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Abstract
We investigate the rational approximation to the binary Thue—
Morse-Mahler number. We prove that its continued fraction expan-
sion has infinitely many partial quotients equal to 4 or 5.
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1 Introduction and results
Let
t = titots... = 0110100110010110100101100110100110010110. ..

denote the Thue-Morse word on {0, 1}, that is, the fixed point starting with
0 of the morphism 7 defined by 7(0) = 01 and 7(1) = 10.
Let b > 2 be an integer. In a fundamental paper, Mahler [5] established
that the Thue-Morse-Mahler number
tr 1 1 1 1 1

ft,b:];bfk:ﬁ‘l'bfg—f—b?-l—bfg-i—@—l—...

is transcendental (see Dekking [4] for an alternative proof, reproduced in

Section 13.4 of [1]). Since the irrationality exponent of &, is equal to 2 (see

[3]), the transcendence of & cannot be proved by applying Roth’s theorem.
In the present note, we focus on the so-called Thue-Morse constant

& = &2 = 0.412454 . ..

Open Problem 9 on page 403 of [1] asks whether it has bounded partial
quotients. We make a small contribution to its resolution by showing that the
sequence of partial quotients to & does not increase to infinity. Observe that
the fact that the irrationality exponent of & equals 2 prevents its sequence
of partial quotients to increase too rapidly to infinity. However, there are
uncountably many real numbers having irrationality exponent equal to 2
and whose sequence of partial quotients is increasing.
A computation (see e.g. [7]) shows that

€o=10:2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,.. ]

and the determination of the first thousands of partial quotients of & suggests
that it has unbounded partial quotients.
Throughout, for n > 0, we denote by

Fn=2""+1

the n-th Fermat number.
Our main result is the following.



Theorem 1 For anyn > 1 the integers F,, and 2*%" F,, are denominators of
convergents to &. The Thue—Morse constant & has infinitely many partial
quotients equal to 4 or 5. Furthermore, there are infinitely many pairs of
consecutive partial quotients both less than or equal to 5.

It follows from the fact that the integers 222" F,,, n > 1, are denominators
of convergents to & that the transcendence of & is an immediate consequence
of the p-adic extension of Roth’s theorem, established by Ridout [6]. It seems
to us that this observation is new.

We can as well consider the real numbers whose expansion in some integer
base b is given by the Thue—Morse sequence. The combinatorial part remains
unchanged. In particular, it follows from Ridout’s theorem that these num-
bers are transcendental. However, the rational approximations we construct
are not good enough to be convergents.

2 Proofs

For n > 0, set

27L

2n
n = Zt]Q_ja Cn 1= Z(l - tj)Z_j =1-27" - &n- (21)
=1

j=1
Furthermore, for n > 1, let

&n

=6, (14272 40722 L o3 L )= 20
r En(1+ + + +...) o

(2.2)

be the rational number whose binary expansion is purely periodic with period
tits ... ton.

Lemma 1 Let (k,)n>1 be the sequence defined by ky = 1 and the recurrence

relation
2n—1

kni1 =1+ ko (22 = 1) = 14 ko (Fooy — 2),

forn > 1. Then, for n > 1, the rational number r, defined in (2.2) can be
written k,/F,_1 under its reduced form.

Proof. It follows from (2.2) that

22"
Tn:é_nﬁ7 for n > 1.
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Since 771(0) = 7(0)7™(1), we get

= Eut o
We deduce from (2.1) that
G =6 (1~ o) + e
We then get
22" — 1 1 Fn—2 1
Tntl = Tnoge +22n+1 =Tn 7 +?n.
Since F,, —2 = Fp1(Fno1 —2), by = 1 and r = % = %, an immediate

induction gives

kn(Fn —2 1 kn
(Fo=2) 1 b

T'n = _— s
i fnfn—l fn Fn
where kpy1 =1+ ko (Fro1 — 2).
It only remains for us to prove that for n > 0 the integers k,.; and F,
are coprime. Observe that, for n > 1, we have

fn—2:fofl...fn71,
and ged(Fyy,, Fn) = 1 when m # n.

Since

kn-ﬁ-l —1= kn(fn—l - 2)
we deduce

an-i-l —.Fn - an("rn—l —2) - (.Fn—Q)
= (-anl — 2) (an - ‘anl)
= (F1—=2)...(Fo1 — 2)(2k1 — F),

or, equivalently,
n—1

.Fn_anJrl: H.Fofl...ﬂfl.
j=1
If a prime number p divides simultaneously k, 1 and F,, it must divide the
product H}‘:—ll FoFi...Fj_1. This gives a contradiction since F,, is coprime
with the latter product. Consequently, k, 1 and F, have no common prime
divisor. This finishes the proof of the lemma. &
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Lemma 2 Forn > 2, the rational number r,, defined in (2.2) is a convergent
to ft.

Proof. For n > 1, set m, = 321 =+, where (g;);>1 is the Thue-Morse se-

quence on {1} beginning with 1. A classical computation shows that

1t 1
=y 0o

and we check that 0.175 < m, < 0.1751 if n > 4. Writing the sequences of
digits of & and 7, as a concatenation of 2"-blocks from {7(0),7"(1)}, we

get
e~ 7(0)7" ()7 (1)7"(0) - -+

while
T~ 7(0)7"(0)7"(0), 7"(0) - - -,
so that,
1 1
£t—rn:0+277rn+w7rn—l—0+
This gives
0.175(5zm + gzrr) < &6 — 7l < 0.1751(gm + suer + )
< 01751 5w (1 + g + goor +---)  (2.3)
< 0.175122n—171.
In particular, we get
€ —ra] < —o ) forn >4
—rp| < =—=——, forn >4.
¢ 2F2_,

The Legendre theorem (see e.g. [2]) then implies that r, is a convergent to
& for n > 4. We further check that ro and r3 are convergents to &. &

Lemma 3 For every n > 1, the integer 222" F, is the denominator of a
convergent to &.

Proof. For n > 1, we consider the rational number R, whose binary expan-
sion has preperiod 7"(0) and period 7(1). Clearly,

Rn:é.n—f'L(l_rn)



and, by (2.2),

Since, by Lemma 1,

we finally get that

27 —2 1 Fo k(2 -2
Ry = ko2 L Fam bl )

"o 220 2" F 4
is under its reduced form.
It remains to estimate the gap ¢, := |§& — R,|. By construction,
1 1 T 1
En < 7Tn(23.2n + 94-2n + - ) T 93an (1 + 2? + - )
Tn 22" T,
e 23,2n (22n _ 1) == 24.2n_1(22n—1 _ 1);71_1
1
< ST, ) for n > 4.

The lemma then follows from Legendre’s theorem and the simple verification
that Ry, Ry and R3 are convergents to &. &

Proof of Theorem 1. The combination of Lemmata 1 to 3 establishes the
first assertion of Theorem 1. Recall that (see e.g. [2]), for £ > 1, we have

1 1

|%§t —p£| = —

, 2.4
Qe |aeir; aeya,. ]+ (0500001, ] 24

where (p¢/qe)e>0 denotes the sequence of convergents to &. By (2.3) and
(2.4), there exist arbitrarily large integers ¢ such that

[aps1; apro, .. .] +[0;5ap, ap—y,...] <1/0.175 < 5.71. (2.5)

Let ¢ be a positive integer for which (2.5) holds. If a, > 2, then a,y; must
be equal to 5 and a4 is at most 4. If a; = 1, then a,,; equals 4 or 5. This
concludes the proof of the theorem. &
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