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Abstract. Let β > 1 be a real number. Let Tβ denote the β-transformation on
[0, 1]. A cylinder of order n is a set of real numbers in [0, 1] having the same first
n digits in their β-expansion. A cylinder is called full if it has maximal length,
i.e., if its length is equal to β−n. In this paper, we show that full cylinders are well
distributed in [0, 1] in a suitable sense. As an application to the metrical theory
of β-expansions, we determine the Hausdorff dimension of the set{

x ∈ [0, 1] : |T n
β x − zn| < e−S n f (x) for infinitely many n ∈ N

}
,

where {zn}n≥1 is a sequence of real numbers in [0, 1], the function f : [0, 1]→ R+

is continuous, and S n f (x) denotes the ergodic sum f (x) + . . . + f (T n−1
β x).

1. Introduction

1.1. β-expansions. Let β > 1 be a real number. Let Tβ : [0, 1] → [0, 1] be the
β-transformation defined by

Tβ(x) = βx − b βxc,

where b·c denote the integer part of a real number. It is well-known [16] that every
real number x ∈ [0, 1] can be uniquely expanded into a finite or an infinite series:

x =
ε1(x, β)

β
+ . . . +

εn(x, β) + T n
β x

βn =

∞∑
n=1

εn(x, β)
βn , (1.1)

where, for n ≥ 1,
εn(x, β) = bβT n−1

β xc

is called the nth digit of x. Sometimes we identify x with its digit sequence

ε(x, β) := (ε1(x, β), . . . , εn(x, β), . . .)

and call also the digit sequence ε(x, β) the β-expansion of x. We call the system
([0, 1],Tβ) the β-dynamical system.

It is well-known that the β-dynamical system is, in general, not a subshift of
finite type with mixing properties. This causes difficulties in studying metrical
questions related to β-expansions.

For an admissible sequence (ε1, . . . , εn), i.e. a prefix of the digit sequence of
some x ∈ [0, 1), we define the cylinder In(ε1, . . . , εn) of order n by

In(ε1, . . . , εn) := {x ∈ [0, 1) : ε j(x, β) = ε j, for j = 1, . . . , n}.
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We write In(x) for the cylinder of order n containing x and |In(x)| for the length of
In(x). It follows from the definition of the β-expansion that the length of a cylinder
always satisfies

|In(ε1, . . . , εn)| ≤ β−n. (1.2)
We stress that there is no nontrivial universal lower bound for the length of a cylin-
der, which can be much smaller than β−n.

From the ergodic theorem, it is well known [13] that for almost all x,

lim
n→∞

− logβ |In(x)|

n
= 1,

where logβ denotes the logarithm with respect to the base β. This means that, in
some sense, almost all cylinders are of almost maximal length.

Cylinders with maximal length have very good properties; see for example
Lemma 3.2 below. Thus, we would like to know whether there exist cylinders with
maximal length, which cylinders have maximal length and how they are distributed
in the unit interval [0, 1].

Definition 1.1 (Full cylinder). A cylinder In(ε1, . . . , εn) is called full if it has max-
imal length, i.e., if

|In(ε1, . . . , εn)| = β−n.

The properties of full cylinders were firstly investigated in [6]. In the present pa-
per, we give a full characterization of full cylinders and investigate the distribution
of full cylinders in the unit interval.

Theorem 1.2. For n ≥ 1, among every (n + 1) consecutive cylinders of order n,
there exists at least one full cylinder.

Theorem 1.2 enables us to prove a modified mass distribution principle to study
the Hausdorff dimension of sets defined in terms of β-expansions. The reader is
referred to Falconer’s book [5] for the definition of Hausdorff dimension and the
“Mass distribution principle”, which is a classical tool to obtain a lower bound for
the Hausdorff dimension of a set.

Proposition 1.3 (Modified mass distribution principle). Let E be a Borel measur-
able set in [0, 1] and µ be a Borel measure with µ(E) > 0. Assume that there exist
a positive constant c > 0 and an integer n0 such that, for any n ≥ n0 the measure
of any cylinder In of order n satisfies µ(In) ≤ c|In|

s. Then, dimH E ≥ s.

In the classical form of the mass distribution principle [5, Proposition 4.2], one
needs to estimate the measure of an arbitrary ball, while the above proposition tells
us that, for β-expansions, it is sufficient to consider only the measure of cylinders.
This will simplify the argument in determining the Hausdorff dimension of sets
defined in terms of β-expansions.

To give an application of Proposition 1.3 to the metrical theory of β-expansions,
we determine the Hausdorff dimension of the following shrinking target set:

S( f ) :=
{
x ∈ [0, 1] : |T n

β x − zn| < e−S n f (x) for infinitely many n ∈ N
}
,

where {zn}n≥1 is a sequence of real numbers in [0, 1], the function f : [0, 1] → R+

is continuous, and S n f (x) denotes the ergodic sum f (x) + . . . + f (T n−1
β x). For the

background and more results on shrinking target problems, the reader is referred to
[1, 2, 3, 4, 8, 9, 10, 11, 12, 20, 21, 24, 25] and the references quoted therein.
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The special case when zn = z is a constant function and f (x) = b for all x ∈ [0, 1]
was investigated in [14, 19]. The following result is much more general.

Theorem 1.4. Let {zn}n≥1 be a sequence of real numbers in [0, 1] and f : [0, 1]→
R+ be a continuous function. The Hausdorff dimension of the setS( f ) is the unique
solution s to the pressure equation

P
(
Tβ,−s( f + log β)

)
= 0,

where P(Tβ, φ) denotes the pressure function related to the potential φ.

We display a particular instance of Theorem 1.4. Throughout this paper, dimH
denotes the Hausdorff dimension.

Corollary 1.5. Let {zn}n≥1 be a sequence of real numbers in [0, 1] and b be a
positive real number. Then,

dimH

{
x ∈ [0, 1] : |T n

β x − zn| < β
−bn for infinitely many n ∈ N

}
=

1
1 + b

.

Actually, very similar ideas allow us to extend a result of [19] as follows.

Theorem 1.6. Let ψ be a positive function defined on the set of positive integers.
Let {zn}n≥1 be a sequence of real numbers in [0, 1]. Then,

dimH

{
x ∈ [0, 1] : |T n

β x − zn| < ψ(n) for infinitely many n ∈ N
}

=
1

1 + b
,

where

b = lim inf
n→+∞

− logβ ψ(n)

n
.

We omit the proof of Theorem 1.6.

Remark 1. We stress that the Hausdorff dimensions determined in the above the-
orem and corollary do not depend on the choice of the sequence {zn}n≥1. This is
not always the case for general systems; see Reeve [17] for an example of a con-
formal iterated function system showing that sometimes the dimension depends on
the centers of the targets.

For more dimensional results related to β-expansions, the reader is referred to
the papers of C.-E Pfister and W. G. Sullivan [15], J. Schmeling [18], D. Thompson
[22], D. Färm, T. Persson and J. Schmeling [7] and the references therein.

The paper is organized as follows. The next section is devoted to recalling some
elementary properties of β-expansions. The distribution of full cylinders is studied
in Section 3. Since no further new ideas are needed to prove Theorem 1.4, only an
outline of the proof is presented in the last section.

Throughout, we use the symbol ] to denote the cardinality of a finite set.

2. Preliminaries

In this section we give a brief account on β-expansions.
From the definition of Tβ, it is clear that, for n ≥ 1, the nth digit εn(x, β) of

x belongs to the alphabet A = {0, . . . , dβ − 1e}, where dye denotes the smallest
integer greater than or equal to y. We stress that not all sequences ε ∈ AN are the
β-expansion of some x ∈ [0, 1]. This leads to the notion of β-admissible sequence.
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Definition 2.1. A finite or an infinite sequence (ε1, . . . , εn, . . .) is called β-admissible,
if there exists an x ∈ [0, 1) such that the β-expansion of x begins with ε1, . . . , εn, . . .

Denote by Σn
β the set of all β-admissible sequences of length n and by Σβ the set

of all infinite β-admissible sequences:

Σβ =
{
ε ∈ AN : ε is the β-expansion of some x ∈ [0, 1)

}
.

When there is no possible confusion, we simply write admissible instead of β-
admissible.

In order to characterize the admissible sequences, let us first define the infinite
expansion of 1. Let β > 1 be given. If the β-expansion of 1 terminates, i.e. if there
exists m ≥ 1 such that εm(1, β) ≥ 1 but εn(1, β) = 0 for n > m, then β is called a
simple Parry number. Whence, we put

(ε∗1(β), ε∗2(β), ε∗3(β), . . .) = (ε1(1, β), . . . , εm−1(1, β), εm(1, β) − 1)∞,

where (ε)∞ denotes the periodic sequence (ε, ε, ε, . . .). If β is not a simple Parry
number, we use (ε∗1(β), ε∗2(β), ε∗3(β), . . .) to denote the β-expansion of 1. In both
cases, we say that the sequence

ε∗(β) := (ε∗1(β), ε∗2(β), ε∗3(β), . . .)

is the infinite β-expansion of 1 (or of unity).
The lexicographical order ≺ onAN is defined as follows: we write

(ε1, ε2, . . . , εn, . . .) ≺ (ε′1, ε
′
2, . . . , ε

′
n, . . .)

if there exists k ≥ 1 such that ε j = ε′j for 1 ≤ j < k, while εk < ε′k. This order
can be extended to finite blocks by identifying a finite block (ε1, . . . , εn) with the
sequence (ε1, . . . , εn, 0, 0, . . .).

The admissible sequences and the topological entropy are characterized in the
following two theorems.

Theorem 2.2 (Parry [13]). (1). Let β > 1 be given. A sequence (ε1, ε2, . . .) of
non-negative integers is β-admissible if and only if, for any k ≥ 1,

(εk, εk+1, . . .) ≺ (ε∗1(β), ε∗2(β), . . .),

where (ε∗1(β), ε∗2(β), . . .) is the infinite β-expansion of unity.
(2). If 1 < β1 < β2, then Σβ1 ⊂ Σβ2 .

Theorem 2.3 (Rényi [16]). For any β > 1, we have

βn ≤ ]Σn
β ≤ β

n+1/(β − 1), lim
n→∞

log ]Σn
β

n
= log β.

In particular, the topological entropy of the dynamical system ([0, 1],Tβ) is equal
to log β.

We end this section by a definition of the pressure function. In the β-dynamical
system, following [26], the pressure function P associated to a continuous potential
g can be defined by the formula

P(Tβ, g) := lim
n→∞

1
n

log
∑

(ε1,...,εn)∈Σn
β

sup
y∈In(ε1,...,εn)

eS ng(y), (2.1)

where S ng(y) denotes the ergodic sum
∑n−1

j=0 g(T j
βy).
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This definition of the pressure function looks different from the one given in
P. Walters’ book [27]; however, both of them fulfill the same variational principle,
namely

P(Tβ, g) = sup
{
hµ +

∫
gdµ : µ ∈ M1(Tβ)

}
,

where hµ is the measure-theoretic entropy of µ andM1(Tβ) denotes the collection
of Tβ-invariant Borel probability measures. Thus, the two definitions coincide.

3. Distribution of full cylinders

In this section, we consider the distribution of cylinders with maximal lengths.
We start with an auxiliary lemma.

Lemma 3.1. Assume that the infinite β-expansion of 1 is purely periodic with min-
imal period `, denoted by

ε∗(β) =
(
ε∗1(β), . . . , ε∗`(β)

)∞
.

Then (
ε∗i+1(β), . . . , ε∗`(β)

)
≺

(
ε∗1(β), . . . , ε∗`−i(β)

)
, for i = 1, . . . , ` − 1. (3.1)

Proof. Let i be an integer with 1 ≤ i < `. It immediately follows from the mini-
mality of ` that (

ε∗i+1(β), . . . , ε∗`+i(β)
)
,

(
ε∗1(β), . . . , ε∗`(β)

)
. (3.2)

Furthermore, the admissibility of ε∗(β) implies(
ε∗i+1(β), . . . , ε∗i+`(β)

)
�

(
ε∗1(β), . . . , ε∗`(β)

)
. (3.3)

Combining (3.2) and (3.3), we get(
ε∗i+1(β), . . . , ε∗i+`(β)

)
≺

(
ε∗1(β), . . . , ε∗`(β)

)
. (3.4)

We are led to compare the tails of the words in (3.4). The left one ends with
(ε∗`+1(β), . . . , ε∗i+`(β)), while the right one ends with (ε∗`−i+1(β), . . . , ε∗`(β)). Using
the periodicity and admissibility of ε∗(β) again, we get(

ε∗`+1(β), . . . , ε∗i+`(β)
)

=
(
ε∗1(β), . . . , ε∗i (β)

)
�

(
ε∗`−i+1(β), . . . , ε∗`(β)

)
.

In other words, the smaller word in (3.4) has larger tails, thus we conclude(
ε∗i+1(β), . . . , ε∗`(β)

)
≺

(
ε∗1(β), . . . , ε∗`−i(β)

)
,

as asserted. �

Fan and Wang [6] gave several criteria and properties of full cylinders.

Lemma 3.2. [6] (1). The cylinder In(w1, . . . ,wn) is full if and only if for any m ≥ 1
and (u1, . . . , um) ∈ Σm

β , the sequence (w1, . . . ,wn, u1, . . . , um) is still admissible.
(2). Let (w1, . . . ,wn−1,w′n) be an admissible sequence with w′n , 0. Then, for

any integer wn with 0 ≤ wn < w′n, the cylinder

In(w1, . . . ,wn−1,wn) is full.

(3). If In(w1, . . . ,wn) is full, then for any m ≥ 1 and any (u1, . . . , um) ∈ Σm
β ,∣∣∣In+m(w1, . . . ,wn, u1, . . . , um)

∣∣∣
=

∣∣∣In(w1, . . . ,wn)
∣∣∣ · ∣∣∣Im(u1, . . . , um)

∣∣∣ = β−n
∣∣∣Im(u1, . . . , um)

∣∣∣.
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Thus, the concatenation In+m(w1, . . . ,wn, u1, . . . , um) of two full cylinders In(w1, . . . ,wn)
and Im(u1, . . . , um) is still full.

Proof. Items (1) and (3) are immediate. For the sake of completeness, we establish
item (2). In view of item (1), it is sufficient to check that for any (wn+1, . . . ,wn+m) ∈
Σm
β with m ≥ 1, the word

(w1, . . . ,wn,wn+1, . . . ,wn+m)

is admissible. This follows from a direct application of the criterion of admissibil-
ity of a sequence (Theorem 2.2). When k < n, since wn < w′n and (w1, . . . ,wn−1,w′n)
is admissible, we have(

wk+1, . . . ,wn,wn+1, . . . ,wn+m
)
≺

(
wk+1, . . . ,w′n

)
�

(
ε∗1(β), . . . , ε∗n−k(β)

)
.

When k ≥ n, by the admissibility of (wn+1, . . . ,wn+m), it is clear that(
wk+1, . . . ,wn+m

)
�

(
ε∗1(β), . . . , ε∗n+m−k(β)

)
.

�
We give below a new necessary and sufficient condition ensuring that a cylinder

is full.

Proposition 3.3. Let (w1, . . . ,wn) be in Σn
β.

(i) If ε∗(β), the infinite β-expansion of 1, is not purely periodic, then the cylinder
In(w1, . . . ,wn) is full if and only if for k = 0, . . . , n − 1,(

wk+1, . . . ,wn
)
≺

(
ε∗1(β), . . . , ε∗n−k(β)

)
;

(ii) if ε∗(β), the infinite β-expansion of 1, is purely periodic, then the cylinder
In(w1, . . . ,wn) is full if and only if(

wk+1, . . . ,wn
)
≺

(
ε∗1(β), . . . , ε∗n−k(β)

)
, for k = 0, . . . , n − 1, (3.5)

or (w1, . . . ,wn) ends with a period of ε∗(β).

Proof. (i) We prove the sufficient part first. With almost the same argument as in
the proof of item (2) of Lemma 3.2, we check that, for any m ≥ 1 and (u1, . . . , um) ∈
Σm
β , the sequence

(w1, . . . ,wn, u1, . . . , um)
is β-admissible. Then, the sufficient part follows by applying item (1) of Lemma
3.2. The necessary part is proved by contraposition. Assume that for some integer
k = 0, . . . , n − 1, (

wk+1, . . . ,wn
)

=
(
ε∗1(β), . . . , ε∗n−k(β)

)
. (3.6)

For any m ≥ n − k, consider the admissible sequence (ε∗1(β), . . . , ε∗m(β)). Since
the interval In(w1, . . . ,wn) is full, by item (1) of Lemma 3.2, we get an admissible
sequence (

w1, . . . ,wn, ε
∗
1(β), . . . , ε∗m(β)

)
.

By the criterion of admissibility of a sequence, we have(
wk+1, . . . ,wn, ε

∗
1(β), . . . , ε∗m(β)

)
�

(
ε∗1(β), . . . , ε∗m+n−k(β)

)
.

By (3.6), it then follows that(
ε∗1(β), . . . , ε∗n−k(β), ε∗1(β), . . . , ε∗m(β)

)
�

(
ε∗1(β), . . . , ε∗m+n−k(β)

)
. (3.7)
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Cutting the common prefix (ε∗1(β), . . . , ε∗n−k(β)) of the two sequences in (3.7), we
get (

ε∗1(β), . . . , ε∗m(β)
)
�

(
ε∗n−k+1(β), . . . , ε∗m+n−k(β)

)
. (3.8)

By applying the criterion of admissibility again, we get an equality in (3.8), thus
(3.7) is also an equality. Consequently, (ε∗1(β), . . . , ε∗m(β)) is periodic of period n−k.
Since m is arbitrary, we deduce that ε∗(β) is periodic. This is a contradiction.

(ii). Let

ε∗(β) =
(
ε∗1(β), . . . , ε∗`(β)

)∞
be purely periodic with ` being the minimal period.

For the sufficient part, it is clear that In(w1, . . . ,wn) is full if (3.5) holds. Thus,
we show that In(w1, . . . ,wn) is also full if the admissible sequence (w1, . . . ,wn)
ends with (ε∗1(β), . . . , ε∗`(β)).

Let t ≥ 1 be the largest integer such that (w1, . . . ,wn) can be written as(
w1, . . . ,wk, (ε∗1(β), . . . , ε∗`(β))t

)
.

First we claim that (
w1, . . . ,wk

)
≺

(
ε∗1(β), . . . , ε∗k(β)

)
. (3.9)

If this is not the case, then, by the admissibility of (w1, . . . ,wk), we have(
w1, . . . ,wk

)
=

(
ε∗1(β), . . . , ε∗k(β)

)
. (3.10)

We show that (3.10) contradicts the admissibility of (w1, . . . ,wn). Indeed, by the
maximality of t, the admissible word (w1, . . . ,wn) can be written as(

ε∗1(β), . . . , ε∗`(β)
)t1
, ε∗1(β), . . . , ε∗i (β),

(
ε∗1(β), . . . , ε∗`(β)

)t

for some integers t1 ≥ 0 and 1 ≤ i < `. Consider the subword w̃ of (w1, . . . ,wn)
defined by

w̃ :=
(
ε∗1(β), . . . , ε∗i (β), ε∗1(β), . . . , ε∗`−i(β)

)
.

Lemma 3.1 implies that(
ε∗1(β), . . . , ε∗i (β), ε∗1(β), . . . , ε∗`−i(β)

)
�

(
ε∗1(β), . . . , ε∗`(β)

)
.

This means that w̃ is not admissible. From the criterion of admissibility, it is
clear that any subword of an admissible word is admissible. Applying this fact to
(w1, . . . ,wn), the non-admissibility of w̃ contradicts the admissibility of (w1, . . . ,wn).
Thus, (3.9) holds. In the same way, we can show that(

wi+1, . . . ,wk
)
≺

(
ε∗1(β), . . . , ε∗k−i(β)

)
, for i = 0, . . . , k − 1. (3.11)

For any admissible word v, it can be checked directly using (3.11) and the criterion
of admissibility that (

w1, . . . ,wk, (ε∗1(β), . . . , ε∗`(β))t, v
)

is admissible. This implies that the cylinder In(w1, . . . ,wn) is full.
Now, we show the necessary part. Assume that (3.5) does not hold. Let then

k < n be the largest integer such that

(wk+1, . . . ,wn) = (ε∗1(β), . . . , ε∗n−k(β)).
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To reach the desired conclusion, it is sufficient to show that n−k = `. Since ε∗(β) is
periodic with period `, by the maximality of k, it follows that n−k ≤ `. If n−k , `,
consider the word

w′ :=
(
wk+1, . . . ,wn, ε

∗
1(β), . . . , ε∗`(β)

)
,

which is admissible since In(w1, . . . ,wn) is full. Combined with (3.10), this leads
to a contradiction with the admissibility of w′. Thus we get n − k = `. �

Proposition 3.3 gives us an easily checkable criterion for full cylinders, which
will be used frequently later.

Corollary 3.4. Let (w1, . . . ,wn) be in Σn
β. If In(w1, . . . ,wn) is not full, then there

exists an integer k = 0, . . . , n − 1 such that Ik(w1, . . . ,wk) is full and (wk+1, . . . ,wn)
is a prefix of the infinite β-expansion of 1.

We are now in position to prove Theorem 1.2 indicating that the full cylinders
are well distributed, in a suitable sense.

Proof of Theorem 1.2. Let w(0),w(1), . . . ,w(n) be n+1 consecutive words in Σn
β in

the lexicographic order. Then In(w(0)), . . . , In(w(n)) are n + 1 consecutive cylinders
of order n in [0, 1].

Step 1. Assume that In(w(n)) is not full. Then, by Corollary 3.4, there exists an
integer 0 ≤ k0 < n such that

Ik0(w(n)
1 , . . . ,w(n)

k0
) is full and w(n)

k0+1 = ε∗1(β), . . . ,w(n)
n = ε∗n−k0

(β).

Step 2. Assume that In(w(n−1)) is as well not full.
Firstly we claim that w(n−1) and w(n) have a common prefix up to at least the k0-th

digit. In fact, since (w(n)
1 , . . . ,w(n)

k0
, ε∗1(β)) is admissible and ε∗1(β) , 0, we know that

(w(n)
1 , . . . ,w(n)

k0
, 0) is another admissible sequence smaller than (w(n)

1 , . . . ,w(n)
k0
, ε∗1(β)).

Thus, (
w(n)

1 , . . . ,w(n)
k0
, 0

)
� w(n−1) ≺

(
w(n)

1 , . . . ,w(n)
k0
, ε∗1(β), ε∗2(β), . . . , ε∗n−k0

(β)
)
.

This shows that w(n−1) also begins with (w(n)
1 , . . . ,w(n)

k0
).

Since w(n−1) ≺ w(n) and they have a common prefix at least up to the k0-th
position, there exists k1 > k0 such that

w(n−1)
1 = w(n)

1 , . . . ,w(n−1)
k1−1

= w(n)
k1−1

, but w(n−1)
k1

< w(n)
k1
.

By item (2) of Lemma 3.2, we know that the cylinder

Ik1

(
w(n−1)

1 , . . . ,w(n−1)
k1

)
is full. Then, by item (3) of Lemma 3.2, the cylinder

In−k1

(
w(n−1)

k1+1
, . . . ,w(n−1)

n

)
is not full, since otherwise In(w(n−1)

1 , . . . ,w(n−1)
n ) would be full. Applying Corollary

3.4 to the cylinder In−k1
(w(n−1)

k1+1
, . . . ,w(n−1)

n ) and using then item (3) of Lemma 3.2,

we deduce that there exists k1 ≥ k1 such that

Ik1

(
w(n−1)

1 , . . . ,w(n−1)
k1

)
is full and

(
w(n−1)

k1+1 , . . . ,w
(n−1)
n

)
= (ε∗1(β), . . . , ε∗n−k1

(β)).
(3.12)
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To sum up, if In(w(n)) and In(w(n−1)) are both not full, then there exists k1 > k0
such that (3.12) is satisfied.

Step 3. We repeat the argument in Step 2 to show that, if In(w(n−2)) is not full,
then there exists k2 > k1 such that

Ik2

(
w(n−2)

1 , . . . ,w(n−2)
k2

)
is full and

(
w(n−2)

k2+1 , . . . ,w
(n−2)
n

)
= (ε∗1(β), . . . , ε∗n−k2

(β)).

We then continue this procedure. If there exists some ki (0 ≤ i ≤ n) such that
ki = n, this procedure ends since In(w(i)) is full. Otherwise, assuming that every
In(w(i)) (0 ≤ i ≤ n) is not full, we would have a sequence of integers

kn > kn−1 > . . . > k1 > k0 ≥ 0 (3.13)

such that

Ikn

(
w(0)

1 , . . . ,w(0)
kn

)
is full and

(
w(0)

kn+1, . . . ,w
(0)
n

)
= (ε∗1, . . . , ε

∗
n−kn

). (3.14)

Since kn ≤ n, we must have kn = n by (3.13). Thus the first part in (3.14) implies
that In(w(0)) is full which leads to a contradiction.

Therefore, there must be at least one full cylinder among In(w(i)) (i = 0, 1, . . . , n).
�

4. Dimensional theory for β-expansions

In this section, we prove Proposition 1.3. We begin with two propositions con-
cerning the relationship between balls and cylinders.

Proposition 4.1 (Covering properties). Let β > 1. For any y ∈ [0, 1] and any
positive integer `, the ball B(y, β−`) can be covered by at most 4(` + 1) cylinders of
order `.

Proof. By Theorem 1.2, among any 4(`+ 1) consecutive cylinders of order `, there
are at least 4 full cylinders. So the total length of these intervals is larger than 4β−`.
Thus B(y, β−`) can be covered by at most 4(` + 1) cylinders of order `. �

Proposition 4.2 (Packing properties). Let δ > 0. Let n0 ≥ 3 be an integer such
that (βn0)1+δ < βn0δ. Then, for any real number r with 0 < r < n0β

−n0 and for any
x0 ∈ [0, 1], there exists a cylinder In satisfying the following three conditions:

(1). The cylinder In is a full cylinder.
(2). The cylinder In is contained in the ball B(x0, r).
(3). The length of In is comparable with r, in the sense that r1+δ < |In| < r.

Proposition 4.2 was shown for the first time in [19], by means of a constructive
method. Here, we apply Theorem 1.2 to give a simpler proof.

Proof. Let n ≥ n0 be the integer defined by

nβ−n ≤ r < (n − 1)β−n+1.

Since the length of every cylinder of order n is at most equal to β−n, the ball B(x, r)
contains at least 2n−2 ≥ n + 1 consecutive cylinders of order n. Thus, by Theorem
1.2, it contains a full cylinder of order n. Denote by In such a full cylinder. By the
choice of n and n0, we have

r1+δ <
(
(n − 1)β−n+1

)1+δ
≤ β−n = |In|.

This completes the proof of the proposition. �
We apply Proposition 4.1 to prove Proposition 1.3.
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Proof of Proposition 1.3. Let η > 0. Let n0 be the smallest integer such that
βnη ≥ 8n. For any interval U with length |U | ≤ β−n0 , let n ≥ n0 be the integer
defined by β−n−1 < |U | ≤ β−n. It follows from Proposition 4.1 that U can be
covered by at most 8n cylinders of order n. Denoting by Γ the collection of these
cylinders of order n, we get

µ(U) ≤
∑
In∈Γ

µ(In) ≤
∑
In∈Γ

c|In|
s ≤ c · 8nβ−ns ≤ cβ|U |s−η.

Since η can be chosen arbitrarily small, we conclude by the classical form of the
mass distribution principle [5, Proposition 4.2]. �

5. Proof of Theorem 1.4

As usual, the proof of Theorem 1.4 is divided into two parts: upper bound and
lower bound. In the following, unless otherwise specified, when we need to take
a point y in a cylinder In(ε1, . . . , εn), we always take for y the left endpoint of
In(ε1, . . . , εn), i.e.

y =
ε1

β
+ . . . +

εn

βn .

Instead of S( f ), we consider the following set

S( f ) =

∞⋂
N=1

∞⋃
n=N

⋃
(ε1,...,εn)∈Σn

β

J(ε1, . . . , εn),

where
J(ε1, . . . , εn) =

{
x ∈ In(ε1, . . . , εn), |T n

β x − zn| < e−S n f (y)
}
,

with y being the left endpoint of In(ε1, . . . , εn).
It follows from the continuity of f that, for any δ > 0 and n large enough,∣∣∣S n f (x) − S n f (y)

∣∣∣ < nδ, with x, y ∈ In(ε1, . . . , εn).

Thus we have
S( f + δ) ⊂ S( f ) ⊂ S( f − δ).

Therefore, it is sufficient to determine the dimension of S( f ).
Let s(β) be the solution to the pressure equation

P(Tβ,−s( f + log β)) = 0.

5.1. Upper bound. The upper bound can be obtained by considering the obvious
covering system of S( f ) given by{

J(ε1, . . . , εn) : (ε1, . . . , εn) ∈ Σn
β, n ≥ N

}
, for N ≥ 1.

The length of J(ε1, . . . , εn) satisfies

|J(ε1, . . . , εn)| ≤ 2β−ne−S n f (y),

since, for every x in J(ε1, . . . , εn), we have∣∣∣∣x − (
ε1

β
+ . . . +

εn + zn

βn

) ∣∣∣∣ =
∣∣∣∣T n

β x − zn

βn

∣∣∣∣ < β−ne−S n f (y).
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Thus, for s ∈ (0, 1], we get

H s(S( f )) ≤ lim inf
N→∞

∞∑
n=N

∑
(ε1,...,εn)∈Σn

β

∣∣∣J(ε1, . . . , εn)
∣∣∣s

≤ lim inf
N→∞

∞∑
n=N

∑
(ε1,...,εn)∈Σn

β

(
2β−ne−S n f (y)

)s
.

By the definitions of the pressure function and of s(β), we have, for any s > s(β),

H s(S( f )) < ∞.

This implies that the Hausdorff dimension of S( f ) satisfies

dimHS( f ) ≤ s(β).

5.2. Lower bound. We apply the modified mass distribution principle (Proposi-
tion 1.3) to give a lower bound for dimHS( f ). We first construct a large Cantor set
F∞ inside S( f ) and then we define a suitable probability measure µ supported on
F∞ and estimate the Hölder exponent of µ on cylinders.

5.2.1. Construction of a Cantor subset of S( f ).
At first, we give concisely a family of full cylinders. Recall that the sequence

ε∗(β) = (ε∗1(β), ε∗2(β), . . .) is the infinite β-expansion of unity. When (ε∗1(β), ε∗2(β), . . .)
is periodic, let βN = β for N ≥ 1. Otherwise, for every N with ε∗N(β) ≥ 1, define
βN to be the unique positive solution to the equation

1 =
ε∗1(β)

β1
N

+
ε∗2(β)

β2
N

+ . . . +
ε∗N(β)

βN
N

. (5.1)

In the latter case, it is easy to see that βN increases to β as N → ∞, and thus
Σn
βN
⊂ Σn

β for n ≥ 1. Moreover, the infinite βN-expansion of unity is given by

(ε∗1(β), . . . , ε∗N−1(β), ε∗N(β) − 1)∞.

The following fact, which will be used several times, is a consequence of Propo-
sition 3.3 on the criterion of full cylinders. It should be reminded that all the cylin-
ders appearing below are cylinders in β-expansion, but not in βN-expansion.

Corollary 5.1. (1). When ε∗(β) = (ε∗1(β), ε∗2(β), . . . , ε∗N(β))∞ is a periodic sequence
with period length N, for any β-admissible sequence (ε1, . . . , εn) with n ≥ 1, the
cylinder In+N(ε1, . . . , εn, 0N) is full.

(2) When ε∗(β) is not periodic, for any βN-admissible sequence (ε1, . . . , εn) with
n ≥ 1, the cylinder In+N(ε1, . . . , εn, 0N) is full.

Proof. We claim that for every βN-admissible sequence (ε1, . . . , εn),

(ε1, . . . , εn, 0N) ≺ (ε∗1(β), ε∗2(β), . . . , ε∗n+N(β)).

Then, by applying the above claim repeatedly and by the first item of Proposition
3.3, we get the desired result.

To check the claim, we distinguish two cases, according as whether ε∗(β) is
periodic or not.

(i). Assume that ε∗(β) = (ε∗1(β), ε∗2(β), . . . , ε∗N(β))∞ is a periodic sequence with
period length N. Firstly, the admissibility of (ε1, . . . , εn, 0N) implies that

(ε1, . . . , εn, 0N) � (ε∗1(β), ε∗2(β), . . . , ε∗n+N(β)). (5.2)
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Secondly, the periodicity of ε∗(β) implies that any subword of length N in ε∗(β)
cannot be 0N . Thus the inequality � in (5.2) is strict.

(ii). Assume that ε∗(β) is not periodic. Recall that (ε1, . . . , εn) is βN-admissible
and that the infinite βN-expansion of 1. When n ≥ N, by the criterion of admissi-
bility, we have

(ε1, . . . , εN) � (ε∗1(β), , . . . , ε∗N−1(β), ε∗N(β) − 1) ≺ (ε∗1(β), . . . , ε∗N(β)).

When n < N, with the same argument as in (i), we have

(ε1, . . . , εn, 0N) ≺ (ε∗1(β), ε∗2(β), . . . , ε∗n+N(β)).

This proves the claim. �

Now, we are in the position to construct a Cantor subset F∞ of S( f ). Fix δ > 0
and choose a very rapidly increasing subsequence {mk}k≥1 of positive integers with
m1 large enough.

Generation 1 of the Cantor set. Let n1 = m1. For every (ε(1)
1 , . . . , ε(1)

n1 ) ∈ Σ
n1
βN

ending with 0N , consider the set{
x ∈ In1(ε(1)

1 , . . . , ε(1)
n1 ) : |T n1

β x − zn1 | < e−S n1 f (y1)
}
, (5.3)

where y1 ∈ In1(ε(1)
1 , . . . , ε(1)

n1 ).
Applying Proposition 4.2 to the ball B(zn1 , e

−S n1 f (y1)), we get a full cylinder
I`1(w1) such that

I`1(w1) ⊂ B(zn1 , e
−S n1 f (y1)), and

∣∣∣I`1(w1)
∣∣∣ ≥ (

e−S n1 f (y1)
)1+δ

.

Then, we get a subset of (5.3), namely the cylinder

In1+`1

(
ε(1)

1 , . . . , ε(1)
n1 ,w1

)
.

We point out that the cylinder In1+`1 given above is a full cylinder, since In1(ε(1)
1 , . . . , ε(1)

n1 )
(by Corollary 5.1) and I`1(w1) are both full.

Now the first generation of the Cantor set is defined as

F1 =
{
In1+`1

(
ε(1)

1 , . . . , ε(1)
n1 ,w1

)
: (ε(1)

1 , . . . , ε(1)
n1 ) ∈ Σ

n1
βN

ending with 0N
}
.

From the construction of F1, it is clear that for any x ∈ In1+`1(u1) ∈ F1,

T n1
β x ∈ I`1(w1) ⊂ B(zn1 , e

−S n1 f (y1)). (5.4)

It should be noted that `1 and w1 depend on (ε(1)
1 , . . . , ε(1)

n1 ). This dependence
will not play a role in the following argument, thus will not be indicated explicitly.
We abbreviate by u1 the word (ε(1)

1 , . . . , ε(1)
n1 ,w1).

Generation 2 of the Cantor set.
Choose a large integer m2 such that

δ

1 + δ
· m2 log β ≥

(
n1 + sup{`1 : In1+`1(u1) ∈ F1}

)
‖ f ‖, (5.5)

where ‖ f ‖ = sup{| f (x)| : x ∈ [0, 1]}.
Fix an element In1+`1(u1) ∈ F1 and set n2 = n1 +`1 +m2. For every ε(2)

1 , . . . , ε(2)
m2 ∈

Σ
m2
βN

, ending with 0N , consider the set{
x ∈ In2(u1, ε

(2)
1 , . . . , ε(2)

m2) : |T n2
β x − zn2 | < e−S n2 f (y2)

}
(5.6)

with y2 ∈ In2(u1, ε
(2)
1 , . . . , ε(2)

m2).
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Applying Proposition 4.2 to the ball B(zn2 , e
−S n2 f (y2)), we get a full cylinder

I`2(w2) such that

I`2(w2) ⊂ B(zn2 , e
−S n2 f (y2)), and

∣∣∣I`2(w2)
∣∣∣ ≥ (

e−S n2 f (y2)
)1+δ

.

Then, we get a subset of (5.6), namely the cylinder

In2+`2

(
u1, ε

(2)
1 , . . . , ε(2)

m2 ,w2
)
.

As above, we note that In2+`2 is a full cylinder.
A subfamily of the second generation of the Cantor set is defined as

F2(In1+`1(u1)) :=
{
In2+w2

(
u1, ε

(2)
1 , . . . , ε(2)

m2 ,w2
)

: (ε(2)
1 , . . . ,ε(2)

m2) ∈ Σ
m2
βN

ending with 0N
}
.

Then, abbreviating (u1, ε
(2)
1 , . . . , ε(2)

m2 ,w2) by u2, the second generation of the Cantor
set is defined as

F2 =
{
In2+`2(u2) ∈ F2(In1+`1(u1)) : In1+`1(u1) ∈ F1

}
.

From the construction of F2, it is clear that for any x ∈ In2+`2(u2) ∈ F2,

T n2
β x ∈ I`2(w2) ⊂ B(zn2 , e

−S n2 f (y2)). (5.7)

The Cantor set. Continuing the process, we obtain a nested sequence {Fk}k≥1
composed of full cylinders, called basic cylinders. And then the desired Cantor set
is

F∞ =

∞⋂
k=1

⋃
Ink+`k (uk)∈Fk

Ink+`k (uk).

By (5.4) and (5.7), it is clear that

F∞ ⊂ S( f ). (5.8)

To apply the modified mass distribution principle, we will construct a probability
measure µ supported on F∞ and then estimate the Hölder exponent of the measure
µ on cylinders. Since the construction and the estimation are quite analogous to
those in [23], we do not give all the details.

5.2.2. Supporting measure.
Now we construct a probability measure µ supported on F∞, which is defined

by distributing masses among the cylinders with non-empty intersection with F∞.
Recall that s(β) is the solution to the equation

P(Tβ,−s(log β + f )) = 0.

Fix an integer N. For k ≥ 1, we define a sequence of real numbers connected to the
Hausdorff dimension of F∞: let sk be the solution to the equation∑

(ε1,...,εmk )∈Σmk
βN

: ending with 0N

(
β−mk e−S mk f (y′k)

)s
= 1,

where y′k ∈ Imk (ε1, . . . , εmk ). By the continuity of the pressure function P(Tβ, f )
with respect to β [23, Theorem 4.1], it can be shown that

lim
N→∞

lim
k→∞

sk = s(β).

At first, we define the measure µ on the basic cylinders.
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(1). Define the measure µ on the basic cylinders in F1. For every basic interval
In1+`1(ε(1)

1 , . . . , ε(1)
m1 ,w1) = In1+`1(u1) ∈ F1, take

µ(In1+`1(u1)) =

(
1
βm1

e−S m1 f (y′1)
)s1

,

where y′1 ∈ Im1(ε(1)
1 , . . . , ε(1)

m1).
(2). Define the measure µ inductively on the basic cylinders in Fk. For every

Ink+`k (uk−1, ε
(k)
1 , . . . , ε(k)

mk ,wk) = Ink+`k (uk) ∈ Fk, define

µ
(
Ink+`k (uk)

)
= µ

(
Ink−1+`k−1(uk−1)

) ( 1
βmk

e−S mk f (y′k)
)sk

=

k∏
j=1

(
1
βm j

e−S m j f (y′j)
)s j

, (5.9)

where y′j ∈ Im j(ε
( j)
1 , . . . , ε

( j)
m j) for j = 1, . . . , k.

We emphasize that there are differences between the definitions of y′ in (5.9)
and y in (5.6).

To ensure that µ is indeed a measure, the measure of every cylinder which is not
a basic cylinder is defined to be the total measure of basic cylinders contained in it.

5.2.3. The lengths of cylinders. In this subsection, we estimate the lengths of the
cylinders {In(x) : n ≥ 1} for all x ∈ F∞. As in the previous subsection, let

x = (uk−1, ε
(k)
1 , . . . , ε(k)

mk ,wk, . . .)

be the β-expansion of x.
(1) When n = nk + `k, since Ink−1+`k−1(uk−1), Imk (ε

(k)
1 , . . . , ε(k)

mk ) and I`k (wk) are all
full cylinders, we have∣∣∣In(x)

∣∣∣ =
∣∣∣Ink−1+`k−1(uk−1)

∣∣∣ · |Imk (ε
(k)
1 , . . . , ε(k)

mk )| ·
∣∣∣I`k (wk)

∣∣∣
≥

∣∣∣Ink−1+`k−1(uk−1)
∣∣∣ · β−mk ·

(
e−S nk f (yk)

)1+δ
,

where yk ∈ Ink (uk−1, ε
(k)
1 , . . . , ε(k)

mk ). Thus, by induction, we get

∣∣∣In(x)
∣∣∣ ≥ k∏

j=1

(
β−m j ·

(
e−S n j f (y j)

)1+δ
)
, (5.10)

where y j ∈ In j(u j−1, ε
( j)
1 , . . . , ε

( j)
m j) for j = 1, . . . , k.

Now, we compare S nk f (yk) and S mk f (y′k): by (5.5), we have∣∣∣S nk f (yk) − S mk f (y′k)
∣∣∣ =

∣∣∣S nk−1+`k−1 f (yk)
∣∣∣ ≤ (nk−1 + `k−1)‖ f ‖∞ ≤

δ

1 + δ
mk log β.

Combining this with (5.10), we get

∣∣∣In(x)
∣∣∣ ≥ k∏

j=1

(
β−m j · e−S m j f (y′j)

)1+δ
, (5.11)

where y′j ∈ Im j(ε
( j)
1 , . . . , ε

( j)
m j) for j = 1, . . . , k.
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(2). When nk ≤ n < nk + `k,∣∣∣In(x)
∣∣∣ ≥ ∣∣∣Ink+`k (x)

∣∣∣ ≥ k∏
j=1

(
β−m j · e−S m j f (y′j)

)1+δ
. (5.12)

(3). When nk−1 + `k−1 < n ≤ nk, write

In(x) = In(uk−1, ε
(k)
1 , . . . , ε(k)

`
).

Since Ink−1+`k−1(uk−1) is full and (ε(k)
1 , . . . , ε(k)

`
) ∈ Σ`βN

, we have∣∣∣In(x)
∣∣∣ ≥ ∣∣∣Ink−1+`k−1(uk−1)

∣∣∣ · ∣∣∣I`(ε(k)
1 , . . . , ε(k)

`
)
∣∣∣ ≥ β−nk−1−`k−1β−`−N = β−n−N . (5.13)

5.2.4. Hölder exponent of the measure µ.

Once the µ-measure of a cylinder and the length of a cylinder are given, it only
remains for us to check that µ(In(x)) ≤ |In(x)|s holds for some suitably chosen
s. Here, we omit the argument and the reader is referred to [23] for a detailed
calculation.

Lemma 5.2. For any s < s(β), there exist an integer n1, a measure µ supported on
F∞ and a constant C0 = C0(s) such that for all x ∈ [0, 1] and n ≥ n1,

µ
(
In(x)

)
≤ C0 ·

∣∣∣In(x)
∣∣∣s.

We then conclude using the modified mass distribution principle (Proposition
1.3) that

dimHS( f ) ≥ s.
This ends the proof of the theorem.
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