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Abstract. Let b ≥ 2 be an integer and v̂ a real number. Among other
results, we compute the Hausdorff dimension of the set of real numbers
ξ with the property that, for every sufficiently large integer N , there
exists an integer n such that 1 ≤ n ≤ N and the distance between bnξ
and its nearest integer is at most equal to b−v̂N . We further solve the
same question when replacing bnξ by Tnβ ξ, where Tβ denotes the classical
β-transformation.

1. Introduction and results

Throughout this text, ‖ · ‖ stands for the distance to the nearest integer. Let ξ be
an irrational real number. The well-known Dirichlet Theorem asserts that for every real
number X ≥ 1, there exists an integer x with 1 ≤ x ≤ X and

‖xξ‖ < X−1. (1.1)

This is a uniform statement in the sense that (1.1) has a solution for every sufficiently
large real number X (as opposed to ‘for arbitrarily large real numbers X’). Following the
notation introduced in [5], we denote by ŵ1(ξ) the supremum of the real numbers w such
that, for any sufficiently large real number X, the inequality

‖xξ‖ < X−w

has an integer solution x with 1 ≤ x ≤ X. The Dirichlet Theorem implies that ŵ1(ξ) ≥ 1.
In 1926, Khintchine [9] established that, in fact, ŵ1(ξ) = 1 always holds. To see this,
let (p`/q`)`≥1 denote the sequence of convergents to ξ. If ŵ1(ξ) > 1, then there exists
a positive real number ε such that, for every sufficiently large integer `, the inequality
‖qξ‖ < (q` − 1)−1−ε has an integer solution q with 1 ≤ q < q`. However, it follows from

the theory of continued fractions that ‖qξ‖ ≥ ‖q`−1ξ‖ ≥ 1/(2q`). This gives q
ε/2
` < 2, thus

we have reached a contradiction. Consequently, the set of values taken by the exponent of
Diophantine approximation ŵ1 is easy to determine.

In the present paper, we first restrict our attention to approximation by rational
numbers whose denominator is a power of some given integer b ≥ 2 and we consider the
following exponents of approximation.

2010 Mathematics Subject Classification : 37B10, 11J04, 11A63, 11K55.

1



Definition 1.1. Let ξ be an irrational real number. Let b be an integer with b ≥ 2. We
denote by vb(ξ) the supremum of the real numbers v for which the equation

‖bnξ‖ < (bn)−v

has infinitely many solutions in positive integers n. We denote by v̂b(ξ) the supremum of
the real numbers v̂ for which, for every sufficiently large integer N , the equation

‖bnξ‖ < (bN )−v̂

has a solution n with 1 ≤ n ≤ N .

The exponents vb have already been introduced in [1]; see also Chapter 7 of [4].
Roughly speaking, the quantity vb(ξ) measures the maximal lengths of blocks of digits 0
(or of digits b− 1) in the b-ary expansion of ξ. The exponents v̂b are, like ŵ1, exponents of
uniform approximation. Although they occur rather naturally, they do not seem to have
been studied until now.

Alternatively, we may consider the quantity `n(ξ), defined as the maximal length of
a block of digits 0 or a block of digits b − 1 among the n first b-ary digits of ξ. Let v
and v̂ be positive real numbers. We have vb(ξ) ≥ v (resp., v̂b(ξ) ≥ v̂) if, and only if,
there are arbitrarily large integers n (resp., for every sufficiently large integer n) such that
`n(ξ)/n ≥ v/(1 + v) (resp., `n(ξ)/n ≥ v̂/(1 + v̂)).

It follows immediately from the above mentioned result of Khintchine that v̂b(ξ) ≤ 1.
An easy covering argument shows that the set

{ξ ∈ R : vb(ξ) = 0}

has full Lebesgue measure. Since

0 ≤ v̂b(ξ) ≤ vb(ξ), (1.2)

almost all real numbers ξ (with respect to the Lebesgue measure) satisfy v̂b(ξ) = 0. How-
ever, it is easy to construct a suitable lacunary series f(x) such that v̂b(f(1/b)) has a
prescribed value between 0 and 1. Indeed, for any v > 0 we have

vb

(∑
j≥1

b−(1+v)
j
)

= v and v̂b

(∑
j≥1

b−(1+v)
j
)

=
v

v + 1
.

Observe also that

vb

(∑
j≥1

b−2
j2
)

= +∞ and v̂b

(∑
j≥1

b−2
j2
)

= 1.

Hence, for every v in R>0 ∪ {+∞} and every real number v̂ in [0, 1], the sets

Vb(v) := {ξ ∈ R : vb(ξ) = v} and V̂b(v̂) := {ξ ∈ R : v̂b(ξ) = v̂}
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are non-empty. Again, an easy covering argument yields that

dimVb(+∞) = 0, (1.3)

where dim stands for the Hausdorff dimension.
Let v̂ be in [0, 1]. It follows from (1.2) that

dim V̂b(v̂) ≤ dim{ξ ∈ R : v̂b(ξ) ≥ v̂} ≤ dim{ξ ∈ R : vb(ξ) ≥ v̂}.

Combined with

dim{ξ ∈ R : vb(ξ) ≥ v̂} =
1

1 + v̂
, (1.4)

which follows from a general result of Borosh and Frankel [3], this gives

dim V̂b(v̂) ≤ 1

1 + v̂
.

Note that (1.4) is also a special case of Theorem 5 in [13] and that, furthermore, it easily
follows from the mass transference principle of Beresnevich and Velani [2]. Moreover, by
[2] or by Theorem 7 from [1], we have

dimVb(v) =
1

1 + v
, (1.5)

for every v ≥ 0.
Our first result gives the Hausdorff dimension of the set V̂b(v̂) for any v̂ in [0, 1].

Theorem 1.1. Let b ≥ 2 be an integer and v̂ be a real number in [0, 1]. Then we have

dim{ξ ∈ R : v̂b(ξ) ≥ v̂} = dim{ξ ∈ R : v̂b(ξ) = v̂} =
(1− v̂

1 + v̂

)2
. (1.6)

Theorem 1.1 follows from a more general statement, in which the values of both
functions vb and v̂b are prescribed.

Theorem 1.2. Let b ≥ 2 be an integer. Let θ and v̂ be positive real numbers with v̂ < 1.
If θ < 1/(1− v̂), then the set

{ξ ∈ R : v̂b(ξ) ≥ v̂} ∩ {ξ ∈ R : vb(ξ) = θv̂}

is empty. Otherwise, we have

dim({ξ ∈ R : v̂b(ξ) = v̂} ∩ {ξ ∈ R : vb(ξ) = θv̂}) =
θ − 1− θv̂

(1 + θv̂)(θ − 1)
. (1.7)

Furthermore,
dim{ξ ∈ R : v̂b(ξ) = 1} = 0. (1.8)
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A key observation in the proof of Theorem 1.2 is the fact that the right hand side
inequality of (1.2) can be considerably improved. Namely, we show in Subsection 2.1 that

vb(ξ) is infinite when v̂b(ξ) = 1 (1.9)

and
vb(ξ) ≥ v̂b(ξ)/(1− v̂b(ξ)) when v̂b(ξ) < 1.

The latter inequality immediately implies the first statement of Theorem 1.2. Furthermore,
the combination of (1.3) and (1.9) gives (1.8).

A rapid calculation shows that the right hand side of (1.7) is a continuous function
of the parameter θ on the interval [1/(1 − v̂),+∞), reaching its maximum at the point
θ0 := 2/(1−v̂) and only at that point. This maximum is precisely equal to (1−v̂)2/(1+v̂)2,
namely the right hand side of (1.6). This essentially shows that Theorem 1.2 implies
Theorem 1.1 (a complete argument is given at the end of Subsection 2.1).

We remark that Theorem 1.2 allows us to reprove (1.5). To see this, write v = θv̂,
then v̂ = v/θ and (1.7) becomes

dim({ξ ∈ R : v̂b(ξ) = v/θ} ∩ {ξ ∈ R : vb(ξ) = v}) =
θ − 1− v

(1 + v)(θ − 1)

=
1

1 + v

(
1− v

θ − 1

)
.

Letting θ tend to infinity, we see that dimVb(v) ≥ 1/(1 + v). The reverse inequality can
easily be obtained by using the natural covering.

Beside b-ary expansions, we can as well consider β-expansions. For β > 1, let Tβ be
the β-transformation defined on [0, 1] by

Tβ(x) := βx− bβxc,

where b·c denotes the integer part function. We assume that the reader is familiar with
the classical results on β-expansions. Some useful facts are recalled in Section 3.

For a real number β > 1, we define in a similar way the functions vβ and v̂β .

Definition 1.3. Let β > 1 be a real number. Let x ∈ [0, 1]. We denote by vβ(x) the
supremum of the real numbers v for which the equation

Tnβ x < (βn)−v

has infinitely many solutions in positive integers n. We denote by v̂β(x) the supremum of
the real numbers v̂ for which, for every sufficiently large integer N , the equation

Tnβ x < (βN )−v̂

has a solution n with 1 ≤ n ≤ N .

Observe that Definitions 1.1 and 1.3 do not coincide when β is an integer at least equal
to 2. However, this should not cause any trouble and we may consider that the following
result, established by Shen and Wang [15], extends (1.4) to β-expansions.
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Theorem SW. Let β > 1 be a real number and v be a positive real number. Then,

dim{x ∈ [0, 1] : vβ(x) ≥ v} =
1

1 + v
.

We establish the following analogues of Theorems 1.1 and 1.2 for β-expansions.

Theorem 1.4. Let β > 1 be a real number. Let θ and v̂ be positive real numbers with
v̂ < 1. If θ < 1/(1− v̂), then the set

{x ∈ [0, 1] : v̂β(x) ≥ v̂} ∩ {x ∈ [0, 1] : vβ(x) = θv̂}

is empty. Otherwise, we have

dim({x ∈ [0, 1] : v̂β(x) = v̂} ∩ {x ∈ [0, 1] : vβ(x) = θv̂}) =
θ − 1− θv̂

(1 + θv̂)(θ − 1)
.

Furthermore,
dim({x ∈ [0, 1] : v̂β(x) = 1}) = 0.

In the same way as Theorem 1.2 implies Theorem 1.1, the next statement follows from
Theorem 1.4.

Theorem 1.5. Let β > 1 be a real number and v̂ be a real number in [0, 1]. Then we
have

dim{x ∈ [0, 1] : v̂β(x) ≥ v̂} = dim{x ∈ [0, 1] : v̂β(x) = v̂} =
(1− v̂

1 + v̂

)2
.

Persson and Schmeling [13] have adopted another point of view, by considering the
β-expansions of 1 and letting β vary.

Theorem PS. Let β0, β1 and v be real numbers with 1 < β0 < β1 < 2 and v > 0. Then,

dim{β ∈ (β0, β1) : vβ(1) ≥ v} =
1

1 + v
.

The assumption β1 < 2 in Theorem PS can easily be removed; see [11]. Applying
some of the ideas from [13], we obtain the following theorem.

Theorem 1.6. Let θ and v̂ be positive real numbers with v̂ < 1. If θ < 1/(1 − v̂), then
the set

{β > 1 : v̂β(1) ≥ v̂} ∩ {β > 1 : vβ(1) = θv̂}

is empty. Otherwise, we have

dim({β > 1 : v̂β(1) = v̂} ∩ {β > 1 : vβ(1) = θv̂}) =
θ − 1− θv̂

(1 + θv̂)(θ − 1)
.

Furthermore,

dim{β > 1 : v̂β(1) ≥ v̂} =
(1− v̂

1 + v̂

)2
,
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and
dim({β > 1 : v̂β(1) = 1}) = 0.

Our paper is organized as follows. Theorem 1.2 is proved in Section 2. We recall
classical results from the theory of β-expansion in Section 3 and establish Theorems 1.4
and 1.6 in Sections 4 and 5, respectively. Diophantine approximation on Cantor sets is
briefly discussed in Section 6.

Throughout this text, we denote by |I| the length of the interval I and we use ] to
denote the cardinality of a finite set.

2. Proof of Theorem 1.2

2.1. Upper bound.
Let v̂ be a real number with 0 < v̂ ≤ 1. We wish to bound from above the dimension

of
{ξ ∈ R : v̂b(ξ) ≥ v̂}.

By (1.3), it is sufficient to consider the set

{ξ ∈ R : v̂b(ξ) ≥ v̂} ∩ {ξ ∈ R : vb(ξ) < +∞}.

Let ξ be an irrational real number. Throughout this section, in view of the preceding
observations, we assume that

0 < v̂b(ξ) ≤ vb(ξ) < +∞.

Let
ξ := bξc+

∑
j≥1

aj
bj

denote the b-ary expansion of ξ. It is understood that the digits a1, a2, . . . all belong to
the set {0, 1, . . . , b− 1}.

Define the increasing sequences (n′k)k≥1 and (m′k)k≥1 as follows: for k ≥ 1, we have
either

an′
k
> 0, an′

k
+1 = . . . = am′

k
−1 = 0, am′

k
> 0

or
an′

k
< b− 1, an′

k
+1 = . . . = am′

k
−1 = b− 1, am′

k
< b− 1.

Furthermore, for every j such that aj = 0 or b − 1, there exists an index k satisfying
n′k < j < m′k. Since vb(ξ) is positive, we get

lim sup
k→+∞

(m′k − n′k) = +∞. (2.1)

Now, we take the maximal subsequences (nk)k≥1 and (mk)k≥1 of (n′k)k≥1 and (m′k)k≥1,
respectively, in such a way that the sequence (mk − nk)k≥1 is non-decreasing. More
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precisely, take n1 = n′1 and m1 = m′1. Let k ≥ 1 be such that nk = n′jk and mk = m′jk
have been defined. Set

jk+1 := min{j > jk : m′j − n′j ≥ mk − nk}.

Then, define
nk+1 = n′jk+1

and mk+1 = m′jk+1
.

Observe that, by (2.1), the sequence (jk)k≥1 is well defined. Furthermore, mk − nk tends
to infinity as k tends to infinity.

Note that
bnk−mk < ‖bnkξ‖ < bnk−mk+1.

By construction, we have

vb(ξ) = lim sup
k→+∞

mk − nk
nk

= lim sup
k→+∞

mk

nk
− 1 (2.2)

and

v̂b(ξ) = lim inf
k→+∞

mk − nk
nk+1

≤ lim inf
k→+∞

mk − nk
mk

= 1− lim sup
k→+∞

nk
mk

. (2.3)

Since (
lim sup
k→+∞

nk
mk

)
·
(

lim sup
k→+∞

mk

nk

)
≥ 1,

we derive from (2.2) and (2.3) that

v̂b(ξ) ≤ 1− 1

1 + vb(ξ)
=

vb(ξ)

1 + vb(ξ)
.

Noticing that v̂b(ξ) < 1 since vb(ξ) is assumed to be finite, we have proved that

vb(ξ) ≥
v̂b(ξ)

1− v̂b(ξ)
. (2.4)

Let ξ be a real number with v̂b(ξ) ≥ v̂. Take a subsequence (kj)j≥1 along which
the supremum of (2.2) is obtained. For simplicity, we still write (nk)k≥1, (mk)k≥1 for the
subsequences (nkj )j≥1, (mkj )j≥1. We remark that when passing to the subsequence, the
first equality in (2.3) becomes an inequality.

Let ε be a real number with 0 < ε < vb(ξ)/2. Observe that for k large enough we
have

(vb(ξ)− ε)nk ≤ mk − nk ≤ (vb(ξ) + ε)nk (2.5)

and
mk − nk ≥ nk+1(v̂ − ε). (2.6)

The last inequality means that the length of the block of 0 (or b − 1) starting at index
nk + 1 is at least equal to nk+1(v̂ − ε).
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The combination of the second inequality of (2.5) and (2.6) gives

(vb(ξ) + ε)nk ≥ (v̂ − ε)nk+1.

Consequently, there exist an integer n′ and a positive real number ε′ such that the sum of
all the lengths of the blocks of 0 or b− 1 in the prefix of length nk of the infinite sequence
a1a2 . . . is, for k large enough, at least equal to

(v̂ − ε)nk
(

1 +
v̂ − ε

vb(ξ) + ε
+
( v̂ − ε
vb(ξ) + ε

)2
+ . . .

)
− n′ = nk

(v̂ − ε)(vb(ξ) + ε)

vb(ξ)− v̂ + 2ε
− n′

≥ nk
( v̂vb(ξ)

vb(ξ)− v̂
− ε′

)
= nk

( θv̂

θ − 1
− ε′

)
,

(2.7)

where the parameter θ is defined by

vb(ξ) = θv̂.

Note that, by (2.4), we must have

θ ≥ 1

1− v̂
. (2.8)

By the first inequality of (2.5), we have

mk ≥ (1 + vb(ξ)− ε)nk ≥ (1 + vb(ξ)− ε)mk−1,

for k large enough. Thus (mk)k≥1 increases at least exponentially. Since nk ≥ mk−1 for
k ≥ 2, the sequence (nk)k≥1 also increases at least exponentially. Consequently, there
exists a positive real number C such that k ≤ C log nk, for k large enough.

Now, let us construct a covering. Remind that all the integers nk,mk defined above
depend on ξ. Fix v̂ and θ with θ ≥ 1

1−v̂ . Let (nk)k≥1 and (mk)k≥1 be sequences such that

lim
k→∞

mk − nk
nk

= θv̂, and lim inf
k→∞

mk − nk
nk+1

≥ v̂.

For fixed k, we collect all those ξ with v̂b(ξ) = v̂ and vb(ξ) = θv̂ whose b-ary expansions
have blocks of 0 (or of b− 1) between nk and mk.

By the precedent analysis, there are at most C log nk blocks of 0 (or of b − 1) in the
prefix of length nk of the infinite sequence a1a2 . . .. Since there are, obviously, at most nk
possible choices for their first index, we have in total at most

2C lognk nC lognk

k = (2nk)C lognk

possible choices. For each of these choices, it follows from (2.7) that at least nk(θv̂/(θ −
1) − ε′) digits are prescribed (and are equal to 0 or b − 1). Consequently, defining the
positive real number ε′′ by the next equality, at most

nk − nk
( θv̂

θ − 1
− ε′

)
+ 1 = nk(1 + ε′′) · θ − 1− θv̂

θ − 1
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digits in the prefix a1a2 . . . ank
, and thus in a1a2 . . . amk

, are free. The set of real numbers
whose b-ary expansion starts with a1a2 . . . amk

defines an interval of length b−mk . By (2.5),
we have

b−mk ≤ b−(1+θv̂)(1−ε
′′)nk ,

for k large enough. We have shown that the set of those ξ corresponding to (nk)k≥1, (mk)k≥1
is covered by

(2nk)C lognk bnk(1+ε
′′)(θ−1−θv̂)/(θ−1).

intervals of length at most b−(1+θv̂)(1−ε
′′)nk .

Then, a standard covering argument shows that we have to consider the series∑
N≥1

(2N)C logN bN(1+ε′′)(θ−1−θv̂)/(θ−1) b−(1+θv̂)(1−ε
′′)Ns. (2.9)

The critical exponent s0 such that (2.9) converges if s > s0 and diverges if s < s0 is given
by

s0 =
1 + ε′′

1− ε′′
· θ − 1− θv̂

(1 + θv̂)(θ − 1)
.

It then follows that

dim({ξ ∈ R : v̂b(ξ) ≥ v̂} ∩ {ξ ∈ R : vb(ξ) = θv̂}) ≤ θ − 1− θv̂
(1 + θv̂)(θ − 1)

. (2.10)

Actually, we have proved that, for every θ ≥ (1 − v̂)−1 and for every sufficiently small
positive number δ, we have

dim({ξ ∈ R : v̂b(ξ) ≥ v̂} ∩ {ξ ∈ R : θ ≤ vb(ξ) ≤ θ + δ}) ≤ θ − 1− θv̂
(1 + θv̂)(θ − 1)

+ 5δv̂.

Regarding the right-hand side of (2.10) as a function of θ and taking (2.8) into account,
a short calculation shows that the maximum is attained for θ = 2/(1− v̂), giving, for any
positive ε, that

dim{ξ ∈ R : v̂b(ξ) ≥ v̂} ≤
1 + ε

1− ε
(1− v̂)2

(1 + v̂)2
.

We have established the required upper bound.

2.2. Lower bound.
To obtain the lower bound, we construct a suitable Cantor type set. Let v̂ be in

(0, 1). Let θ be a real number with θ ≥ 1
1−v̂ . Choose two sequences (mk)k≥1 and (nk)k≥1

such that nk < mk < nk+1 for k ≥ 1, and such that (mk − nk)k≥1 is non-decreasing.
Furthermore, we assume that

lim
k→+∞

mk − nk
nk+1

= v̂, (2.11)

and

lim
k→+∞

mk − nk
nk

= θv̂. (2.12)
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An easy way to construct such sequences is to start with

n′k =
⌊
θk
⌋
, m′k = b(θv̂ + 1)n′kc ,

and then to make a small adjustment to guarantee that (mk − nk)k≥1 is non-decreasing.
We consider the set of real numbers ξ in (0, 1) whose b-ary expansion ξ =

∑
j≥1

aj
bj

satisfies, for k ≥ 1,

ank
= 1, ank+1 = . . . = amk−1 = 0, amk

= 1,

and

amk+(mk−nk) = amk+2(mk−nk) = · · · = amk+tk(mk−nk) = 1,

where tk is the largest integer such that mk + tk(mk − nk) < nk+1. Observe that, since

tk <
nk+1 −mk

mk − nk
≤ 2

v̂
,

for k large enough, the sequence (tk)k≥1 is bounded.
We check that the maximal length of blocks of zeros in the prefix of length nk+1 of

the infinite sequence a1a2 . . . is equal to mk − nk − 1. Thus, we deduce that

v̂b(ξ) = v̂ and vb(ξ) = θv̂.

Actually, the above two equalities might not be true if b = 2. However, they will be valid
if we take the block 10 in place of 1 in the definition of amk+t(mk−nk) for t = 1, . . . , tk.
The following proof will be almost the same. So, for simplicity, we assume that b ≥ 3 and
leave to the reader the slight change to deal with the case b = 2 (or the reader may look
at Subsection 4.2).

Our Cantor type subset Eθ,v̂ consists precisely of the real numbers in (0, 1) whose
b-ary expansion has the above property. We will now estimate the Hausdorff dimension of
Eθ,v̂ from below.

Let n be a large positive integer. For a1, . . . , an in {0, 1, . . . , b − 1}, denote by
In(a1, . . . , an) the interval composed of the real numbers in (0, 1) whose b-ary expansion
starts with a1 . . . an. Define a Bernoulli measure µ on Eθ,v̂ as follows. We distribute the
mass uniformly. For k ≥ 1, set

δk := mk − nk − 1 and uk := mk + tk(mk − nk).

If there exists k ≥ 2 such that nk ≤ n ≤ mk, then define

µ(In(a1, . . . , an)) = b
−(n1−1+

∑k−1

j=1
(tjδj+nj+1−uj−1)) = b

−(nk−1−
∑k−1

j=1
(mj−nj+1+tj)).

Observe that we have µ(Ink
) = µ(Ink+1) = . . . = µ(Imk

).
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If there exists k ≥ 2 such that mk < n < nk+1, then define

µ(In(a1, . . . , an)) = b
−(n1−1+

∑k−1

j=1
(tjδj+nj+1−uj−1)+tδk+n−(mk+tδk))

= b
−n+

∑k−1

j=1
(mj−nj+1+tj)+mk−nk+1+t

,

where t is the largest integer such that mk + t(mk − nk) ≤ n. It is routine to check that µ
is well defined on Eθ,v̂.

Now we calculate the local dimension of µ at x ∈ Eθ,v̂, i.e.,

lim inf
r→0

logµ(B(x, r))

log r
,

where B(x, r) stands for the ball centered at x with radius r. To this end, we first calculate
the same lower limit for the basic intervals, and we prove that

lim inf
n→∞

logµ(In)

log |In|
=

θ − 1− θv̂
(θ − 1)(θv̂ + 1)

. (2.13)

Since the lengths of basic intervals decrease ‘regularly’, the above limit (2.13) is the same
as the local dimension of µ at x ∈ Eθ,v̂. The details are left to the reader. Finally, the
required lower bound follows from the mass distribution principle; see [7], page 26.

Let us finish the proof by showing (2.13). First, we check that if n = mk, then

lim inf
k→∞

logµ(Imk
)

log |Imk
|

= lim inf
k→∞

nk − 1−
∑k−1
j=1 (mj − nj + 1 + tj)

mk

= lim inf
k→∞

n1 − 1 +
∑k−1
j=1 (nj+1 −mj + 1 + tj)

mk
.

Recalling that (tk)k≥1 is bounded and that (mk)k≥1 grows exponentially fast in terms of
k, we have

lim inf
k→∞

logµ(Imk
)

log |Imk
|

= lim inf
k→∞

∑k−1
j=1 (nj+1 −mj)

mk
.

By (2.11) and (2.12), we see that

lim
k→∞

mk

nk
= θv̂ + 1, lim

k→∞

mk+1

mk
= θ, and lim

k→∞

nk+1

mk
=

θ

θv̂ + 1
.

Thus, by the Stolz–Cesàro Theorem,

lim
k→∞

∑k−1
j=1 (nj+1 −mj)

mk
= lim
k→∞

nk+1 −mk

mk+1 −mk

= lim
k→∞

nk+1

mk
− 1

mk+1

mk
− 1

=
θ − 1− θv̂

(θ − 1)(θv̂ + 1)
.

11



Hence,

lim inf
k→∞

logµ(Imk
)

log |Imk
|

=
θ − 1− θv̂

(θ − 1)(θv̂ + 1)
.

Let n be a large positive integer. If there exists k ≥ 2 such that nk ≤ n ≤ mk, then

logµ(In)

log |In|
≥ logµ(In)

log |Imk
|

=
logµ(Imk

)

log |Imk
|
.

If there exists k ≥ 2 such that mk < n < nk+1, write n = mk + t(mk − nk) + `, where t, `
are integers with 0 ≤ t ≤ tk and 0 ≤ ` < mk − nk. Then we have

µ(In) = µ(Imk
) · b−(tδk+`) and |In| = |Imk

| · b−(t(mk−nk)+`).

Since 0 ≤ t ≤ tk and (tk)k≥1 is bounded, for n large enough,

− logµ(In)

− log |In|
=

− logµ(Imk
) + tδk + `

− log |Imk
|+ t(mk − nk) + `

≥ − logµ(Imk
)

− log |Imk
|
,

where we have used the fact that

a+ x

b+ x
≥ a

b
, for all 0 < a ≤ b, x ≥ 0.

We have established (2.13).

3. Classical results on β-expansions

Throughout this section, β denotes a real number greater than 1 and bβe is equal to
β−1 if β is an integer and to bβc otherwise. The notion of β-expansion was introduced by
Rényi [14] in 1957. We denote by Tβ the transformation defined on [0, 1] by Tβ(x) = {βx},
where {·} denotes the fractional part function.

Definition 3.1. The expansion of a number x in [0, 1] to base β, also called the β-
expansion of x, is the sequence (εn)n≥1 = (εn(x, β))n≥1 of integers from {0, 1, . . . , bβe}
such that

x =
ε1
β

+
ε2
β2

+ . . .+
εn
βn

+ . . . ,

and, unless x = 1 and β is an integer, defined by one of the following equivalent properties:

∑
k>n

εk
βk

<
1

βn
, for all n ≥ 0;

ε1 = bβxc, ε2 = bβ{βx}c, ε3 = bβ{β{βx}}c, . . .

εn = bβTn−1β (x)c, for all n ≥ 1.

12



We then write
dβ(x) = ε1ε2 . . . εn . . . .

For x < 1, the β-expansion coincides with the representation of x computed by the
‘greedy algorithm’. If β is an integer, then the digits εi of x lie in the set {0, 1, . . . , β − 1}
and dβ(x) corresponds, for x 6= 1, to the usual β-ary expansion of x. If the β-expansion

dβ(1) = ε1(1, β)ε2(1, β) . . . εn(1, β) . . .

of 1 is finite, i.e., if there exists m ≥ 1 such that εm(1, β) 6= 0 and εn(1, β) = 0 for
all n > m, then β is called a simple Parry number. In this case, we define the infinite
β-expansion of 1 by

(ε∗1(β), ε∗2(β), . . . , ε∗n(β), . . .) := (ε∗1(1, β), ε∗2(1, β), . . . , (εm(1, β)− 1))∞,

where (w)∞ stands for the periodic sequence (w,w,w, . . .).
We endow the set {0, 1, . . . , bβe}Z≥1 with the product topology and the one-sided

shift operator σ defined by σ((sn)n≥1) = (sn+1)n≥1, for any infinite sequence (sn)n≥1 in
{0, 1, . . . , bβe}Z≥1 .

The lexicographic order on {0, 1, . . . , bβe}Z≥1 , denoted by <lex, is defined as follows:
we write

w = (w1, w2, . . .) <lex w
′ = (w′1, w

′
2, . . .)

if there exists k ≥ 1 such that for all j < k we have wj = w′j , but wk < w′k. We use the
notation w ≤lex w

′ if w <lex w
′ or w = w′.

Definition 3.2. The closure of the set of all β-expansions of x in [0, 1] is called the β-shift
and denoted by Σβ .

Parry [12] proved that the β-shift Σβ is fully determined by dβ(1).

Theorem 3.3. If dβ(1) = ε1 . . . εm00 . . . 0 . . . is finite with εm 6= 0, then s = (sn)n≥1
belongs to Σβ if, and only if,

σk(s) ≤lex (ε1, . . . , εm−1, (εm − 1))∞, for k ≥ 1.

If dβ(1) does not terminate with zeros only, then s = (sn)n≥1 belongs to Σβ if, and only
if,

σk(s) ≤lex dβ(1), for k ≥ 1.

It follows from Theorem 3.3 that Σβ is contained in Σβ′ if, and only if, β ≤ β′.

Definition 3.4. A block ε1 . . . εm, respectively, an infinite sequence ε1ε2 . . ., on the al-
phabet {0, 1, . . . , bβe} is β-admissible (or, simply, admissible) if

σk(ε1 . . . εm) ≤lex dβ(1), for k = 0, 1, . . . ,m− 1,

respectively, if
σk(ε1ε2 . . .) ≤lex dβ(1), for k ≥ 0.
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An infinite sequence (ε1, ε2, . . .) is self-admissible if

σk(ε1ε2 . . .) ≤lex (ε1ε2 . . .), for k ≥ 0.

Denote by Σnβ the set of all β-admissible blocks of length n. Then, its cardinality
satisfies (Rényi [14], formula 4.9)

βn ≤ ]Σnβ ≤
βn+1

β − 1
. (3.1)

For any (ε1, . . . , εn) ∈ Σnβ , call

In(ε1, . . . , εn) := {x ∈ [0, 1] : dβ(x) starts with ε1 . . . εn}

an n-th order basic interval (with respect to the base β). Denote by In(x) the n-th order
basic interval containing x. We remark that the basic intervals are also called cylinders by
some authors.

The next theorem was proved by Parry [12].

Theorem 3.5. A sequence of digits (ε1, ε2, . . .) is the β-expansion of 1 for some β > 1 if
and only if it is self-admissible.

Now, we estimate the length of the basic intervals. We will use the notion of “full
cylinder” introduced by Fan and Wang [8].

Definition 3.6. Let (ε1, . . . , εn) ∈ Σnβ be a β-admissible block in Σβ . A basic interval

In(ε1, . . . , εn) is called full if it is of length β−n.

Proposition 3.7. ([8], Lemma 3.1) A basic interval In(ε1, . . . , εn) is full if and only if, for
any admissible block (ε′1, . . . , ε

′
m) ∈ Σmβ , the concatenation (ε1, . . . , εn, ε

′
1, . . . , ε

′
m) is also

admissible, i.e., in Σn+mβ .

Proposition 3.8. ([15], Corollary 2.6) For any w ∈ Σnβ , if In(w) is full, then for any
w′ ∈ Σmβ , we have

|In+m(w,w′)| = |In(w)| · |Im(w′)| = β−n|Im(w′)|.

The following approximation of β-shift is very useful. For β > 1, let (ε∗k(β))k≥1 denote
the infinite β-expansion of 1. Let βN be the unique real number which satisfies the equation

1 =
ε∗1(β)

z
+ · · ·+ ε∗N (β)

zN
.

Then we have βN < β and the sequence (βN )N≥1 increases and converges to β when N
tends to infinity. Furthermore, the subshift of finite type ΣβN

is a subset of the β-shift
Σβ . The subsets ΣβN

are increasing and converge to Σβ .
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Proposition 3.9. ([15], Lemma 2.7) For any w ∈ ΣnβN
viewed as an element of Σnβ , we

have
β−(n+N) ≤ |In(w)| ≤ β−n.

4. Proof of Theorem 1.4

4.1. Upper bound.
The proof is essentially similar to that in Subsection 2.1. Let x ∈ [0, 1] be a real

number and let
x =

a1
β

+
a2
β2

+ . . .

denote its β-expansion. Assume that vβ(x) is positive.
Define the increasing sequences (n′k)k≥1 and (m′k)k≥1 as follows: for k ≥ 1, we have

an′
k
> 0, an′

k
+1 = . . . = am′

k
−1 = 0, am′

k
> 0,

and, furthermore, for every j such that aj = 0, there exists an index k satisfying n′k < j <
m′k. Then take the maximal subsequences (nk)k≥1 and (mk)k≥1 of (n′k)k≥1 and (m′k)k≥1,
respectively, in such a way that the sequence (mk − nk)k≥1 is non-decreasing. Observe
that, since vβ(x) > 0, this sequence tends to infinity with k. Similarly, notice that

βnk−mk < Tnk

β x < βnk−mk+1.

We also have

vβ(x) = lim sup
k→+∞

mk − nk
nk

, v̂β(x) ≤ lim inf
k→+∞

mk − nk
nk+1

,

and the relations

v̂β(x) ≤ vβ(x)

1 + vβ(x)
and vβ(x) ≥ v̂β(x)

1− v̂β(x)
.

The last inequality means that vβ(x) is infinite when v̂β(x) = 1. Combined with Theorem
SW, it implies the last assertion of Theorem 1.4.

Let v̂ be in (0, 1). Let θ be the real number defined by

vβ(x) = θv̂.

Then

θ ≥ 1

1− v̂
.

Arguing as in the proof of Theorem 1.2, we see that there exists a positive real number ε
such that the sum of all the lengths of the blocks of zeros in the prefix of length nk of the
infinite sequence a1a2 . . . is at least equal to

nk

( θv̂

θ − 1
− ε
)
,
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for k ≥ 1.
Now we study the possible choices of digits among a1, . . . , amk

as we did in Subsection
2.1. Note that there are k blocks of digits which are ‘free’. Denote their lengths by
`1, . . . , `k. Then we have `j = nj −mj−1 and

k∑
j=1

`j ≤ nk − nk
(

θv̂

θ − 1
− ε
)

= nk(1 + ε′)(θ − 1− θv̂)/(θ − 1),

with ε′ > 0 being a small real number. By (3.1), there are at most

β

β − 1
· β`j

ways to choose the block of length `j . Thus, for the k blocks, we have in total

(
β

β − 1

)k
· β
∑k

j=1
`j ≤

(
β

β − 1

)k
· βnk(1+ε

′)(θ−1−θv̂)/(θ−1)

choices.
As in Subsection 2.1, there exists a real number C > 1 such that k is less than C log nk,

and there are at most nk possible choices for the first index of the k blocks. Thus, we have
at most

nC lognk

k

possible choices for the k blocks. We get that, for k sufficiently large, the set of real
numbers x with the above properties is contained in a union of no more than(

βnk
β − 1

)C lognk

βnk(1+ε
′)(θ−1−θv̂)/(θ−1)

basic intervals of order mk, each of them being of length at most β−mk .
Furthermore, there are infinitely many indices k such that

β−mk ≤ β−(1+θv̂)(1−ε
′)nk .

Arguing as in Subsection 2.1, we end up with the series∑
N≥1

NC logN βN(1+ε′)(θ−1−θv̂)/(θ−1) β−(1+θv̂)(1−ε
′)Ns. (4.1)

The critical exponent s0 such that (4.1) converges if s > s0 and diverges if s < s0 is given
by

s0 =
1 + ε′

1− ε′
· θ − 1− θv̂

(1 + θv̂)(θ − 1)
.
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We then get that

dim({x ∈ (0, 1) : v̂β(x) ≥ v̂} ∩ {x ∈ (0, 1) : vβ(x) = θv̂}) ≤ θ − 1− θv̂
(1 + θv̂)(θ − 1)

.

For the rest of the proof, we argue exactly as at the end of Subsection 2.1. We omit the
details.

4.2. Lower bound.
Let v̂ be in (0, 1). Let θ be a real number with θ ≥ 1

1−v̂ . We construct a subset Eθ,v̂
whose elements x satisfy

v̂β(x) = v̂ and vβ(x) = θv̂.

We will suitably modify the construction we performed in Subsection 2.2 when dealing
with b-ary expansions.

Let N be a positive integer. Let βN be the real number defined from the infinite β-
expansion of 1 as explained at the end of Section 3. As in Subsection 2.2, let (mk)k≥1 and
(nk)k≥1 be sequences of positive integers with nk < mk < nk+1 for k ≥ 1, such that (mk−
nk)k≥1 is non-decreasing and (2.11) and (2.12) are satisfied. Start with the construction
performed in Subsection 2.2 and replace the digit 1 for ank

, amk
and amk+j(mk−nk), 1 ≤

j ≤ tk, by the block 0N10N . Fill other places by blocks in ΣβN
. Thus, we have completed

the modifications and have constructed the subset Eθ,v̂.
Since N is fixed and (tk)k≥1 is bounded, we check that for every x in Eθ,v̂,

v̂β(x) = lim
k→+∞

mk − nk − 1 + 2N

nk+1 + (4k + 2)N +
∑k
j=1 2Ntj

= lim
k→+∞

mk − nk
nk+1

= v̂,

and

vβ(x) = lim
k→+∞

mk − nk − 1 + 2N

nk + (4k − 2)N +
∑k−1
j=1 2Ntj

= lim
k→+∞

mk − nk
nk

= θv̂.

Moreover, the sequence dβ(x) (in Σβ) is, by construction, also in ΣβN
.

Let n be a large positive integer. Denote by In(a1, . . . , an) the interval composed
of the real numbers in (0, 1) whose β-expansion starts with a1 . . . an. We will define a
Bernoulli measure µ on Eθ,v̂. We distribute the mass uniformly when we meet a block in
ΣβN

and keep the mass when we go through the positions where the digits are determined
by the construction. Precisely, we can write down the first levels as follows.

If n < n1, define

µ(In) =
1

]ΣnβN

.

If n1 ≤ n ≤ m1 + 4N , then take

µ(In) =
1

]Σn1−1
βN

.
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If there exists an integer t such that 0 ≤ t ≤ t1 and

m1+4N+t(m1−n1)+2Nt < n ≤ min{n2+4N+2Nt1,m1+4N+(t+1)(m1−n1)+2Nt},

then set

µ(In) =
1

]Σn1−1
βN

· 1

(]Σm1−n1−1
βN

)t
· 1

]Σ
n−(m1+4N+t(m1−n1)+2Nt)
βN

.

If there exists an integer t such that 0 ≤ t ≤ t1 − 1 and

m1 + 4N + (t+ 1)(m1 − n1) + 2Nt < n ≤ m1 + 4N + (t+ 1)(m1 − n1) + 2N(t+ 1),

then set

µ(In) =
1

]Σn1−1
βN

· 1

(]Σm1−n1−1
βN

)t+1
.

More generally, for k ≥ 2, set

lk := nk + (4k − 4)N +

k−1∑
j=1

2Ntj , hk := mk + 4kN +

k−1∑
j=1

2Ntj .

and

δk := mk − nk − 1, uk := hk + tk(mk − nk) + 2Ntk.

If lk ≤ n ≤ hk, define

µ(In) =
1

]Σn1−1
βN

· 1∏k−1
j=1 (]Σ

δj
βN

)tj ]Σ
lj+1−uj−1
βN

(= µ(Ilk) = µ(Ihk
)).

If there exists an integer t such that 0 ≤ t ≤ tk − 1 and

hk + t(mk − nk) + 2Nt < n ≤ min{lk+1, hk + (t+ 1)(mk − nk) + 2Nt},

then define

µ(In) = µ(Ihk
) · 1

(]ΣδkβN
)t
· 1

]Σ
n−(hk+t(mk−nk)+2Nt)
βN

.

If there exists an integer t such that 0 ≤ t ≤ tk − 1 and

hk + (t+ 1)(mk − nk) + 2Nt < n ≤ hk + (t+ 1)(mk − nk) + 2N(t+ 1),

then define

µ(In) = µ(Ihk
) · 1

(]ΣδkβN
)t+1

.
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By the construction and Proposition 3.7, we deduce that Ihk
is full and thus has length

β−hk . Then, by recalling that N is fixed and (tk)k≥1 is bounded, we deduce from (3.1)
that

lim inf
k→∞

logµ(Ihk
)

log |Ihk
|

= lim inf
k→∞

log ]Σn1−1
βN

+
∑k−1
j=1

(
tj log ]Σ

δj
βN

+ log ]Σ
lj+1−uj−1
βN

)
hk log β

= lim
k→∞

n1 − 1 +
∑k−1
j=1 (tjδj + lj+1 − uj − 1)

hk
· log βN

log β

= lim
k→∞

n1 − 1 +
∑k−1
j=1 (lj+1 − hj − 2Ntj − 1)

hk
· log βN

log β

= lim
k→∞

∑k−1
j=1 (nj+1 −mj)

mk
· log βN

log β

=
θ − 1− θv̂

(θ − 1)(θv̂ + 1)
· log βN

log β
.

Let n be a large positive integer. If there exists k ≥ 2 such that lk ≤ n ≤ hk, then

logµ(In)

log |In|
≥ logµ(In)

log |Ihk
|

=
logµ(Ihk

)

log |Ihk
|
.

If there exist integers k ≥ 2 and t such that 0 ≤ t ≤ tk − 1 and

hk + t(mk − nk) + 2Nt < n ≤ min{lk+1, hk + (t+ 1)(mk − nk) + 2Nt},

then, letting ` = n− (hk + t(mk − nk) + 2Nt), we have

µ(In) ≤ µ(Ihk
) · β−δkt−`N .

Since Ihk
is full, then

|In| = |Ihk
| · |In−hk

(w′)|,
where w′ is an admissible block in ΣβN

of length n− hk. By Proposition 3.9,

|In−hk
(w′)| ≥ β−(n−hk+N).

Hence,
|In| ≥ |Ihk

| · β−(n−hk+N).

Notice that

n− hk +N = t(mk − nk) + 2Nt+ `+N = δkt+ `+ t+N(2t+ 1).

Since N is fixed and t is bounded, we argue as in Subsection 2.2 to show that, for n large
enough, we have

− logµ(In)

− log |In|
≥ − logµ(Ihk

) + (tδk + `) log βN
− log |Ihk

|+ (tδk + `+ t+N(2t+ 1)) log β

≥ − logµ(Ihk
)

− log |Ihk
|
· η(N),
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where η(N) < 1 and η(N) tends to 1 as N tends to infinity.
Similarly, if there exist integers k ≥ 2 and t such that 0 ≤ t ≤ tk − 1 and

hk + (t+ 1)(mk − nk) + 2Nt < n ≤ hk + (t+ 1)(mk − nk) + 2N(t+ 1),

we also have for n large enough,

− logµ(In)

− log |In|
≥ − logµ(Ihk

)

− log |Ihk
|
· η(N).

So, in all cases, we have

lim inf
n→∞

logµ(In)

log |In|
≥ θ − 1− θv̂

(θ − 1)(θv̂ + 1)
· log βN

log β
· η(N).

Now, we consider a general ball B(x, r) with x a point in the Cantor-type subset Eθ,v̂
and r satisfying

|In+1(x)| ≤ r < |In(x)|.

By the construction and Proposition 3.9, any n-th order basic interval In satisfies

|In| ≥ β−(n+N).

Thus, the ball B(x, r) intersects at most d2βNe+ 2 basic intervals of order n. Noting that
all n-th order basic intervals have the same measure, we deduce that

µ(B(x, r)) ≤ (d2βNe+ 2) · µ(In(x)).

On the other hand, by Proposition 3.9,

r ≥ |In+1(x)| ≥ β−(n+1+N) = β−(N+1) · β−n ≥ β−(N+1) · |In(x)|

Since N is fixed, we have

lim inf
r→0

logµ(B(x, r))

log r
= lim inf

n→∞

logµ(In(x))

log |In(x)|
.

Finally, the lower bound follows by letting N tend to infinity.
To end this section, we remark that the last step of the proof of the lower bound, i.e.,

the fact that the two lower limits concerning the basic intervals and the general balls are
the same, always holds in the setting of β-transformation. This conclusion was proved very
recently by Bugeaud and Wang in [6], who called it a modified mass distribution principle.

5. Proof of Theorem 1.6

We follow the approach of Persson and Schmeling [13]. The main idea is to take a
correspondence between the β-shift and the parameter space. Then the results in the shift
space can be translated to the parameter space.
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5.1. Upper bound.
First we reduce the question to a small interval (β0, β1), where 1 < β0 < β1. For

v̂ ∈ [0, 1] and θ ≥ 1, set

Dθ,v̂ := {β > 1 : v̂β(1) = v̂} ∩ {β > 1 : vβ(1) = θv̂},

and
Dθ,v̂(β0, β1) := {β ∈ (β0, β1) : v̂β(1) = v̂} ∩ {β ∈ (β0, β1) : vβ(1) = θv̂}.

By Theorem 3.5, to every self-admissible sequence corresponds a real number β > 1. Let
Kβ1 be the set of all self-admissible sequences in Σβ1 . Let πβ be the natural projection
from the β-shift to the unit interval [0, 1]. Then there is a one-to-one map %β1 : πβ1(Kβ1)→
(1, β1).

Let Bθ,v̂ be the subset of Σβ1
defined by

Bθ,v̂ := π−1β1

(
{x ∈ [0, 1] : v̂β1(x) = v̂} ∩ {x ∈ [0, 1] : vβ1(x) = θv̂}

)
.

The Hölder exponent of the restriction of the map %β1
to the subset πβ1

(Kβ1
∩ Bθ,v̂) is

equal to log β0/ log β1. Since Dθ,v̂(β0, β1) ⊂ %β1
(πβ1

(Kβ1
∩Bθ,v̂)) we have

dimDθ,v̂(β0, β1) ≤ dim %β1
(πβ1

(Kβ1
∩Bθ,v̂)) ≤

log β1
log β0

dimπβ1
(Bθ,v̂),

while, by Theorem 1.5,

dimπβ1
(Bθ,v̂) =

θ − 1− θv̂
(1 + θv̂)(θ − 1)

.

Letting β1 tend to β0, we obtain the requested upper bound.

5.2. Lower bound.
Take β2 such that 1 < β0 < β1 < β2 and that the β2-expansion of 1 ends with zeros,

i.e., such that the β-shift Σβ2 is a subshift of finite type. We establish the following lemma.

Lemma 5.1. For real numbers β0, β1, β2, v̂ and θ such that 1 < β0 < β1 < β2, v̂ ∈ [0, 1]
and θ ≥ 1, we have

dim(%−1β2
(Dθ,v̂(β0, β1))) ≥ θ − 1− θv̂

(1 + θv̂)(θ − 1)
· log β1

log β2
.

It follows from Lemma 5.1 and the proof of Theorem 14 of Persson and Schmeling
[13] that

dim(Dθ,v̂(β0, β1)) ≥ θ − 1− θv̂
(1 + θv̂)(θ − 1)

· log β1
log β2

.

Finally, letting β2 tend to β1, we complete the proof of the lower bound.

Proof of Lemma 5.1.
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Denote by (ε∗k)k≥1 := (ε∗k(β1))k≥1 the infinite β1-expansion of 1. Take an integer N
sufficiently large such that ε∗N 6= 0 and the β0-expansion of 1 is smaller than ε∗1 . . . ε

∗
N in

lexicographical order. Let β̃N be the unique real number which satisfies the equation

1 =
ε∗1
z

+ · · ·+ ε∗N
zN

.

Then we have β0 < β̃N < β1, and β̃N tends to β1 as N tends to infinity. Moreover, the
infinite β̃N -expansion of 1 is given by

(ε∗1, . . . , (ε
∗
N − 1))∞.

We construct a subset πβ2
(KN ) of %−1β2

(Dθ,v̂(β0, β1)) by using the same construction
as in Subsection 4.2. Take any sequence a ∈ Σβ̃N

constructed in Subsection 4.2 with

β = β̃N . Make the concatenation ε∗1 . . . ε
∗
N0Na. By Lemma 5.2 from [11], the sequence

ε∗1 . . . ε
∗
N0Na is self-admissible and thus, by Theorem 3.5, is the β-expansion of 1 for some

β. By checking the lexicographic ordering, we see that β0 < β < β1. We define the subset
KN to be the collection of these sequences. Notice that KN is also a subset of Σβ2

.
Now we can define a measure µ̃ on the set πβ2

(KN ). Consider a basic interval
I2N+m(ε∗1, . . . , ε

∗
N , 0

N , a1, . . . , am). Let µ be the measure defined in Section 4.2 by re-

placing βN there by β̃N . Define

µ̃(I2N+m(ε∗1, . . . , ε
∗
N , 0

N , a1, . . . , am)) := µ(Im(a1, . . . , am)).

By Proposition 3.7, the basic interval I2N (ε∗1, . . . , ε
∗
N , 0

N ) is full. Then, it follows from
Proposition 3.8 that

|I2N+m(ε∗1, . . . , ε
∗
N , 0

N , a1, . . . , am)| = |I2N (ε∗1, . . . , ε
∗
N , 0

N )| · |Im(a1, . . . , am)|,
= β2

−2N |Im(a1, . . . , am)|.
Since Σβ2 is of finite type, there exists a positive real number C such that

C−1β−m2 ≤ |Im(a1, . . . , am)| ≤ Cβ−m2 .

Thus, noting that N is fixed, we can deduce, as in Section 4.2, that

lim inf
n→∞

logµ(In)

log |In|
≥ θ − 1− θv̂

(θ − 1)(θv̂ + 1)
· log β̃N

log β2
· η(N).

Similarly as in the previous section, we have the same inequality for the general ball B(x, r),
i.e., for any x in the Cantor-type set πβ2

(KN ), we have

lim inf
r→0

logµ(B(x, r))

log r
≥ θ − 1− θv̂

(θ − 1)(θv̂ + 1)
· log β̃N

log β2
· η(N).

Hence

dim(%−1β2
(Dθ,v̂(β0, β1))) ≥ dim(πβ2

(KN )) ≥ θ − 1− θv̂
(θ − 1)(θv̂ + 1)

· log β̃N
log β2

· η(N).

Letting N tend to infinity, this proves the lemma.
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6. Diophantine approximation and Cantor sets

Throughout this section, b denotes an integer at least equal to 3 and S is a subset of
{0, 1, . . . , b− 1} of cardinality at least two and containing at least one of the digits 0 and
b− 1. Let Kb,S denote the set of real numbers ξ in [0, 1] which can be expressed as

ξ =
∑
j≥1

aj
bj
,

with aj ∈ Kb,S for j ≥ 1. Note that for b = 3 and S = {0, 2} the set Kb,S is the middle
third Cantor set, which we simply denote by K. Furthermore, recall that the Hausdorff
dimension of Kb,S is given by

dimKb,S =
log ]S

log b
.

As a corollary of a more general result, Levesley, Salp and Velani [10] established that,
for v ≥ 0,

dim{ξ ∈ K : v3(ξ) ≥ v} = dim{ξ ∈ K : v3(ξ) = v} =
log 2

log 3
· 1

1 + v
. (6.1)

A suitable modification of the proofs of Theorems 1.1 and 1.2 allows us to extend (6.1) as
follows.

Theorem 6.1. Let b ≥ 3 be an integer and S a subset of {0, 1, . . . , b − 1} of cardinality
at least two and containing at least one of the digits 0 and b− 1. Let θ and v̂ be positive
real numbers with v̂ < 1. If θ < 1/(1− v̂), then the set

{ξ ∈ Kb,S : v̂b(ξ) ≥ v̂} ∩ {ξ ∈ Kb,S : vb(ξ) = θv̂}

is empty. Otherwise, we have

dim({ξ ∈ Kb,S : v̂b(ξ) = v̂} ∩ {ξ ∈ Kb,S : vb(ξ) = θv̂}) =
log ]S

log b
· θ − 1− θv̂

(1 + θv̂)(θ − 1)
. (6.2)

Furthermore,
dim{ξ ∈ Kb,S : v̂b(ξ) = 1} = 0.

and

dim{ξ ∈ Kb,S : v̂b(ξ) ≥ v̂} = dim{ξ ∈ Kb,S : v̂b(ξ) = v̂} =
log ]S

log b
·
(1− v̂

1 + v̂

)2
.

The assumption that S contains at least one of the digits 0 and b − 1 is necessary,
since, otherwise, we trivially have vb(ξ) = 0 for every ξ in Kb,S .

For additional results on Diophantine approximation on Cantor sets, the reader may
consult Chapter 7 of [4] and the references quoted therein.
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Proof of Theorem 6.1. We follow step by step the proof of Theorems 1.1 and 1.2. To prove
that the right hand side of (6.2) is an upper bound for the dimension, we use the same
covering argument, but, instead of (2.9), we have to consider the series∑

N≥1

(2N)C logN (]S)N(1+ε′)(θ−1−θv̂)/(θ−1) b−(1+θv̂)(1−ε
′)Ns.

As for the lower bound, we again consider a Bernoulli measure and we distribute the mass
uniformly among the elements of S. Also, if 1 does not belong to S, we cannot take
ank

, amk
, . . . equal to 1 and we then choose them equal to a non-zero element of S. We

omit the details.
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