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Abstract. Let b ≥ 2 be an integer and ξ be an irrational real number.

Among other results, we establish an explicit lower bound for the number

of distinct blocks of n digits occurring in the b-ary expansion of ξ.

1. Introduction

Throughout the present note, b always denotes an integer at least equal to 2. Let ξ be
a real number. There exist a rational integer A and a unique infinite sequence a = (aj)j≥1

of integers from {0, 1, . . . , b − 1} such that

ξ = A +
∑

j≥1

aj

bj

and a does not terminate in an infinite string of digits b − 1. Clearly, the sequence a is
ultimately periodic if, and only if, ξ is rational. With a slight abuse of notation, we also
denote by a the infinite word a1a2 . . . and call it the b-ary expansion of ξ. A natural way
to measure the complexity of ξ in base b is to count the number of distinct blocks of given
length in the infinite word a. To this end, for a finite or infinite word w on the alphabet
{0, 1, . . . , b − 1} and for a positive integer n, we let p(n,w) denote the number of distinct
blocks of n letters occurring in w. Furthermore, we set p(n, ξ, b) = p(n, a) with a as above.
Obviously, we have

1 ≤ p(n, ξ, b) ≤ bn,

and both inequalities are sharp.
Assume now that ξ is irrational and algebraic. Ferenczi and Mauduit [9] (see also [5])

proved in 1997 that its complexity function n 7→ p(n, ξ, b) satisfies

lim
n→+∞

(

p(n, ξ, b)− n
)

= +∞. (1.1)

This result was recently considerably improved in [3], where

lim
n→+∞

p(n, ξ, b)

n
= +∞ (1.2)
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is established. The proof of (1.1) rests on the Ridout Theorem (that is, on a p-adic extension
of the Roth Theorem), while that of (1.2) uses a p-adic extension of the Schmidt Subspace
Theorem [11], worked out by Schlickewei. Consequently, (1.1) and (1.2) are ineffective in
the sense that, for a given positive c, their proofs do not yield explicit values for n1 and
n2 such that p(n, ξ, b) ≥ n + c for n ≥ n1 and p(n, ξ, b) ≥ cn for n ≥ n2. The question
to know whether (1.2) can be made effective was posed to me by Sergei Konyagin at the
conference on uniform distribution held in Luminy in January 2008. The purpose of the
present note is to establish an effective (and explicit) version of (1.1) and to discuss further
related effective results.

2. Results

Our first result asserts that if a long prefix of a real algebraic irrational number has
small complexity (this situation can obviously happen, since algebraic irrational numbers
form a dense subset of the real numbers), then its height and its degree cannot be both
very small. Throughout the present note, the height H(α) of an algebraic number α is the
maximum of the absolute values of the coefficients of its minimal defining polynomial over
the integers.

Theorem 1. Let b ≥ 2 be an integer. Let ξ be a real algebraic irrational number of degree

d and height at most H with H ≥ ee. Denote by a its b-ary expansion viewed as an infinite

word on {0, 1, . . . , b − 1}. Let w be an infinite word whose complexity function satisfies

p(n,w) ≤ Cn for some integer C ≥ 2 and all n ≥ 1. Assume that the first L digits of a

coincide with the first L digits of w. Then we have

H ≥ exp
{

10−2C−1L1/(8 log(4C))
}

(2.1)

or

d ≥ exp{10−100C−11/2(log C)−1(log L)1/2(log log L)−1}. (2.2)

Theorem 1 gives an effective (but not very efficient!) procedure to test whether some
real numbers given by their b-ary expansion can be algebraic of small height and small
degree.

Our next statement implies an explicit version of the result of Ferenczi and Mauduit.

Theorem 2. Let b ≥ 2 be an integer. Let ξ be a real algebraic irrational number of degree

d and height at most H with H ≥ ee. Set

M = exp{10190(log(8d))2(log log(8d))2} + 232 log(240 log(4H)).

Then we have

p(n, ξ, b) ≥

(

1 +
1

M

)

n, for n ≥ 1. (2.3)

Unfortunately, the present methods do not seem to be powerful enough to get an
effective version of (1.2).
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No importance has to be attached to the numerical constants occurring in Theorems
1 and 2. They can be slightly reduced.

Roughly speaking, the Subspace Theorem asserts that the set of integer solutions
(x1, . . . , xn) to some given system of inequalities lies in finitely many proper subspaces
of Qn. It is ineffective in the sense that we do not have an effective upper bound for
max{|x1|, . . . , |xn|}. However, the Quantitative Subspace Theorem [12, 7] does provide us
with an explicit upper bound for the number of exceptional proper subspaces in which
all these solutions are contained. To our knowledge, this is the only available tool to get
effective results in our context, and we use it in the proofs of Theorems 1 and 2.

We stress that the lower bounds (2.1), (2.2) and (2.3) do not depend on the base b.
This is a consequence of the use of the Parametric Subspace Theorem, as in [6].

The proof of Theorem 2 uses the fact that the function n 7→ p(n, ξ, b) is strictly
increasing when ξ is irrational. Actually, not much can be said on the behaviour of this
function. Indeed, Ferenczi [8] established the existence of an infinite word w over a finite
alphabet whose complexity function satisfies

lim inf
n→∞

p(n,w)

n
= 2 and lim sup

n→∞

p(n,w)

nt
= +∞ for any t > 1.

We stress that not every increasing function satisfying some obvious necessary conditions
can be the block-complexity function of some infinite sequence.

Recall that the infinite word w is called quasi-Sturmian if there exist positive integers
k and n0 such that p(n,w) = n + k for all integers n ≥ n0. Besides that collection of
infinite words, there also exist infinite words w with the property that

p(n,w)− n → +∞ and lim
n→+∞

p(n,w)

n
= 1,

as established by Aberkane [2]. Furthermore, Aberkane [1] proved that, for any real number
δ with δ > 1 there exists an infinite word w satisfying

1 < lim inf
n→+∞

p(n,w)

n
< lim sup

n→+∞

p(n,w)

n
≤ δ.

Both results show that our Theorem 2 gives in fact a stronger result than just an explicit
version of (1.1).

3. Proofs

We begin with an auxiliary, combinatorial lemma. Throughout this section, we denote
by ⌊·⌋ the integer part function.
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Lemma 1. Let b ≥ 2 be an integer. Let ξ be a real number with 0 < ξ < 1 and denote

by a its b-ary expansion viewed as an infinite word on {0, 1, . . . , b− 1}. Assume that there

are positive integers m0, m1 and c ≥ 2 such that, for every integer n with m0 ≤ n < m1,

there is a word of length n having two occurrences in the prefix of length cn of a. Setting

N = ⌊log(m1/m0)/ log(4c + 4)⌋,

there exist non-negative integers p1, . . . , pN , r1, . . . , rN and positive integers s1, . . . , sN such

that r1 + s1 ≥ m0/2, s1 < . . . < sN , and

(i) rj ≤ (2c + 1)sj , (j = 1, . . . , N) ;

(ii) If rj ≥ 1, then b does not divide pj , (j = 1, . . . , N) ;

(iii) 2(rj + sj) ≤ rj+1 + sj+1 ≤ 8c2(rj + sj), (j = 1, . . . , N − 1) ;

(iv)

∣

∣

∣

∣

ξ −
pj

brj (bsj − 1)

∣

∣

∣

∣

<
1

b(1+1/(5c))(rj+sj)
, (j = 1, . . . , N).

Proof. This follows from an easy modification of the proof of Proposition 10.1 from [4]. We
omit the details.

Now, we discuss consequences of Lemma 1 and the Parametric Subspace Theorem [7].
We content ourself to sketch the proofs of our theorems, since they are very similar to that
of Theorem 2.1 from [6].

Let ξ be a real, algebraic irrational number of degree d with 0 < ξ < 1. Let H ≥ ee

be an upper bound for its height. Let m0, m1 and c be as in the statement of Lemma 1,
and set N = ⌊log(m1/m0)/ log(4c + 4)⌋.

Preparation for the proofs of Theorems 1 and 2. We assume that the hypotheses of Lemma
1 are satisfied. It follows from (iv) that, for n = ⌊N/2⌋, . . . , N , the vector

xn := (btn , brn , pn),

where we have set tn = rn + sn, satisfies a system of inequalities to which we can apply
the Parametric Subspace Theorem with ε = 1/(5c), exactly as in [6]. We use an explicit
estimate for the number of subspaces that contain all the solutions having a sufficiently
large height. For this reason, we need to consider only points with large height. Thus, we
assume that

N ≥ 3 log
(

80c log(4H)
)

. (3.1)

Arguing as in [6], we establish that all the vectors xn, ⌊N/2⌋ ≤ n ≤ N , lie in the union of
at most

10160c8 log(8d) log log(8d)

proper rational linear subspaces of Q3.
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Let then z1X1+z2X2+z3X3 = 0 be such a subspace H, where (z1, z2, z3) is a non-zero
primitive triple of rational integers. Let

N = {i1 < i2 < . . . < ir}

be the set of n with ⌊N/2⌋ ≤ n ≤ N such that xn is in H. Arguing again as in [6] and
using (3.1), it follows that

r ≤ 1020c3(log c) log(8d) log log(8d)

Consequently, we get the bound

N ≤ 10180c11(log c)(log(8d))2(log log(8d))2, (3.2)

provided that (3.1) holds. Combining (3.1) and (3.2), we have proved that

⌊log(m1/m0)/ log(4c + 4)⌋ ≤ max{3 log
(

80c log(4H)
)

,

10180c11(log c)(log(8d))2(log log(8d))2}.
(3.3)

We are now in position to establish our theorems.

Proof of Theorem 1. Assume that m0 = 1. Then, we get that either

m1 ≤ (4c + 4)4 log(80c log(4H)),

or
m1 ≤ exp{10181c11(log c)2(log(8d))2(log log(8d))2}.

By Dirichlet’s Schubfachprinzip, an infinite word whose complexity functon is bounded by
Cn satisfies the assumption of Lemma 1 with c = C + 1, m0 = 1 and m1 arbitrary. This
gives Theorem 1.

Proof of Theorem 2. Set c = 3 and

T = exp{10180c11(log c)2(log(8d))2(log log(8d))2} + (4c + 4)4 log(80c log(4H))

≤ exp{10188(log(8d))2(log log(8d))2} + 164 log(240 log(4H)).

Let k be a non-negative integer. Set m0 = T k and m1 = T k+1. Our choice for T contradicts
(3.3). This shows that the assumptions of Lemma 1 cannot be satisfied. Consequently, there
exists an integer nk with T k ≤ nk < T k+1 such that no block of nk digits occurs twice in
the prefix of length 3nk of the b-ary expansion of ξ. This implies that

p(nk, ξ, b) ≥ 2nk.
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Let n > n0 be a positive integer that does not belong to the sequence (nk)k≥0. Let k be
the integer determined by the inequalities

T k ≤ nk < n < nk+1 < T k+2.

As proved in [10], since ξ is irrational, the function m 7→ p(m, ξ, b) is strictly increasing
and

p(m, ξ, b) ≥ m + 1, for m ≥ 1. (3.4)

Consequently, the function g : m 7→ p(m, ξ, b) − m is non-decreasing (to see this, just
compute g(m + 1) − g(m)), and we get

p(n, ξ, b)− n ≥ p(nk, ξ, b)− nk ≥ nk ≥ T k ≥
n

T 2
,

hence,

p(n, ξ, b) ≥

(

1 +
1

T 2

)

n. (3.5)

We infer from (3.4) that inequality (3.5) remains true for every n less than or equal to n0.
This concludes the proof of Theorem 2.
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