/(mnC2 + 1), we infer that

[F (x)]S ≤ (P sC3)
1

mC2 |F (x)|1−
1

mnC2+1 .

But (P sC3)
1

mC2 ≤ κ6, while mnC2 + 1 ≤ cs3(P (log p1) · · · (log ps))
d with

effectively computable κ6, c3 depending only on F . This gives (2.14).



34 Y. Bugeaud, J.-H. Evertse, and K. Győry

7 Lower bound for the greatest prime fac-

tors of decomposable forms at integral points

We now deduce over Z an improved and more explicit version of Corollary 5

of Győry and Yu [15] on the greatest prime factors of decomposable forms at

integral points. We note that in Győry and Yu [15] it was more complicated

to deduce Corollary 5 from Theorem 3 of that paper. The next corollary

gives some useful information about those non-zero integers that can be

represented by decomposable forms of the above type.

For a positive integer a we denote by P (a) and ω(a) the greatest prime

factor and the number of distinct prime factors of a with the convention that

P (1) = 1, ω(1) = 0. Further, we denote by logi the i-th iterated logarithm.

Corollary 7.1. Let F (X1, . . . , Xm) ∈ Z[X1, . . . , Xm] be a decomposable

form as in Theorem 2.10, and let h0 be a non-zero integer that can be rep-

resented by F (x) with some x = (x1, . . . , xm) ∈ Zmprim with xm 6= 0 if k > 1.

Then

(7.1) (P (logP )2ω)d > log |h0|

and

(7.2) P >

{
(log |h0|)1/3d if ω ≤ logP/ log2 P,

C5 log2 |h0| · log3 |h0|/ log4 |h0| otherwise,

provided that |h0| ≥ C6, where P = P (h0), ω = ω(h0). Here C5, C6 are

effectively computable positive numbers that depend only on F .

Proof. Let h0 be a non-zero integer such that h0 = F (x) for some x =

(x1, . . . , xm) ∈ Zmprim with xm 6= 0 if k > 1. Write

F (x) = pa11 · · · pass

with distinct primes p1, . . . , ps. Then P = P (h0) = max
1≤i≤s

pi and ω = ω(h0) =

s. Put S := {p1, . . . , ps}. In this case [F (x)]S = |F (x)|. Now (2.14) imme-

diately gives

|h0| ≤ κ6|h0|1−κ5

with κ5, κ6 specified in Theorem 2.10. This implies that

|h0| ≤ κ
1/κ5
6 ,

whence

log |h0| ≤ cs8(2P (logP )s)d
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with an effectively computable positive c8 that depends only on F .

We know from prime number theory that s < 2P
logP . Hence, if |h0| ≥ C7

with a large and effectively computable C7 = C7(F ) > 0, then P must be

also large and so (c8(logP )d)s ≤ (logP )2ds and (7.1) follows.

If s ≤ logP
log2 P

then it follows from (7.1) that

log2 |h0| < d logP + 2ds log2 P ≤ 3d logP,

which gives the first inequality in (7.2), provided that C7 is sufficiently large.

Otherwise, we deduce from (7.1) that

log2 |h0| < d logP + 4d
P

logP
log2 P,

which gives the second inequality in (7.2), provided that C7 is sufficiently

large.

8 Applications to discriminants of algebraic

integers

As was mentioned above, Theorem 2.10 and its corollaries can be applied

to discriminant forms, index forms and a large class of norm forms. We now

present some applications to discriminants of algebraic integers. Similar

consequences can be obtained for indices of algebraic integers.

Let L be a number field of degree n ≥ 3 with ring of integers OL, and sup-

pose that K is the normal closure of L over Q. Further, let S = {p1, . . . , ps}
be a finite, non-empty set of primes. We define the discriminant of an alge-

braic integer to be the discriminant of its monic minimal polynomial over

Z. Consider the discriminant equation

(8.1) DL/Q(α) = pa11 · · · pass · b in α ∈ OL, a1, . . . , as ∈ Z≥0,

where b is an S-free integer, i.e., coprime with p1, . . . , ps. Clearly, α and

α + a with a ∈ Z have the same discriminant. Such elements of OL are

called equivalent. Denote by S the set of positive integers composed of

primes from S. We claim that any solution of (8.1) can be derived from one

which is not equivalent to any element of OL that is divisible in OL by any

η > 1 from S . Indeed, if α satisfies (8.1) then, by Theorem 3 of Győry [13],

α can be written in the form

α = ηα′ + a
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with some a ∈ Z, η ∈ S and α′ ∈ OL. This representation is not necessarily

unique. For fixed α, choose η, α′, a such that η is maximal. Since DL/Q(α) =

ηn(n−1)DL/Q(α′), α′ is also a solution of (8.1) with other a1, . . . , as. Further,

by the choice of η, the number α′ cannot be equivalent to any η′α′′ in OL

with α′′ ∈ OL and η′ ∈ S with η′ > 1, since otherwise α would be equivalent

to ηη′α′′ with ηη′ > η. This proves our claim.

Note that in the representation (8.1), the S-part of the discriminant of

α is

[DL/Q(α)]S = pa11 · · · pass .

As a consequence of Theorem 2.10, we want to estimate [DL/Q(α)]S from

above in terms of |DL/Q(α)|1−κ7 for some constant κ7 > 0. In view of the

above we require that α not be equivalent to any element of the form ηα′

where α′ ∈ OL and η is an integer from S with η > 1.

Corollary 8.1. Assume that α in (8.1) is not equivalent to any element of

OL that is divisible in OL by an η ∈ S greater than 1. Then

(8.2) [DL/Q(α)]S ≤ κ8 · |DL/Q(α)|1−κ7 ,

where

κ7 =
(
cs9
(
(P (log p1) · · · (log ps)

)d)−1 ≥ (cs9(2P (logP )s)d)−1,

and κ8, c9 are effectively computable positive numbers depending only on L.

Proof. If L is effectively given in the sense of e.g., Evertse and Győry [9,

§3.7], an integral basis of OL of the form {1, ω2, . . . , ωn} can be effectively

determined. Then we can write α = a+ x2ω2 + · · ·+ xnωn with appropriate

integers a, x2, . . . , xn. Using the fact that DL/Q(α) = DL/Q(α− a) we get

DL/Q(α) = DL/Q(x2ω2 + · · ·+ xnωn).

Our assumption on α implies that p1, . . . , ps do not divide gcd(x2, . . . , xn).

Moreover, we may assume without loss of generality that gcd(x2, . . . , xn) =

1. The discriminant form DL/Q(ω2X2 + · · · + ωnXn) satisfies (2.12) and

(2.13) with k = 1, see e.g. Győry and Yu [15], so we can apply Theorem

2.10 with this discriminant form. By observing that the dependence of the

constants in Theorem 2.10 can be replaced by a dependence on L, Corollary

8.1 follows.

Corollary 8.1 has similar consequences as Theorem 2.10 for arithmetical

properties of non-zero integers D0 that are discriminants of some α ∈ OL,
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but are not the discriminants of any kβ with β ∈ OL and rational integer

k > 1. Then it follows from Theorem 2.10 that

(P (logP )2ω)d > |D0|

provided that |D0| ≥ C(L), where P = P (D0), ω = ω(D0) and C(L) is

effectively computable in terms of L. We can get also inequalities similar

to (7.2). We note that more general but weaker results of this type can be

found in Győry [13] and Evertse and Győry [9].

9 Additional comments

Let f(X) be an integer polynomial with at least two distinct roots, and

S = {p1, . . . , ps} a finite set of primes. According to the result of Gross and

Vincent [10] quoted as Theorem A in the Introduction, we have

[f(x)]S ≤ κ2|f(x)|1−κ1 for every x ∈ Z with f(x) 6= 0,

where κ1, κ2 are positive numbers, effectively computable in terms of f and

S. As mentioned in Theorem 2.2, in this estimate we can take

κ1 =
(
cs1
(
((max

i
pi)(log p1) · · · (log ps)

)d)−1
,

where d is the degree of the splitting field of f and c1 depends only on f .

The factor maxi pi comes from the use of linear forms in p-adic logarithms

in our argument. If we follow instead the proof of [10], by applying a result

of Matveev [19] replacing the older and less sharp estimate for linear forms

in logarithms due to Alan Baker that was used by Gross and Vincent, we

would have obtained an estimate of the above type with

κ1 =
(
cs2
(
(log p1) · · · (log ps)

)c3)−1
,

where c2, c3 (as well as the other constants c4, c5, . . . , c8 below) are effectively

computable in terms of f . Taking for p1, . . . , ps the first s prime numbers, an

easy computation using the Prime Number Theorem shows that, for every

positive ε, we have

P (f(x)) ≥ (1− ε) log2 x · log3 x/ log4 x ,

for x ∈ Z with f(x) 6= 0 and |x| sufficiently large in terms of ε.

For a positive integer a we denote by Q(a) its greatest square-free factor.

Let again x be an integer with f(x) 6= 0 and p1, . . . , ps the prime divisors
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of f(x). Proceeding as in [10], but applying a result of Matveev [19] instead

of one of Baker, we get

log |x| ≤ cs4
(
(log p1) · · · (log ps)

)c5 .
Using the arithmetico-geometric inequality as in Stewart’s paper [26], we

deduce that

log log |x|
s

≤ c6

(
1 + log

( logQ(f(x))

s

)
+

log3Q(f(x))

s

)
.

We then conclude that

logQ(f(x)) ≥ c7 log2 |x| · log3 |x|/ log4 |x|.

With the approach followed in the present paper, we would only get that

logQ(f(x)) ≥ c8 log2 |x|,

a result that was already known.

Let F ∈ Z[X1, . . . , Xm] be a decomposable form as in Theorem 2.10,

and let h0 be a non-zero integer that can be represented by F (x) with some

x = (x1, . . . , xm) ∈ Zmprim with xm 6= 0 if k > 1. We are not able to prove the

existence of effectively computable positive numbers c9, c10, which depend

only on F , such that

logQ(h0) > c9 log2 |h0| · log3 |h0|/ log4 |h0|,

provided that |h0| > c10.
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