Sets of exact approximation order by rational numbers II
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Abstract. For a non-increasing function ¥, let Exact(V) be the set of
real numbers that are approximable by rational numbers to order V¥,
but to no order ¢V with 0 < ¢ < 1. In a previous paper, we determined
the Hausdorff dimension of the set Exact(¥) when x +— 2*¥(z) is non-
increasing and the sum )., xV(x) converges. In the present note we
complement this result by establishing that Exact(¥) has full Hausdorff
dimension for a large class of functions ¥V that do not decrease too
slowly and are such that the sum ) -, *¥(x) diverges. Furthermore,

we discuss the case where x + x?V(x) is a constant function.

1. Introduction
For a function ¥ : R~g — R+, let
K(U) = {f eR: ‘5 — B‘ < ¥(q) for infinitely many rational numbers Z_?}
q q

denote the set of W-approximable real numbers. Jarnik [15], Satz 6, used the theory of
continued fractions to show explicitly that, if ¥ is non-increasing and satisfies ¥(z) =
o(x~2), then there exist real numbers in X(¥) which do not belong to any set K(c¥) with
0 < ¢ < 1. His result can be restated as follows.

Theorem J. Let ¥ : R~ — R~ be a non-increasing function satisfying ¥(z) = o(x™2).
Then, the set
Exact(¥) := K(¥)\ | ] £((1-1/m)¥)

m>2
of real numbers approximable to order ¥ and to no better order is non-empty.

In other words, Exact(V) is the set of real numbers £ such that

1€ —p/q| < ¥(q) infinitely often
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and
1€ —p/q| > c¥(q) for any ¢ < 1 and any ¢ > qo(c, &),

where ¢q(c,§) denotes a positive real number depending only on ¢ and on &. Jarnik’s
method, however, provides no metric statement for that set.

In 1924, Khintchine [18] (see also his book [19]) used the theory of continued fractions
to prove that, if z +— 22¥(x) is non-increasing, then K(¥) has Lebesgue measure zero if the
sum » . -, ¥(x) converges and has full Lebesgue measure otherwise. In the convergence
case, his result was considerably refined by Jarnik who established [15], Satz 5, that, if
®: R.p — R is a positive continuous function such that ®(x)/x tends monotonically
to infinity with , then the sets X(¥) \ (¥ o ®) and K(¥) have the same Hausdorff H/-
measure for a general dimension function f (see [23, 8] for the background on the theory
of Hausdorff measure). This is, however, not strong enough to imply that Exact(¥) and
KC(¥) have the same Hausdorff dimension, a problem raised by Beresnevich, Dickinson and
Velani at the end of [1] and solved in [2], where Theorem B below is established. Recall
that the lower order at infinity A(g) of a function g : R~y — R~ is defined by

. logg(x)
Ag) = liminf =2

This notion arises naturally in estimating the Hausdorff dimension of the sets (), see
e.g., Dodson [7] and Dickinson [6].

Theorem B. Let ¥ : R.q — R+ be such that x — 2?¥(z) is non-increasing. Assume
that thesum ) -, xV¥(x) converges. If A\ denotes the lower order at infinity of the function
1/, then B
2
dim Exact(¥) = dim £(¥) = T
Up to the extra assumption on ¥, namely the fact that = — 2?¥(x) is non-increasing
(which implies that x +— ¥(z) is decreasing), Theorem B provides a very satisfactory
strengthening of Theorem J when the sum ) ., 2¥(x) converges. In view of this result,
there remain two natural questions to investigate.

Problem 1. Let ¥ : R.g — R~ be a non-increasing function satisfying ¥(z) = o(z?)
and such that the sum ) -, xV(x) diverges. To find the Hausdorff dimension of the set
Exact(¥). B

Problem 2. Let ¢ be a positive real number and denote by Exact(c) the set of real
numbers & such that

2

1€ —p/q| < cq™ infinitely often

and
€ —p/al > (c—€)q™®  for any e > 0 and any q > qo(e,€).

To study the set Exact(c).

The main aim of the present paper is to present some new contribution towards Prob-
lem 1. We establish in Section 2 that Exact(¥) has full Hausdorff dimension if the function
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U satisfies the assumption of Problem 1 and does not decrease too slowly. Furthermore,
we give in Section 3 a brief survey of known results on Problem 2, together with several
open questions.

2. On Problem 1

Apparently, there is in the literature a single paper on Problem 1. It was written in
1952 by Kurzweil [20], a student of Jarnik. It contains, among others, the following result.

Theorem K. Let ¥ : R-y — R be a continuous funtion such that z — z?¥(z) is
non-increasing and tends to 0 as x tends to infinity. Assume that the sum ), z¥(z)
diverges and that there exists an integer k such that a

1

V() > 22(log z)k’

for every large .

Assume moreover that (logx)?V(xlogz)/¥(x) tends to 1 as x tends to infinity. Then, the
Hausdorff dimension of the set IC(3¥) \ K(¥) is equal to one.

It is easily seen that the assumption of Theorem K is satisfied for any function ¥ of
the form

z— 2 (logz)* (log, £)** ... (log, x)™, (1)

where log; denotes the i-th iterated logarithm and ayq, . . ., oy are real numbers, not all zero,
with —1 < ay <0 and a; < 0 if j is the smallest index h for which ay, # 0. Theorem K
follows from the discussion in Section 4 of [20], whose main statement is more general but
quite complicated to state. For its proof, Kurzweil used the theory of continued fractions
and constructed a dimension function f such that H/ (K (3¥)) is infinite, whereas H/ (K(¥))
is zero. Although the constant 3 occurring in Theorem K can be slightly lowered, we do
not believe that Kurzweil’s method could give any dimension result for the set Exact(¥).
However, and this is the purpose of the present note, it is possible to refine the
construction given in [2] in order to give a partial positive answer to Problem 1.

Theorem 1. Let ¥ : R.y — R~ be such that x — x?VU(x) is non-increasing. Assume
that the sum ) -, xW¥(x) diverges and that

1 1

<wv < ——M—
x2te = (z) < 10022 log x’

(2)
for any positive real number € and any sufficiently large x. Then we have
dim Exact(¥) = dim £(¥) = 1.
No particular importance has to be attached to the numerical constant 100 in the

statement of Theorem 1, which can be slightly reduced. Theorem 1 covers the case of
functions of the form (1) with @3 = —1 and a9 < 0, among others.
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The proof of Theorem 1 follows the same lines as that of Theorem 1 of [2], except that
we have to suitably modify Lemma 6 from [2], whose proof heavily uses the assumption
that the sum ) ., «¥(x) converges.

The idea is to construct a Cantor set as large as possible contained in the set Exact(¥).
To do this, we construct trees of continued fraction expansions, and use the fact that the
quality of rational approximation to a real number can be easily read on its continued frac-
tion expansion. We construct real numbers & = [0; a1, as,...] and an increasing sequence
of integers (ny)r>1 such that the order of approximation to £ by rational numbers is given
by the quality of the approximations of £ by the rationals [0; ay, as, ..., ay,], for £ > 1. In
particular, the ‘intermediate’ partial quotients, that is, the a,,’s with n not in (ng +1)k>1,
cannot be too large. We stress that, when the sum ) ., ¥ (z) converges, then we have
considerably more choice for these intermediate partial quotients than when this sum di-
verges. This explains why the ‘divergence case’ is more delicate than the ‘convergence
case’.

To keep the present note short, we choose not to give a full proof of Theorem 1, but
merely to constantly refer the reader to the proof of Theorem 1 from [2] and to explain
which part of it should be modified.

Proof of Theorem 1. We point out how the proof of Theorem 1 from [2] should be modi-
fied. We keep the notation from that paper. The main difference is that, because of the
divergence of the sum ) -, z¥(x), no integer M satisfies (5) from [2]. Since the choice
of M does not affect the construction of a suitable integer @1 in [2], we have only to adapt
the inductive step of the Cantor construction, namely Lemma 6 from [2]. In the sequel,
we assume that Q) is sufficiently large, and we set

Qr=0Q%, fork>1. (3)

Let k be a positive integer. Following the notation of Lemma 6 from [2], let I :=
Uk (p/q) be a connected component of Ej with Q/10 < g < Q. Write p/q = [0; a1, ..., a,]
with n even. Denote by (p¢/qr)e>1 the sequence of the convergents to a number in 1. It
follows from the definition of Uy (p/q) that

ant1 2> ((q))71/2 2 50 Q¥ (Qr/10) ™.
Since ¢, = ¢ > Q1 /10, an easy induction shows that
tnts = 2777 Q1/100, for j > 1, (4)

Set
M’ =Q;/100 and h= [6logQx],

where |z] denotes the integer part of the real number x. Instead of the set J occurring in
[2], we consider the subset J’ of I composed of the real numbers whose partial quotients

satisfy
1

Uptj1 < 3.2 M2U(2/2 M)’

for 1 <j < h. (5)
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In other words, we do not assume that all the partial quotients are small, like in the
definition of J, but that only some of them are. Lemma 3 from [2] yields that

h
Leb(.J) > Leb(I H (1—-9-20 M?W(20/20M)),

where Leb denotes the Lebesgue measure. It follows from the right-hand side of (2) that

9
~ 1001og(29/2M")’

9-29 M?w(2/2M") < for 1 < j < h.

Consequently,

©|o

h h
log [T (1—9-27 M w(2//2M")) Z 9.929 M2 (2912 M)

h
1
=23
= 2
~ 101og(27/2M")
_ 3log Qk S 3
5logM’ — 50’

and we get
Leb(J') > e31/°0 Leb(I) > Leb(I)/2.

As in [2], we check that if £ is in J’ then (4) and (5) yield that

1
Uptjy1 <
e 3q7%+j U(gn+j)

for 1 <j <h, (6)
since x — z?¥(x) is non-increasing. We infer from (6) and Lemma 2 from [2] that

‘5 Pr+j > U(qnys), for j =1,...,h+ 1 such that & # pni;/qn+j-

Qn+j

Consequently, since
Intnt1 > 2M2Q1 /100 > Q0

we have, for £ in J’,

'5— % > U (v) for any u/v with Q) < v < Q3? and u/v # €.

Let @ be a real number with
1000(Leb(I)) "t log(1/Leb(1)) < Q3% < Q < Q¥%. (7)
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Such a number @) does exist since
Leb(I) > 2 F 1W(q) > 2 F 1 w(Q,) > 2751Q /2,

by (3) and the left-hand side of (2) with ¢ = 1/2 (recall that Q) is assumed to be large
enough). The Lebesgue measure of the set A of £ € I for which

_p_ 1
‘5 q‘<qQ

is satisfied by a rational number p/q with ¢ < @/10 is less than or equal to Leb([I)/4.
Consequently,

Leb((I'\ A)nJ’) > Leb(I)/4,

and we can then argue exactly as in [2] to prove that there are at least [Q*Leb(7)/88]
evenly spaced rational numbers in I N J’ whose denominator lies between /10 and Q.
Since, by (3) and (7), Qk+1 is a suitable choice for @), the proof of the inductive step is
completed.

With our modified version of Lemma 6 from [2], we define a Cantor set C exactly as
in [2]. Using the left-hand side of (2), it then follows from Example 4.6 of Falconer [8] that
C has full Hausdorff dimension.

The left-hand side of (2) is a necessary assumption in the present proof. Indeed, we

cannot allow arbitrarily large gaps in the sequence (Q)r>1, unlike what is done on page
183 of [2]. O

3. The Lagrange spectrum and Problem 2

The aim of the present section is to collect some results on Problem 2 and to point
out several open questions.

We restrict our attention to the set of badly approximable numbers, that is, to the
set Bad composed of the irrational numbers & for which there exists a positive constant

c(&) such that
1€ —p/q| > c(&) g2 for all p/q with ¢ > 1.
Jarnik [14] established that Bad has full Hausdorff dimension. Recall also that an ir-

rational number ¢ is in Bad if, and only if, the sequence of its partial quotients in the
continued fraction expansion

¢ = lag;ay,as,.. .|

is a bounded sequence.
For £ in Bad, set

A(§) = lim inf ¢ - [[¢€]].
q—+00
The set L of values taken by the function A is called the Lagrange spectrum.
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For any positive real number ¢, denote by Exact’(c) the set of real numbers ¢ such

that
1€ —p/q| < (c+¢e)g? has infinitely many solutions for every ¢ > 0
and
€ —p/al >cq®  forany ¢ > qo.

Clearly, any £ in Bad belongs either to Exact(\(€)) or to Exact’(A(€)), and the set of
positive real numbers ¢ such that Exact(c) is non-empty is contained in L.

According to Malyshev [22], the set of positive real numbers ¢ such that Exact(c) is
non-empty is equal to the Lagrange spectrum L.

It follows from the theory of continued fractions (see e.g., [3]) that if £ = [ag; a1, as, . . ]
is in Bad, then, setting p,/q, = [ao; a1, - ..a,] for n > 1, we have

1 Dn 1 1

(@1 + D8 nrr + G)n ‘ 4| = rrtn  annd?
and
@n - | @€l = 1/([ang1; @ny2, Gnygs, - -]+ [05any an, .. ., a1]),
whence
1/X\¢) = liszrup ([ant1; anto, @nesy -]+ [0;an, an_1,...,a1]). (8)

This expression of A(§) is used in the proofs of most of the results on L.
Theorem 2. For any positive real number ¢ with ¢ < 1/6, the set Exact(c) is non-empty.

Proof. 1t is sufficient to slightly modify the proof of the corresponding statement for the
set L. The key ingredient is a deep result of Hall [10], claiming that any real number can
be written in the form a+[0; b1, ba, .. .]+[0; c1, Ca, .. .], where a is an integer and the partial
quotients b; and ¢;, i > 1, do not exceed 4. Let A be a real number with A > 6 and write
it under the above form. Then, defining

é.: [01;02,...,ckl,bkz,...,bl,a,cl,...,ckQ,ka,...,bl,a,...],
where a > 5 and (k;);>1 is a rapidly increasing sequence of positive integers, we easily
check that A(§) = 1/A. We would like a more precise result, namely to decide whether

¢ belongs to Exact(c) or to Exact’(c). Recall that, regardless of the positive integers
di,...,dg,dg+1, we have

[0; dy,.. .,dk,dk+1] < [O;dl, . ..,dk], if £ is odd,

and
[O;dl, .. -;dkadlﬁ—l] > [0, dy, .. .,dk], if k£ is even.

Using this and (8), it is easily seen that we can choose the parity of the k;’s accordingly to
decide whether ¢ belongs to Exact(\(€)) or to Exact’(A\(£)), both sets being consequently
non-empty. O

For a positive real number ¢, write B. for the set composed of the real numbers &
with A(§) > ¢. We propose open questions and briefly survey some of the results on the
Lagrange spectrum and on the sets B.. The interested reader is directed to the survey
[22] and to the book of Cusick and Flahive [5] for more information and bibliographical
references.



Problem 3. To study the function
0 :cr— dim(B,).
Is § continuous ?

It is known that B, is countable (and, consequently, dim(B.) = 0) for any ¢ > 1/3
and that dim(B,) tends to 1 as ¢ tends to 0.

Problem 4. Does there exist a positive real number ¢ such that dim Exact(c) is positive 7

Hightower [13] proved in 1970 that there are countably many disjoint intervals in
(0,1/3) that contain no element from L, see also [9, 21].

Problem 5. To study the functions

7 :c— Leb(LN(c 1))
and

o:cr—dim(LN(c1)).

Recalling that £ contains the interval (0,1/6), we get that 7(c) is positive and thus
o(c) = 1 if ¢ is sufficiently small. Furthermore, Bumby [4] established that 7(8/v/689) = 0
(see [5], Chapter 6).

We conclude this section by mentionning that many authors have studied sets of real
numbers whose partial quotients belong to some fixed set, rather than the sets B.. Let A
be a subset of the set of positive integers and set

dp :=dim{¢ = [0;a1,a9,...] 1 a; € A for i > 1}.
No close formula is known for dy; oy, whose first decimal digits are 0.5312805. . ., see [12,
16].

For simplicity, write das for dgy . ary, for every integer M > 1. The first upper and
lower bounds for d,; were obtained by Jarnik [14]. We quote below an asymptotic estimate
of Hensley [11].

Theorem H. As M tends to infinity, we have

6 72 log M
w2 M wi M2
Theorem H complements a result of Kurzweil [20] asserting that

1 —-0.99¢ < dim(B.) <1—-0.25¢

holds for any positive real number ¢ < 1/1000.
Finally, we point out a recent, beautiful result of Kesseb6hmer and Zhu [17].

dy=1- + O(M™?).

Theorem KZ. For any real number d in (0,1), there exists a subset A of the set of
positive integers such that dy = d. The set

{da : A is a finite subset of the integers}

is dense in (0, 1).

Acknowledgements. I am pleased to thank Victor Beresnevich who detected several
inaccuracies in an earlier version of this text.



1]

9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

References

V. Beresnevich, H. Dickinson and S. L. Velani, Sets of exact “logarithmic order” in
the theory of Diophantine approrimation, Math. Ann. 321 (2001), 253-273.

Y. Bugeaud, Sets of exact approximation order by rational numbers, Math. Ann.
327 (2003), 171-190.

Y. Bugeaud, Approximation by algebraic numbers. Cambridge Tracts in Mathemat-
ics 160, Cambridge, 2004.

R. T. Bumby, Hausdorff dimensions of Cantor sets, J. reine angew. Math. 331
(1982), 192-206.

T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra. Mathematical
Surveys and Monographs, vol. 30, American Mathematical Society, Providence, RI,
1989.

H. Dickinson, A remark on the Jarnik—Besicovitch theorem, Glasgow Math. J. 39
(1997), 233-236.

M. M. Dodson, Hausdorff dimension, lower order and Khintchine’s theorem in metric
Diophantine approximation, J. reine angew. Math. 432 (1992), 69-76.

K. Falconer, Fractal Geometry : Mathematical Foundations and Applications. John
Wiley & sons, 1990.

M. E. Gbur, On the lower Markov spectrum, Monatsh. Math. 81 (1976), 95-107.

M. Hall, On the sum and product of continued fractions, Ann. of Math. 48 (1947),
966-993

D. Hensley, Continued fractions Cantor sets, Hausdorff dimension and functional
analysis, J. Number Theory 40 (1992), 336-358.

D. Hensley, A polynomial time algorithm for the Hausdorff dimension of continued
fractions Cantor sets, J. Number Theory 58 (1996), 9-45; erratum ibid. 59 (1996),
419.

C. J. Hightower, The minima of indefinite binary quadratic forms, J. Number Theory
2 (1970), 364-378.

V. Jarnik, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-
Fiz. 36 (1928/29), 91-106.

V. Jarnik, Uber die simultanen Diophantische Approzimationen, Math. Z. 33 (1931),
505-543.

O. Jenkinson and M. Pollicott, Computing the dimension of dynamically defined sets:
E5 and bounded continued fractions, Ergod. Th. Dynam. Sys. 21 (2001), 1429-1445.

M. Kessebohmer and S. Zhu, Dimension sets for infinite IFSs: the Texan conjecture,
J. Number Theory 116 (2006), 230-246.

9



[18] A. Ya. Khintchine, Einige Sdtze tiber Kettenbriiche, mit Anwendungen auf die The-
orie der diophantischen Approrimationen, Math. Ann. 92 (1924), 115-125.

[19] A. Ya. Khintchine, Continued Fractions, University of Chicago Press, 1964.

[20] J. Kurzweil, A contribution to the metric theory of diophantine approximations,
Czechoslovak Math. J. 1 (1951), 149-178.

[21] W. R. Lawrence, Subsequent to a theorem of Markoff, J. Number Theory 12 (1980),
201-209.

[22] A. V. Malyshev, Markov and Lagrange spectra (survey of the literature), Studies in
number theory (LOMI), 4. Zap. Nauén. Sem. Leningrad. Otdel. Mat. Inst.
Steklov. (LOMI) 67 (1977), 5-38, 225 (in Russian); English translation in J. Soviet
Math. 16 (1981) 767-788.

[23] C. A. Rogers, Hausdorff Measures. Cambridge University Press, Cambridge, 1970.

Yann Bugeaud

Université Louis Pasteur

U. F. R. de mathématiques

7, rue René Descartes

67084 STRASBOURG (France)

e-mail : bugeaud@math.u-strasbg.fr

10



