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Abstract

We establish that the set of pairs (α, β) of real numbers such that

lim inf
q→+∞ q · (log q)2 · ‖qα‖ · ‖qβ‖ > 0,

where ‖ · ‖ denotes the distance to the nearest integer, has full Hausdorff dimension in R2.
Our proof rests on a method introduced by Peres and Schlag, that we further apply to various
Littlewood-type problems.

1. Introduction

A famous open problem in simultaneous Diophantine approximation, called the
Littlewood conjecture [15], claims that, for any given pair (α, β) of real numbers, we have

inf
q�1

q · ‖qα‖ · ‖qβ‖ = 0, (1·1)

where ‖ · ‖ denotes the distance to the nearest integer. Throughout the present paper, we
denote by Bad the set of badly approximable numbers, that is,

Bad = {α ∈ R : inf
q�1

q · ‖qα‖ > 0},

and we recall that Bad has Lebesgue measure zero and full Hausdorff dimension [13].
Consequently, (1·1) holds for almost every pair (α, β) of real numbers. Recently, this result
was considerably improved by Einsiedler, Katok and Lindenstrauss [9], who established that
the set of pairs (α, β) for which (1·1) do not hold has Hausdorff dimension zero; see also
[25] for a weaker statement, and [5, section 10·1] for a survey of related results.

Another metrical statement connected to the Littlewood conjecture was established by
Gallagher [12] in 1962 and can be formulated as follows (see e.g. [3]).

THEOREM G. Let n be a positive integer. Let �: R>0 → R>0 be a non-increasing func-
tion. The set of points (x1, . . . , xn) in Rn such that there are infinitely many positive integers
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q satisfying
n∏

i=1

‖qxi‖ < �(q)

has full Lebesgue measure if the sum∑
h�1

�(h)n (log h)n−1

diverges, and has zero Lebesgue measure otherwise.

In particular, it follows from Gallagher’s theorem that

lim inf
q→+∞ q · (log q)2 · ‖qα‖ · ‖qβ‖ = 0 (1·2)

for almost every pair (α, β) of real numbers. The main purposes of the present note are to
establish the existence of exceptional pairs (α, β) which do not satisfy (1·2) – a result first
proved in [22] –, and to prove that the set of these pairs has full Hausdorff dimension in R2.
We further consider various questions closely related to the Littlewood conjecture.

Our main results are stated in Section 2 and proved in Sections 4 and 5, with the help of
auxiliary lemmas gathered in Section 3. Several additional results are given without proofs
in Section 6.

Throughout this paper, �x� and 	x
 denote the greatest integer less than or equal to x and
the smallest integer greater than or equal to x , respectively.

2. Main results

Our first result shows that there are many pairs (α, β) of real numbers that are not well
multiplicatively approximable.

THEOREM 1. For every real number α in Bad, the set of real numbers β such that

lim inf
q→+∞ q · (log q)2 · ‖qα‖ · ‖qβ‖ > 0 (2·1)

has full Hausdorff dimension.

The proof of Theorem 1 uses a method introduced by Peres and Schlag [24], which was
subsequently applied in [18–22].

Since the set Bad has full Hausdorff dimension, the next result follows from Theorem 1
by an immediate application of [11, corollary 7·12].

THEOREM 2. The set of pairs (α, β) of real numbers satisfying

lim inf
q→+∞ q · (log q)2 · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension in R2.

Theorem 1 can be viewed as a complement to the following result of Pollington and Velani
[25].

THEOREM PV. For every real number α in Bad, there exists a subset G(α) of Bad with
full Hausdorff dimension such that, for any β in G(α), there exist arbitrarily large integers
q satisfying

q · (log q) · ‖qα‖ · ‖qβ‖ � 1.
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In [1], the authors constructed explicitly for every α in Bad uncountably many β in Bad
such that the pair (α, β) satisfies (1·1), and even a strong form of this inequality. It would be
very interesting to construct explicit examples of pairs of real numbers that satisfy (2·1).

A modification of an auxiliary lemma yields a slight improvement on Theorem 1.

THEOREM 3. Let a be a real number with 0 < a < 1. For every real number α in Bad,
the set of real numbers β such that

lim inf
q→+∞ q · (log q)2−a · (log 1/‖qα‖)a · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension.

Theorem 3 is stronger than Theorem 1 since, for every α in Bad, there exists a positive
real number δ such that log (1/‖qα‖) � δ log q holds for every integer q � 2.

Cassels and Swinnerton–Dyer [8] proved that (1·1) is equivalent to the equality

inf
(x,y)∈Z×Z\{(0,0)}

max {|x |, 1} · max {|y|, 1} · ‖xα + yβ‖ = 0,

and used it to show that (1·1) holds if α and β belong to the same cubic number field
(see also [23]). In this context, we have the following metrical result, extracted from
[4, page 455]. For integers q1, . . . , qn , set

�(q1, . . . , qn) =
n∏

i=1

max {1, |qi |}.

THEOREM BKM. Let n be a positive integer. Let �: R>0 → R>0 be a non-increasing
function. The set of points (x1, . . . , xn) in Rn such that there are infinitely many integers
q1, . . . , qn satisfying

||q1x1 + · · · + qnxn|| < �
(
�(q1, . . . , qn)

)
(2·2)

has full Lebesgue measure if the sum∑
h�1

�(h) (log h)n−1 (2·3)

diverges, and has zero Lebesgue measure otherwise.

For n � 2, there is no known example of points (x1, . . . , xn) in Rn and of a function
� as in Theorem BKM such that the sum (2·3) diverges and (2·2) has only finitely many
solutions. The Peres–Schlag method allows us to show that such examples do exist.

THEOREM 4. The set of pairs (α, β) of real numbers satisfying

lim inf
x,y�0

max {2, |xy|} · ‖xα + yβ‖ · (log max {2, |xy|})2 > 0

has full Hausdorff dimension in R2.

The proof of Theorem 4 is briefly outlined in Section 5. Note that Theorem 4 (resp. The-
orem 1) does not follow from Theorem 1 (resp. Theorem 4) by some transference principle.

In analogy with the Littlewood conjecture, de Mathan and Teulié [17] proposed recently
a ‘mixed Littlewood conjecture’. For any prime number p, the usual p-adic absolute value
| · |p is normalized in such a way that |p|p = p−1.
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De Mathan–Teulié conjecture. For every real number α and every prime number p, we
have

inf
q�1

q · ‖qα‖ · |q|p = 0.

Despite several recent results [6, 10], this conjecture is still unsolved. The following met-
rical statement, established in [7], should be compared with Theorem G.

THEOREM BHV. Let k be a positive integer. Let p1, . . . , pk be distinct prime numbers.
Let �: R>0 → R>0 be a non-increasing function. The set of real numbers α such that there
are infinitely many positive integers q satisfying

‖qα‖ · |q|p1 · · · |q|pk < �(q)

has full Lebesgue measure if the sum∑
h�1

�(h) (log h)k

diverges, and has zero Lebesgue measure otherwise.

As an immediate consequence of Theorem BHV, we get that, for every prime number p,
almost every real number α satisfies

inf
q�2

q · (log q)2 · (log log q) · ‖qα‖ · |q|p = 0. (2·4)

The method of proof of Theorem 1 allows us to confirm the existence of real numbers for
which (2·4) does not hold.

THEOREM 5. Let a be a real number with 0 � a < 1. For every prime number p, the set
of real numbers α such that

lim inf
q→+∞ q · (log q)2−a · ‖qα‖ · |q|p · (log 2/|q|p)

a > 0

has full Hausdorff dimension.

We display an immediate consequence of Theorem 5.

COROLLARY 1. For every prime number p, the set of real numbers α such that

lim inf
q→+∞ q · (log q)2 · ‖qα‖ · |q|p > 0

has full Hausdorff dimension.

In the present note, we have restricted our attention to 2-dimensional questions. However,
our method can be successfully applied to prove that, given an integer n � 2, there are real
numbers α1, . . . , αn such that

lim inf
q→+∞ q · (log q)n · ‖qα1‖ · · · ‖qαn‖ > 0,

as well as real numbers β1, . . . , βn such that

lim inf
x1,...,xn�0

max {2, |x1 . . . xn|} · ‖x1β1 + . . . + xnβn‖ · (log max {2, |x1 . . . xn|})n > 0

This will be the subject of subsequent work by E. Ivanova.
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3. Auxiliary results

The original method of Peres and Schlag is a construction of nested intervals. A useful
tool for estimating from below the Hausdorff measure of a Cantor set is the mass distribution
principle, which we recall now.

We consider a set K included in a bounded interval E , and defined as follows. Set E0 = E
and assume that, for any positive integer k, there exists a finite family Ek of disjoint compact
intervals in E such that any interval U belonging to Ek is contained in exactly one of the
intervals of Ek−1 and contains at least two intervals belonging to Ek+1. Suppose also that the
maximum of the lengths of the intervals in Ek tends to 0 when k tends to infinity. For k � 0,
denote by Ek the union of the intervals belonging to the family Ek , and set

K :=
+∞⋂
k=1

Ek .

LEMMA 1. Keep the same notation as above. Assume further that there exists a positive
integer k0 such that, for any k � k0, each interval of Ek−1 contains at least mk � 2 intervals
of Ek, these being separated by at least εk , where 0 < εk+1 < εk . We then have

dim K � lim inf
k→+∞

log (m1 . . . mk−1)

− log (mkεk)
.

Proof. This is [11, example 4·6], see also [5, proposition 5·2].

LEMMA 2. Let α be in Bad. There exists a positive constant C(α) such that, for every
integer q � 2, we have

q3∑
x=q

1

||αx || x log 2
2 x

� C(α).

Proof. This is a straightforward consequence of [14, example 3·2, page 124], where it is
established that there exists a positive constant C1(α) such that

m∑
x=1

1

||αx || x
� C1(α)(log m)2,

for all positive integers m.

Theorem 3 depends on the following refinement of Lemma 2.

LEMMA 3. Let α be in Bad. Let a be a real number with 0 < a < 1. There exists a
positive constant C(α) such that, for every integer q � 2, we have

q3∑
x=q

1

||αx || x (log 1/‖xα‖)a · (log x)2−a
� C(α).

Proof. Let (p j/q j ) j�0 denote the sequence of convergents to α. Let m (resp. n) be the
largest (resp. the smallest) integer j such that q j � q (resp. q j � q3). As the sequence
(q j ) j�0 grows exponentially fast, we have

log q � n � m � log q,

where, as throughout this proof, the numerical constants implied by � depend only on α.
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Let j be an integer satisfying m � j < n and consider

Sj :=
q j+1∑
x=q j

1

||αx || x (log 1/‖xα‖)a
.

Denote by y1 < y2 < · · · < yq j+1 the increasing sequence of the q j+1 points {αx}, x =
1, . . . , q j+1. It follows from the Three Distance Theorem (see, e.g. [2, section 3]) and the
fact that α is badly approximable that

x

q j+1
� yx �

x

q j+1
, for x = 1, . . . , q j+1.

Consequently,

Sj �
1

q j

q j+1∑
x=1

1

||αx || (log 1/‖xα‖)a
�

1

q j

q j+1/2∑
x=1

(q j+1/x)

(log (q j+1/x))a

�
q j+1

q j

∫ q j+1

2

du

u(log u)1−a
� (log q j )

1−a,

since q j+1/q j is bounded from above by an absolute constant depending only on α. Now,

n∑
j=m

Sj � (log q)2−a,

which proves the lemma.

The key tool for the proof of Theorem 5 is Lemma 4 below.

LEMMA 4. Let p be a prime number. Let a be a real number with 0 � a < 1. There
exists a positive constant C(a, p) such that, for every integer q � 2, we have

q3∑
x=q

1

x · |x |p (log (2/|x |p))a · (log x)2−a
� C(a, p).

Proof. Observe that

q3∑
x=q

1

x · |x |p · (log (2/|x |p))a
�

3 log q∑
j=0

�q3/p j �∑
x=	q/p j 


1

x( j + 1)a
.

Consequently,

q3∑
x=q

1

x · |x |p · (log (2/|x |p))a
�

3 log q∑
j=0

log q

( j + 1)a
� (log q)2−a,

and the lemma is proved.

4. Proof of Theorem 1

Let α be in Bad and δ be a positive real number satisfying

q · ||qα|| � δ, for every q � 1. (4·1)
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Let ε be such that

0 < ε <
(
210C(α)

)−1
, (4·2)

where C(α) is given by Lemma 2.
We follow a method introduced by Peres and Schlag [24]. First, we construct ‘dangerous’

sets of real numbers. These sets depend on α, but, to simplify the notation, we choose not to
indicate this dependence. For integers x and y with x � 2 and 0 � y � x , define

E(x, y) =
[

y

x
− ε

||αx ||x2 log 2
2 x

,
y

x
+ ε

||αx ||x2 log 2
2 x

]
(4·3)

and

E(x) =
x⋃

y=0

(
E(x, y) � [0, 1] )

. (4·4)

Set also

l0 = 0, lx = �log 2(||αx ||x2 log 2
2 x/(2ε))�, for x ∈ Z�1. (4·5)

Each interval from the union E(x) defined in (4·4) can be covered by an open dyadic interval
of the form (

b

2lx
,

b + 2

2lx

)
, b ∈ Z�0.

Let A(x) be the smallest union of all such dyadic intervals which covers the whole set E(x)

and put

Ac(x) = [0, 1] \ A(x).

Observe that Ac(x) is a union of closed intervals of the form[
a

2lx
,

a + 1

2lx

]
, a ∈ Z�0.

Let q0 be an integer such that

q0 � (100ε)3 and ||q0α|| � 1/4. (4·6)

For q � q0, define

Bq =
q⋂

x=q0

Ac(x).

The sets Bq , q � q0, are closed and nested. Our aim is to show inductively that they are
non-empty. Set L0 = l0 and

qk := q3k

0 , Lk = �log 2(q
2
k log 2

2 qk/(4ε))�, k � 1. (4·7)

Observe that lx � Lk when x � qk .
For every integer k � 0 we construct inductively subsets Cqk and Dqk of Bqk with the

following property (Pk):

The set Cqk is the union of 2−5k−3+Lk intervals of length 2−Lk , separated by at least 2−Lk ,
and such that at least 2−5k−5+Lk among them include at least 2Lk+1−Lk−3 intervals composing
Bqk+1 , which are also separated by at least 2−Lk+1 . Let denote by Cqk+1 (resp. by Dqk ) the
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union of 2−5(k+1)−3+Lk+1 of these intervals (resp. of the corresponding 2−5k−5+Lk intervals
from Cqk ). In particular, we have mes(Cqk ) = 4mes(Dqk ) = 25mes(Cqk+1).

We deduce from (4·2), (4·3) and Lemma 2 that

mes(Bq1) � 1 −
q1∑

x=q0

mes
(

A(x)
)

� 31/32.

Consequently, Bq1 is the union of at least 2L1−1 intervals of length 2−L1 . By (4·6), the set
Bq0 is the union of at least 2L0−1 intervals of length 2−L0 . This allows us to define the sets
Cq0, Dq0 and Cq1 . This proves (P0).

Let k be a non-negative integer such that (Pk) holds, and consider the set B ′
qk+2

:= Cqk+1 �
Bqk+2 . Observe that

B ′
qk+2

= Cqk+1 \
( qk+2⋃

x=qk+1+1

A(x)

)
,

hence

mes(B ′
qk+2

) � mes(Cqk+1) −
qk+2∑

x=qk+1+1

mes
(
Cqk+1 � A(x)

)
. (4·8)

By construction, the set Cqk can be written as a union, say

Cqk =
Tqk⋃
ν=1

Jν,

of Tqk dyadic intervals Jν of the form[
a

2Lk
,

a + 1

2Lk

]
, a ∈ Z�0,

where Lk is given by (4·7). Let x � q3
k be an integer. Since, by (4·6),

2Lk � q2
k log 2

2 qk

4ε
� q3

k

2
� x

2
,

each interval Jν contains at least the rationals y/x, (y + 1)/x for some integer y, and we
infer from (4·3) that

mes(Jν � A(x)) � 24ε

||αx || x log 2
2 x

× mes(Jν). (4·9)

Summing (4·9) from ν = 1 to ν = Tqk , we get

mes
(
Cqk � A(x)

)
� 24ε

||αx || x log 2
2 x

× mes(Cqk ). (4·10)

It then follows from (4·10) that

mes(Cqk+1 � A(x)) � mes(Cqk � A(x))

� 24ε

||αx || x log 2
2 x

× mes(Cqk ) � 29ε

||αx || x log 2
2 x

× mes(Cqk+1).



Badly approximable numbers and Littlewood-type problems 9

Combined with (4·8) and Lemma 2, this gives

mes(B ′
qk+2

) �
(
mes(Cqk+1)

) (
1 −

qk+2∑
x=qk+1+1

29ε

||αx || x log 2
2 x

)
� mes(Cqk+1)

2
.

Thus, at least one quarter of the intervals composing Cqk+1 contains at least 2Lk+2−Lk+1−2

intervals composing B ′
qk+2

, thus at least 2Lk+2−Lk+1−3 intervals composing B ′
qk+2

, if we impose
that these intervals are mutually distant by at least 2−Lk+2 . This allows us to define the sets
Cqk+2 and Dqk+1 with the required properties. This proves (Pk+1).

It then follows that the set

K :=
⋂
k�0

Dqk

is non-empty. By construction, every point β in this set avoids all the intervals E(x, y) with
x � q0, thus, the pair (α, β) satisfies (2·1).

To establish that the set K has full Hausdorff dimension, we apply Lemma 1 with

mk = 2Lk+1−Lk−5 and εk := 2−Lk+1 .

Note that
log (m1 . . . mk−1)

− log (mkεk)
� log (32−k2Lk )

− log (2−Lk+5)

We infer from (4·1), (4·5) and (4·7) that

2Lk � δq3k

0 .

Consequently,

lim
k→+∞

log (m1 . . . mk−1)

− log (mkεk)
= 1,

and it follows from Lemma 1 that the set K has full Hausdorff dimension. This completes
the proof of our theorem.

5. Proofs of Theorems 3, 4 and 5

The proofs of Theorems 3 and 5 follow exactly the same steps as that of Theorem 1.
Instead of the intervals

E(x, y) =
[

y

x
− ε

||αx ||x2 log 2
2 x

,
y

x
+ ε

||αx ||x2 log 2
2 x

]
,

we use respectively the intervals[
y

x
− ε

||αx ||x2(log 2 x)2−a (log 1/||αx ||)a
,

y

x
+ ε

||αx ||x2(log 2 x)2−a (log 1/||αx ||)a

]

and [
y

x
− ε

|x |px2(log 2 x)2−a (log 2/|x |p)a
,

y

x
+ ε

|x |px2(log 2 x)2−a (log 2/|x |p)a

]
.

Furthermore, we apply Lemmas 3 and 4 in place of Lemma 2.
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For the proof of Theorem 4, we work directly in the plane. The idea is the following. For
a triple (x, y, z) of integers and a positive ε, the inequality |x X + yY + z| � ε defines a strip
composed of points (X, Y ) close to the line x X + yY + z = 0. Since we are working in the
unit square, to a given pair (x, y) of integers corresponds a unique z, and the length of the
intersection of the line with the unit square is at most equal to

√
2. Setting

εx,y = ε

|xy| log 2 |xy| ,

for a given (very small) positive ε, the strips |x X + yY + z| � εx,y play the same role as the
intervals (4·3) in the proof of Theorem 1.

Since, for every large integer q, we have

∑
q�xy�q3

εx,y �
q3∑

x=1

�q3/x�∑
y=�q/x�

ε

|xy| log 2 q

�
q3∑

x=1

ε

x log q
� ε,

the Peres–Schlag method can be applied as in the proof of Theorem 1. We omit the details.

6. Further results

We gather in the present section several results that can be obtained with the same method
as in the proof of Theorem 1, that is, by combining the Peres–Schlag method with the mass
distribution principle.

A result on lacunary sequences.

THEOREM 6. Let M be a positive real number and (t j ) j�1 be a sequence such that
t j+1/t j > 1 + 1/M for j � 1. Let c be a real number with 0 < c < 1/10. Let ε be a
positive real number. Then, the Hausdorff dimension of the set

{ξ ∈ [0, 1] : ∀n � 1, ||ξ tn|| � c/(M log M)}
is at least 1 − ε if M is sufficiently large.

Theorem 6 complements the results from [18, 24].

A result on sequences with polynomial growth.

THEOREM 7. Let C1, C2 and γ be positive real numbers. Let (tn)n�1 be a sequence of
real numbers such that

C1nγ � tn � C2nγ , for n � 1.

Then, there exist a positive C and an integer n0 such that the set

⋂
n�n0

{
ξ ∈ R : ||ξ tn|| >

C

n log n

}
(6·1)

has full Hausdorff dimension.
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This improves [20, theorem 1], where it is established that the Hausdorff dimension of the
set (6·1) is at least γ /(γ + 1).

As an immediate application, we get that the set of real numbers ξ for which

lim inf
n→+∞ n(log n)||ξn2|| > 0

has full Hausdorff dimension.

We have stated homogeneous statements, but the method is flexible enough to allow us to
deal with inhomogeneous approximation.
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