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Abstract

We give a rather sharp upper bound for the degree of a binomial Thue-Mahler equation in terms of the
coefficients and the primes involved. Further, we establish explicit lower bounds for the greatest prime factor of
a binomial binary form at integral points. Our estimates considerably generalize and improve the earlier results
obtained in this direction.

1. Introduction

Let a,b,xz and y be non-zero rational integers with |z| # |y|, and let n be a positive
integer. Then, by a theorem of Stewart [10], we have

1/2
P(ax™ +by™) > ¢ (L> if n> e, (1)
logn

where cq, co are positive, effectively computable numbers which depend only on a and b.
Later, Gy6ry, Mignotte and Shorey [7] (see also Yu and Hung [11]) improved (1) to

P(az™ + by") > csn'/? if n > ey, (2)

where the constants c3, c4 are positive and effectively computable numbers depending only
on a and b. It is known that forn = 0,1,2,..., ax™+by™ can be regarded as a special binary
recurrence sequence. In [10] and [7], the authors deduced (1) and (2) as consequences of
more general results concerning recurrence sequences.

Bugeaud [2] showed that if

ax™ + by"™ = p®,z € N, (3)
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where ged(z,y) = 1 and p is a prime with p fab, then
n < 34000p(logp) log A (4)

holds with A = max{|al, |b/,3}. The main tools used in [2] are sharp, effective estimates
for linear forms in two logarithms, in the Archimedean and non-Archimedean cases.
We prove the following generalization of Bugeaud’s theorem.

Theorem 1. Let a, b,z and y be non-zero rational integers with |z| # |y| and ged(z,y) =
1. Let p1,...,ps be primes not dividing a and b, and suppose that

azx™ + by" = £pit ... pZ* (5)
with an integer n > 3 and non-negative integers zi,...,zs. If a/b and z/y are multiplica-
tively independent, then

n < 39650sP(log P) log A, (6)

while if a/b and x/y are multiplicatively dependent, then
n < P 4 log A. (7)

Here, we have set P = max{ps,...,ps,3} and A = max{|al, |b|, 3}.

Using that s < 2P/log P (cf. [9]), Theorem 1 immediately yields an explicit lower
bound for P in terms of A and n, and so an explicit version of (2). However, it is possible
to slightly improve it.

Theorem 2. Suppose that |y| > |z|. Then we have

n 1/2 n 1/2
P(az" + by") > 0.001 logmin{ —— [y[t/e2 L)
(az™ + by™) > 0.00 <logA> <ogmln{10gA, Y|

Combining Theorem 2 with the best known bounds for the solutions of Thue-Mahler
equations (cf. [4] and [6]), one can derive an explicit upper bound for max{|az™|, |by"|} in
terms of A and P, only. In [4], it is assumed that the binary form F involved is irreducible.
However, in the present case F' is the form aX™ + bY™ which can be reducible. For this
reason, we use results from [6] and not from [4], see Proposition 3 below. Together with
Theorem 2 this gives the following.

Theorem 3. Let a,b,z,y and n be as in Theorem 1 with X = max{|az”|, |by"|} > e°.
Then there exists an effectively computable positive absolute constant cs such that

(loglog X)/* . (loglog log X)/4

P(ax™ + by™) >
(a2 +by") = c5 (log A - loglog A)1/2

We remark that Theorem 3 is not a consequence of Theorem 1 and Proposition 3.
Using Theorem 1 (or results from [7] and [11]), it is possible to prove a weaker version of
Theorem 3, essentially with (logloglog X)'/* replaced by (logloglog X)~1/4.

Theorem 3 should be compared with the following consequence of Theorem 2 of [3].
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Theorem A. With the same notation as in Theorem 1, there exists an effectively com-
putable positive constant cg, depending only on n and A, such that

log log max{|x|, |y|}

P(az™ + by") >
(az™ +by™) > 83

provided that max{|z|,|y|} > cs.

In terms of max{|z|, |y|}, Theorem A is considerably sharper than Theorem 3; however,
there is no dependence on n in the lower bound obtained in Theorem 3. To our knowledge,
this is the first time when such a uniform result is established. As (1) and (2) in [10] and
[7], our Theorems can also be easily extended to more general binary recurrences and to
the number field case. This will be the subject of a forthcoming paper.

2. Auxiliary results

The proof of (6) in Theorem 1 will be based on the next two propositions concerning
linear forms in two logarithms. Let o = o1 be a non-zero algebraic number with minimal
defining polynomial ag(X — 1) ... (X — ay,) over Z. The logarithmic height of ¢, denoted
by h(a), is defined by

h(a) = % log(aoﬁmax{l, |a1|})

For any prime number p, let Qp be an algebraic closure of the field Q, of p-adic numbers.

We denote by v, the unique extension to Gp of the standard p-adic valuation over Q,,
normalized by v,(p) = 1.

Proposition 1. Let p be a prime number. Let a; and as be two algebraic numbers which
are p-adic units. Denote by f the residual degree of the extension Q, — Qp(a1, a2) and
put D = [Q(aq,az) : Q]/f. Let by and by be two positive integers and put

_ b b2

Denote by A; > 1 and As > 1 two real numbers such that
log A; > max{h(e;), (logp/D)}, i=1,2,
and put

b n b2
" DlogA; DlogA;’

If oy and a5 are multiplicatively independent, then we have the upper bound

bl

24p(pf — 1)

10logp
(p —1)(log p) ’

Up (A) < D

2
- D* (max {log b’ +loglogp + 0.4, 5}) log A1 log As.
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Proof : This is Théoréme 4 of Bugeaud and Laurent [5] with the choice (u,v) = (10,5). O

Proposition 2. Let a; > 1 and ay > 1 be two real algebraic numbers. Let by and by be
two positive integers and put

A =b;loga; — by logas.
Set D = [Q(a1, as) : Q] and denote by A; > 1 and As > 1 two real numbers satisfying
log A; > max{h(e;),1/D}, i=1,2.
Finally, put

b1 bo

b = .
Dlog A, * Dlog A,

If a1 and o are multiplicatively independent, then we have the lower bound
log |A| > ~32.31 D* (max{log ¥’ + 0.18,0.5,10/D})” log A; log A».

Proof : This is Corollaire 2 of Laurent, Mignotte and Nesterenko [8], where the numerical
constants are given in Tableau 2 and correspond to the choice hy = 10. Notice that the
hypotheses of the Proposition imply that h(«;) < |loga;|/D. O

The proof of Theorem 3 depends on an upper estimate for the size of the solutions of
Thue-Mahler equations, due to Gy6ry [6].

Proposition 3. Let a, b and n be non-zero integers withn > 3. Let p1,...,ps (s > 0) be
distinct rational primes not dividing a and b. All solutions of the Thue-Mahler equation

ax™ +by" =pit...p2> in x,y,21,...,25 € Z,
with ged(z,y) =1 and 21, ...,2s > 0 satisfy
loglog max{|az"|, |by"|} < c7n(slog(ns) + nlog P + sloglog P + log A).

where P = max{ps,...,ps, 3} and cy is an effectively computable absolute constant.

Proof : By means of a well-known argument the equation can be reduced to Thue equa-
tions of the form F(z,y) = az™ + by™ = B in S-integers z,y, where S = {p1,...,ps} and
B =pi*---p¥ with 0 < uq,...,us < n. To these equations one can apply Theorem 2 of [6]
with the choice L =Q, m =2, k=1 and d3 < n(n—1) to derive an explicit upper bound
for the height of z/y, and hence for max{|az™|, |by™|}. The bound so obtained depends not
only on n,s, P and A, but also on some other parameters. However, all these parameters
can be easily estimated from above in terms of n, s, P and A using (2.4) and Lemma 5 of
[6], as well as

Dag,| < [D(F)| < n2n=1 A2

b
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where D(F') and D)y, denote the discriminants of F' and of the number field M; generated
by the i-th linear factor of ™ +(b/a)y™ over Q. Finally, we get the upper bound requested.
(|

3. Proofs of the Theorems

Proof of Theorems 1 and 2: We may assume without loss of generality that y >z > 0
with ged(z,y) = 1 and that ged(a, b) = 1.

First consider the case when a/b and z/y are multiplicatively dependent. Then there
are positive integers z1,y1,u and an integer v such that

=1}, y =y}, ta/b= (x1/y1)".
Put ny = nu+v. If v > 0, then

az™ + by" = Lot £y

If v < 0, then
a= :I:yllvl, b= ia:lf)',
whence
lv| < log A.
Further,

az” +by" = i(mlyl)lvl(ix?l +y7t),

and so (5) gives

’

+aPt £yt = 4p]t ... ps° with integers z; > 0.

This means that it suffices to prove Theorem 1 for the case a = 1,b = £1. If we have an
upper bound, say N, for ni, then in the first case n < N, while in the second case

n<ni+|v| <N+logA

follows. But, by a classical theorem of Zsigmondy [12] (see also Birkhoff and Vandiver [1]),
we have
P(z7* £y7') > ny if ny > 2. (8)

Since P > P(z7* £ y7"), inequality (8) gives (7).

Next consider the case when a/b and z/y are multiplicatively independent. In view
of Bugeaud’s result (4), it is enough to deal with the case s > 2.
Put
R, = az™ + by". 9)

First suppose that
[Rn| < > (10)
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Let

A= %(g)n—i-l. (11)
Then (9),(10) and (11) give
log |A| < —0.1nlogy. (12)
Hence, by (11),
nlog% — log %H < |log(A —1)| < 1.001|A|. (13)

We apply now Proposition 2 above. Let

,blzn,b2:1.

Sal RS

a1 =y/z,ay =

Using the notation of Proposition 2, we can choose

n 1

log A, =logy, logAs; =logA, b = +—
logA  logy

where b’ < 2n/log A, provided that n > log A. We deduce now that if as > 1, then

9 2
log |A| > —0.001 — 32.31 max{log(ﬁ) +0.18, 10} log Alog y (14)

which, together with (12), gives

9 2
n < 323.2max{10g<—n> +0.18, 10} log A, (15)
log A
whence
n < 135080 log A. (16)

If o < 1, then in (13) the left hand side is

b
nlogy-}-log —‘
x a

which is positive. Then (13) and (12) imply that

b
log|—| < 1.001|A| < 1.001y~%'" < 1.001 - 27017

a ‘

which yields again (16).
In what follows, we suppose that

|[Rn| > " (17)
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If p divides R,, for some prime p, then in view of gcd(z,y) = 1 we have p [ry. Further,

wii) <u((Y) - (-2)). (15)

We apply Proposition 1 above. Let
a
o1 = Q,OZQ = ——,b1 :n,62 = 1,f =D=1.
x b
Recall that we have y > & > 0. We fix € with 0 < € < 1 and we distinguish two cases.
First case: Assume first that every prime divisor p of R,, satisfies

logy S

log p)©.
Tog2 = (logp)

This always holds if € = 0. Since p > 2 and y > 2, we may apply Proposition 1 with the
choice

logy 1— logp
log A, = =2 . (1 € log Ay =2 log A
g A= 5 (logp)™ ¢, log Az Tog 2 18
and
, n 1 < nlog 2

- log A * logA; ~ logplog A’
provided that n > (2log A)/log2. Then we get

n 2
Y @ p n

whence

2
b n
vp(Rp) < 100W logy -log A - max{lOlogp, log<@) } : (19)
It follows now that

log |R,| = Z vp(Ry)logp
len

2 (20)
n P
<1001 -log A - 10log P,1 — . E —_—.
< 100logy - log max{ 0log P, Og(logA)} 2 (log p)1+¢
Comparing (20) with (17), we deduce that
n n 2 p

111 10log P,1 — . —. 21
IOgA < max{ 0 og I, Og<10gA>} T (10gp)1+6 ( )



Except possibly for the case when P = 3 and s = 2, we infer from (21) that either
n < 11100sP(log P)log A (22)

or

n P of M
111ls—++—1
log A < S(logP)l"'€ ©8 (logA>’

whence, using that

s < 7(P) < 1.25506

23
log P (23)

(cf. [9]), we get
n < 39650sP(log P)'€log A. (24)

It is easy to check that for s = 2,p; = 2,ps = 3, (21) also implies (24). Taking ¢ = 0 in
(24), this yields (6) and completes the proof of Theorem 1.

If a/b and x/y are multiplicatively dependent, a sharper version of Theorem 2 follows
immediately from (7). Hence we consider the case when a/b and z/y are multiplicatively
independent. Then, in the first case inequalities (23) and (24) imply that

n < 49764P*(log P) “log A, (25)

n 1/2 n €/2
> 0. .
pooon(2) " (e i) -

Second case:  Assume now that there exists a prime divisor p of R, such that
(logy)/(log2) < (logp)€. This trivially implies that

thus

logy

log P)¢ .
(log P) > log2

Hence the estimate P > n/log A and, a fortiori, (26) hold as soon as

(log(n/log A))¢ < (logy)/(log2),

thus for any € such that

 log((logy)/(log 2))
loglog(n/log A)

(27)

Conclusion: 'We choose for € the largest possible value given by (27). If this value
is > 1, we put € = 1. Then (26) holds with e = 1. If e < 1 (that is, if (logy)/(log2) <
log(n/log A)), we infer from (26) and (27)that

n \Y2 /1o 1/2
P > 0.001 8v) .
log A log 2
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Consequently, we get

n 1/2 n 1/2
P >0.001 1 in{ ——, yl/1082 .
> 0.00 <logA) (ogmm{logA,y

This proves Theorem 2. [

Proof of Theorem 3:

If (logy)/(log2) > log(n/log A), we use (7) or (25) with e = 1 to bound n, according
as a/b and z/y are multiplicatively dependent or not. Then, it follows from (23) and
Proposition 3 that there exists an effectively computable positive absolute constant cg

such that .

P
log? A. 2
og P 18 (28)

log log max{|a|z"™, |b|ly"} < cs ]

It is easily checked that (28) remains true if (logy)/(log2) < log(n/log A). Indeed, in this
case max{|a|, |b|}y™ is bounded above in terms of A and n only. Then we can use Theorem
1 to bound n. Hence, we get a lower bound for P independent of n, and Theorem 3 is an
immediate consequence of (28). O
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