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1. Introduction

One of the first important results in Diophantine approximation goes back to 1842

and the Dirichlet Theorem [23]. It asserts that if αij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are mn real

numbers and Q > 1 is an integer, then there exist integers q1, . . . , qm, p1, . . . , pn with

1 ≤ max{|q1|, . . . , |qm|} ≤ Q (1.1)

and

max
1≤i≤n

|αi1q1 + . . . + αimqm − pi| ≤ Q−m/n. (1.2)

In his paper, Dirichlet gives a complete proof for n = 1 and observes that this proof can

be easily extended to arbitrary values of n. Good references on this topic are Chapter II

of [52] and Cassels’ book [17].

There are in the literature many papers on various generalisations of the Dirichlet

Theorem and on closely related problems. A typical question asks whether for a given set

of mn real numbers αij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, the above statement continues to hold

with an exponent of Q in (1.2) smaller than −m/n. In most of the works, the sup norm is

used, exactly as in (1.1) and (1.2). However, it follows from (1.1) and (1.2) that

1 ≤
( m

∏

j=1

max{1, |qj|}
)1/m

≤ Q (1.3)

and
(

∏

1≤i≤n

|αi1q1 + . . . + αimqm − pi|
)1/n

≤ Q−m/n. (1.4)

Extensions of the Dirichlet Theorem and its relatives with the geometric mean like in (1.3)

and (1.4), rather than the sup norm, have been much less studied, in particular because

this is a much more difficult problem. We call this area multiplicative Diophantine approx-

imation, in opposition to standard Diophantine approximation (following the terminology

from [10]). An emblematic open question in multiplicative Diophantine approximation is
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the Littlewood conjecture which remains open despite some recent spectacular progress

[28]. As for the typical problem mentioned above, it is easily seen that a positive answer to

it in the standard setting implies a positive answer in the multiplicative setting, but that

the converse does not hold.

Many recent progress, starting with the proof by Kleinbock and Margulis [41] of

a conjecture of A. Baker, show that we are now able to attack many questions in

multiplicative Diophantine approximation that seemed to be out of reach a decade ago.

Kleinbock and Margulis used for the first time in this context the fruitful interplay

between Diophantine approximation and dynamical and ergodic properties of actions on

homogeneous spaces of Lie groups. Also, Beresnevich, Dickinson and Velani [6, 7] have very

recently obtained beautiful results in the multiplicative setting by developing the standard

theory. All this motivates the present work, which is essentially a survey, but contains

also several new results. We aim at putting forward several, hopefully interesting, open

questions. Part of them are certainly within reach, while others would probably need some

breakthrough.

Our paper is organized as follows. Section 2 is devoted to the definitions of the

multiplicative exponents of Diophantine approximation of matrices and include basic

results like transference theorems and Hausdorff dimension of exceptional sets. We focus

in Section 3 on the particular case of row and column matrices made up with the n

successive powers of a real number. Thus, we define and study the functions Ωn and Λn that

complement the exponent wn introduced by Mahler [44] to classify the set of real numbers.

The short Section 4 briefly surveys some of the results obtained by using dynamical and

ergodic properties of actions on homogeneous spaces of Lie groups, in the same spirit as in

the groundbreaking work [41]. Finally, we discuss in Section 5 the Littlewood conjecture

and introduce its inhomogeneous analogue.

2. Exponents of multiplicative Diophantine approximation

2.1. Definitions

For a real number x, let us denote by ‖x‖ its distance to the ring of integers. More

generally, for any (column) vector y in Rn, we denote by |y| the maximum of the absolute

values of its coordinates and by

‖y‖ = min
z∈Zn

|y − z|

the maximum of the distances of its coordinates to the rational integers. There should not

be any confusion with the absolute value | · |.
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We begin by recalling the standard framework in Diophantine approximation. Let n

and m be two positive integers and let A be a real n×m matrix, that is, a matrix with n

rows and m columns.

For an n-tuple θ of real numbers, we denote by wn,m(A, θ) the supremum of the real

numbers w for which, for arbitrarily large real numbers X , the inequalities

‖Ax + θ‖ ≤ X−w and 0 < |x| ≤ X (2.1)

have a solution x in Zm. Keeping the notation from [15], let ŵn,m(A, θ) be the supremum

of the real numbers w for which, for all sufficiently large positive real numbers X , the

inequalities (2.1) have an integer solution x in Zm. We define furthermore two homogeneous

exponents wn,m(A) and ŵn,m(A) as in (2.1) with θ = t(0, . . . , 0).

Although some results on the function wn,m will be recalled below, the reader is

directed to [16] for more references.

The functions wn,m and ŵn,m are defined by using the sup norm | · |. But the choice

of the distance function is arbitrary, and we may replace the sup norm of a vector by,

for example, the geometric mean of the absolute values of its non-zero coordinates, or,

alternatively, by the square root of the sum of the squares of its coordinates. This would

enable us to define further exponents of approximation.

We feel that the former possibility is the most interesting one. Thus, we define the

functions Π and Ξ, respectively, for x = (x1, . . . , xm) in Zm by

Π(x) =

(

∏

1≤i≤m

max{1, |xi|}
)1/m

,

and for y = (y1, . . . , yn) in Rn by

Ξ(y) =

(

∏

1≤j≤n

′ ‖yj‖
)1/n

,

where
∏′

means that the product is taken over the indices j with ‖yj‖ 6= 0. An empty

product is understood to be equal to 0. Obviously, we have

|x|1/m ≤ Π(x) ≤ |x|

for any x in Zm, and

0 < Ξ(y) ≤ ||y||

for any y in Rn \ Zn.
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With this notation, we define two exponents of multiplicative Diophantine approx-

imation. We denote by Ωn,m(A, θ) the supremum of the real numbers w for which, for

arbitrarily large real numbers X , the inequalities

Ξ(Ax + θ) ≤ X−w and Π(x) ≤ X (2.2)

have a solution x 6= 0 in Zm. Similarly, let Ω̂n,m(A, θ) be the supremum of the real numbers

w for which, for all sufficiently large positive real numbers X , the inequalities (2.2) have

a solution x 6= 0 in Zm. We define furthermore the homogeneous exponents Ωn,m(A) and

Ω̂n,m(A) as in (2.2) with θ = t(0, . . . , 0).

When there is no ambiguity, we simply write

w(A, θ), ŵ(A, θ), Ω(A, θ), Ω̂(A, θ), w(A), ŵ(A), Ω(A), Ω̂(A),

instead of

wn,m(A, θ), ŵn,m(A, θ), Ωn,m(A, θ), Ω̂n,m(A, θ), wn,m(A), ŵn,m(A), Ωn,m(A), Ω̂n,m(A),

respectively.

It is easy to check that

w(A) ≤ Ω(A) ≤
{

mw(A), if n = 1,
+∞, otherwise.

(2.3)

For any real n × m matrix A, Dirichlet’s Theorem implies that

Ω(A) ≥ Ω̂(A) ≥ m

n
, (2.4)

as we have seen in Section 1. Furthermore, Wang and Yu [59] established that we have

both equalities in (2.4) for almost all matrices A, with respect to the Lebesgue measure

on Rmn.

2.2. Badly approximable matrices

By definition, an n × m real matrix A is badly approximable if

inf
x∈Zm\{0}

‖Ax‖ · |x|m/n > 0.

Schmidt [49] proved that the set of matrices A with this property has full Hausdorff

dimension (see [52], pages 52–53, for additional references, in particular to earlier works of
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Cassels and Davenport.) It is still an open question to decide whether, for any n-tuple θ

of real numbers, the set of n × m real matrix A such that

inf
x∈Zm\{0}

‖Ax + θ‖ · |x|m/n > 0

has full Hausdorff dimension (see Section 5 of [35]).

Similarly, the matrix A is multiplicatively badly approximable if

inf
x∈Zm\{0}

Ξ(Ax) · Π(x)m/n > 0.

For m = n = 1, the matrix A = (α) is (multiplicatively) badly approximable precisely if

the irrational real number α is badly approximable, that is, has bounded partial quotients

in its continued fraction expansion. For mn ≥ 2, we do not know whether there exist

multiplicatively badly approximable matrices, see Section 5 for some remarks on this

celebrated problem, namely the Littlewood conjecture.

Furthermore, the matrix A is badly approximable if, and only if, the transpose matrix
tA is badly approximable (see [17], Theorem VIII, page 84).

Most likely, the matrix A is multiplicatively badly approximable if, and only if,

the transpose matrix tA is multiplicatively badly approximable. This was established by

Cassels and Swinnerton-Dyer [18] for 1 × 2 matrices.

2.3. Transference theorems

It is well-known that w(A) and w(tA) are linked by a transference principle. Dyson

[27] established the lower bound

w(A) ≥ mw(tA) + m − 1

(n − 1)w(tA) + n
,

thus extending earlier results of Khintchine [33, 34] who delt with the case min{m, n} = 1.

Similarly, the exponents Ω(A) and Ω(tA) are linked by a transference principle.

Extending results by Wang, Yu, and Zhu [60], Schmidt and Wang [53] (see [58]) established

that

Ω(A) > m/n if, and only if, Ω(tA) > n/m, (2.5)

a result reproved by Dodson and Kristensen [25] when min{m, n} = 1. It is not difficult to

deduce from the proof in [53] that, under some additional assumptions on A, we have

Ω(A) ≥ mΩ(tA) + m − 1

(n − 1)Ω(tA) + n
.
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Furthermore, one gets from the proofs of [60, 53, 25] that, for any 1×m matrix A, we have

exactly the same inequalities as in the standard transfer, namely

Ω(A) ≥ mΩ(tA) + m − 1 (2.6)

and

Ω(tA) ≥ Ω(A)

(m − 1) Ω(A) + m
.

It has been pointed out in [15] that the standard (resp. uniform) inhomogeneous ex-

ponents are related to the uniform (resp. standard) homogeneous exponents. In particular,

for any n-tuple θ of real numbers, we have the lower bounds

w(A, θ) ≥ 1

ŵ(tA)
and ŵ(A, θ) ≥ 1

w(tA)
, (2.7)

with equality in (2.7) for almost all θ with respect to the Lebesgue measure on Rn.

It is not at all clear whether this transference principle has some analogue for

multiplicative Diophantine approximation. We postpone to Section 5 a discussion on this

topic.

2.4. Hausdorff dimension of exceptional sets, spectrum

The generic value of any of the four functions wn,m, ŵn,m, Ωn,m and Ω̂n,m is m/n. It

is then desirable to determine the set of values they can take.

Definition 1. By spectrum of an exponent of Diophantine approximation, we mean the

set of values taken by this exponent on the set of n×m real matrices A of maximal rank,

i.e. of rank min{m, n}.

The condition on the rank of A in Definition 1 means that we wish to avoid trivial

constructions coming from smaller dimensions.

A useful tool, or, maybe, the most useful tool to determine the spectrum of an exponent

of Diophantine approximation is the calculation of Hausdorff dimension and Hausdorff

measures of exceptional sets.

For n = m = 1, Jarńık [30] and, independently, Besicovitch [11] established that, for

any w ≥ 1, we have

dim{ξ ∈ R : w((ξ)) ≥ w} =
2

1 + w
,

where dim stands for the Hausdorff dimension. A more precise statement, namely

dim{ξ ∈ R : w((ξ)) = w} =
2

1 + w
,
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follows from a subsequent work of Jarńık [31], where he calculated not only Hausdorff

dimensions, but also Hausdorff measures. The latter result and the existence of Liouville

numbers imply that the spectrum of the exponent w on the 1× 1 matrices is equal to the

whole interval [1, +∞].

The spectrum of wn,m has been determined by Dodson [24] (see also [22]). For positive

integers m and n, let us denote by Mn,m(R) the set of n × m real matrices.

Theorem D. For every real number w ≥ m/n, we have

dim{A ∈ Mn,m(R) : w(A) = w} = (m − 1)n +
m + n

1 + w
.

In particular, the spectrum of the exponent w on the set of n × m real matrices is equal

to the whole interval [m/n, +∞].

For a given positive integer n and a real number w with w ≥ 1/n, Bovey and Dodson

[12] proved that the set of n× 1 matrices A for which Ω(A) ≥ w has Hausdorff dimension

equal to n − 1 + 2/(1 + nw). This extension of the result of Jarńık and Besicovitch has

been further generalized to n × m matrices by Yu [62]. He proved that, for given integers

m and n and for a real number w ≥ m/n, the set of n×m matrices A for which Ω(A) ≥ w

has Hausdorff dimension equal to mn − 1 + 2/(1 + nw/m).

Both results are not sufficient to ensure the existence of matrices A with prescribed

values of Ω(A). However, it is possible, and quite easy, to adapt Bovey and Dodson’s and

Yu’s proofs in order to establish the following assertion.

Theorem 1. For every real number w ≥ m/n, we have

dim{A ∈ Mn,m(R) : Ω(A) = w} = mn − 1 +
2

1 + nw/m
.

In particular, the spectrum of the exponent Ω on the set of n × m real matrices is equal

to the whole interval [m/n, +∞].

Proof. We briefly explain how one should modify Bovey and Dodson’s proof to deal with

the case m = 1. The basic idea is that we have to take dimension functions outside the

family fs : x 7→ xs. The easiest way is then to work with the two-parameters family

fs,t : x 7→ xs (log 1/x)t. With the notation from [12], we choose s = (k− 1)+2/(α−k +1)

and a suitable negative real number t and show that the Hausdorff fs,t-measure of the set

denoted by E
(k)
α in [12] is zero. We leave the details to the reader.

3. Approximation of dependent quantities

3.1. Exponents of multiplicative approximation for real numbers
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Let ξ be a real number and n be a positive integer. In this section, we restrict our

attention to the matrices

An = (ξ, . . . , ξn) and tAn = t(ξ, . . . , ξn),

made up with the successive powers of ξ.

Mahler [44] defined in 1932 the first classification of real numbers (actually, of complex

numbers, but we restrict our attention to real numbers) in terms of their properties of

Diophantine approximation. Keeping his notation, for every integer n ≥ 1, let us denote

by wn(ξ) the supremum of the real numbers w such that the inequality

0 < |P (ξ)| ≤ H(P )−w

holds for infinitely many polynomials P (X) with integer coefficients and degree at most n

(the height H(P ) of a polynomial P (X) is the maximum of the moduli of its coefficients).

With the notation of Section 2, we have wn(ξ) = w1,n(An) when ξ is transcendental or

algebraic of degree greater than n.

Rather than considering small values of the linear form whose coefficients are the

successive powers of ξ, we may also study the simultaneous rational approximation of

successive powers of ξ. Following [14], we denote by λn(ξ) the supremum of the real numbers

λ such that the inequality

max
1≤m≤n

|x0ξ
m − xm| ≤ |x0|−λ

has infinitely many solutions in integers x0, . . . , xn with x0 6= 0. With the notation of

Section 2, we have λn(ξ) = wn,1(
tAn) when ξ is transcendental or algebraic of degree

greater than n.

The reader is directed to [13, 16] for results on the exponents wn and λn. We just

recall a theorem of Sprindžuk [54].

Theorem S. For almost all real numbers ξ, we have wn(ξ) = n and λn(ξ) = 1/n.

Motivated by several recent works [41, 7, 3], we introduce two new exponents, which

correspond to the multiplicative versions of the exponents wn and λn, respectively.

Instead of the height H(P ) of an integer, non-constant polynomial P (X) = xnXn +

. . . + x1X + x0, we consider the function Π defined by

Π(P ) :=

(

∏

1≤i≤degP

max{1, |xi|}
)1/degP

= Π((x1, . . . , xdegP )).

Observe that we have

Π(P ) ≤ max{|x1|, . . . , |xdegP |} ≤ Π(P )degP .
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Consequently, there exist positive constants c1(ξ, degP ) and c2(ξ, degP ), depending only

on degP and on ξ, such that

c1(ξ, degP ) Π(P ) ≤ H(P ) ≤ c2(ξ, degP ) Π(P )degP , if |P (ξ)| ≤ 1.

This fact will be used repeatedly throughout the rest of this section.

Definition 2. Let n ≥ 1 be an integer and let ξ be a real number. We denote by Ωn(ξ)

the supremum of the real numbers w such that the inequality

0 < |P (ξ)| ≤ Π(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most n.

The exponent of approximation w+
n introduced in [13], page 112, differs from the

exponent Ωn by a factor n. However, we feel that Ωn is the ‘right’ function to study.

Definition 3. Let n ≥ 1 be an integer and let ξ be a real number. We denote by Λn(ξ)

the supremum of the real numbers λ such that the inequality

0 <

(

∏

1≤m≤n

|x0ξ
m − xm|

)1/n

≤ |x0|−λ (3.1)

has infinitely many solutions in integers x0, . . . , xn with x0 6= 0.

Note that (3.1) can be rewritten as 0 < Ξ(x0
tAn) ≤ |x0|−λ when ξ is irrational.

Throughout the rest of this section, we present various results on the functions Ωn

and Λn. We begin with stating immediate consequences of (2.3) and of the transference

principles from Section 2.3.

Proposition 1. For every positive integer n and every real number ξ we have

wn(ξ) ≤ Ωn(ξ) ≤ nwn(ξ) (3.2)

and

λn(ξ) ≤ Λn(ξ) ≤ +∞.

Furthermore, we have

Ωn(ξ) ≥ nΛn(ξ) + n − 1, Λn(ξ) ≥ Ωn(ξ)

(n − 1)Ωn(ξ) + n
.

A. Baker conjectured that, for almost all real numbers ξ and for any positive real

number ε, the equation |P (ξ)| ≤ Π(P )−n−ε has only finitely many solutions in integer

polynomials P (X) of degree at most n. This has been established by Sprindžuk [55] for

n = 2 (see also Theorem 2 of Yu [63]), by Bernik and Borbat [9] for n = 3, 4, and by

Kleinbock and Margulis [41] for arbitrary n .

Theorem KM. For almost all real numbers ξ, we have Ωn(ξ) = n and Λn(ξ) = 1/n for

every positive integer n.

Proposition 1 shows that Theorem KM refines Theorem S.
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Theorem 2. Let n be a positive integer. For every real algebraic number ξ, we have

Ωn(ξ) = n and Λn(ξ) = 1/n.

Proof. We adapt suitably the proof of Theorem 1D, page 152, of [52], that rests on the

Schmidt Subspace Theorem [51]. We prove by induction on n that, for every non-zero real

algebraic numbers ξ1, . . . , ξn and every positive ε, the inequality

0 < |x0 + ξ1x1 + . . . + ξnxn| ≤ Π((x1, . . . , xn))−n(1+ε), (3.3)

has only finitely many solutions in integer (n + 1)-tuples (x0, x1, . . . , xn). For n = 1, this

is nothing but Roth’s Theorem. If n ≥ 2, then the subspace theorem implies that all the

integer solutions to (3.3) are contained in finitely many rational subspaces, say in the

union of the T subspaces A
(i)
0 z0 + . . . + A

(i)
n zn = 0, 1 ≤ i ≤ T . Let then (A0, . . . , An) be

an (n + 1)-tuple and (x0, . . . , xn) a solution to (3.3) such that A0x0 + . . . + Anxn = 0 and

An 6= 0. Setting ζi = ξi − ξnAi/An, we get

0 < |x0 + ξ1x1 + . . . + ξnxn| = |x0 + ζ1x1 + . . . + ζn−1xn−1|
≤ Π((x1, . . . , xn))−n(1+ε)

≤ Π((x1, . . . , xn−1))
−(n−1)(1+ε).

The induction hypothesis implies that there are finitely many possibilities for the n-

tuple (x0, . . . , xn−1). Since ξn 6= 0 and the number of subspaces is finite, this shows that

Ωn(ξ) ≤ n.

Let d be the degree of ξ. If ξ is rational, then we check easily that Ωn(ξ) ≥ n.

Otherwise, we have d ≥ 2 and, by the Dirichlet Schubfachprinzip, there are integers

xn, xd−2, xd−3, . . . , x0, not all zero, with X := max{|xn|, |xd−2|, . . . , |x1|} arbitrarily large,

such that

|xnξn + xd−2ξ
d−2 + . . . + x1ξ + x0| ≤ Π((xn, xd−2, . . . , x1))

−d+1.

Since ξ has degree d, the left-hand side of the inequality above does not vanish. Further-

more, xn is non-zero when X is sufficiently large, since Ωd−2(ξ) ≤ d− 2. Thus, there exist

integer polynomials P (X) of degree exactly n such that 0 < |P (ξ)| ≤ Π(P )−n. This gives

Ωn(ξ) ≥ n, as wanted.

Mahler [44] used the functions wn to define a classification of real numbers. We could

proceed similarly with the functions Ωn, however, we are not completely convinced that

this classification would be relevant. In particular, it does not seem to be at all clear

whether two algebraically dependent real numbers are in the same class. We stress that,

for any integer n ≥ 2, there do not exist a constant c(n), depending only on n, such that

Π(P ) ·Π(Q) ≤ c(n) Π(PQ) for every integer polynomials P (X), Q(X) of degree at most n.
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This shows that the situation is very different from the standard setting, where the näıve

height H is used instead of Π.

Bernik [8] proved that the spectrum of wn is equal to [n, +∞] and, even, that

dim{ξ ∈ R : wn(ξ) = w} =
n + 1

1 + w
, (w ≥ n).

At present no method is known that avoids the theory of Hausdorff dimension and yields

that the spectrum of wn is equal to the interval [n, +∞]. In particular, we do not have any

constructive proof of Bernik’s result.

We propose to consider three problems about spectra.

Question 1. Let λ > 1/n be real. Do there exist real numbers ξ with λn(ξ) = λ ?

A partial answer to this question can be found in Theorem 10 from [16], where

it is proved (with explicit examples) that the spectrum of λn includes the interval

((1 +
√

4n2 + 1)/(2n), +∞].

For λ > 1/n, it does not seem to be easy to compute

dim{ξ ∈ R : λn(ξ) = λ}.

This problem has been solved for n = 2 and λ ∈ [1/2, 1] by Beresnevich, Dickinson,

Vaughan and Velani [6, 57], who proved that

dim{ξ ∈ R : λ2(ξ) = λ} =
2 − λ

1 + λ
.

As kindly pointed out to me by Michel Laurent, for λ > 1, the method from [57] yields

that

dim{ξ ∈ R : λ2(ξ) = λ} =
1

1 + λ
. (3.4)

According to the referee, the proof of Theorem 19 from [5] can be adapted to the case of

the parabola to get (3.4). This completes the resolution of Question 1 for n = 2.

Question 2. Let Ω > n be real. Do there exist real numbers ξ with Ωn(ξ) = Ω ?

Question 3. Let Λ > 1/n be real. Do there exist real numbers ξ with Λn(ξ) = Λ ?

We give now a partial answer to Questions 2 and 3, and show that the right-hand

side inequality of (3.2) is sharp. The key idea lies at heart of a work of Güting [29], where

the existence of real numbers ξ with prescribed values for wn(ξ) for some integers n is

established in a constructive way. We adapt Theorem 7.7 from [13] for our purpose.
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Theorem 3. Let n ≥ 1 be an integer. Let d be a real number with

(d − n)(d − n + 1) > n2(d + 1). (3.5)

Then, there exist real numbers ξ with

wn(ξ) = d (3.6)

and

Ωn(ξ) = nd. (3.7)

In particular, the function Ωn takes any value Ω with

Ω ≥ n2(n + 2).

Proof. Let d and n be as in the statement of the theorem. Throughout the proof, the

numerical constants implied by ≪ and ≫ depend, at most, on n and d. Let (ni)i≥1 be

a strictly increasing sequence of positive integers such that ni+1/ni tends to d + 1 and

gcd(ni, n) = 1 for any i ≥ 1 (take for instance ni = n [(d + 1)i] + 1, for i ≥ 1). Define the

positive real number ξ by

ξn =
∑

j≥1

2−nj .

Let ε be a real number with 0 < ε < 1. Let i0 ≥ 1 be such that d+1−ε < ni+1/ni < d+1+ε

holds for any integer i ≥ i0. For i ≥ i0, the polynomial

Pi(X) := 2niXn − 2ni

i
∑

j=1

2−nj

satisfies H(Pi) = 2ni and Π(Pi) = 2ni/n. Furthermore, since ni and n are coprime, a result

of Dumas [26] asserts that Pi(X) is irreducible. It follows from

Pi(ξ) =
∑

j>i

2ni−nj =
∑

j>i

H(Pi)
1−nj/ni , P ′

i (ξ) = nξn−1 H(Pi),

and Lemma A.5 from [13] that Pi(X) has a root αi such that

H(Pi)
−d−1−ε ≪ |ξ − αi| ≪ H(Pi)

−d−1+ε. (3.8)

It is immediate that, for i ≥ i0, we have

H(Pi)
d+1−ε ≤ H(Pi+1) ≤ H(Pi)

d+1+ε (3.9)
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and

Π(Pi)
−nd−nε ≪ |Pi(ξ)| ≪ Π(Pi)

−nd+nε,

thus

Ωn(ξ) ≥ nd. (3.10)

Let P (X) be an integer polynomial of degree at most n. Since the polynomials Pi(X),

i ≥ i0, are irreducible of degree n, we assume without any loss of generality that P (X) is

not a constant multiple of one of the polynomials Pi(X) with i ≥ i0.

There exists an integer i with

Π(Pi) ≤ Π(P ) < Π(Pi+1). (3.11)

We may assume that Π(P ) is sufficiently large in order to ensure that i ≥ i0. Thus, (3.8)

and (3.9) are satisfied. We distinguish two cases and introduce a real number u > n, which

will be specified later on.

First, we assume that

H(P )n ≤ Π(Pi)
u. (3.12)

The Liouville inequality (see e.g. Corollary A.2 from [13]) asserts that |P (αi)| ≫
H(P )−n+1 H(Pi)

−n, whence, by (3.12), we get

|P (αi)| ≫ H(P ) · Π(Pi)
−u · H(Pi)

−n ≫ H(P ) · Π(Pi)
−n2−u.

We infer from (3.8) and Rolle’s Theorem that

|P (αi) − P (ξ)| ≪ H(P ) · Π(Pi)
−n(d+1)+nε.

Consequently, by (3.11),

|P (ξ)| ≫ H(P ) · Π(Pi)
−nd+nε ≫ Π(P )−nd+nε (3.13)

holds as soon as

n2 + u < nd − nε,

which can be rewritten

u < n(d − n − ε). (3.14)

We assume now that

H(P )n > Π(Pi)
u. (3.15)

We then get |P (αi+1)| ≫ H(P )−n+1 H(Pi+1)
−n by Corollary A.2 from [13], and we infer

from (3.8) and Rolle’s Theorem that

|P (ξ)− P (αi+1)| ≪ H(P ) · Π(Pi+1)
−n(d+1)+nε.
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Observe that

H(P ) · Π(Pi+1)
−n(d+1)+nε ≪ H(P )−n+1 H(Pi+1)

−n

since H(P ) ≤ Π(Pi+1)
n and d ≥ 2n + ε. Consequently,

|P (ξ)| ≥ Π(P )−nd+nε (3.16)

holds if H(P )−n+1H(Pi+1)
−n ≫ Π(P )−nd+nε. The latter inequality holds as soon as

H(P )n−1 · H(Pi+1)
n ≪ H(P )d−ε,

thus, by (3.15), as soon as,

Π(Pi)
u(d−ε)/n · Π(Pi)

−u(n−1)/n ≫ H(Pi+1)
n. (3.17)

We deduce from (3.9) that H(Pi+1)
n ≪ Π(Pi)

n2(d+1+ε), thus (3.17) holds if

u >
n3(d + 1 + ε)

d − ε − n + 1
. (3.18)

Since the positive real number ε can be taken arbitrarily small, we can select a real number

u such that (3.14) and (3.18) hold simultaneously when

n(d − n) >
n3(d + 1)

d − n + 1
.

Consequently, if (3.5) holds, then we infer from (3.13) and (3.16) that

Ωn(ξ) ≤ nd.

Combined with (3.10), this gives (3.7). To conclude the proof, it remains to note that

(3.6) follows from Theorem 7.7 of [13]. Note that there is a misprint in the statement

of this theorem, namely, one should read d > (2n − 1 +
√

4n2 + 1)/2 instead of d >

(2n + 1 +
√

4n2 + 1)/2.

Question 2 for n = 1 is solved by the Jarńık–Besicovitch theorem. Yu [63] (see also

[13], Ex. 5.6) established that, for any w ≥ 2, the Hausdorff dimension of the set of real

numbers ξ with Ω2(ξ) ≥ w is equal to 4/(2+w). This has been rediscovered by Beresnevich

and Bernik [4]. As observed in [13], Ex. 5.6, a slight modification of their proof yields that

dim{ξ ∈ R : Ω2(ξ) = w} =
4

2 + w
.

In particular, the spectrum of the exponent Ω2 is equal to [2, +∞].
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Yu further conjectured that, for n ≥ 3 and w ≥ n, the set {ξ ∈ R : Ωn(ξ) ≥ w} has

Hausdorff dimension equal to (2n)/(n + w). The fact that this is a lower bound for the

dimension is contained in Theorem 7 from [7]. To prove the reverse inequality seems to be

quite difficult. Yu’s conjecture is consistent with the results from Subsection 2.4.

Beresnevich and Velani ([7], Theorem 5) proved that, for n ≥ 2 and λ > 1/n, the

Hausdorff dimension of the set {ξ ∈ R : Λn(ξ) = λ} is at least 2/(1 + nλ). In view of

Theorem 1, it is likely that we have equality. This guess is supported by a recent result of

Badziahin and Levesley [3], who established that

dim{ξ ∈ R : Λ2(ξ) ≥ λ} ≤ 2

1 + 2λ
.

Consequently, the spectrum of Λ2 is equal to the whole interval [1/2, +∞].

3.2. On uniform Diophantine approximation

The exponents wn and λn have in common to be defined by the occurrence of infinitely

many solutions to some Diophantine inequalities. In [14], we attached to them the functions

ŵn and λ̂n defined by a condition of uniform existence of solutions. Similarly, we introduce

two exponents of uniform, multiplicative Diophantine approximation of real numbers.

Definition 4. Let n ≥ 1 be an integer and let ξ be a real number. We denote by Ω̂n(ξ)

the supremum of the real numbers w such that, for any sufficiently large real number X ,

the inequality

0 < |P (ξ)| ≤ X−w

is satisfied by an integer polynomial P of degree at most n and with Π(P ) ≤ X . We

denote by Λ̂n(ξ) the supremum of the real numbers λ such that, for any sufficiently large

real number X , the inequality

0 <

(

∏

1≤m≤n

|x0ξ
m − xm|

)1/n

≤ X−λ

has a solution in integers x0, . . . , xn with 1 ≤ |x0| ≤ X .

Recent important works of Roy (see [48] and his earlier papers quoted therein) show

that real numbers ξ with ŵ2(ξ) > 2 (and, even, with ŵ2(ξ) = (3 +
√

5)/2) do exist. In

particular, these numbers satisfy Ω̂2(ξ) > 2.

There is no result on the exponents Ω̂n and Λ̂n in the literature. Among the many

interesting open problems, let us display the following.
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Question 4. To find the suprema of the functions Ω̂n and Λ̂n.

Davenport and Schmidt [20] proved that the supremum of ŵn is at most 2n − 1,

consequently, Ω̂n cannot exceed n(2n−1). For n = 2, Arbour and Roy [2] established that

the supremum of ŵ2 is (3 +
√

5)/2, thus Ω̂2 cannot exceed 3 +
√

5. It is likely that the

above bounds for Ω̂n can be refined.

4. Approximation on submanifolds and friendly measures

According to the terminology of Sprindžuk and of Kleinbock and Margulis, a subman-

ifold M ⊂ Rn is extremal (resp. strongly extremal) if almost every point y on M satisfies

w1,n(y) = n (resp. Ω1,n(y) = n). It follows from Theorem A from [41] that the manifold

{(x, x2, . . . , xn) : x ∈ R} is strongly extremal, and this gives the above Theorem KM. Its

proof is based on the correspondence between approximation properties of real n-tuples

and behaviour of certain orbits in the space of unimodular lattices in Rn+1. This corre-

spondence dates back to the works of Davenport and Schmidt [21], Schmidt [50] and Dani

[19]. The reader is directed to the survey papers [36, 39, 45] and to the book of Starkov

[56] for a detailed exposition of the main principle behind a reduction of Theorem KM to

a dynamical statement.

Theorem KM is the first general result concerning multiplicative Diophantine approxi-

mation in arbitrary dimension. It has been subsequently extended and generalized in many

directions, see e.g. [10, 37, 38, 39, 40, 42]. We briefly state a recent result from [40].

Theorem KLW. Any friendly measure µ on Rn is strongly extremal.

Friendly measures are defined in [40] using purely geometric conditions. They include

volume measures on smooth manifolds considered in [41] and the Hausdorff measure on

the Cantor set. In particular, Theorem KLW extends a previous result of Weiss [61] that

establishes the extremality of the natural measure supported by the middle-third Cantor

set.

5. The Littlewood conjecture

It follows from the theory of continued fractions that, for any real number α, there

exist infinitely many positive integers q such that q · ‖qα‖ < 1. In particular, for any given

pair (α, β) of real numbers, there exist infinitely many positive integers q such that

q · ‖qα‖ · ‖qβ‖ < 1.

A famous open problem in simultaneous Diophantine approximation, called the Littlewood

conjecture [43], claims that in fact, for any given pair (α, β) of real numbers, a stronger
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result should hold, namely

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0. (5.1)

With the definition from Section 2.2, the Littlewood conjecture predicts that the matrix

(α, β) is never multiplicatively badly approximable. Recently, Pollington and Velani [46]

proved that for any badly approximable number α, the set of badly approximable numbers

β such that (5.1) holds has maximal Hausdorff dimension (actually, their result is stronger).

This was improved by Einsiedler, Katok and Lindenstrauss [28], who established that the

set of real pairs (α, β) for which (5.1) does not hold has Hausdorff dimension zero. Despite

this beautiful result, the Littlewood conjecture remains unsolved.

Cassels and Swinnerton-Dyer [18] proved that (5.1), which can be rewritten as

inf
q≥1

q · Ξ((qα, qβ))2 = 0,

is equivalent to the equality

inf
(x,y)∈Z×Z\{(0,0)}

max{|x|, 1} · max{|y|, 1} · ‖xα + yβ‖ = 0,

that is, with the present notation, to

inf
(x,y)∈Z×Z\{(0,0)}

‖xα + yβ‖ · Π((x, y))2 = 0.

This corresponds to the result mentioned at the end of Section 2.2. They used this to show

that (5.1) holds if α and β belong to the same cubic number field. The reader is directed

to [1, 47] and to Chapter 10 of [13] for additional bibliographic references.

Transference principles that link homogeneous approximation with inhomogeneous

uniform approximation are well-known [17, 15], and one of them is recalled at the end of

Section 2.3. These suggest us to introduce the inhomogeneous version of the Littlewood

conjecture.

Question 5. Let α and β be real numbers with 1, α, β being linearly independent over

the rationals. Let α0, β0 and γ be real numbers. To prove or to disprove that

inf
q 6=0

|q| · ‖qα − α0‖ · ‖qβ − β0‖ = 0

and/or that

inf
(x,y)6=(0,0)

‖xα + yβ − γ‖ · max{|x|, 1} · max{|y|, 1} = 0.

Recall that Minkowski’s Theorem (see [17], page 48) asserts that if α is irrational and

if α0 is not of the form mα + n for integers m, n, then there are infinitely many integers q

such that

|q| · ‖qα − α0‖ < 1/4.
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Consequently, for α, β, α0, β0 and γ as in Question 5, we have

lim inf
|q|→+∞

|q| · ‖qα − α0‖ · ‖qβ − β0‖ < 1

and

lim inf
max{|x|,|y|}→+∞

‖xα + yβ − γ‖ · max{|x|, 1} · max{|y|, 1} < 1.

As far as we are aware, Question 5 has not been studied up to now.

Good candidates for disproving the conclusion of Question 5 could be the pairs of real

numbers (α, β) such that ŵ((α, β)) = +∞. The existence of such pairs has been proved by

Khintchine [34]. In view of the transference principle enounced at the end of Section 2.3,

we have w(t(α, β), θ) = 0 for almost all θ. This means that for almost all pairs (α0, β0)

and for every positive real number ε, we have

max{‖qα − α0‖, ‖qβ − β0‖} > q−ε,

for every sufficiently large positive integer q. By a result of Jarńık [32], these pairs (α, β)

also satisfy ŵ(t(α, β)) = 1, and the same transference principle yields that, for almost all

real numbers γ, we have

‖xα + yβ − γ‖ > max{|x|, |y|}−1−ε,

when max{|x|, |y|} is sufficiently large.
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[47] M. Queffélec, An introduction to Littlewood’s conjecture. This volume.

[48] D. Roy, On two exponents of approximation related to a real number and its square,

Canad. J. Math. 59 (2007), 211–224.

[49] W. M. Schmidt, Badly approximable systems of linear forms, J. Number Theory 1

(1969), 139–154.

21



[50] W. M. Schmidt, Diophantine approximation and certain sequences of lattices, Acta

Arith. 18 (1971), 165–178.

[51] W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526–551.

[52] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer,

Berlin, 1980.

[53] W. M. Schmidt and Y. Wang, A note on a transference theorem of linear forms, Sci.

Sinica 22 (1979), 276–280.
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7, rue René Descartes
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