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Abstract

Let a, b, A, B and c be fixed nonzero integers. We prove several
results on the number of solutions to Pillai’s Diophantine equation
Aa® — BbY = c¢ in positive unknown integers x and y.

1 Introduction

Let a, b and ¢ be nonzero integers with ¢ > 2 and b > 2. As noticed by
Pélya [13], it follows from a theorem of Thue that the Diophantine equation

a® — b =c, in positive integers x, y (1)

has only finitely many solutions. If, moreover, a and b are coprime and c is
sufficiently large compared with a and b, then (1) has at most one solution.
This is due to Herschfeld [6] in the case a = 2, b = 3, and to Pillai [12] in
the general case (Pillai also claimed that (1) can have at most one solution
even if a and b are not coprime. This is incorrect, however, as shown by the
example 6% — 3* = 6° — 3% = 1215.)

Further results on equation (1) are due to Shorey [18], Le [7] (both papers
are concerned with the more general equation Aa® — BbY = ¢, in positive



integers x, y) and, more recently, to Scott and Styer [17] and to Bennett
[1, 2]. We direct the reader to [20, 1] for more references.

In view of Pdlya’s result, the above quoted theorem of Pillai can be
rephrased as follows.

Theorem 1.1. Let a > 2 and b > 2 be coprime integers. Then the Dio-
phantine equation
a®t — a®? = U — Y2, (2)

in positive integers x1, To, Y1, Y2 with x1 # xo has at most finitely many
solutions.

In (2), the bases a and b are fixed. Scott and Styer [17] allowed a to be
a variable, under some additional, mild assumptions. A particular case of
their Theorem 2 can be formulated as follows.

Theorem 1.2. The Diophantine equation
a®' — a®? =291 — 292, (3)

in positive integers a, 1, To, Y1, Yo with x1 # xo and a prime has no
solution, except for four specific cases, or unless a is a sufficiently large
Wieferich prime.

Since we still do not know whether or not infinitely many Wieferich
primes exist, Theorem 1.2 does not imply that (3) has only finitely many
solutions. Such a result has been recently established by Luca [8].

Theorem 1.3. Let b be a prime number. The Diophantine equation
a®t — % = U — V2, (4)

in positive integers a, x1, T2, Y1, Yo with a # b prime and x1 # x2 has only
finitely many solutions.

The proof of Theorem 1.3 uses a broad variety of techniques from Dio-
phantine approximation, ranging from Ridout’s Theorem to the theory of
linear forms in logarithms.

In the present paper, our aim is to generalize Theorem 1.3 in two direc-
tions. First, we remove the assumption ‘b is prime’ and we allow b to be any
fixed positive integer. Secondly, under some mild coprimality conditions, we
also allow arbitrary coefficients which need not be fixed, but whose prime
factors should be in a fixed finite set of prime numbers.
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2 Results

Let P = {p1,...,p:} be a fixed, finite set of prime numbers. We write
S={£pl"...p" 1 a; >0, i =1,...,t} for the set of all nonzero integers
whose prime factors belong to P. This notation will be kept throughout this
paper.

Our main result is the following extension of Theorem 1.3.

Theorem 2.1. Let b be a fixed nonzero integer. The Diophantine equation
A(a® —a™) = B(d"* —b*?), (5)

in positive integers A, B, a, x1, T2, Y1, Y2 has only finitely many solutions
(A, B, a,x1,%2,Y1,Y2) with x1 # x2, a prime, A, B € S and gcd(Aa, Bb) =
1.

We display two immediate corollaries concerning equation (1).

Corollary 2.2. Let b be a fixed positive integer. There exists a positive
constant ag depending only on b and S such that for any nonzero integer c,
for any prime a > ag, and for every positive integers A, B in S coprime to

¢, the equation
Aa® — BV =¢,

i positive integers x, y has at most one solution.

Corollary 2.3. Let b be a fixed positive integer. There exists a positive
constant cy depending only on b and S such that for any prime a > 2, and
for any integer ¢ > ¢y coprime to a, and for every coprime integers A, B in
S, the equation

Aa® — BV =c,

i positive integers x, y has at most one solution.

Besides the introduction of the coefficients A and B, the important new
point in Corollary 2.2 (resp. Corollary 2.3) is that the constant ag (resp.
¢p) does not depend on ¢ (resp. a).



The proof of Theorem 2.1 follows the same general lines as that of Theo-
rem 1 from [8]. However, there are many additional difficulties since b is no
longer prime and since the coefficients A, B are not even fixed. To overcome
some of these difficulties, we are led to use the Schmidt Subspace Theorem
instead of Ridout’s Theorem.

We have tried to clearly separate the different steps of the proof of The-
orem 2.1 and to point out where our assumptions on a and b are needed. A
short discussion on possible extensions to our theorem is given in Section 6.

Throughout this paper, we use the symbols ‘O’, ‘<’, ©>’, <’ and ‘0’
with their usual meaning (we recall that A < B and B > A are equivalent
to A = O(B) and that A < B means that both A > B and B > A hold).

3 Preparations

In this Section, we review some standard notions of Diophantine approxi-
mation.

For a prime number p and a nonzero rational number x, we denote by
ord,(z) the order at which p appears in the factorization of .

Let M = {2,3,5,...} U {oo} be all the places of Q. For a nonzero
rational number x and a place p in M, we let the normalized p-valuation of
z, denoted by |z|,, be |z|, = |z| if p = oo, and |z|, = p~ %@ if u = pis
finite.

These valuations satisfy the product formula

H |z, =1, for all x € Q.
HEMY,
Our basic tool is the following simplified version of a result of Schlickewei
(see [15], [16]), which is commonly known as the Schmidt Subspace Theorem.

Lemma 3.1. Let P’ be a finite set of places of Q containing the infinite
place. For any p € P', let {L1,,...,Ln,} be a set of linearly independent
linear forms in N wariables with coefficients in Q. Then, for every fized
0 < e < 1, the set of solutions x = (z1,...,zx) € ZN\{0} to the inequality

N
T I 12in(0)l < max{|as| : i=1,...,N}~= (6)

nEP! i=1

is contained in finitely many proper linear subspaces of Q" .



Let P and S be as in Section 2. An S-unit x is a nonzero rational number
such that |z|,, = 1 for every finite valuation w stemming for a prime outside
P. We shall need the following version of a theorem of Evertse [5] on S-unit
equations.

Lemma 3.2. Letay,...,an be nonzero rational numbers. Then the equation

N
E a;U; = 1
i=1

in S-unit unknowns u; fori =1,...,N, and such that ), a;u; # 0 for each
nonempty proper subset I C {1,..., N}, has only finitely many solutions.

Finally, we will need lower bounds for linear forms in p-adic logarithms,
due to Yu [21], and for linear forms in complex logarithms, due to Matveev

[9].

Lemma 3.3. Let p be a fized prime and a1, ... ,an be fived rational numbers.
Let x1,...,zN be integers such that a7*...a\y # 1. Let X > max{|z;|:i =
1,..., N}, and assume that X > 3. Then,

ord, (af'...a3" — 1) < log X,
where the constant implied by < depends only on p,N,aq,...,aN.

Lemma 3.4. Let aq,...,an be fixed rational numbers and, for 1 <i < N,
let A; > 3 be an upper bound for the numerator and for the demomina-

tor of a;, written in its lowest form. Let x1,...,xN be integers such that
ai'...ayy #1. Let

|zn| |zi]
logA;  logAn

XZmaX{ i—l,...,N—l},

and assume that X > 3. Then,
loglai"...aY — 1| > —(log A7) ... (log Ay)(log X),

where the constant implied by > depends only on N.

4 Preliminary Results

Let P and S be as in Section 2.

We start with the following result regarding the size of the coefficient A
in equation (5).



Lemma 4.1. Assume that the Diophantine equation
A(a™ — a®?) = B(g"" — q**) (7)

admits infinitely many positive integer solutions (A, B, a, q, x1, T2, Y1, Y2)
such that A, B,q in S, x1 > x2, y1 > Y2, a > 1, and ged(Aa, Bq) = 1. Let
M be the common value of the number appearing in either side of equation
(7). We then have A = M°") as max{A, B, q, 1,2, y1,y2} tends to infinity.

Proof. Let ¢ = Hpeppzp and let Z = max{3,2, : p € P}. Assume that
p?||A. Since Aa and Bq are coprime, it follows that p®|(¢¥* %2 — 1). By
Lemma 3.3, we have that

a, < log(Zyy).

Since this is true for all p € P, it follows that

log(Z
logA = Zaplogp<<log(2y1)<<log(qy1)<M>
Zy
peEP
IOg(Zy1)>
<L (logM) | —————=]). 8
(o) (252 ®)

Thus, it suffices to show that Zy; — oo when M — oo. Suppose, on the
contrary, that Zy; remains bounded for infinitely many solutions. Then, we
may assume that ¢ and y; are fixed, and, since y; > yo2, we may assume
that ys is fixed as well. Since Aa®2|g¥~¥2 — 1, it follows that we may further
assume that a and A are fixed. It then follows that the largest prime factor
of a™~"2 — 1 remains bounded. However, (a" — 1),>; is a non-degenerate
binary recurrent sequence, and it is known that P(a™ — 1) tends to infinity
with n (in fact, by the well-known properties of primitive divisors to Lucas
sequences, see e.g. [4] and [3], P(a™ — 1) > n + 1 holds for all @ > 1 and
n > 7). Hence, x1 — x2 is bounded as well, contradicting the fact that M
tends to infinity. O

We can now present the following theorem.

Theorem 4.2. Let m > n > 0 be fized positive integers. Then, the Dio-

phantine equation
AG™ =2 = Bl — ") o)

has only finitely many positive integer solutions (A, B, z,q,y1,y2) with z > 1
and A, B, q in S such that ged(Az, Bq) = 1.



Proof. We assume that the given equation has infinitely many solutions. We
write again M for the common value of the two sides in equation (9). Thus,
we assume that M tends to infinity. By Lemma 4.1, it follows that we may
assume that A = M°W . In particular, A = 2°() because M = Az™, m
is fixed and z tends to infinity. From equation (9), we now conclude that
zm(1+o(1)) = Bg¥r. This observation will be used several times in the course
of the present proof.

We now prove a Lemma about solutions of equation (9) of a certain type.

Lemma 4.3. Let ¢y # 1 be a fized rational number. Then there exist only
finitely many solutions of equation (9) with z = s + ¢y and s a rational
number which is a S-unit.

Proof. We assume again, for a contradiction, that we have infinitely many
such solutions. Since z is an integer, it follows that the denominator of s is
< 1. If ¢y = 0, it follows that z € S. In this case, equation (9) is the S-unit
equation

X1+ Xo+ X3+ Xy =0,

where X7 = A2™, X9 = —Az2", X3 = —Bg¥% and X4y = —By"Y2. Since z > 1
and ged(Az, Bq) = 1, it follows that it is non-degenerate. In particular, it
can have only finitely many solutions (A, B, z,q,y1,y2). Assume now that
co # 0. Equation (9) can be rewritten as

Q(s) =¢"B/A—q"B/A,

where Q(s) is a polynomial in s whose constant term is dy = ¢ (cj™" —1) #
0. Dividing both sides of the above equation by dy and rearranging some
terms, it follows that the above equation can be rewritten as

m+2

Z aiXi = 1, (10)
=1

where a1 = 1/dy # 0, ag = —1/dy # 0, a; are fixed rational numbers
fori =3,....m+2, X; = ¢“"B/A, Xo = —¢?B/A, and X; = s'2 for
ie€{3,...,m+2}. Let T C {1,2,...,m+ 2} be the subset of those indices
¢ such that a; # 0. Equation (10) is an S-unit equation in the variables X;
for i € 7. Let J be the subset of Z (which can be the full set 7) such that

D aiX; =1 (11)

JET



is non-degenerate; i.e., has the property that if K is any nonempty proper
subset of J, then )7, - a;X) # 0. It is clear that for each solution of
equation (10) such a subset J exists. Since we have infinitely many solutions,
we may assume that J is fixed. By Lemma 3.2, it follows that equation
(11) admits only finitely many solutions (Xj)jes. If 1 € J, then ¢¥' B/A
takes only finitely many values, and since ged(Bg, A) = 1, it follows that
A, B, q,y; are all bounded. Since y; > y2, we get that ys is bounded as well.
Hence, M is bounded in this case. If i € J for some ¢ > 3, it follows that
s'=2 is bounded. Hence, z is bounded, which is a contradiction. Finally, if
J = {2}, then —¢¥2B/A is fixed. Hence, we may assume that A, B, q,ys are
all fixed. With C = ¢2B/A, we get 2™ — 2" + C = ¢¥' B/A. One verifies
immediately that if m > 3 or if (m,n) = (2,1) and C # 1/4, then the
polynomial R(z) = z™ — 2™ + C has at least two distinct roots. It is known
that if Q(X) € Q[X] is a polynomial which has at least two distinct roots,
then Q(z) is a rational number whose denominator has the property that its
largest prime factor tends to infinity with x (see e.g. [20]). This shows that
the equation R(z) = ¢¥* B/A can have only finitely many solutions (z,y;) in
this case as well. Hence, it remains to look at the case (m,n) = (2,1) and
C' = 1/4. But since ged(Bg, A) = 1, this leads to A =4, B =1, ¢ = 1,
which is impossible because in this case M = 0; hence, z = 1, which is not
allowed.

a

We now resume the proof of Theorem 4.2. We rewrite the equation as
A" (2™ — 1) = Bg%? (¢ 7% —1). (12)
Since z and ¢ are coprime, it follows that Bg¥? divides 2™~ ™ — 1.

We first assume that m > 3. If n = m — 1, then Bg¢¥?|(z — 1), which
implies that Bg¥? < z. Equation (9), after multiplying both sides of it by
m™, can be rewritten as

|A(mz — 1)™ — Bm™¢"'| = |Af(z) — Bm™g"|, (13)

where f(z) is a polynomial in z with integer coefficients and of degree m — 2.
We now write ¢ = dqi", A = A1AT', B = B1Bj", where d, A1, By are mth
power free. Clearly, since A, B,q € S and m is fixed, d, A1, B1 can take only
finitely many values. In what follows, we assume that d, A, By are fixed.
Equation (13) implies easily that

Ap(mz — 1) Azm—2 1

—m(dBy /A Y™ -
Bog m(dBy/A1) < Bor < L

(14)



when M is sufficiently large. Since Bpgqp is in S, Ridout’s Theorem [14]
tells us that the above inequality (14) can have only finitely many solutions
(Ao, By, z, q1,41) if (dB1/A;)Y™ is not rational. Indeed, recall that — a
particular version of — Ridout’s Theorem says that if « is algebraic and
irrational, then for every € > 0, the Diophantine inequality

1
q1+8

o-2| <
q

has only finitely many integer solutions (p, q) with ¢ € S. However, for us,
if dB1/A; = " for some rational number m, then for large z the above
inequality (14) leads to the conclusion that Ag(mz — 1) — mByc1g}" = 0,
which gives z = s+ ¢, where s = ¢1 Bog¥* /Ao, and ¢y = 1/m # 1. However,
by Lemma 4.3, equation (9) can have only finitely many solutions of this
type also.

We now assume that m —n > 2. If n > 2, then Bg¥2|z™~"™ — 1, therefore
Bg¥? < z™2. Hence,

|A2™ — Bg¥'| = |A2" — Bg¥?| < z(m=2+e(l),
With the notation ¢ = dqi*, A = A1 A", B = B1 B, we get

Azm2 1
Bqgw < 22’

A()Z
Bog*

— (dB1/A)Y™| <

and Ridout’s Theorem implies once again that the above inequality can
have only finitely many positive integer solutions (Ag, Bo,z,q1,%1) with
Ao, By, q1 € S unless dB1/A; = ¢f* for a rational number ¢;. If dB1/A; =
', we then get for large z that z = ¢1¢{* By/Ao = s € S, and equation (9)
has only finitely many solutions of this type by Lemma 4.3.

We now assume that n = 1. We then write

1

m—1 2" —1
= (=1 [

: c-0 (=),

m—l_l
e 17
z—1

From equation (12), it follows that we may write B = By Bs, ¢ = ¢2qs3,

and note that

Y2 -1 Y2
z — 1= Bagy’u and — 1 = Bsqs®v,
Z —



where B, Bs, g2, g3 are positive integers and u, v are positive rational num-
bers with bounded denominators. Let 6 > 0 be some small number to be
fixed later. If either

u>z‘S or U>z‘5,

then either

5

Bagh? < 217 or Bagf? < 2279,

and in both cases we have that Bg¥? = ByB3(gaq3)¥? < 2™ 179, We now
get that
|Az™ — Bg¥t| = |Az — Bq¥?| < 27179,

and again with the notations ¢ = dqi*, A = A1 A", B = B1B{* we arrive at

Apz 1m Zm—1-0 1 1
Bog?' (dB1/A1) < Bgv: < 1+3+0(1) < S1+8/2°

Here, we used the fact that § is fixed and that 4 = 2°1). Since § > 0
is fixed, Ridout’s Theorem implies once again that the above inequality
can have only finitely many positive integer solutions (Ao, By, z, q1, y1) with
By, q1 € S unless dB;/A; = ¢f” for some rational number ¢1, and as we have
already seen, when this last condition holds, then for large z, we get that
z=¢{'BJ/A = s €8, and there can be only finitely many solutions of this
type by Lemma 4.3.

From now on, we consider only those solutions for which both inequalities

6 0

u<z and v <z

hold. Write D < 1 for the least common multiple of the denominators of u
and v. Note that the greatest prime divisor of D is at most m. We now get

21 (BagPu+1)m -1 L m— 1 k—1
Bag?20 = _ 2 _ Boa¥? ,
S Bagiu Zk:l po) (P

which can be rewritten as

m—1
—1 _ _
—(m—1)D™? = fnggQUDm*2 + Z (mk >B§k l)qgk Dyz, k=1 pm-2,
=2
(15)
We now apply Lemma 3.1 to (15). Put N = m — 1, P’ = P U {oc}.
Let x = (z1,...,zy) € QVN. Forall g € P and all i = 1,...,N we set

10



L;i(x) = x; except for (i, u) = (1,00), for which we put

m—1
m—1
Ll,oc = —x1 + E < L >$k
k=2

We evaluate the double product appearing at inequality (6) for our system

of forms and points x = (z1,...,zy) given by z1 = B3gd>vD™ 2 and z), =
Bék_l)qék_l)muk_le_Q for k = 2,...,m — 1. It is clear that z; € Z for
i =1,...,N. We may also enlarge P in such a way as to contain all the

primes p < m. Clearly,

I 12l <ub=t for k> 2,

HEP!
1
H |L1 |H ~ Bsq yga
HEP
and
|L1(%X)|0o = (M — 1)Dm_2.
Thus,
-1 l)m—QuN2 Z‘S m?2 1
H H‘L ‘N— ) Y2 < (m—)l—é T om—1-3(m?+1)" (16)
P iml Bsqs z zm m
We now observe that
max{|x;| 1 i = N} = B3g>vD™ 2 < 2" 2

therefore inequality (16) implies that

7m7176(m2+1)
11 H|L x)|, < (max{|z;|:i=1,...,N})~~ mz

peP i=1

m—1

m, we get that the inequality

Choosing § =

11 H|L )|, < (max{|z;|:i=1,...,N})~°

peP i=1

11



-1
holds with ¢ = h Lemma 3.1 now immediately implies that there
m J—
exist only finitely many proper subspaces of Q" such that each one of our

points x lies on one of those subspaces. This leads to a equation of the form

N
Z CZIL‘Z == 0,
=1

with some integer coefficients C; for ¢ = 1,..., N not all zero, which is
equivalent to

m—1
C1Bsg{?>vD™ % + Z CpBY gD yk-1pm=2 —
k=2

If C; = 0, then we divide by D™~2 and the above relation becomes g(w) = 0,
where w = Bogy?u, and g(X) is the nonzero polynomial

[y

m—

Z Cka_l.

k=2

Hence, w can take only finitely many values, and, since w = z — 1, it follows
that z can take only finitely many values. If C} # 0, then w|Cy B3g?uD™ 2.
Further, the greatest common divisor of w = z — 1 and ngé’?va_2 =
Dm=2(zm=1 —1)/(z—1) divides D"™~2(m—1). Hence, this greatest common
divisor is O(1). It then follows that w < Cy. In particular, w = z — 1 can
take only finitely many values in this case as well.

This completes the discussion for the case when m > 3. We now deal
with the case (m,n) = (2,1). In this last case, we have

Az(z — 1) = Bg”? (¢ 72 — 1).

Since Bq and Az are coprime, we get z—1 = B¢¥2 ) for some positive integer

A. Hence,
qyl —Y2 _ ]_

AN
therefore ¢¥'~¥2 — ABN?2q¥2 = A\ +1. We let § be some small positive num-
ber, and we show that the above equation has only finitely many solutions
with A\ < (Bg¥?)'=9. Indeed, assume that this is not the case. We then
take N =2, P’ = PU{oo}, and L; ,(X1, X2) = X, for all (¢, u) € {1,2} x P/,
except for (i,pu) = (2,00), case in which we put Lo o (X7, X2) = X7 — Xo.

=z = B¢\ +1,

12



It is easy to see that Li, and Lo, are linearly independent for all u € P'.
Taking 1 = ¢¥' 2 and 2o = AB)?, we get easily that

2
AN+1 1
H H |Li (1, 22) |y = < 5
i=1pepP’ ABq (qu2>

Furthermore, since A\ < (quQ)l_‘s, it follows that

A)\Qqu2 < (A)\)Q(quQ) < (qu2)2(1—6)+1,

and
qy1—y2 — AB/\2qy2 L AN+ < ZAB/\quZ < (qu2)3—25‘
Hence,
- 5
H H ‘Li,u($17z2)|y < (maX{Il,ﬁz})im .
i=1puep’

Applying Lemma 3.1, it follows that once ¢ is fixed there are only finitely
many choices for the ratio z;/z9. In particular, ¢¥' 22 /(AB)?) can take
only finitely many values. Enlarging P, if needed, it follows that we may as-
sume that )\ is also an S-unit. In this case, the equation ¢¥' ~¥2 — ABX2g¥2 =
AX+ 1 becomes a S-unit equation which is obviously non-degenerate, there-
fore it has only finitely many solutions (A, B, g, \,y1,y2). Hence, there are
only finitely many solutions of equation (9) which satisfy the above property.
From now on, we assume that A\ > (B¢¥2)'~% with some small §. We now
set = 1/2 and get that

z=Bg”A+1> (Bg")2 041 > (Bg")3/2°0),

Thus, Bg¥2 < 22/3te() < 23/4 We now write again ¢ = dq%, A =
A1A3, B = BB} and rewrite equation (9) as

A1(Ap(22 — 1)) — 4dB1 B2¢?¥! | = [4Bg¥> — A| < 2%/4,
041

which gives

Ap(2z —1 23/4

(BT:ijl) —2(dB1/A)"?| < B <
Ridout’s Theorem implies once again that the above inequality can have
only finitely many positive integer solutions (Ag, By, z,q1,y1) with ¢1 € S
unless dB1 /A1 = " with some rational number m. In this last case, for
large z we get that z = s+ ¢g, where s = c1¢{" By/Ag € S and ¢y = 1/2 # 1,
and there are only finitely many solutions of this kind by Lemma 4.3. O

13



5 Proof of Theorem 2.1

We follow the method of proof of Theorem 1 from [8].

We assume that b is not a perfect power of some integer and that x; >
x9. Thus, y; > yo. We also assume that equation (5) has infinitely many
positive integer solutions (A, B, a,x1,2,y1,y2) with a prime, A, B in S,
ged(Aa, Bb) = 1 and z1 > xo. We shall eventually reach a contradiction.

Note that, if 1 < 1 holds for all such solutions, then the contradiction
will follow from Theorem 4.2. Hence, it suffices to show that 1 < 1.
In Steps 1 to 3, we will establish that, if 1 and y; are sufficiently large,
then there exists § > 0, depending only on b, such that all the solutions of
equation (5) have

max{zs/x1,y2/y1} <1 —0. (17)

Then, in Step 4, we adapt the argument used at Step 4 of the proof of
Theorem 1 from [8], based on a result of Shorey and Stewart from [19], to
get that 1 < 1.

We already know that A = M°1). We shall show that B = M°(1) as
well. Let pP||B. Then p%|a®™ =72 — 1. It is known that b, < log(a® — 1) +
O(log(z1 — z2)) < loga + logz; < (loga)(log z1). Hence,

log B = E bylogp < (log a)(log z1) = log(a™) (105—301) )
1
peEP

therefore B = M°Y) because A = M°1) and z; tends to infinity.
We now proceed in several steps.
Step 1. The case a is fized.

In this case, equation (5) is a particular case of an S-unit equation in
four terms, which is obviously non-degenerate. In particular, there are only
finitely many such solutions. These solutions are even effectively computable
by using the theory of lower bounds for linear forms in logarithms, like in

11].

From now on, by Step 1, we may assume that a > b2. Since
p21 < %am < am_l(a—l) < a®'—ag®? = (by1_by2)B/A < by1(1+o(1))7 (18)

we get that =1 < 1.
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Moreover, inequality (18) shows that there are only finitely many solu-
tions (A, B,a,r1,y1,T2,y2) of equation (5) with bounded y;, and so, from
now on, we shall assume that y; is as large as we wish.

Step 2. There exists a constant 61 > 0 depending only b such that the
inequality yo < y1(1 — 1) holds for large values of yi.

For positive integers m and r, with 7 a prime number, we write ord,.(m)

for the exact order at which the prime r divides m. We write b = Hﬁzl riﬁ ‘,
where 11 < ro--- < 1y are distinct primes and 3; are positive integers for
it =1,...,t. Rewriting equation (5) as

a®? (a7 — 1) =02 (72 — 1)B/A, (19)

Tr1—T2

we recognize that F;ys < ord,,(a —1). Let f; be the following positive
integer: If r; is odd, we then let f; be the multiplicative order of a modulo
ri. If r; = 2, and x1 — z9 is odd, we then let f; = 1, and if z; — zo is
even, we then let f; = 2. Since yo > 0, it is clear that f;|z; — zo. We write
u; = ord,, (afi — 1). We then have

Biyz < ordy (™7 —1) <wj +ordy, (m ]7 xZ)
)
! - 1
< oy loslEi—ze) o logyr (20)
log T IOg T3

For a positive integer m, we write Fy,,(X) = ®,,(X) € Z[X] for the mth
cyclotomic polynomial if m > 3 and F,,(X) = X™ — 1 for m = 1,2. From
the definition of f; and u;, we have that

ri |Fy,(a).
Let F={fi:i=1,...,t}, and let £ = #F. Observe that

MW = (B —b*)B/A=a" (0" —1) > a [] Fy(a)

= T (). o)

fer
For f € F, we put dy = deg(Fy). Hence, dy = f if f < 2, and dy = ¢(f)
otherwise, where ¢ is the Euler function. We now remark that

édf+1

at*Fp(a) > Fp(a) "7 . (22)
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Indeed, since ¢ <t = w(b) is bounded, the above inequality is equivalent to
a%r > Fy(a).

Since all the roots of Fy(X) are roots of unity, the above inequality is implied
by
a®t > (a+1)%,

1\ %
<1+—> < 1.
a

In turn, this last inequality follows from the fact that dy < f together with
the fact that f;|r; — 1 whenever r; > 2 by Fermat’s Little Theorem. Let
d =max{dy : f € F}. Inequalities (21), (22) and (20) show that

which is equivalent to

t £d
prtte@) s [T Fr(a) > (H ﬁ‘i)
feF i=1
I Q| S ()
> L > ——F,

- N yi'

therefore o1
_|_
y1(1+o(1)) > <T> y2 — 2tlogy1 + O(1),

and so,

Yo < (%) y1(1+o0(1)) + O(log y1) = (%) y1(1+o(1)),

which implies the assertion of Step 2 with §; = 1/(2¢d) once y; is sufficiently
large.

Step 3. There exists a constant §o > O depending only on b such that
the inequality xo < (1 — d2)x1 holds for large values of y.

We look again at equation (19). We put z = y; — y2, and we notice that,
by Step 2, the inequality z/y1 > 1 holds for all positive integer solutions of
equation (5), with a a prime not dividing b, and z1; > z9. From equation
(19), we learn that xo = ord,(b* — 1). We let g be the multiplicative order
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of b modulo a. It then follows that a|®,(b). Furthermore, if we put v =
ordy(®,4(b)), we then have that

zo = ord, (a(a™ " —1)) = ord, (B2 (0¥ Y2 — 1)) — ord,(A)

1
< ord,(b¥*—=1)=v+0 < ng) .
loga

Consequently,
b*—1 b* —1

> .
a2 — 20 (b)

Since g|z, and since
®,(m) = mPHH0(2)

holds for all positive integers m, where 7(z) is the number of divisors of z
(see [4]), we get that

b*—1

a®2

> pr=9(9)+O0(T(2)+log 2) _ pr—¢(9)+0(='/?)

where we used the well-known fact that 7(z) < z'/2. Note that since z/y; >
1 and since y; is as large as we wish, it follows that z1 is as large as we wish.
Since

b*~ ¢ +O(7(2)) < -1 = Mo <w) — pol®) <&) )

a2 by2 by2

it suffices to show that z — ¢(g) > z. If g < z, then z — ¢(g) > z— g > z/2.
Thus, we may assume that ¢ = z. Since the order of b modulo a is g, we
get that a =1 (mod g), therefore z|a — 1. In particular, z|6*2(b* — 1). The
argument from the end of Step 3 of the proof of Theorem 1 in [8] shows
that if we write p(m) for the smallest prime factor of m, then p(m)|b(b—1).
Hence, p(m) < 1, therefore

z—dlg) =z —d(2) = z/p(2) > z,
which completes the proof of the assertion of Step 3.

The combination of Steps 2 and 3 shows that equation (17) holds with
0= min{él, (52}

Step 4. The exponent x1 is bounded.

Recall that A = M°) and B = M°", It then follows from (17) that
there exists a positive real number 7 such that

|AB~ta™b v — 1] < a1, (23)
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Write AB™1 = p{*...p}*. If 21 is sufficiently large, then, for 1 < j < t, we
have p|juj‘ < a”'; hence, |u;|/loga < 2z;. Furthermore, we have y;/log a <,
1. Applying Lemma 3.4, we get

log |[AB™*a™ b~ — 1| > —(loga)(log 1),

where the constant implied in > depends only on b and P. Combined with
(23), this gives an upper bound for z1, in terms of b and P. According to
the observation made at the beginning of Section 5, this finishes the proof
of our theorem.

6 Comments and Remarks

It would certainly be of interest to extend the results of this note in order
to cover a wider class of equations of the same type as (5). For example,
it would be interesting to relax the condition ‘a is a prime’, to, say, ‘a is
an integer’ (or, even, to ‘a has a bounded number of prime factors’), or to
replace the condition ‘b is fixed” by the condition ‘b is an S-unit’. We have
not succeeded in proving any of such results. The most difficult point seems
to lie in Step 3 of Section 5.

Furthermore, we stress that, as in [8], our results are ineffective, since
they ultimately depend on the Schmidt Subspace Theorem. It would be
very interesting to provide an effective version of even a weaker form of our
main theorem.

Moreover, it would be nice to relax the coprimality condition occurring
in Theorem 2.1. This, however, seems to be quite difficult.

We conclude by a short discussion on conditional results. Bennett [1]
conjectured that there exist only finitely many triples of positive integers
(a,b, c) with ged(a, b, ¢) = 1 such that the Diophantine equation a® —bY = ¢
has two solutions in positive integers z and y. In Theorem 2 in [8] it is
shown that the ABC-conjecture implies that there are only finitely many
such triples, subject to the additional restriction that both a and b are
primes. However, a close investigation of the arguments in [8] shows that
the fact that both a and b are primes is not used except for treating the case
of the equation

22— =gV — g2 (24)

in positive integers (z,q,y1,y2) with z and g coprime. All solutions of this
last equation are known if ¢ is a prime (see Proposition 1 in [8]) but it is still
an open question to decide whether (24) has only finitely many solutions if
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q is allowed to be an arbitrary positive integer. Actually, it turns out that,
if we assume the ABC-conjecture, then we get that equation (24) has at
most finitely many solutions. This is exactly what we want to conclude
that, under the ABC-conjecture, there exist only finitely many triples of
positive integers (a,b,c) with ged(a,b,¢) = 1 such that the Diophantine
equation a® — bY = ¢ has two positive integer solutions (z,y). We close
by pointing out that an equation related to (24), namely z? — z = y? — y,
was treated by Mignotte and Pethé in [10]. For example, it is shown there
that if 2 < p < ¢ and ¢ > 4 are fixed, then the above equation has only
finitely many rational solutions (x,y). Further, the ABC conjecture is used
to suggest that perhaps the above equation has only finitely many integer
solutions in all four unknowns (z,y,p,q) with 2 <p < q.
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