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Abstract. Let p be a prime number. For a positive integer n and a p–adic number ξ,
let λn(ξ) denote the supremum of the real numbers λ such that there are arbitrarily large
positive integers q such that ||qξ||p, ||qξ2||p, . . . , ||qξn||p are all less than q−λ−1. Here, ||x||p
denotes the infimum of |x−n|p as n runs through the integers. We study the set of values
taken by the function λn.
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1. Introduction

Throughout the present paper, p denotes a prime number and | · |p the usual p–adic
absolute value, normalized by |p|p = p−1. In 1935, in order to define his classification of
p–adic numbers, Mahler [11] introduced the exponents of Diophantine approximation wn.

Definition 1. Let n ≥ 1 be an integer and let ξ be a p–adic number. We denote by wn(ξ)
the supremum of the real numbers w such that, for arbitrarily large real numbers X, the
inequalities

0 < |xnξn + · · ·+ x1ξ + x0|p ≤ X−w−1, max
0≤m≤n

|xm| ≤ X,

have a solution in integers x0, . . . , xn.

The p–adic version of the Dirichlet theorem implies that wn(ξ) ≥ n for every p–adic
number ξ which is not algebraic of degree at most n. Furthermore, it follows from the
p–adic version of the Schmidt Subspace Theorem that wn(ξ) = min{n, d − 1} for every
positive integer n and every p–adic algebraic number ξ of degree d. Moreover, Sprindžuk
[15] proved that wn(ξ) = n for every n ≥ 1 and almost every p–adic number ξ, with respect
to the Haar measure; see Section 9.3 of [5] for an overview of the known results on the
exponents wn.

Another exponent of Diophantine approximation, which measures the quality of the
simultaneous rational approximation to a number and its n first integral powers, has been
introduced recently [7] in the real case.

Definition 2. Let n ≥ 1 be an integer and let ξ be a p–adic number. We denote by λn(ξ)
the supremum of the real numbers λ such that, for arbitrarily large real numbers X, the
inequalities

0 < |x0| ≤ X, max
1≤m≤n

|x0ξ
m − xm|p ≤ X−λ−1,

have a solution in integers x0, . . . , xn.
1
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The p–adic version of the Dirichlet theorem implies that λn(ξ) ≥ 1/n for every irrational
p–adic number ξ. Furthermore, it follows from the p–adic form of the Schmidt Subspace
Theorem that λn(ξ) = max{1/n, 1/(d − 1)} for every positive integer n and every p–adic
algebraic number ξ of degree d. Moreover, λn(ξ) = 1/n for every n ≥ 1 and almost every
p–adic number ξ.

In the present paper, by the spectrum of a function, we mean the set of values taken
by this function on the set of transcendental p–adic numbers. For n ≥ 1, the spectrum
of wn is equal to the whole interval [n,∞], but nothing seems to be known regarding the
spectrum of λn when n ≥ 2. We address the following question.

Problem 1. Let n ≥ 1 be an integer. Is the spectrum of the function λn equal to [1/n,∞]?

The real analogue of Problem was recently investigated in [6]. The goal of the present
paper is twofold. Firstly, we show that, for any n ≥ 1, the spectrum of the function λn
contains the interval [1,∞], proving thereby the exact analogue of Theorem 3.4 of [6].
Secondly, we establish the p–adic analogue of the metrical result from [4].

The notation a �d b means that there exists a constant c > 0 such that a ≥ b and c
depends only on d. When � is written without any subscript, it means that the constant
is absolute. We write a � b if both a� b and a� b hold.

2. Main results

Our first result is a p–adic analogue of Corollary 2.3 from [6], which slightly improved an
old theorem of Güting [9]. This seems to be the first result of this type for p–adic numbers.

Theorem 1. Let n ≥ 1 be an integer. For any real number w ≥ 2n − 1, there exist
uncountably many p–adic integers ξ such that

w1(ξ) = . . . = wn(ξ) = w.

The key tool for the proof is a construction inspired by the theory of continued fractions.
Proceeding as in [8] and in [6], we combine Theorem 1 and a transference principle of

Mahler [12] to get our main result on the spectra of the functions λn.

Theorem 2. Let n ≥ 1 be an integer and λ ≥ 1 be a real number. There are uncountably
many p–adic integers ξ, which can be constructed explicitly, such that λn(ξ) = λ. In
particular, the spectrum of λn contains the interval [1,∞].

It is with the help of metric Diophantine approximation that we are able to show that the
spectrum of wn is equal to [n,∞]. Thus, it is meaningful to try to compute the Hausdorff
dimension (for background, the reader is directed to [3]) of the set of p–adic numbers ξ
with a prescribed value for λn(ξ). For n = 1, this was done by Melničuk [13], who proved
that

dim{ξ ∈ Qp : λ1(ξ) ≥ λ} =
2

1 + λ
.

Actually, there is a slightly more precise result [3], namely

dim{ξ ∈ Qp : λ1(ξ) = λ} =
2

1 + λ
.
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In this respect, we are able to establish the p–adic analogue of Theorem 2 from [4].

Theorem 3. Let n ≥ 2 be an integer. Let λ > n− 1 be a real number. Then,

dim{ξ ∈ Qp : λn(ξ) = λ} =
2

n(1 + λ)
.

For n = 2 and 1/2 ≤ λ ≤ 1, it is expected that

dim{ξ ∈ Qp : λ2(ξ) = λ} =
2− λ
1 + λ

,

in analogy with the real case [1, 16]. We plan to investigate this problem in a subsequent
work.

3. p–adic continued fractions

This section was inspired by [10].
Set

p−1 = 1, q−1 = 0, p0 = 1, q0 = 1.

Let v = (vn)n≥1 be a sequence of positive integers and set

pn = pvnpn−2 + pn−1, qn = pvnqn−2 + qn−1, (n ≥ 1).

A rapid calculation shows that

q1 = 1, q2 = pv2 + 1, q3 = pv3 + pv2 + 1, q4 = pv2+v4 + pv4 + pv3 + pv2 + 1,

and
pn
qn

=
pv1

1 +
pv2

1 +
pv3

. . .+ pvn

.

The reader may note the differences between these continued fractions and the classical
continued fraction algorithm for real numbers. In the latter case, the convergents pn/qn
are given by the recurrences pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2, where the partial
quotients an are positive integers.

Observe that ∣∣∣∣p1

q1
− p0

q0

∣∣∣∣
p

= p−v1

and that, for n ≥ 2, we have∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣
p

=

∣∣∣∣(pvnpn−2 + pn−1)qn−1 − (pvnqn−2 + qn−1)pn−1

qnqn−1

∣∣∣∣
p

= p−vn
∣∣∣∣pn−1

qn−1

− pn−2

qn−2

∣∣∣∣
p

,

since p does not divide qnqn−1qn−2.
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Consequently, for n ≥ 0 and k ≥ 1, we have∣∣∣∣pn+k

qn+k

− pn
qn

∣∣∣∣
p

=

∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣
p

= p−vn+1−vn−...−v1 , (1)

since v1, v2, . . . are positive. Here, we have used that

|a+ b|p = max{|a|p, |b|p}
holds for every p–adic numbers a and b such that |a|p 6= |b|p. This fact will be repeatedly
used in the course of the proof of Theorem 1.

Equalities (1) show that the sequence (pn/qn)n≥1 converges p–adically. Let ξv denote its
limit. It follows from (1) that ∣∣∣∣ξv − pn

qn

∣∣∣∣
p

≤ p−vn+1−vn−...−v1 . (2)

If ∣∣∣∣ξv − pn
qn

∣∣∣∣
p

< p−vn+1−vn−...−v1 ,

then, by (1), we get∣∣∣∣ξv − pn+1

qn+1

∣∣∣∣
p

= max

{∣∣∣∣ξv − pn
qn

∣∣∣∣
p

,

∣∣∣∣pn+1

qn+1

− pn
qn

∣∣∣∣
p

}
= p−vn+1−vn−...−v1 ,

a contradiction with (2) since vn+2 ≥ 1. Consequently, we have proved that∣∣∣∣ξv − pn
qn

∣∣∣∣
p

= p−vn+1−vn−...−v1 , (n ≥ 1). (3)

4. Proof of Theorem 1

Let w > 1 be a real number. Set v1 = dwe and v2 = dw2e, where dxe denotes the
smallest integer greater than or equal to x. For n ≥ 3, let vn be the integer such that

vn + vn−2 + · · ·+ vε(n) = dwn + wn−2 + · · ·+ wε(n)e,
where ε(n) = 2 if n is even and ε(n) = 1 otherwise. Let ξ = ξv be the p–adic number
constructed by the algorithm described in Section 3 applied with v = (vn)n≥1.

To shorten the notation, for n ≥ 1, we set

un = vn + vn−2 + · · ·+ vε(n).

Note that
un ≥ un−1, n ≥ 2. (4)

Observe that

un ≤ wn + wn−2 + · · ·+ wε(n) + 1

≤ w(wn−1 + wn−3 + · · ·+ wε(n−1)) + w + 1

≤ wun−1 + w + 1, (5)
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and

un ≥ wn + wn−2 + · · ·+ wε(n)

≥ w(wn−1 + wn−3 + · · ·+ wε(n−1))

≥ w(un−1 − 1) = wun−1 − w. (6)

We begin with an easy lemma.

Lemma 1. Using the above notation, we have

qj ≥ puj , j ≥ 2.

and there exists C1, depending only on p and w, such that

qj ≤ C1p
uj , j ≥ 1.

Proof. The first statement of the lemma is straightforward, since qj ≥ pvjqj−2 for j ≥ 2.
For the second, we first check inductively that

qj ≤ 2jpuj , j ≥ 1. (7)

Indeed, q1 = 1, q2 = pu2 + 1, and, assuming that (7) holds for j = n− 1 and j = n− 2 for
an integer n ≥ 3, we have

qn ≤ 2n−2pun + 2n−1pun−1 ≤ 2npun ,

by (4), showing that (7) holds for j = n. We conclude that (7) holds for j ≥ 1.
Let n0 be such that

pw
n−wn−1 ≥ 22np, n ≥ n0,

and set C1 = 2n0 + 1. Since un ≥ wn, we have

pun(1−1/w) ≥ 2nC1p, n ≥ n0 + 1. (8)

Furthermore, by (7), we have

qn ≤ (C1 − 1)pun , 1 ≤ n ≤ n0. (9)

We prove by induction on n that

qn ≤ (C1 − 1/n)pun , n ≥ 1. (10)

By (9), inequality (10) holds for n ≤ n0. Let n ≥ n0 + 1 be an integer such that (10) holds
for n− 1 and for n− 2. Observe that, by (6) and (8),

2nC1p
un−1 ≤ 2nC1pp

un/w ≤ pun ,

thus

qn = pvnqn−2 + qn−1 ≤ (C1 − 1/(n− 2))pun + C1p
un−1

≤ (C1 − 1/(n− 2) + 2−n)pun

≤ (C1 − 1/n)pun .

This proves the lemma.
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Lemma 2. With the above notation, there are positive real numbers C2 and C3, depending
only on p and w, such that

C2q
w
j ≤ qj+1 ≤ C3q

w
j , j ≥ 1.

Proof. Let j be a positive integer. By Lemma 1 and (5), we have

qj+1 ≤ C1p
uj+1 ≤ C1p

wuj+w+1 ≤ (C1p
w+1)qwj ,

while, by Lemma 1 and (6),

qj+1 ≥ puj+1 ≥ pwuj−w ≥ (pC)−wqwj .

This proves the lemma.

We end these preliminaries with a lemma, which follows from an immediate induction.

Lemma 3. For j ≥ 0, we have

pj ≤ (pv1 + 1)qj.

For j ≥ 2, it follows from (3) that∣∣∣∣ξ − pj
qj

∣∣∣∣
p

= p−vj+1−vj−···−v1 = p−uj+1−uj ,

thus, by Lemma 1, we get

q−1
j q−1

j+1 ≤
∣∣∣∣ξ − pj

qj

∣∣∣∣
p

≤ C2
1q
−1
j q−1

j+1,

and, by Lemma 2,

C−1
3

qw+1
j

≤
∣∣∣∣ξ − pj

qj

∣∣∣∣
p

≤ C2
1C
−1
2

qw+1
j

. (11)

Consequently, we get

w ≤ w1(ξ) ≤ · · · ≤ wd(ξ) (12)

for every positive integer d (note that the unknown xn occurring in the definition of wn
can be equal to 0).

Let d be a positive integer with d < w. Let P (X) be an integer polynomial of degree
at most d and of large height H(P ) (recall that the height of an integer polynomial is
the maximum of the absolute values of its coefficients). Assume first that P (X) does not
vanish at any element of the sequence (pj/qj)j≥1. Let j be defined by qj ≤ H(P ) < qj+1.
Observe that, by Lemma 3, the numerator of the rational number P (pj/qj) is at most equal
to (d+ 1)(pv1 + 1)dH(P )qdj , thus

|P (pj/qj)|p ≥ (d+ 1)−1(pv1 + 1)−dH(P )−1q−dj .

To shorten the formulæ, set

C4 = (d+ 1)−1(pv1 + 1)−d.
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Since ξ and pj/qj are p–adic integers, the mean value theorem (see e.g. [14], Section 5.3)
gives

|P (pj/qj)− P (ξ)|p ≤ |ξ − pj/qj|p ≤ p−uj+1−uj ,

by (3). Consequently, since

|P (pj/qj)|p ≥ C4H(P )−1q−dj

we get
|P (ξ)|p = |P (pj/qj)|p ≥ C4H(P )−1−d

as soon as p−uj+1−uj < C4H(P )−1q−dj , that is, whenever

H(P ) < C4q
−d
j puj+1+uj . (13)

Similarly, we observe that

|P (pj+1/qj+1)|p ≥ C4H(P )−1q−dj+1

and
|P (pj+1/qj+1)− P (ξ)|p ≤ p−uj+2−uj+1 ≤ C2

1C
−1
2 q−1−w

j+1 .

Since w > d and H(P ) < qj+1, this implies that, if j (that is, if H(P )) is large enough, we
have |P (ξ)|p ≥ C4H(P )−1q−dj+1. In other words, for any positive real number C5 < C4, we

have |P (ξ)|p ≥ C5H(P )−1−w if H(P )−w ≤ C−1
5 C4q

−d
j+1, that is, if

H(P ) ≥ C
−1/w
4 C

1/w
5 q

d/w
j+1 . (14)

By Lemma 1, inequality (13) holds if

H(P ) < C4q
−d
j C−2

1 qjqj+1 = C−2
1 C4qj+1q

1−d
j . (15)

Using Lemma 2, we see that (14) certainly holds for

H(P ) ≥ C
−1/w
4 C

1/w
5 qj+1(C3q

w
j )−1+d/w. (16)

Selecting C5 such that

C
−1/w
4 C

1/w
5 C

−1+d/w
3 < C4C

−2
1 ,

we get that, if 1 − d ≥ −w + d, then for every polynomial P (X) whose height is in the
interval [qj, qj+1) at least one of the inequalities (15) and (16) is satisfied. This means that
the whole range of values qj ≤ H(P ) < qj+1 is covered as soon as

w ≥ 2d− 1. (17)

To summarize, we have proved that, if j is sufficiently large, then, for w ≥ 2d− 1 and for
any polynomial P (X) of degree at most d that does not vanish at pj/qj and whose height
satisfies qj ≤ H(P ) < qj+1, we have

|P (ξ)|p ≥ C5H(P )−w−1.

In particular, if the polynomial P (X) of degree at most d does not vanish at any element
of the sequence (pj/qj)j≥1 and has sufficiently large height, then it satisfies

|P (ξ)|p ≥ C5H(P )−w−1. (18)
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Assume now that there are positive integers a1, . . . , ah, distinct positive integers n1, . . . , nh
and an integer polynomial R(X) such that the polynomial P (X) of degree at most d can
be written as

P (X) = (qn1X − pn1)
a1 . . . (qnhX − pnh)ahR(X),

where R(X) does not vanish at any element of the sequence (pj/qj)j≥1. It follows from
(11), (18), Lemma 3, and the so–called Gelfond inequality (see, e.g., [5], Lemma A.3)

H(P ) �d,w qa1
n1
. . . qahnhH(R)

that

|P (ξ)|p �d,w q−a1(w+1)
n1

. . . q−ah(w+1)
nh

|R(ξ)|p
�d,w q−a1(w+1)

n1
. . . q−ah(w+1)

nh
H(R)−w−1

�d,w

(
qa1
n1
. . . qahnhH(R)

)−w−1 �d,w H(P )−w−1.

We conclude that, if (17) is satisfied, then

|P (ξ)|p �d,w H(P )−w−1

holds for every polynomial P (X) of degree at most d and sufficiently large height, hence
wd(ξ) ≤ w. Combined with (12), this completes the proof of Theorem 1, since our con-
struction is flexible enough to yield uncountably many p–adic integers with the required
property.

5. Proof of Theorem 2

Let ξ be an irrational p–adic number. Clearly, we have

λ1(ξ) = w1(ξ) ≥ 1

and

λ1(ξ) ≥ λ2(ξ) ≥ . . . (19)

Our first lemma establishes a relation between the exponents λn and λm when m divides
n.

Lemma 4. For any positive integers k and n, and any transcendental p–adic number ξ we
have

λkn(ξ) ≥ λk(ξ)− n+ 1

n
.

Proof. Let v be a positive real number and q be a positive integer such that

max
1≤j≤k

|qξj − pj|p ≤ q−v−1,

for suitable integers p1, . . . , pk. Let h be an integer with 1 ≤ h ≤ kn. Write h = j1+· · ·+jm
with m ≤ n and 1 ≤ j1, . . . , jm ≤ k. Then, there are p–adic numbers ε1, . . . , εm such that

|εi|p ≤ q−v−1, qξji = pji + εi, (i = 1, . . . ,m).
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Consequently, we have

qmξh =
m∏
i=1

qξji =
m∏
i=1

(pji + εi) = ε′ +
m∏
i=1

pji ,

for a p–adic number ε′ satisfying |ε′|p ≤ q−v−1. This shows that

|qmξh − pj1 . . . pjm |p ≤ q−v−1

and
|qnξh − pj1 . . . pjmqn−m|p ≤ q−v−1 = (qn)−1−(v−n+1)/n,

independently of h. This proves the lemma.

We display an immediate consequence of Lemma 4.

Corollary 1. Let ξ be a p–adic irrational number. Then, λn(ξ) = ∞ holds for every
positive n if, and only if, λ1(ξ) =∞.

We recall two relations between the exponents wn and λn deduced from the p–adic
analogue of Khintchine’s transference principle due to Mahler [12].

Proposition 1. For any positive integer n and any p–adic number ξ which is not algebraic
of degree at most n, we have

wn(ξ)

(n− 1)wn(ξ) + n
≤ λn(ξ) ≤ wn(ξ)− n+ 1

n
.

Proof. See [12]. Note that the value of wn(ξ) does not change, if, in Definition 1, we only
consider tuples (x0, x1, . . . , xn) such that there exists at least one index i for which p does
not divide xi. Similarly, the value of λn(ξ) does not change, if, in Definition 2, we only
consider tuples (x0, x1, . . . , xn) such that p does not divide x0.

We are now able to complete the proof of Theorem 2.

Proof of Theorem 2. Let n ≥ 2 be an integer and ξ be a transcendental p–adic number.
Lemma 4 with k = 1 implies the lower bound

λn(ξ) ≥ w1(ξ)− n+ 1

n
. (20)

On the other hand, Proposition 1 gives the upper bound

λn(ξ) ≤ wn(ξ)− n+ 1

n
.

Now, Theorem 1 asserts that for any given real number w ≥ 2n−1, there exist uncountably
many p–adic integers ξw such that

w1(ξw) = · · · = wn(ξw) = w.

Then,

λk(ξw) =
w

k
− 1 +

1

k
, k = 1, . . . , n.
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In particular,

λn(ξw) =
w

n
− 1 +

1

n
,

and this gives the required result.

6. Proof of Theorem 3

As Qp can be covered by a countable collection of balls of radius 1 we will only prove
the theorem for one such ball, namely Zp. The arguments are the same for any other
ball but some of the constants will change. The proof follows that of [4]. Fix an integer
n ≥ 2. Define the curve Γ ⊂ Zn

p as Γ = {(ξ, ξ2, . . . , ξn) : ξ ∈ Zp}. We will use the notation
|a, b, c| to denote the maximum of |a|, |b| and |c|. If a is a vector then |a| is the maximum
of the vector entries. The set of points (ξ, ξ2, . . . , ξn) ∈ Γ which satisfy the inequalities
|qξ − r|p ≤ |q, r, t|−τ and |qξi − ti|p ≤ |q, r, t|−τ for infinitely many q, r ∈ Z and t ∈ Zn−1

will be denoted by Wτ (Γ). The set Wτ (Γ) is closely related to the set of exact order in
the statement of Theorem 3 and in order to prove the theorem we will first obtain the
Hausdorff dimension and measure of Wτ (Γ) for sufficiently large τ . The proof relies on
the following lemma which shows that if (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ) then the rational points
(r/q, t/q) also lie on Γ for τ sufficiently large.

Lemma 5. Let (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ) be such that there exist infinitely many D, r ∈ Z,
t ∈ Zn−1 such that |Dξ − r|p < |D, r, t|−τ and |Dξi − ti|p < |D, r, t|−τ . If τ > n, then
(r/D, t/D) ∈ Γ.

Proof. Let (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ). Hence there exist integers r, ti and D such that
|Dξ−r|p < |D, r, t|−τ and |Dξi− ti|p < |D, r, t|−τ . Therefore, |ξ−r/D|p < |D, r, t|−τ |D|−1

p

and |ξi − t/D|p < |D, r, t|−τ |D|−1
p and there exist ε1, . . . , εn, such that ξ − r/D = ε1 and

ξi − ti/D = εi for i = 2, . . . , n with |εi|p < |D, r, t|−τ |D|−1
p . Then,

ξi = ti/D + εi = (r/D + ε1)
i = (r/D)i +R(ε1)

where R(X) is a rational polynomial divisible by X. Hence, ti/D − (r/D)i = R(ε1) − εi
so that

Di−1ti − ri = Di(R(ε1)− εi).
Clearly, Di−1R(X) ∈ Z[X], so that |DiR(ε1)|p ≤ |D|p|ε1|p < |D, r, t|−τ . Thus,

|Di−1ti − ri|p ≤ |D, r, t|−τ .

Since Di−1ti − ri is an integer, its p–adic absolute value is either 0, or at least equal to
|Di−1ti−ri|−1. Combined with our assumption that τ exceeds n, the above inequality shows
that Di−1ti = ri for i = 2, . . . , n. This implies that (r/D, t/D) lies on Γ, as asserted.

Define the point Prq as

Prq =

(
r

q
, . . . ,

rn

qn

)
=

(
rqn−1

qn
, . . . ,

rn

qn

)
.
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If the highest common factor of r and q is 1 then the lowest common denominator of the
coordinates of Prq is qn. On the other hand, if (r, q) = h > 1 then we can write r = r1h
and q = q1h so that

Prq =

(
r1q

n−1
1

qn1
, . . . ,

rn1
qn1

)
= Pr1q1 .

We may therefore assume without loss of generality that (r, q) = 1. If Ξ = (ξ, ξ2, . . . , ξn) ∈
Wτ (Γ) and τ > n, then Lemma 5 asserts that Ξ must be approximated by infinitely many
points Prq with (r, q) = 1 and must satisfy the inequalities |qnξ − rqn−1|p < |qn, rn|−τ ,
|qnξ2 − r2qn−2|p < |qn, rn|−τ , . . . , |qnξn − rn|p < |qn, rn|−τ .

The proof of the theorem now follows that in [4]. First, we move from the set Wτ (Γ) to
the set

Vτ (Γ) = {ξ ∈ Zp : (ξ, ξ2, . . . , ξn) ∈ Wτ (Γ)}.
It is not difficult to show that for all ξ1, ξ2 in Zp, we have

|ξ1 − ξ2|p = max
i=1,...,n

|ξi1 − ξi2|p.

Thus, there is a bi–Lipschitz transformation between any ball B(ξ, r) ⊂ Zp and the image
of that ball on Γ. To determine the Hausdorff dimension of Wτ (Γ) it is therefore enough
to find the Hausdorff dimension of Vτ (Γ). It can be readily verified that the following
inclusions hold for Vτ (Γ)

∞⋂
N=1

⋃
k>N

⋃
|q,r|=k

B(r/q, |rn, qn|−τ ) ⊂ Vτ (Γ) ⊂
∞⋂
N=1

⋃
k>N

⋃
|q,r|=k

B(r/q, |rn, qn|−τ |qn|−1
p ). (21)

To prove the exact order result it is necessary to obtain dimension and measure results
for Wτ (Γ). The fact that dimWτ (Γ) = dimVτ (Γ) ≥ 2

nτ
and the fact that the Hausdorff

2/nτ measure is infinite follows directly from Theorem 16 in [2] by using the LHS of (21)
and putting ψ(r) = r−nτ and f(r) = rs. It is therefore only necessary to prove the upper
bound for the Hausdorff dimension.

Lemma 6. For any n ≥ 2 and τ > n we have

dimVτ (Γ) ≤ 2

nτ
.

The proof follows that of [4, Lemma 2]. Using the RHS of (21) gives a cover of Vτ (Γ) so
that

Hs(Vτ (Γ)) �
∑
k>N

∑
r,q:max(r,q)=k

|rn, qn|−τs|qn|−sp

�
∑
k>N

 ∑
r,q:max(r,q)=q=k

|rn, qn|−τs|qn|−sp +
∑

r,q:max(r,q)=r=k

|rn, qn|−τs|qn|−sp


�

∑
k>N

(
kk−nτs|k|−nsp + k−τns

k∑
q=1

|q|−nsp

)
.
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Consider the second sum first and let α be such that pα ≤ k < pα+1. Then, as |k|p = 1 if
p does not divide k, we have

∑
k>N

k−τns
k∑
q=1

|q|−nsp =
∑
k>N

k−τns

 ∑
q≤k,p6 | q

1 +
∑

q≤k:p|q and p2 6 | q

pns + · · ·+
∑

q≤k:pα|q

pαns


�

∑
k>N

k−τns
(
k +

k

p
pns +

k

p2
p2ns + · · ·+ k

pα
pαns

)

�
∑
k>N

k1−τns

(
α∑
i=0

pi(ns−1)

)
�
∑
k>N

kns−τns <∞

for s > 1
nτ−n . Clearly, for τ > n ≥ 2 , 2

nτ
> 1

nτ−n so for s > 2
nτ

the series converges. Now,
using the same arguments consider the first sum to obtain∑
k>N

kk−nτs|k|−nsp �
∑

k>N :p 6 | k

k1−nτs +
∑

r>N :p6 | r

(pr)1−nτspns +
∑

r>N :p 6 | r

(p2r)1−nτsp2ns + . . .

�
∑
k>N

k1−nτs
∞∑
i=0

pi(1+ns−nτs)

The last geometric series again converges if s > 1
nτ−n . Thus for s > 2

nτ
both sums converge

which is enough to prove dimWτ (Γ) = dimVτ (Γ) ≤ 2
nτ

for τ > n.

It is now possible to obtain the dimension of the set

Eλ := {ξ ∈ Zp : λn(ξ) = λ},

when λ exceeds n− 1. Clearly, Eλ ⊂ Wλ+1(Γ) so that

dimEλ ≤
2

n(1 + λ)
,

by Lemma 6. Note that

Eλ = lim
n→∞

Wλ+1(Γ) \Wλ+1+1/n(Γ).

Also, H2/n(1+λ)(Wλ+1(Γ)) = ∞, ([2, Theorem 16]) and H2/n(1+λ)(Wλ+1+1/n(Γ)) = 0 from
the definition of Hausdorff dimension. Thus,

H2/n(1+λ)(Wλ+1(Γ) \Wλ+1+1/n(Γ)) =∞,

which implies that

dimEλ ≥
2

n(1 + λ)
.

This proves Theorem 3.
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7, rue René Descartes NUI Maynooth
67084 STRASBOURG Co. Kildare
France Republic of Ireland
bugeaud@math.unistra.fr ddickinson@maths.nuim.ie


