Extensions of the Cugiani—Mahler Theorem

Yann Bugeaup (Strasbourg)

Abstract. In 1955, Roth established that if £ is an irrational number
such that there are a positive real number € and infinitely many rational
numbers p/q with ¢ > 1 and |€ —p/q| < q~27¢, then & is transcendental.
A few years later, Cugiani obtained the same conclusion with e replaced
by a function q — €(q) that decreases very slowly to zero, provided that
the sequence of rational solutions to |& — p/q| < q=275@) is sufficiently
dense, in a suitable sense. We give an alternative, and much simpler,
proof of Cugiani’s Theorem and extend it to simultaneous approxima-
tion.

1. Introduction

In 1955, Roth [26] established that, like almost all real numbers (throughout the
present paper, ‘almost all” refers to the Lebesgue measure), an algebraic irrational number
cannot be approximated by rationals at an order greater than 2.

Theorem (Roth, 1955). Let £ be an irrational, algebraic real number. Let € be a positive
real number. Then there are only finitely many rational numbers p/q with ¢ > 1 such that

P 1
‘é‘_ 5‘ < q2+€. (11)

As pointed out by Mahler in Appendix B of [21], Roth’s Theorem suggests the following
problem.

Problem. Let £ be an irrational, algebraic real number. To find a positive function q —
e(q) of the integral variable q, with the property

li =
A e(q) =0,
such that there are at most finitely many distinct rational numbers p/q with positive

denominator for which .

p
-5l <7 "
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If one believes that real algebraic numbers do behave like almost all real numbers as
far as rational approximation is concerned, then the Problem should have a positive answer
with the function ¢ given by
log log q

qr— (L+mn) o2 q

Y

for an arbitrary positive number 7.
As written by Mabhler, ‘the method of Roth does not seem strong enough for solving
this problem’; however, a weaker result was found by Cugiani [10] in 1958.

Theorem (Cugiani, 1958). Let £ be a real algebraic number of degree d. For an integer

q > 16, set
9d

o(9) = (loglog log q)1/2°

Let (pj/q;)j>1 be the sequence of reduced rational solutions of

P 1
‘5_ 5‘ < q2te(a)’

(1.3)

ordered such that 16 < ¢ < g2 < ... Then either the sequence (p;/q;);j>1 is finite, or

log a.

= 400. 1.4
j—too lOgg; (14

The above theorem was subsequently generalized by Cugiani [11, 12] and Mahler
[21] to include non-Archimedean valuations, and is now referred to as the Cugiani—Mahler
Theorem. Its extension to approximation by elements from a given number field was worked
out by Rodriquez [24, 25].

A further improvement was obtained in 1988 by Bombieri and van der Poorten [8],
who used the Dyson Lemma of Esnault and Viehweg in place of the Roth Lemma and
were able to derive the Cugiani—-Mahler Theorem with a function € that decreases to zero
faster than in (1.3).

Theorem (Bombieri and van der Poorten, 1988). Let ¢ be a real algebraic number
of degree d. For an integer q > 4, set

log log log 4q) 1/4

= 7 (log 4d)*/?
e(q) = 7 (log 4d) (loglog4q

Let (pj/q;)j>1 be the sequence of reduced rational solutions of

P 1
‘5_ 5’ < q2t+e(a)’

ordered such that 4 < q; < go < ... Then either the sequence (p;/q;);j>1 is finite or

log .

= +00.
j—too  l0gg;

2



As far as we are aware, the above theorem provides currently the best contribution
towards a resolution of the Problem.

At the end of the 60’s, multidimensional extensions of Roth’s Theorem were established
by W. M. Schmidt [27, 28, 29]. We extract the following statements from Chapter VI of [31].
Given a real number z, we denote by ||x|| the distance from x to the nearest integer. Given
an algebraic number «, we denote by H («) its height, that is, the maximal of the absolute
values of the coefficients of its minimal defining polynomial over the ring of integers.

Theorem (Schmidt, 1970). Let n be a positive integer. Let &1, ..., &, be algebraic real

numbers such that 1,&1,...,&, are linearly independent over the rationals. Let ¢ be a
positive real number. Then, there exist only finitely many positive integers q such that
q- llg&all---llgénll < ¢~ (1.5)

Theorem (Schmidt, 1970). Let n be a positive integer. Let  be a real algebraic number
of degree greater than n. Let € be a positive real number. Then, there exist only finitely
many algebraic numbers a of degree at most n such that

&€ —a| < H(a) 172, (1.6)

Schmidt [30] established a general result in 1972, commonly referred to as the Schmidt
Subspace Theorem, and from which the above two theorems follow. The quantitative ver-
sion of the Schmidt Subspace Theorem is quoted as Theorem ES in Section 4. No multi-
dimensional analogue of the Cugiani-Mahler Theorem has been published yet. Our main
purpose is precisely to establish such a statement.

Let us now describe the structure of the present work. We begin with giving a (pre-
sumably) new proof of a stronger version of the above quoted theorem of Cugiani: we show
that it easily follows from an upper estimate for the number of solutions to (1.1). Related
results are stated in Section 2 and proved in Section 5.

This new approach allows us to establish multidimensional extensions of the Cugiani—
Mahler Theorem, by means of a quantitative version of the Schmidt Subspace Theorem.
The corresponding statements are gathered in Section 3 and proved in Section 6.

An application of the Cugiani-Mahler Theorem to fractional parts of powers of rational

numbers is discussed in Section 7. The paper ends with several remarks gathered in Section
8.

2. Small variations around the Cugiani—-Mahler Theorem

The single paper on the Cugiani-Mahler Theorem that we do not have quoted in Sec-
tion 1 was published by Mignotte [22]. It contains an improvement upon the gap condition
(1.4). Mignotte’s result can be formulated as follows.

Theorem (Mignotte, 1972). Let & be a real algebraic number of degree d. Let o be
real, 0 < a < 6. For an integer q > 16, set

(q) = (161°g<d+ 2) 1ogz)1/2_

a logloglog q
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Let (pj/q;)j>1 be the sequence of reduced rational solutions of

P 1
‘5_ E‘ < q2t+e(a)’

ordered such that 16 < g1 < g2 < ... Then either the sequence (p;/q;)j>1 is finite or, for
any real number p with 1 < p < 2(6-®)/a we have

, log gj+1
limsup ——2"~ = +00. (2.1)
j—+oo (logg;)?
Bombieri and van der Poorten noted at the end of [8] that, if one wishes to get a gap
condition as in (2.1), their method only yields a result of the quality of Mignotte’s.
The main result of this section is in the same spirit as the Cugiani—-Mahler Theorem.
It is an easy consequence of an estimate of Evertse [14] for the number of solutions to (1.1).

Theorem 1. Let £ be a real algebraic number of degree d. Let £ be a non-increasing
function defined over the set of positive integers and tending to 0 at infinity. Assume that
there is an infinite sequence (p;/q;);>1 of reduced rational numbers such that 1 < ¢ <

g2 < ...and
e

95

< for j > 1.

q]2+6(qj)’
Then, there exist a constant c1(d), depending only on the degree d of £, and a constant
c2(€), depending only on &, such that

e(g;) < er(d) j713 (log )¥/3,  for j > ea(€).

Theorem 1 asserts that if (1.2) has infinitely many solutions, then there is a big gap
between any two of these solutions, and the size of these gaps increases when the function
¢ decreases slowly to zero.

We display an immediate corollary of Theorem 1. For a positive integer m, we denote
by exp,,, the mth iterate of the exponential function and by log,,, the function that coincides
with the mth iterate of the logarithm function on [exp,, 1,+00) and that takes the value
1 on (—o0,exp,, 1]. We also adopt the convention that log, coincides with the identity
function.

Corollary 1. Let m be a positive integer and set

e(q) = (log,, 11 q)_l/3 (log,,124q), forq=>1.

Let & be a real algebraic number and let (p;/q;)j>1 be the sequence of reduced rational

solutions of
1

p
<7
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ordered such that 1 < g1 < g2 < ... If the sequence (p;/q;);j>1 is infinite, then

log,,, 11 4;

lim = +o00, (2.2)
J—too J
and, consequently,
1 .
lim sup Em i+l _ oo, (2.3)

Taking m = 1 in Corollary 1, we get a (slight) improvement of the theorem of Bombieri
and van der Poorten. Choosing m = 2 in Corollary 1, we get a result comparable to
Mignotte’s Theorem.

All the previous proofs of the Cugiani-Mahler Theorem were obtained by a suitable
modification of the proof of Roth’s Theorem (see also Exercise 7.5.5 in [33]), and thus
are much more technical than the proof of Theorem 1. Actually, the complications of the
present proof are hidden in the proof of Evertse’s estimate for the number of solutions to
(1.1), recalled in Section 4.

It is of interest to note that if we insert the upper bound established in 1955 by
Davenport and Roth [13] for the number of solutions to (1.1) in place of Evertse’s estimate
in the proof of Theorem 1, then we get a very short proof of the above theorem of Cugiani,
with the function e given in (1.3) replaced by the function

q — (logloglog q)~ /2 (loglogloglogq), (g > 10%).

The fact that the sequence (g;);>1 increases as rapidly as given by (2.2) has not been
pointed out in the earlier works on the Cugiani-Mahler Theorem. This is much stronger
than (2.3), which says only that there are infinitely many large gaps in the sequence (g;);>1.
This improvement follows from a simple gap principle saying that (g;);>1 increases at
least exponentially. Unfortunately, we were unable to establish analogues of (2.2) for our
Theorems 2, 3 and 4 below. This is due to the lack of a sufficiently strong gap principle.

The proof of Theorem 1 is very flexible and can be easily adapted to include non-
Archimedean valuations, as in a result of Ridout [23]; we simply have to replace the use of
Evertse’s estimate by a result of Locher [19] to get the following theorem.

For a prime number ¢ and a non-zero rational number z, we set |z|, := ¢~*, where u
is the exponent of ¢ in the prime decomposition of x. Furthermore, we set [0|, = 0.

Theorem 2. Let S be a finite set of prime numbers, and denote by s its cardinality. Let
1 be a positive real number. Let m be a positive integer and set

e(q) = (logy,q )~ YT for g > 1.

Let & be a real algebraic number and let (p;/q;)j>1 be the sequence of reduced rational

solutions of
. D 1
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ordered such that 1 < g < g2 < ... Then either the sequence (p;/q;);>1 is finite or
lo ;
lim sup O6m 41 _ +00.
j—+o0 logm q;

We point out that the function € occurring in Theorem 2 does depend on the set of
primes S, while this is not the case in Theorem 6.5.10 from Chapter 6 of the monograph of
Bombieri and Gubler [7]. The latter is given without proof, and we were unable to find the
key ingredient used by Bombieri and Gubler to remove the dependence on the cardinality
of S.

Versions of Theorem 2 in which (2.4) is replaced by a system of inequalities were
proved by Mahler [21] and Mignotte [22]. It does not seem to be easy to deduce Theorem
2 from their results: the difficulty lies in the fact that we have a product in the left-hand
side of (2.4).

Theorem 2 can be used to give new explicit examples of transcendental numbers, by
proceeding exactly as Mahler did, see Theorem 3, page 178, of [21] and Théoreéme 3 from
[22]. Theorem 2 also implies new results on the distribution modulo one of the sequence
of integral powers of a rational number greater than one: see Theorem 2, page 176, of [21]
and Théoreme 2 of [22]. We discuss more closely the latter application in Section 7. As
for the former one, which actually do not need the full power of Theorem 2, the reader is
referred to Section 9 of [9].

Finally, we stress that Theorems 1 and 2 can be extended to approximation by elements
of a given number field, a setting considered in [8].

3. Multidimensional extensions of the Cugiani—-Mahler Theorem

Our new proof of the Cugiani-Mahler Theorem extends well to multidimensional
approximation and allows us to generalize it in several directions.

For a positive real number 7 and for irrational numbers &1, ...,&,, we say that the
positive integer ¢ corresponds to a primitive solution of

q- gl - laénll <n

if, denoting by p; the nearest integer to ¢§; for j = 1,...,n, the (n+1)-tuple (¢, p1,...,pn)
is primitive, that is, if the greatest common divisor of ¢, p1,...,p, is equal to 1. Observe
that, for n = 1, the positive integer g corresponds to a primitive solution of ¢ - [¢§ —p| < n
if the rational p/q is written in reduced form.

Theorem 3. Let n be a positive integer and &4, ...,&, be real algebraic numbers such
that 1,&4,...,&, are linearly independent over the rationals. Let € : Z>; — Rsq be a
non-increasing function satisfying

lim =) =
g—+oo (loglog q)~1/(2n+6)

+00.
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Let (g;);>1 be the sequence of positive integers corresponding to primitive solutions of

q- llgéall -~ laénll < ==, (3.1)

ordered such that 1 < q; < g2 < ... If this sequence is infinite, then

log q.
lim sup —8%+1

= +o0. (3.2)
j—too logg;

Theorem 3 provides a first step towards a (small) improvement on the first result of
Schmidt quoted in the Introduction.

The second statement of Schmidt quoted in the Introduction is an easy consequence
of a deep result from [29] asserting that, if &1, ..., &, are real algebraic numbers such that
1,&1,...,&, are linearly independent over the rationals, then, for any positive ¢, there are
only finitely many non-zero integer (n + 1)-tuples (pg, ..., pn) with

Ipo + pi&i + ...+ ppén| < (max{|pol, [p1l, ..., |pnl}) " "C.

Our next statement is an extension of the Cugiani—-Mahler Theorem to this setting.

Theorem 4. Let n be a positive integer and &;,...,&, be real algebraic numbers such
that 1,&:,...,&, are linearly independent over the rationals. Let € : Z>; — Rso be a
non-increasing function satisfying

lim e(H) = +00
H—+4o0 (loglog H)~1/(2n+6) — '
Let (po,j,P1.5,---,Pn.j)j>1 be the sequence of primitive solutions of
|p0 +pl£1+---+pnfn| <H_n_E(H)7 H:max{|p0|,...,|pn|}, (33)
ordered such that 1 < Hy < Hy < ..., where H; = max{|po j|,- .., |pn,;|} for j > 1. If this
sequence is infinite, then
log H;
lim sup i e RS (3.4)

j—too l0g Hj

We display two corollaries of Theorem 4.

For an integer polynomial P(X), we denote by H(P) its height, that is, the maximum
of the absolute values of its coefficients. Recall that, if « is an algebraic number, then its
height, denoted by H(«), is the height of its minimal defining polynomial over the ring of
integers.

Corollary 2. Let n be a positive integer and & be a real algebraic number of degree
greater than n. Let ¢ : Z>; — R be a non-increasing function satisfying

lim e(H) =
H—+4o0 (loglog H)=1/(2n+6) —

—+00.
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Let (Pj(X));>1 be the sequence of distinct primitive, integer polynomials of degree at most
n that satisfy

[P(O)] < H(P)—m =, (3:5)
ordered such that 1 < H(Py) < H(P») < ... If this sequence is infinite, then
log H(P;
lim sup log H(Fy+1) = +o0. (3.6)

j—too 10g H(Pj)

Next corollary provides a first step towards a (small) improvement on the second result
of Schmidt quoted in the Introduction.

Corollary 3. Let n be a positive integer and & be a real algebraic number of degree
greater than n. Let € : Z>1 — R~ be a non-increasing function satisfying

lim =(H) =
H—+oo (loglog H)~1/(2n+6) —

Let (cj);>1 be the sequence of distinct algebraic numbers of degree at most n that satisfy

+00.

€ — o] < H(a)™"7 17, (3.7)
ordered such that 1 < H(ay) < H(ag) < ... If this sequence is infinite, then
log H (o
lim sup log H(aj+1) = +o0. (3.8)

j—+oo  log H(ay)
If one believes that algebraic numbers behave like almost all numbers as far as ap-
proximation by algebraic numbers of larger degree is concerned, then results of Beresnevich
[5] and Bernik [6] imply that inequalities (3.5) and (3.7) with a non-increasing function e
satisfying
. e(H)
lim
H—+o0 (log H)~1 (loglog H)
should have only finitely many solutions.

>1

4. Auxiliary results

We begin this section by stating a version of the Liouville inequality that follows from
Proposition 3.14 of [34].

Lemma 1. Let n be a positive integer and &,...,&, be real algebraic numbers in a
number field of degree D. If x1,...,x, are rational integers such that x1&, + ...+ x,&, is
non-zero, then there exists a positive real number H, depending only on n,&q,...,&,, such
that

2161 4wl > (XH)TP,
where we have set X := max{|z1|,..., |z,|}.

The first explicit upper bound for the number of solutions to (1.1) was established
by Davenport and Roth [13] in 1955. It has been subsequently refined by several authors,
and the current best estimate has been obtained by Evertse [14]. We gather in the same
statement his result and an estimate of Locher [19].
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Theorem EL. Let S be a finite set of prime numbers and denote by s its cardinality. Let
¢ be an algebraic number of degree d with 0 < £ < 1. Let € be a positive real number with
e < 1/5. The inequality

mln{

Ni(€,e) = e* 207 5 log(6d) - log(c ™" log(6d)) (4.1)

‘} H lpale < e

LesS

has at most

reduced rational solutions p/q with q¢ > max{4*/¢,\/d + 1 H(¢)}. Moreover, if S is empty,
then (4.1) can be replaced by

Na(€,e):=2-10" ¢ 3(loge 1)? (log 4d) (loglog 4d). (4.2)

Proof. Theorem 2 from [19] gives an upper bound for the number of reduced rational

solutions to
min{ 1, ¢ = 21 b+ TT wle- TT lol < e,

£eSy LeS2

where S; and S5 are disjoint finite sets of prime numbers whose union is equal to S. Since
we have 2° choices for the pair (S, S2), the bound (4.1) then follows.

Furthermore, the estimate established at the end of Section 6 from [14] implies (4.2).
O

At present, we do not have any general upper bound for the number of solutions to
the inequalities (1.5) and (1.6). However, if we define in (1.5) the integers py,...,p, by
llg&ill = |q& — ps| for i = 1,...,n, an upper estimate for the number of proper rational
subspaces of Q™*! in which the (n + 1)-tuples (g, p1, - .., pn) associated with the solutions
of (1.5) are contained was obtained in a deep work of Schmidt [32], who established a
quantitative version of his Subspace Theorem. We state below a general result of Evertse
and Schlickewei [15]. We refer to [15] for the definition of the height of a linear form, a
notion that will not be used in the present paper.

Theorem ES. Let m > 2 be an integer. Let L1, ..., L,, be a linearly independent system
of linear forms with real algebraic coefficients, and let D be the degree of the number field
generated by their coefficients. We assume that

det(Ll, ceey Lm) = +1.

Let H be an upper bound for the heights of the linear forms L,...,L,,. Let € be a real
number satisfying 0 < € < 1. Then, the set of primitive solutions x = (x1,...,Zy,) in Q™

to the inequality
m
H x)| < H(x)~¢



with
max{|z1], ..., |Zm|} > max{m*™/¢ H}

lies in the union of at most
(3m)*™ 93(m+9)” g—2m—4 (log4D) (loglog4D)

proper subspaces of Q™.

Proof. This follows from Theorem 3.1 of Evertse and Schlickewei [15]. O

5. Proofs of Theorems 1 and 2 and of Corollary 1

Proof of Theorem 1.

Keep the notation of Theorem 1. An almost forgotten result of Fatou [16] (see Grace
[18] for a complete proof) asserts that if the rational number a/b satisfies |¢ —a/b| < 1/b2,
then there exists an integer n such that

Tn Tnal+7Tn Thnaio — Tniil
belongs to { - nt ~ nt nt ,
Sn Sn+1 + Sn Sn+4+2 — Sn+1

a
b
where (7,,/sn)n>1 is the sequence of convergents to . Furthermore, it is well known that
Sy > (\/5)”_1, for n > 1.
Since by assumption £ —p;/q;| < 1/ qJQ-, the above observations imply that
qj > 117, forj>2.
Let j be a positive integer, and denote by wu the integer part of j/2. We take j
sufficiently large in order that ¢, > v/d + 1 H(£). We can assume that (q;) > 100571, for
otherwise the conclusion of the theorem clearly holds.

Consequently,
Qu > 1.037 > 42/5(%‘)’

and we infer from the last assertion of Theorem EL that

<j—u<2-10"¢(g)*(loge(g;))? (log 4d) (loglog 4d).

DO | .

This gives the desired result. O

Proof of Corollary 1.
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Let & be as in the statement of the corollary. Throughout this proof, the constants
implied by < and > may depend on £, but are independent of j. Assuming that the
sequence (p;/q;);>1 is infinite, it follows from Theorem 1 that

(log,i1 ¢5) ™2 (10810 q5) < 372 (log§)?/3, for j > 1.

Thus, we have
(1Ogm—|—1 q]) (logm—l—Q qj)_3 > .7 (logj)_Qv for .7 Z ]-7

and
lim log,,, 11 4;
j—+oo J

If
log,, ¢j+1 < log,, q;, forj>1,

then an easy induction shows that
1Ogm,—|—1 q; < ja fOI‘j > ]-7

a contradiction with (5.1). This establishes the corollary. O

Proof of Theorem 2.

Keep the notation of the theorem. Without any restriction, we may assume that
0 < & < 1. Assume that there is an absolute constant C' and an infinite sequence (p;/q;);>1
of reduced rational numbers with ¢; > 1 that satisfy (2.4) and

2log,, q; <log,, ¢j+1 < Clog,, q;, for j>1. (5.2)

Let N be an integer and set € = €(qy ). Then, the inequality

. P 1
min{ 1.~ 2[4 TT Inale < i

Les
has at least N solutions and, provided that N is large enough, at least N/2 among them
have a denominator greater than max{4%/¢ /d + 1 H(¢)}, where d is the degree of &. The
constants implied by < occurring below depend at most on & and s, and are independent
of N. We infer from Theorem EL that there exists a positive real number 1’ such that

—s5—5 _ —s—5—n/2 7
N < (elan) " log(e Haw) < (e(an) T < (logpran) . (53)
for N sufficiently large. Furthermore, it follows from (5.2) that

log,, 1198 < N. (5.4)

The combination of (5.3) and (5.4) gives a contradiction. This proves the theorem. O
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6. Proofs of Theorems 3 and 4 and their corollaries

Proof of Theorem 3.

Under the assumptions of Theorem 3, we suppose that there are infinitely many so-
lutions to (3.1), but that (3.2) does not hold. Consequently, by extracting suitably a sub-
sequence from the set of primitive solutions to (3.1), there exist a real number C' and an
infinite sequence of primitive integer (n + 1)-tuples x; = (g, p1,5,---,Pn,;) such that, for
every j > 1, the integer g; is positive,

(460 — Pl < a5 7Y,

q;j - |Qj§1 — P15

and
H} < Hj,y < HY, (6.1)

where we have set H; := max{q;, |p1,jl,---|Pnj|}-

We will ultimately derive a contradiction. Throughout the present proof, D denotes
the degree of the number field generated by &1,...,&,. The constants implied by <, >
depend at most on C, n, &1,...,&,.

Let ¢; be a positive real number to be fixed later on. Let Ny be a (large) integer such
that, for any ¢ > ¢, , we have

£(q) > c1 (loglogq) /0.
Let N > Ny be an even integer and set

e=c¢(qn).
Consider the n + 1 linearly independent linear forms

Ly(X) = Xo, Li(X)=&X0—X1,..., Lp(X) = £, X0 — X

Let H be an upper bound for the heights of the linear forms L;, i = 0,...,n. Our assump-
tion implies that, for N large enough, the equation

H|L |<H ) n—e/2

has at least 1 + N/2 primitive (integer) solutions x = (zg, z1, ..., x,) with

max{|zo|, ..., |za|} > (n+ 1)* D/ L g,
namely the (n + 1)-tuples x;, with N/2 < j < N. By Theorem ES, these 1 + N/2 tuples
are contained in the union of at most ¢y 2" % rational proper subspaces of Q**!, where

co = co(D,n) depends only on D and n.

12



Furthermore, we infer from (6.1) that
logloggn < N log(CHy),
thus, by our choice of ¢,
a6 < cf%’ﬁ co (logloggn) < 01_2"_6 co N log(CHy).
Choose ¢y large enough in order to satisfy
2¢72" O can(n+1)D log(CH;) < 1.

Then, the primitive (n+1)-tuples x; with N/2 < j < N are contained in a union of less than
N/(2n(n + 1)D) proper rational subspaces of Q"*!. Consequently, if N is large enough,
then there exists a proper rational subspace of Q™*! that contains at least t := n(n+1)D
of these tuples, namely the tuples x;,,...,x;,, where N/2 < j; < ... < j; < N. Set
M =nD. For k=1,...,n+1, let V}, be the rational subspace spanned by x;,,...,Xj,,,.
Since dim V; > 1 and dim V,,41 < n, there exists k such that 1 < k < n and Vi = V1.

Consequently, there exists an integer (n + 1)-tuple (2, 21, .. ., 2, ) such that
20q;, + 21p1,j, + -+ 2nPnj, =0, forh=1,... (k+1)M, (6.2)
and
7 = max{|z, ..., |z|} < H} (6.3)

Since, by assumption, we have
g;&i —pij| <1, for1<i<mnand1<j<N,
we deduce from (6.2) that

nz > |Z1(qjh§1 _plyjh) +...+ Zn(q]'hfn _pn,jh)|

6.4
=qj, |20+ 216+ ...+ 26|, forh=EM+1,...,(k+1)M. (64)
Since &1, ..., &, are algebraic, we infer from Lemma 1 and (6.3) that
20 + 2161 4 .+ 2nén| > Z7P > H; P (6.5)
It follows from (6.3), (6.4) and (6.5) that g;,,,,, is bounded in terms of Hj,,, , namely
that we have (D+1)
n(D+
Hj(k+1)M < Qkr1ym < ijM : (66)
However, the gap condition (6.1) yields
M
Hjopom 2 szkM' (6.7)

Our choice M = nD implies that (6.6) and (6.7) do not hold simultaneously when Hj, ,,
is large enough, that is, when NV is large enough. We have reached a contradiction. Thus,
the sequence (log H;y1/log H;);>1 cannot be bounded. This establishes the theorem, since
Qj<<Hj<<ijOI‘j21. O

For the proof of Theorem 4, we need an auxiliary result.
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Lemma 3. Let n be a positive integer and let &1, ...,&, be real algebraic numbers such
that 1,&4,...,&, are linearly independent over the rationals. Let € be a positive real num-
ber. Assume that there are M primitive integer (n + 1)-tuples p; := (Po,j,P1,js--++Pn.j)
such that

|p0,j +p1,j£1 + ... +pn,j£n| < Hj_n_67
Hy > max{H(&),...,H()}

and
H? <Hj., forj=1,...,M,

where we have set

H; = max{|po |, |p1,jl,---,|pnjl}, forj=1,..., M.

Then, M is bounded effectively in terms of € and of the degree of the field generated by
517 R é.n-

Proof. The proof goes by induction on n. The lemma is a direct consequence of Theorem
EL if n = 1. Let n > 2 be an integer, and assume that the lemma holds for every positive
integer less than n.

The integers c1, co, . .. occurring below depend at most on € and on the degree of the
field generated by &1,...,&,.

Consider the n + 1 linearly independent linear forms

LiX)=Xo+& X1+ ...+ &Xn Li(X)=Xq,...,Ly(X) = X,,.

Our assumption implies that the equation

n

[] Lol < Hx)™

1=0

has at least M primitive solutions.
We infer from Theorem ES that, for M > ¢, the (n+1)-tuples p; with M/2 < j < M
are lying in the union of at most ¢, proper subspaces of Q"!. Let yoXo + ...+ ynXn =0

be one of these subspaces, and assume that it contains the (n + 1)-tuples p;,, Pj,s - - s Pjy»
where M/2 < j1 <jo<...<jt <Mandt=2(n+1)ecs.Set L =2c3.Fork=1,...,n+1,
let Vi, be the rational subspace spanned by pj,,...,pj,,. SincedimV; > 1 and dim V,, 1 <

n, there exists k such that 1 < k£ <n and V; = Vj11. Consequently, there exists an integer
(n + 1)-tuple (20, 21, . .., z,) such that

20P0,jn + Z1D1,jn 4+ ...+ ZnDn,jn, = 0, for h = 1,..., (k + I)L, (68)

and
Z = max{|zo|,. .., |zn|} < cs H}

JkL"

Let h be an integer such that kL <h < (k+ 1)L. By (6.8) and
P0,ji + P1jn 61+ - Prgnnl < Hj'TF,

14



we get that

P0.5 (2060 — 2n) + P15 (2160 — 2n81) + oo + Pu—1,js (Bn—18n — 2nén—1)| < Z- H}"7°.
Without any loss of generality, we may assume that (2g, z,) # (0,0). Set

Zifn - ani

Zofn — Zn

G =

, fori=1,...,n—1.

Observe that, for c3 large enough, we have

1/2
Z<H” =~ and Hj,,, ., >max{H(G),. .., H(¢ 1)}

For h=kL+L/2,...,(k+ 1)L, the n-tuple (poj,,P1,j.s- - ->Pn—1,5,) has no reason to be
primitive. However, it follows from (6.8) and from the primitivity of p;, that the greatest
common divisor of pg j,,...,Pn—1,j, cannot exceed Z. Since we have

0 < [Poju + P1jnCi e Pt jnCua| < H; V72 for h=kL+L/2,..., (k+ 1)L,

it follows from our hypothesis of induction that L < ¢5. Consequently, M < cg, as asserted.
]

We are now in position to establish Theorem 4.

Proof of Theorem 4.

We assume that the sequence of solutions to (3.3) is infinite and does not satisfy
the gap condition (3.4). Consequently, by extracting suitably a subsequence from the set
of primitive solutions to (3.3), there exist a real number C' and an infinite sequence of
primitive integer (n + 1)-tuples p; := (po,j,P1,5, - - -, Pn,j) such that

1Po.j + 1€ + o F Pnénl < H],—"—E(Hj)

and
H} <Hjy < HY, forj>1, (6.9)

where we have set

Hj :=max{|po l, |P1,j]; -+ [Pnjl}, forj>1.

Throughout the present proof, D denotes the degree of the number field generated by
517 R é.n-

Let ¢q be a positive real number to be fixed later on. Let Ny be a (large) integer such
that, for any H > Hy,, we have
e(H) > ¢; (loglog H)~1/(3n+6),

15



Let N > Ny be an even integer, and set
=e(Hpy).
Consider the n + 1 linearly independent linear forms
LiX)=Xo+&X1+ ...+ 6&Xn Li(X)=Xq,...,L,(X) = X,,.

Let H be an upper bound for the heights of the linear forms L;, i = 0,...,n. Our assump-
tion implies that, for N large enough, the equation

H|L )| < H(x) " ¢/?

has at least 1 + N/2 primitive (integer) solutions x = (xg, z1,...,z,) with
max{|x0|, R |xn|} > (TL + 1)4(n+1)/6 + H,

namely the (n + 1)-tuples p;, with N/2 < j < N. By Theorem ES, these 1 + N/2 tuples
are contained in the union of at most ¢, e2"~% rational proper subspaces of Q**!, where
co depends only on n and D.

Furthermore, we infer from (6.9) that

loglog Hy < N log(CHy),

thus
—2n—6 —2n—6

co€ =c] co (loglogqn) < ¢;?" % ¢y N log(CH;y).
Let M be an even integer to be fixed later on. Choose ¢; large enough in order to

satisfy
272" O ¢y (n+1)M log(CH,) < 1.

Then, the primitive (n + 1)-tuples p; with N/2 < j < N are contained in a union of
less than N/(2(n + 1) M) proper subspaces and, for N large enough, at least one of these
subspaces contains (at least) M (n + 1) of the tuples p; with N/2 < j < N. We proceed
exactly as in the proof of Theorem 3 and we get that there exists an integer (n + 1)-tuple
(20,21, - - -, 2n) such that

20P0,5, + 21P1,jp + -+ ZnPn,j, = 0, forh= 1,...,(]{:+1)M, (610)

and
Z = max{|zo|,...,|zn|} < c3s H}

Jkn?

for some c3 depending only on n. By (6.10) and

[P0, + PLjnbt + o F P nl < H'TE,
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we get that

P0,3, (2080 — 2n) + P1,g, (2160 — 20&1) + -+ P14, (2n—18n — 2nén—1)| < Z - H; "7,
Without any loss of generality, we may assume that (2, z,) # (0,0). Set

Zién - ézzn

ZOén — Zn

G =

, fori=1,...,n—1,

and select M sufficiently large in order that

Z,H(G1), .o, H(G1) < H/?

JeM++M/2°

Then, we get

0 < [Po,ju+P1,ja Cib - APae1,gn Gt | < Hy "7V TYE for b= kM 4+ M2, (k+ 1)M.

Selecting M sufficiently large in terms of D, we have reached a contradiction with Lemma
3. This establishes the theorem. O

Proofs of Corollaries 2 and 3.

Applying Theorem 4 with & = ¢°, for i = 1,...,n, we get Corollary 2. Furthermore,
under the assumption of Corollary 3, if we denote by P;(X) the minimal defining polyno-
mial of a; over the integers, then it is easily seen that

|[Pj(€)] < H(py)~n—eWHE2

holds for any sufficiently large j. By Corollary 2, we get (3.6), that is, (3.8), by definition
of the height of an algebraic number. O

7. Fractional parts of powers of rational numbers

Let p and g be coprime integers with p > ¢ > 2. Let € be a positive real number.
Applying a theorem of Ridout [23], Mahler [20] proved that

)

holds for every sufficiently large integer n. Here, as above, || - || denotes the distance to the
nearest integer.

The application of the Cugiani—-Mahler Theorem yields further results on the fractional
parts ||(p/q)™]|, as pointed out by Mahler in his monograph (Theorem 2, page 176, of [21];
see also Théoreme 2 of [22]). However, in both works, there is an extra assumption on the
rational p/q, namely that p is prime.

In this Section, we show that our Theorem 2 above allows us to remove this assumption
and to obtain a result comparable to that of Mahler and Mignotte.

> 2—877,
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Theorem 5. Let p and q be coprime integers with p > q > 2. Let s be the number of
distinct prime divisors of pq. Let m be a non-negative integer. Let 0 be a positive real
number such that 6 < 1/(s+5). If there exists a strictly increasing sequence ny < ng < ...
of positive integers such that

)

n-
< eXP{——J}, for j > 1,
(log,, 1 ;)°

. log. m;ii1
j—too lOg,, m;

then
= +o00.

Proof. Throughout this proof, the constants implied by < and > depend at most on p
and q. For n > 1, let g, be the nearest integer to (p/q)™. Let d,, be the greatest common
divisor of p™ and g¢,q", and define

Let S be the set of prime divisors of pg. For a positive integer x, we write |z|s for the
product of the |z|, over all the prime numbers ¢ in S. Following Mahler’s proof, we have

IPQnls =Pt |Quls < Pl-g ™ < @t (ega)/(ogp)

Jn > quzf(logq)/(logp), qn S Qn < pn.

From our assumption, for j sufficiently large, we have
1
: |Pannj|S -

- - g’I‘Lj
gnj q

1 n;
I SR ST

P,
11— — '|Pannj|S

Qn;

—2—c(log,, Qn,)75
<< an 2 ’ )

for some positive constant c¢. Applying Theorem 2 with & = 1, we get at once Theorem 5.
0

The results of Mahler and Mignotte, valid only when p is prime, do not depend on
the number of prime divisors of ¢. To achieve this, these authors apply instead of Theorem
2 a version of the Cugiani-Mahler Theorem in which (2.4) is replaced by a system of
inequalities. However, we were unable to get Theorem 5 in its full generality with this
tool, and we needed a version of the Cugiani-Mahler Theorem with a product, as in the
left-hand side of (2.4).

8. Final remarks
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An important application of the method developed in the present paper is concerned
with the block complexity of irrational, algebraic numbers. Let b > 2 be an integer and &
be an irrational, algebraic number with 0 < £ < 1. There exists a unique infinite sequence
a = (a;j);>1 of integers from {0,1,...,b— 1}, called the b-ary expansion of £, such that

A N
=25
jz1

A natural way to measure the complexity of £ (in base b) is to count the number of distinct
blocks of given length in the infinite word a. To this end, for an infinite word w on the
alphabet {0,1,...,b — 1} and for a positive integer n, we let p(n,w) denote the number
of distinct blocks of n letters occurring in w. Furthermore, we set p(n, £, b) = p(n,a) with
a as above. In 1997 Ferenczi and Mauduit [17] applied a non-Archimedean extension of
Roth’s Theorem established by Ridout [23] to show (see also [4]) that
li b) —n) = .
lim (p(n,€,b) = n) = +o0

n

Then, a new combinatorial transcendence criterion proved with the help of the Schmidt
Subspace Theorem (precisely, its non-Archimedean extension) by Adamczewski, Bugeaud,
and Luca [3] enabled Adamczewski and Bugeaud [2] to establish that
b
im PED) (8.1)
n—4+oo n

By using the Quantitative Subspace Theorem (precisely, its non-Archimedean extension
from [15]) in a similar way as in the proofs of Theorems 3 and 4, it is possible to complement
(8.1) by establishing that, for any positive real number ¢, we have

lim sup p(n, ¢, b) = +00, (8.2)

s to0 n(logn)—6+1/(4w(b)+15) -

where w(b) denotes the number of distinct prime factors of b. However, it turns out that,
by means of a more careful use of the Quantitative Subspace Theorem, the dependence on
b in (8.2) can be removed. Namely, it is proved in [9] that (8.2) holds with 1/(4w(b) + 15)
replaced by 1/11.

Likewise, we may improve the lower bound for the complexity of irrational p-adic
algebraic numbers established in Theorem 1B from [2].

The approach followed in the present paper can be used to get new, explicit examples
of transcendental continued fractions, in the same spirit as in [1]. This will be the subject
of a forthcoming note.

To conclude, we wish to emphasize an important open question:
To find an upper bound for the number of solutions to (1.6).

At present, this question has been solved only when the exponent —n — 1 — ¢ is strictly
smaller than —2n, see [14, 19].

19



1]

2]

3]

[4]

[5]

(6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers, II. Con-
tinued fractions, Acta Math. 195 (2005), 1-20.

B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expan-
sions in integer bases, Ann. of Math. 165 (2007), 547-565.

B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques,
C. R. Acad. Sci. Paris 339 (2004), 11-14.

J.-P. Allouche, Nouveaux résultats de transcendance de réels a développements non
aléatoire, Gaz. Math. 84 (2000), 19-34.

V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta

Arith. 90 (1999), 97-112.

V. 1. Bernik, On the best approximation of zero by values of integral polynomials,
Acta Arith. 53 (1989), 17-28 (in Russian).

E. Bombieri and W. Gubler, Heights in Diophantine Geometry. New mathematical
monographs 4, Cambridge University Press, 2006.

E. Bombieri and A. J. van der Poorten, Some quantitative results related to Roth’s
theorem, J. Austral. Math. Soc. Ser. A 45 (1988), 233-248.

Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers.
Preprint.

M. Cugiani, Sull’approssimazione di numeri algebrici mediante razionali, Collectanea
Mathematica, Pubblicazioni dell’Istituto di matematica dell’Universita di Milano
169, Ed. C. Tanburini, Milano, pagg. 5 (1958).

M. Cugiani, Sulla approssimabilita dei numeri algebrici mediante numert razionali,
Ann. Mat. Pura Appl. 48 (1959), 135-145.

M. Cugiani, Sull’approssimabilita di un numero algebrico mediante numeri algebrici
di un corpo assegnato, Boll. Un. Mat. Ital. 14 (1959), 151-162.

H. Davenport and K. F. Roth, Rational approrimations to algebraic numbers, Math-
ematika 2 (1955), 160-167.

J.-H. Evertse, The number of algebraic numbers of given degree approximating a given
algebraic number. In: Analytic number theory (Kyoto, 1996), 53-83, London Math.
Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997.

J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace
Theorem, J. reine angew. Math. 548 (2002), 21-127.

P. Fatou, Sur l’approximation des incommensurables et des séries trigonométriques,
C. R. Acad. Sci. Paris 139 (1904), 1019-1021.

20



[17]

18]

[19]

[20]

[21]

22]

[25]

[26]

[27]

28]

29]

[30]
31]

32]

33]

S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity ex-
pansion, J. Number Theory 67 (1997), 146-161.

J. H. Grace, The classification of rational approrimations, Proc. London Math. Soc.
17 (1918), 247-258.

H. Locher, On the number of good approximations of algebraic numbers by algebraic
numbers of bounded degree, Acta Arith. 89 (1999), 97-122.

K. Mahler, On the fractional parts of the powers of a rational number, II, Mathe-
matika 4 (1957), 122-124.

K. Mahler, Lectures on Diophantine approximation, Part 1: g-adic numbers and
Roth’s theorem, University of Notre Dame, Ann Arbor, 1961.

M. Mignotte, Une généralisation d’un théoréme de Cugiani—Mahler, Acta Arith. 22
(1972), 57-67.

D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957),
125-131.

G. Rodriquez, Approssimabilita di irrazionali p-adici mediante numeri razionali, Ist.

Lombardo Accad. Sci. Lett. Rend. A 98 (1964), 691-708.

G. Rodriquez, Approssimabilita di irrazionali p-adici mediante numeri razionali. 11,
Boll. Un. Mat. Ital. 20 (1965), 232—-244.

K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955),
1-20; corrigendum, 168.

W. M. Schmidt, Uber simultane Approzimation algebraischer Zahlen durch Rationale,
Acta Math. 114 (1965) 159-206.

W. M. Schmidt, On simultaneous approximations of two algebraic numbers by ratio-
nals, Acta Math. 119 (1967), 27-50.

W. M. Schmidt, Simultaneous approximations to algebraic numbers by rationals, Acta
Math. 125 (1970), 189-201.

W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551.

W. M. Schmidt, Diophantine Approximation. Lecture Notes in Mathematics 785,
Springer, 1980.

W. M. Schmidt, The subspace theorem in Diophantine approzimation, Compositio
Math. 69 (1989), 121-173.

K. B. Stolarsky, Algebraic numbers and Diophantine approximation. Pure and Ap-
plied Mathematics, No. 26. Marcel Dekker, Inc., New York, 1974.

21



[34] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Tran-
scendence properties of the exponential function in several variables. Grundlehren
der Mathematischen Wissenschaften 326. Springer—Verlag, Berlin, 2000.

Yann Bugeaud

Université Louis Pasteur
U. F. R. de mathématiques
7, rue René Descartes

67084 STRASBOURG Cedex (FRANCE)

bugeaud@math.u-strasbg.fr

22



