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Abstract

We investigate the rational approximation to the binary Thue–
Morse–Mahler number. We prove that its continued fraction expan-
sion has infinitely many partial quotients equal to 4 or 5.
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1 Introduction and results

Let

t = t1t2t3 . . . = 0110100110010110100101100110100110010110 . . .

denote the Thue–Morse word on {0, 1}, that is, the fixed point starting with
0 of the morphism τ defined by τ(0) = 01 and τ(1) = 10.

Let b ≥ 2 be an integer. In a fundamental paper, Mahler [5] established
that the Thue–Morse–Mahler number

ξt,b =
∑
k≥1

tk
bk

=
1

b2
+

1

b3
+

1

b5
+

1

b8
+

1

b9
+ . . .

is transcendental (see Dekking [4] for an alternative proof, reproduced in
Section 13.4 of [1]). Since the irrationality exponent of ξt,b is equal to 2 (see
[3]), the transcendence of ξt,b cannot be proved by applying Roth’s theorem.

In the present note, we focus on the so-called Thue–Morse constant

ξt := ξt,2 = 0.412454 . . .

Open Problem 9 on page 403 of [1] asks whether it has bounded partial
quotients. We make a small contribution to its resolution by showing that the
sequence of partial quotients to ξt does not increase to infinity. Observe that
the fact that the irrationality exponent of ξt equals 2 prevents its sequence
of partial quotients to increase too rapidly to infinity. However, there are
uncountably many real numbers having irrationality exponent equal to 2
and whose sequence of partial quotients is increasing.

A computation (see e.g. [7]) shows that

ξt = [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, . . .]

and the determination of the first thousands of partial quotients of ξt suggests
that it has unbounded partial quotients.

Throughout, for n ≥ 0, we denote by

Fn := 22n + 1

the n-th Fermat number.
Our main result is the following.
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Theorem 1 For any n ≥ 1 the integers Fn and 22·2nFn are denominators of
convergents to ξt. The Thue–Morse constant ξt has infinitely many partial
quotients equal to 4 or 5. Furthermore, there are infinitely many pairs of
consecutive partial quotients both less than or equal to 5.

It follows from the fact that the integers 22·2nFn, n ≥ 1, are denominators
of convergents to ξt that the transcendence of ξt is an immediate consequence
of the p-adic extension of Roth’s theorem, established by Ridout [6]. It seems
to us that this observation is new.

We can as well consider the real numbers whose expansion in some integer
base b is given by the Thue–Morse sequence. The combinatorial part remains
unchanged. In particular, it follows from Ridout’s theorem that these num-
bers are transcendental. However, the rational approximations we construct
are not good enough to be convergents.

2 Proofs

For n ≥ 0, set

ξn :=
2n∑
j=1

tj2
−j, ζn :=

2n∑
j=1

(1− tj)2−j = 1− 2−2
n − ξn. (2.1)

Furthermore, for n ≥ 1, let

rn := ξn(1 + 2−2
n

+ 2−2·2
n

+ 2−3·2
n

+ . . .) =
ξn

1− 2−2n
(2.2)

be the rational number whose binary expansion is purely periodic with period
t1t2 . . . t2n .

Lemma 1 Let (kn)n≥1 be the sequence defined by k1 = 1 and the recurrence
relation

kn+1 = 1 + kn(22n−1 − 1) = 1 + kn(Fn−1 − 2),

for n ≥ 1. Then, for n ≥ 1, the rational number rn defined in (2.2) can be
written kn/Fn−1 under its reduced form.

Proof. It follows from (2.2) that

rn = ξn
22n

22n − 1
, for n ≥ 1.
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Since τn+1(0) = τn(0)τn(1), we get

ξn+1 = ξn +
ζn
22n

.

We deduce from (2.1) that

ξn+1 = ξn
(
1− 1

22n

)
+

22n − 1

22n+1 .

We then get

rn+1 = rn
22n − 1

22n + 1
+

1

22n + 1
= rn

Fn − 2

Fn

+
1

Fn

.

Since Fn − 2 = Fn−1(Fn−1 − 2), k1 = 1 and r1 = 1
3

= k1
F0

, an immediate
induction gives

rn+1 =
kn(Fn − 2)

FnFn−1
+

1

Fn

=
kn+1

Fn

,

where kn+1 = 1 + kn(Fn−1 − 2).
It only remains for us to prove that for n ≥ 0 the integers kn+1 and Fn

are coprime. Observe that, for n ≥ 1, we have

Fn − 2 = F0F1 . . .Fn−1,

and gcd(Fm,Fn) = 1 when m 6= n.
Since

kn+1 − 1 = kn(Fn−1 − 2)

we deduce

2kn+1 −Fn = 2kn(Fn−1 − 2)− (Fn − 2)
= (Fn−1 − 2)(2kn −Fn−1)
= (F1 − 2) . . . (Fn−1 − 2)(2k1 −F0),

or, equivalently,

Fn − 2kn+1 =
n−1∏
j=1

F0F1 . . .Fj−1.

If a prime number p divides simultaneously kn+1 and Fn, it must divide the
product

∏n−1
j=1 F0F1 . . .Fj−1. This gives a contradiction since Fn is coprime

with the latter product. Consequently, kn+1 and Fn have no common prime
divisor. This finishes the proof of the lemma. ♦
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Lemma 2 For n ≥ 2, the rational number rn defined in (2.2) is a convergent
to ξt.

Proof. For n ≥ 1, set πn =
∑2n

j=1
εj
2j

, where (εj)j≥1 is the Thue–Morse se-
quence on {±1} beginning with 1. A classical computation shows that

πn =
1

2

n−1∏
j=0

(
1− 1

22j

)
and we check that 0.175 < πn < 0.1751 if n ≥ 4. Writing the sequences of
digits of ξt and rn as a concatenation of 2n-blocks from {τn(0), τn(1)}, we
get

ξt ∼ τn(0)τn(1)τn(1)τn(0) · · ·

while
rn ∼ τn(0)τn(0)τn(0), τn(0) · · · ,

so that,

ξt − rn = 0 +
1

22n
πn +

1

22n+1 πn + 0 + · · ·

This gives

0.175( 1
22

n + 1

22n+1 ) ≤ |ξt − rn| ≤ 0.1751( 1
22

n + 1

22n+1 + · · ·)
≤ 0.1751 1

22n
(1 + 1

22n
+ 1

22.2n
+ · · ·)

≤ 0.1751 1
22n−1 .

(2.3)

In particular, we get

|ξt − rn| <
1

2F2
n−1

, for n ≥ 4.

The Legendre theorem (see e.g. [2]) then implies that rn is a convergent to
ξt for n ≥ 4. We further check that r2 and r3 are convergents to ξt. ♦

Lemma 3 For every n ≥ 1, the integer 22·2nFn is the denominator of a
convergent to ξt.

Proof. For n ≥ 1, we consider the rational number Rn whose binary expan-
sion has preperiod τn(0) and period τn(1). Clearly,

Rn = ξn +
1

22n
(1− rn)
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and, by (2.2),

Rn = rn
22n − 2

22n
+

1

22n
.

Since, by Lemma 1,

rn =
kn
Fn−1

with (kn,Fn−1) = 1,

we finally get that

Rn = kn
22n − 2

22nFn−1
+

1

22n
=
Fn−1 + kn(22n − 2)

22nFn−1

is under its reduced form.
It remains to estimate the gap εn := |ξt −Rn|. By construction,

εn ≤ πn(
1

23·2n +
1

24·2n + · · ·) =
πn

23·2n (1 +
1

22n
+ · · ·)

=
πn

23·2n (
22n

22n − 1
) =

πn
24·2n−1(22n−1 − 1)Fn−1

≤ 1

2(22·2n−1Fn−1)2
, for n ≥ 4.

The lemma then follows from Legendre’s theorem and the simple verification
that R1, R2 and R3 are convergents to ξt. ♦

Proof of Theorem 1. The combination of Lemmata 1 to 3 establishes the
first assertion of Theorem 1. Recall that (see e.g. [2]), for ` ≥ 1, we have

|q`ξt − p`| =
1

q`
· 1

[a`+1; a`+2, . . .] + [0; a`, a`−1, . . .]
, (2.4)

where (p`/q`)`≥0 denotes the sequence of convergents to ξt. By (2.3) and
(2.4), there exist arbitrarily large integers ` such that

[a`+1; a`+2, . . .] + [0; a`, a`−1, . . .] � 1/0.175 � 5.71. (2.5)

Let ` be a positive integer for which (2.5) holds. If a` ≥ 2, then a`+1 must
be equal to 5 and a`+2 is at most 4. If a` = 1, then a`+1 equals 4 or 5. This
concludes the proof of the theorem. ♦
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