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Exponents of Diophantine approximation

Yann Bugeaud

We survey classical and recent results on exponents of Diophantine approximation.

We give only a few proofs and highlight several open problems.

1. Introduction and generalities

Let ξ be an irrational real number. It follows from the theory of continued fractions

that there are infinitely many rational numbers p/q with q ≥ 1 and such that

|qξ − p| ≤ q−1.

Said differently, for arbitrarily large integers Q, there exist integers p and q with 1 ≤ q ≤ Q
and |qξ − p| ≤ Q−1. The Dirichlet Theorem asserts much more, namely that, for every

integer Q ≥ 1, there exist integers p and q with 1 ≤ q ≤ Q and |qξ − p| ≤ Q−1.

A question arises then naturally: is there some specific irrational real number ξ for

which it is possible to improve the above statements, that is, to get the above inequalities

with Q−1 replaced by Q−w for some real number w > 1. This leads to the introduction of

the exponents of approximation w1 and ŵ1.

Definition 1.1. Let ξ be a real number. We denote by w1(ξ) the supremum of the real

numbers w for which there exist arbitrarily large integers Q and integers p and q with

1 ≤ q ≤ Q and

|qξ − p| ≤ Q−w.

We denote by ŵ1(ξ) the supremum of the real numbers ŵ such that, for every sufficiently

large integer Q, there are integers p and q with 1 ≤ q ≤ Q and

|qξ − p| ≤ Q−ŵ.
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As observed by Khintchine [41], every irrational real number ξ satisfies ŵ1(ξ) = 1,

since there are arbitrarily large integers Q such that the inequality |qξ − p| ≤ 1/(2Q)

has no solutions in integers p, q with 1 ≤ q ≤ Q ; see the proof of Proposition 2.4 below.

However, for any w > 1, there exist irrational real numbers ξ such that, for arbitrarily

large integers Q, the equation

|qξ − p| ≤ Q−w

has a solution in integers p and q with 1 ≤ q ≤ Q. It suffices for example to take

ξ =
∑
j≥1 2−b(w+1)jc, where b·c denotes the integer part.

Obviously, the quality of approximation strongly depends upon whether we are

interested in a uniform statement (that is, a statement valid for every Q, or for every

sufficiently large Q) or in a statement valid only for arbitrarily large values of Q.

The general framework is the following. For any (column) vector θ in Rn, we denote

by |θ| the maximum of the absolute values of its coordinates and by

‖θ‖ = min
y∈Zn

|θ − y|

the maximum of the distances of its coordinates to the rational integers.

Definition 1.2. Let n and m be positive integers and A a real matrix with n rows and

m columns. Let θ be an n-tuple of real numbers. We denote by w(A, θ) the supremum of

the real numbers w for which, for arbitrarily large real numbers X, the inequalities

‖Ax− θ‖ ≤ X−w and |x| ≤ X (1.1)

have a solution x in Zm. We denote by ŵ(A, θ) the supremum of the real numbers w

for which, for all sufficiently large positive real numbers X, the inequalities (1.1) have an

integer solution x in Zm.

In the sequel, we consistently use the symbol ˆto indicate that we require a uniform

existence of solutions.

The lower bounds

w(A, θ) ≥ ŵ(A, θ) ≥ 0

are then obvious. We define furthermore two homogeneous exponents w(A) and ŵ(A)

as in (1.1) with θ = t(0, . . . , 0), requiring moreover that the integer solution x should be

non-zero. The uniform exponent ŵ was first introduced and studied by Jarńık in the 1930s.

The transposed matrix of a matrix A is denoted by tA. Furthermore, 1/ + ∞ is

understood to be 0. The following result, established in [27, 22], shows that the usual

(resp. uniform) inhomogeneous exponents are strongly related to the uniform (resp. usual)

homogeneous exponents.

2



Theorem 1.3. Let n and m be positive integers and A a real matrix with n rows and m

columns. For any n-tuple θ of real numbers, we have the lower bounds

w(A, θ) ≥ 1

ŵ(tA)
and ŵ(A, θ) ≥ 1

w(tA)
, (1.2)

with equality in (1.2) for almost all θ with respect to the Lebesgue measure on Rn.

If the subgroup G = tAZn + Zm of Rm generated by the n rows of the matrix A

together with Zm has maximal rank m + n, then Kronecker’s Theorem asserts that the

dual subgroup Γ = AZm + Zn of Rn generated by the m columns of A and by Zn is dense

in Rn. In this respect, Theorem 1.3 may be viewed as a measure of the density of Γ. In

the case where the rank of G is < m+ n, we clearly have

ŵ(tA) = w(tA) = +∞ and ŵ(A, θ) = w(A, θ) = 0,

for every n-tuple θ located outside a discrete family of parallel hyperplanes in Rn. The

assertion of Theorem 1.3 is then obvious.

Cassels’ book [27] remains an invaluable reference for these and related questions.

In the sequel of the text, we restrict our attention to the cases where A is either a row

or a column matrix:

A = (ξ1, . . . , ξn) or A = t(ξ1, . . . , ξn).

This amounts to consider small values of the linear form

|x0 + x1ξ1 + . . .+ xnξn|, where x0, x1, . . . , xn ∈ Z,

or simultaneous approximation to ξ1, . . . , ξn by rational numbers with the same denomi-

nator, that is, small values of the quantity

max
1≤j≤n

|x0ξj − xj |, where x0, x1, . . . , xn ∈ Z.

Furthermore, among the elements ξ = (ξ1, . . . , ξn) in Rn, we mainly focus on the points

(ξ, ξ2, . . . , ξn)

whose coordinates are the n first successive powers of a real number ξ. However, some of

the results stated below hold for a general n-tuple ξ, as will be indicated in due course.

This is in particular the case in Sections 6 and 7.

The present paper is organized as follows. In Section 2, we define six exponents

of approximation attached to real numbers and give their first properties. We discuss

in Section 3 how these exponents are interrelated and study the values taken by these
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exponents in Sections 4 and 5. Intermediate exponents are introduced in Section 6.

Parametric geometry of numbers, a deep and powerful, new theory introduced by Schmidt

and Summerer [73, 74] and developed by Roy [63], is briefly described in Section 7.

Recent results on the existence of real numbers which are badly approximable by algebraic

numbers of bounded degree are discussed in Section 8. The final section gathers several

open problems and suggestion for further research.

The notation a �d b means that a exceeds b times a constant depending only on d.

When� is written without any subscript, it means that the constant is absolute. We write

a � b if both a� b and a� b hold.

2. Further definitions and first results

Mahler [49] and Koksma [43] have introduced in the 1930s two classifications of real

numbers in terms of their properties of approximation by algebraic numbers. Here and

below, the height H(P ) of a polynomial P (X) is the maximum of the moduli of its

coefficients and the height H(α) of an algebraic number α is the height of its minimal

polynomial over Z.

Definition 2.1. Let n be a positive integer. Let ξ be a real number. We denote by wn(ξ)

the supremum of the real numbers w for which the inequality

0 < |P (ξ)| ≤ H(P )−w

is satisfied for infinitely many polynomials P (X) with integer coefficients and degree at

most n. We denote by w∗n(ξ) the supremum of the real numbers w∗ for which the inequality

0 < |ξ − α| ≤ H(α)−w
∗−1 (2.1)

is satisfied for infinitely many algebraic numbers α of degree at most n.

The −1 in the exponent of the right hand side of (2.1) can be explained as follows.

Let P (X) be an integer polynomial of degree n ≥ 2 and ξ be a real number not algebraic

of degree at most n. Observe that P (ξ)P ′(ξ) 6= 0 and

P ′(ξ)

P (ξ)
=

∑
α:P (α)=0

1

ξ − α
.

Consequently, if α is the root of P (X) which is closest to ξ, then we have

|ξ − α| ≤ n|P (ξ)/P ′(ξ)|.
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Since |P ′(ξ)| is often roughly equal to H(P ) (this is the case unless P (X) has two roots

close to ξ), we expect the estimation

|ξ − α| �n |P (ξ)| ·H(P )−1.

The latter upper bound does not hold when |P ′(ξ)| is small, that is, when P (X) has two

or more roots close to ξ.

The behaviour of the sequences (wn(ξ))n≥1 and (w∗n(ξ))n≥1 determines the localisation

of ξ in Mahler’s and Koksma’s classifications, respectively (see Chapter 3 of [15]) ; however,

the exact determination of wn(ξ) and w∗n(ξ) for a specific real number ξ is usually extremely

difficult.

We introduced in [21] four further exponents of approximation. They implicitly

appeared previously in articles of Jarńık, Davenport and Schmidt, among others.

Definition 2.2. Let n be a positive integer. Let ξ be a real number. We denote by λn(ξ)

the supremum of the real numbers λ such that the inequality

max
1≤j≤n

|x0ξj − xj | ≤ |x0|−λ

has infinitely many solutions in integers x0, . . . , xn with x0 6= 0.

The three exponents wn, w∗n and λn have the common feature to be defined by the

existence of infinitely many solutions for some set of Diophantine inequalities. We attach

to them three exponents defined by a condition of uniform existence of solutions.

Definition 2.3. Let n be a positive integer and let ξ be a real number. We denote by

ŵn(ξ) the supremum of the real numbers ŵ such that, for any sufficiently large real number

X, the inequalities

0 < |xnξn + . . .+ x1ξ + x0| ≤ X−ŵ, max
0≤j≤n

|xj | ≤ X,

have a solution in integers x0, . . . , xn. We denote by ŵ∗n(ξ) the supremum of the real

numbers ŵ∗ such that, for any sufficiently large real number X, there exists an algebraic

real number α with degree at most n satisfying

0 < |ξ − α| ≤ H(α)−1X−ŵ
∗

and H(α) ≤ X.

We denote by λ̂n(ξ) the supremum of the real numbers λ̂ such that, for any sufficiently

large real number X, the inequalities

0 < |x0| ≤ X, max
1≤j≤n

|x0ξj − xj | ≤ X−λ̂,
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have a solution in integers x0, . . . , xn.

This survey is mainly devoted to an overview of general results on the six exponents

of approximation wn, w
∗
n, λn, ŵn, ŵ

∗
n and λ̂n, whose values are connected through various

inequalities. Notice that the exponents ‘hat’ are uniformly bounded in term of n. The

exact determination of the upper bounds is an important problem towards the Wirsing

Conjecture (see Section 4) or related questions, such as the approximation of transcendental

real numbers by algebraic integers. We begin with some easy properties.

Our first result goes back to Khintchine [41].

Proposition 2.4. For any irrational real number ξ, we have

ŵ1(ξ) = ŵ∗1(ξ) = λ̂1(ξ) = 1.

for every irrational real number ξ.

Proof. Let ξ be an irrational real number and (p`/q`)`≥1 denote the sequence of its

convergents. Let ` ≥ 4 and q be integers with 1 ≤ q ≤ q` − 1. Observe that q` − q`−1 ≥
q`−2 ≥ q2 ≥ 2. Then, it follows from the theory of continued fractions that

‖qξ‖ ≥ ‖q`−1ξ‖ >
1

q` + q`−1
≥ 1

2(q` − 1)
.

This shows that, setting Q = q` − 1, the inequality |qξ − p| ≤ 1/(2Q) has no solutions in

integers p, q with 1 ≤ q ≤ q` − 1. Consequently, ŵ1(ξ) is equal to 1.

We gather in the next theorem several easy results on our six classical exponents of

approximation.

Theorem 2.5. For any positive integer n and any real number ξ which is not algebraic

of degree ≤ n, we have

n ≤ ŵn(ξ) ≤ wn(ξ),
1

n
≤ λ̂n(ξ) ≤ min{1, λn(ξ)}

and

1 ≤ ŵ∗n(ξ) ≤ min{w∗n(ξ), ŵn(ξ)} ≤ max{w∗n(ξ), ŵn(ξ)} ≤ wn(ξ). (2.2)

Corollary 5.4 shows that the lower bound ŵ∗n(ξ) ≥ 1 in (2.2) is best possible.

Proof. Let n and ξ be as in the statement of the theorem. Let α be a real algebraic

number close to ξ and Pα(X) the minimal defining polynomial of α over Z. Then, we

have |Pα(ξ)| �n H(Pα) · |ξ − α| (see e.g. Lemma A.6 of [15]) and we deduce the upper

bound w∗n(ξ) ≤ wn(ξ). The same argumentation gives also that ŵ∗n(ξ) ≤ ŵn(ξ). The

upper bounds ŵn(ξ) ≤ wn(ξ), ŵ∗n(ξ) ≤ w∗n(ξ) and λ̂n(ξ) ≤ λn(ξ) are consequences of the

definitions, while the lower bounds ŵn(ξ) ≥ n and λ̂n(ξ) ≥ 1/n follow from Dirichlet’s box

principle (or from Minkowski’s theorem). Moreover, we obviously have ŵ∗n(ξ) ≥ ŵ∗1(ξ) = 1

and λ̂n(ξ) ≤ λ̂1(ξ) = 1.

The next theorem was pointed out in [21].
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Theorem 2.6. For any positive integer n and any real number ξ not algebraic of degree

at most n, we have

ŵ∗n(ξ) ≥ wn(ξ)

wn(ξ)− n+ 1
(2.3)

and

w∗n(ξ) ≥ ŵn(ξ)

ŵn(ξ)− n+ 1
(2.4)

Wirsing [80] proved a weaker version of (2.3) in which the left-hand side is replaced

by the quantity w∗n(ξ). His result is also weaker than (2.4), since ŵn(ξ) ≥ wn(ξ).

Proof. We follow an argumentation of Wirsing [80]. Let n ≥ 2 and ξ be as in the statement

of the theorem. We first establish (2.3). If wn(ξ) is infinite, then (2.3) reduces to ŵ∗n(ξ) ≥ 1,

a statement established in Theorem 2.5. Assume that wn(ξ) is finite. Let ε > 0 and set

w = wn(ξ)(1 + ε)2. Minkowski’s theorem implies that there exist a constant c and, for any

positive real number H, a non zero integer polynomial P (X) of degree at most n such that

|P (ξ)| ≤ H−w, |P (1)|, . . . , |P (n− 1)| ≤ H and |P (n)| ≤ cHw−n+1. (2.5)

The definition of wn(ξ) and the first inequality of (2.5) show that H(P ) > H1+ε if H is

large enough. Consequently, P (X) has some (necessarily real) root in the neighbourhood

of each of the points ξ, 1, . . . , n− 1. Denoting by α its closest root to ξ and recalling that

H(α)�n H(P ) (see for example Lemma A.3 of [15]), we get

|ξ − α| �n
|P (ξ)|
H(P )

�n H(α)−1 (Hw−n+1)−w/(w−n+1)

and

H(α)�n H(P )�n H
w−n+1.

Since all of this is true for every sufficiently large H, we get ŵ∗n(ξ) ≥ w/(w − n + 1).

Selecting now ε arbitrarily close to 0, we obtain (2.3).

In order to establish (2.4), we may assume that ŵn(ξ) is finite and set w =

ŵn(ξ)(1 + ε)2. We follow the same argument as in the proof of (2.3). The definition of

ŵn(ξ) and the first inequality of (2.5) then show that there exist arbitrarily large values

of H for which the polynomial P (X) satisfies H(P ) > H1+ε. We conclude that there exist

algebraic numbers α of arbitrarily large height with

|ξ − α| �n H(α)−1−w/(w−n+1).

Thus, we get w∗n(ξ) ≥ w/(w−n+ 1) and, selecting ε arbitrarily close to 0, we obtain (2.4).

The next result shows that if wn(ξ) = n holds, then the values of the five other

exponents at the point ξ are known.
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Corollary 2.7. Let n be a positive integer and ξ a real number such that wn(ξ) = n.

Then we have

wn(ξ) = w∗n(ξ) = ŵn(ξ) = ŵ∗n(ξ) = n (2.6)

and

λn(ξ) = λ̂n(ξ) =
1

n
. (2.7)

Proof. Equalities (2.6) follow from Theorems 2.5 and 2.6. Khintchine’s transference theorem

(see Theorem 3.2 below) shows that wn(ξ) = n is equivalent to λn(ξ) = 1/n. Combined

with Theorem 2.5, this gives (2.7).

Since wn(ξ) is equal to n for almost all real numbers ξ, with respect to the Lebesgue

measure (this was proved by Sprindžuk [76]), the next result is an immediate consequence

of Corollary 2.7.

Theorem 2.8. For almost all (with respect to Lebesgue measure) real numbers ξ and

every positive integer n, we have

wn(ξ) = w∗n(ξ) = ŵn(ξ) = ŵ∗n(ξ) = n.

and

λn(ξ) = λ̂n(ξ) =
1

n
.

Before discussing the values taken by our exponents at algebraic points, we recall

Liouville’s inequality (see Theorem A.1 and Corollary A.2 in [15]).

Theorem 2.9 (Liouville’s inequality). Let α and β be distinct real algebraic numbers

of degree n and m, respectively. Then,

|α− β| ≥ (n+ 1)−m(m+ 1)−nH(α)−mH(β)−n.

Furthermore, if P (X) is an integer polynomial of degree n which does not vanish at β,

then

|P (β)| ≥ (n+ 1)−m(m+ 1)−nH(P )−m+1H(β)−n.

Let ξ be a real algebraic number of degree d ≥ 1. It follows from Theorem 2.9 that

w∗n(ξ) ≤ wn(ξ) ≤ d − 1 holds for n ≥ 1. Roth’s theorem, which asserts that w1(ξ) = 1

if ξ is irrational, has been considerably extended by Schmidt [71], who showed that

wn(ξ) = w∗n(ξ) = n holds for n ≤ d − 1. This enables us to get the values of our six

exponents at real algebraic numbers.
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Theorem 2.10. Let ξ be a real algebraic number of degree d ≥ 1 and let n be a positive

integer. We have

wn(ξ) = w∗n(ξ) = ŵn(ξ) = ŵ∗n(ξ) = min{n, d− 1}

and

λn(ξ) = λ̂n(ξ) =
1

min{n, d− 1}
.

Theorem 2.10 shows that real algebraic numbers of degree greater than n do behave

like almost all real numbers, as far as approximation by algebraic numbers of degree

less than n is concerned. We may as well consider approximation to complex (non-real)

numbers. Quite surprisingly, complex non-real numbers of degree greater than n do not

always behave like almost all complex numbers ; see [20].

Theorem 2.10 shows that we can focus on the values taken by our exponents at

transcendental, real numbers. This motivates the following definition.

Definition 2.11. The spectrum of an exponent of approximation is the set of values taken

by this exponent at transcendental real numbers.

We point out an important problem, which will be discussed in the next sections.

Problem 2.12. To determine the spectra of the exponents wn, w
∗
n, λn, ŵn, ŵ

∗
n, λ̂n.

Results towards Problem 2.12 are summarized at the end of Section 5.

3. Relations between exponents

We begin this section with an easy result on the difference between the exponents wn
and w∗n.

Theorem 3.1. For any positive integer n and any transcendental real number ξ, we have

wn(ξ)− n+ 1 ≤ w∗n(ξ) ≤ wn(ξ) (3.1)

and

ŵn(ξ)− n+ 1 ≤ ŵ∗n(ξ) ≤ ŵn(ξ). (3.2)

Proof. The right hand side inequalities of (3.1) and (3.2) have been already stated in

Theorem 2.5. The left hand side of inequality (3.1) is inequality (3.11) in [15], whose proof

also gives the left hand side of inequality (3.2).

It is interesting to note that the left hand side inequality of (3.2) is sharp since there

exist real numbers ξ with ŵn(ξ) = n and ŵ∗n(ξ) = 1 ; see Corollary 5.4 below. We do not

know if the left hand side inequality of (3.1) is sharp for n ≥ 4 ; see Theorem 5.7 below.

We indicate now some transference results linking together the rational simultaneous

approximation to ξ, . . . , ξn and the smallness of the linear form with coefficients ξ, . . . , ξn.
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Theorem 3.2. For every integer n ≥ 2 and every real number ξ which is not algebraic of

degree ≤ n, we have

1

n
≤ wn(ξ)

(n− 1)wn(ξ) + n
≤ λn(ξ) ≤ wn(ξ)− n+ 1

n
(3.3)

and
1

n
≤ ŵn(ξ)− 1

(n− 1)ŵn(ξ)
≤ λ̂n(ξ) ≤ ŵn(ξ)− n+ 1

ŵn(ξ)
. (3.4)

Proof. The inequalities (3.3) follow direcly from Khintchine’s transference principle (cf.

Theorem B.5 from [15]), whose proof shows that the same inequalities hold for the uniform

exponents ; see [37]. The latter result is weaker than inequalities (3.4), which have been

recently established by German [35].

Observe that (3.4) with n = 2 reduces to the following result established by Jarńık

[37] in 1938 ; see also [42] for an alternative proof.

Theorem 3.3. For every transcendental real number ξ we have

λ̂2(ξ) = 1− 1

ŵ2(ξ)
.

Inequalities (3.3) have been recently refined in [46, 24] by means of the introduction

of uniform exponents.

Theorem 3.4. Suppose n ≥ 2. The inequalities

λn(ξ) ≥ (ŵn(ξ)− 1)wn(ξ)

((n− 2)ŵn(ξ) + 1)wn(ξ) + (n− 1)ŵn(ξ)

and

λn(ξ) ≤ (1− λ̂n(ξ))wn(ξ)− n+ 2− λ̂n(ξ)

n− 1

hold for any transcendental real number ξ.

Since λ̂n(ξ) ≥ 1/n and ŵn(ξ) ≥ n, one easily checks that Theorem 3.4 implies (3.3).

The first inequality in the next theorem was established by Davenport and Schmidt

[31], while investigating the approximation to a real number by algebraic integers. The

second one is a recent result of Schleischitz [67].

Theorem 3.5. For any positive integer n and any transcendental real number ξ, we have

w∗n(ξ) ≥ 1

λ̂n(ξ)
and ŵ∗n(ξ) ≥ 1

λn(ξ)
.
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It is interesting to note that the combination of (3.4) with the first inequality of

Theorem 3.5 gives (2.4).

Theorem 3.5 relates approximation to ξ by algebraic numbers of degree at most n

with uniform simultaneous rational approximation to ξ, . . . , ξn. Further explanations can

be found in [26] and in Section 3.6 of [15].

Note that Theorem 3.5 can be compared with the next result, extracted from [22, 27],

which is a particular case of Theorem 1.3. If A is the matrix (ξ, ξ2, . . . , ξn) and θ is a real

n-tuple, we simply write wn(ξ, θ) for w(A, θ) and ŵn(ξ, θ) for ŵ(A, θ).

Theorem 3.6. For any integer n ≥ 1, any transcendental real number ξ and any real

n-tuple θ, we have

wn(ξ, θ) ≥ 1

λ̂n(ξ)
and ŵn(ξ, θ) ≥ 1

λn(ξ)
.

The next results were proved by Schmidt and Summerer [74, 75] ; see also Moshchevitin

[52, 53].

Theorem 3.7. For any transcendental real number ξ we have

wn(ξ) ≥ ŵn(ξ)
(n− 1)(ŵn(ξ)− 1)

1 + (n− 2)ŵn(ξ)
,

for n ≥ 2, and

w3(ξ) ≥ ŵ3(ξ)

√
4ŵ3(ξ)− 3− 1

2
.

The case n = 2 of Theorem 3.7 was proved by Jarńık [39].

Theorem 3.8. For any transcendental real number ξ we have

λn(ξ) ≥ λ̂n(ξ)
λ̂n(ξ) + n− 2

(n− 1)(1− λ̂n(ξ))
,

for n ≥ 2, and

λ3(ξ) ≥ λ̂3(ξ)
λ̂3(ξ) +

√
λ̂3(ξ)(4− 3λ̂3(ξ))

2(1− λ̂3(ξ))
.

Actually, Theorems 3.2 to 3.4 and 3.6 to 3.8 are valid for general tuples ξ, whose

coordinates are, together with 1, linearly independent over Z, that is, not only for tuples

of the shape (ξ, ξ2, . . . , ξn).

4. Bounds for the exponents

Let n be a positive integer. As we have seen in Section 2, the Dirichlet Schubfachprinzip

(or, if one prefers, Minkowski’s theorem) readily implies that wn(ξ) is at least equal to n
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for any positive integer n and any real number ξ not algebraic of degree ≤ n. It is a

longstanding problem, which was first formulated by Wirsing [80], to decide whether the

same result remains true for the quantity w∗n(ξ).

Conjecture 4.1 (Wirsing). For any positive integer n and any transcendental real

number ξ we have w∗n(ξ) ≥ n.

The seminal paper of Wirsing [80] and the study of his conjecture, which has been up

to now confirmed only for n = 1 (this follows from the theory of continued fractions) and

n = 2 (by Davenport and Schmidt [29]), have motivated many works.

Theorem 4.2. For any real number ξ which is neither rational, nor quadratic, and for

any real number c greater than 160/9, there exist infinitely many rational or quadratic real

numbers α satisfying

|ξ − α| ≤ c max{1, |ξ|2}H(α)−3.

Theorem 4.2 was proved in [29] (see also [71]). It has been extended by Davenport

and Schmidt [30] (up to the value of the numerical constant) as follows.

Theorem 4.3. Let n ≥ 2 be an integer and let ξ be a real number which is not algebraic

of degree at most n. Then there exist an effectively computable constant c, depending only

on ξ and on n, an integer d with 1 ≤ d ≤ n − 1, and infinitely many integer polynomials

P (X) of degree n whose roots α1, . . . , αn can be numbered in such a way that

|(ξ − α1) . . . (ξ − αd)| ≤ cH(P )−n−1.

Theorem 4.2 has recently been improved by Moshchevitin [54] as follows.

Theorem 4.4. For any real number ξ which is neither rational, nor a quadratic irrational-

ity, we have

w∗2(ξ) ≥ ŵ2(ξ)(ŵ2(ξ)− 1) ≥ 2.

The proof of Theorem 4.4 combines ideas from [29] with an argument used by Jarńık

[38, 39] in his proof of the case n = 2 of Theorem 3.7.

The first statement of Theorem 4.5 was proved by Wirsing [80] and the second one by

Bernik and Tishchenko [12].

Theorem 4.5. Let n be a positive integer and ξ be a transcendental real number. Then

we have

w∗n(ξ) ≥ wn(ξ) + 1

2
,

and

w∗n(ξ) ≥ n

4
+

√
n2 + 16n− 8

4
. (4.1)
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For proofs of Theorem 4.5 and related results, the reader may consult Chapter 3 of

[15]. Slight improvements on (4.1) have been subsequently obtained by Tishchenko [77,

78], with very technical proofs.

Davenport and Schmidt [31] have given uniform upper bounds for the exponents λ̂n
and ŵn. Some of their results have been subsequently improved by Laurent [44]. For a

positive real number x, we denote by dxe the smallest integer greater than or equal to x.

The next theorem expresses results of [31, 44] in terms of exponents of approximation.

Theorem 4.6. For any positive integer n and any transcendental real number ξ, we have

λ̂n(ξ) ≤ 1

dn/2e
and ŵ∗n(ξ) ≤ ŵn(ξ) ≤ 2n− 1.

Proof. We only explain how to get the easy estimate ŵ∗n(ξ) ≤ 2n− 1. Let w < ŵ∗n(ξ) be a

real number. By definition of ŵ∗n, there exist arbitrarily large integers H such that there

are distinct algebraic numbers α1, α2 of degree at most n and height at most H such that

|ξ − α1| < H(α1)−1H−w, |ξ − α2| < H(α2)−1H−w.

This implies that |α1 − α2| < 2H−w−1, while Theorem 2.9 (Liouville’s inequality) gives

that |α1 − α2| �n H
−2n. By combining these two inequalities, we get that w ≤ 2n − 1.

This proves the upper bound ŵ∗n(ξ) ≤ 2n − 1. Arguing now with polynomials instead of

algebraic numbers, this can be strengthened to ŵn(ξ) ≤ 2n− 1, as was shown in [31].

Theorem 4.7. For any transcendental real number ξ, we have

λ̂2(ξ) ≤
√

5− 1

2
and ŵ2(ξ) ≤ 3 +

√
5

2
, (4.2)

and both inequalities are best possible. For any transcendental real number ξ, we have

λ̂3(ξ) ≤
(

2 +
√

5−
√

7 + 2
√

5
)
/2 = 0.4245 . . .

The bound for λ̂2(ξ) given in (4.2) was proved in [31] and the one for ŵ2 in [2], whose

authors were at that time not aware of Jarńık’s result (Theorem 3.3).

The last assertion of Theorem 4.7 was proved by Roy [61], who improved the estimate

λ̂3(ξ) ≤ 1/2 given in Theorem 4.6. He further indicated that his upper bound for the

exponent is not best possible.

Roy [55, 57] showed that the inequalities (4.2) are sharp. The set of values taken by

the exponents ŵ2 and ŵ∗2 has been studied in [21, 32, 33, 34, 58, 59, 60]. Among other

results, we know that the spectrum of ŵ2 is dense in [2, (3 +
√

5)/2] and that there exists a

real number c < (3+
√

5)/2 such that the intersection of this spectrum with [c, (3+
√

5)/2]

is countable.

The next result provides, under a suitable assumption, an upper bound for ŵ∗n in

terms of wm, when m is less than n. It has not been noticed previously.
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Theorem 4.8. Let m,n be positive integers with 1 ≤ m ≤ n− 1 and ξ be a real number.

If wm(ξ) ≥ m+ n− 1, then we have

ŵ∗n(ξ) ≤ mwm(ξ)

wm(ξ)− n+ 1
.

Proof. It is inspired by that of Proposition 2.1 of [21]. Let m,n and ξ be as in the

statement of the theorem. Assume for convenience that |ξ| ≤ 1. Let ε be a real number

with 0 < ε ≤ 1/2. Set w := wm(ξ). Let P (X) be an integer polynomial of degree at most

m and height H := H(P ) large such that

H−w−ε < |P (ξ)| < H−w+ε. (4.3)

By using Lemma A.3 from [15], we may assume without any loss of generality that P (X)

is irreducible and primitive. Let v be a positive real number and set X = Hw/(v(1+ε)). Let

α be the root of P (X) which is the closest to ξ. If |ξ−α| ≤ H(α)−1H−w(1+2ε)/(1+ε), then,

by Corollary A.1 of [15], we have

|P (ξ)| �n |ξ − α| ·H(P )�n H
−w(1+2ε/3) �n H

−w−4ε/3,

using that ε ≤ 1/2 and w ≥ 2. This gives a contradiction to (4.3) if H is large enough.

Consequently, we have

|ξ − α| > H(α)−1X−v(1+2ε), (4.4)

provided that H is large enough.

Let β be an algebraic number of height at most X and degree at most n, which satisfies

|ξ − β| ≤ H(β)−1X−v(1+2ε). (4.5)

It follows from (4.4) that β 6= α. Liouville’s inequality (Theorem 2.9) then gives

|P (β)| �n H
−n+1H(β)−m. (4.6)

By Rolle’s theorem and the fact that |ξ| ≤ 1, we have

|P (β)| ≤ |ξ − β| · max
t:|t|≤2

|P ′(t)|+ |P (ξ)| ≤ m2m|ξ − β|H +H−w+ε. (4.7)

If H−w+ε ≥ |ξ − β| ·H, then (4.6) and (4.7) imply

H(β)−m �n H
n−1−w+ε

and, since H(β) ≤ Hw/(v(1+ε)), we get

v ≤ mw

(w + 1− n− 2ε)(1 + ε)
, (4.8)
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provided that H is large enough.

If H−w+ε ≤ |ξ − β| ·H, then, by (4.5), (4.6) and (4.7), we get

H(β)−m+1H−n �n H
−w(1+2ε)/(1+ε),

hence,

H(m−1)w/(v(1+ε)) �n H
−n+w(1+2ε)/(1+ε).

This implies

v ≤ (m− 1)w

w(1 + 2ε)− n(1 + ε)− ε
, (4.9)

provided that H is large enough. Consequently, we have ŵ∗n(ξ) < v(1 + 2ε) as soon as v

exceeds the left-hand sides of (4.8) and (4.9). Since ε can be taken arbitrarily close to 0,

we deduce that

ŵ∗n(ξ) ≤ max
{ mw

w + 1− n
,

(m− 1)w

w − n

}
.

Since w ≥ m + n − 1, this maximum is equal to mw/(w + 1 − n). This ends the proof of

the theorem.

We end this section with a recent result of Schleischitz [68].

Theorem 4.9. For any positive integer n and any transcendental real number ξ, we have

λ̂n(ξ) ≤ max
{ 1

n
,

1

λ1(ξ)

}
.

Proof. Assume that n ≥ 2 and that ξ is in (0, 1) with λ1(ξ) > 1. Let q be a large positive

integer and v be a real number greater than 1 such that q−v < 1/(4nq) and

‖qξ‖ ≤ q−v. (4.10)

Let p be the integer such that |qξ − p| = ‖qξ‖. Without any loss of generality, we may

assume that p and q are coprime. Observe that, for j = 1, . . . , n, we have∣∣∣ξj − pj

qj

∣∣∣ =
∣∣∣ξ − p

q

∣∣∣ · ∣∣∣ξj−1 + . . .+
(p
q

)j−1∣∣∣ ≤ 2n

q1+v
≤ 1

2q2
. (4.11)

Let v′ be a real number with 1 < v′ < min{v, n} and set X = qv
′
. Let x be a positive integer

with x < X and express x in base q. There exist integers b0, b1, . . . , bn−1 in {0, 1, . . . , q−1}
such that

x = b0 + b1q + b2q
2 + . . .+ bn−1q

n−1.

Let u be in {1, 2, . . . , n} be the smallest index such that bu−1 is non-zero. Then,

‖xpu/qu‖ = ‖bu−1pu/q‖ ≥ 1/q. (4.12)
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Furthermore, it follows from (4.11) and the fact that v′ < v that

∣∣∣x(ξu − pu

qu

)∣∣∣ ≤ 2nqv
′

q1+v
<

1

2q
,

if q is sufficiently large. Denoting by y the nearest integer to xξu, the triangle inequality

and (4.12) then give

max
1≤j≤n

‖xξj‖ ≥ ‖xξu‖ =
∣∣∣(xpu

qu
− y
)

+ x
(
ξu − pu

qu

)∣∣∣
≥ 1

q
− 1

2q
≥ 1

2q
=

1

2X1/v′
.

If (4.10) is satisfied for arbitrarily large integers q, this shows that

λ̂n(ξ) ≤ 1

v′
.

As v′ can be chosen arbitrarily close to min{λ1(ξ), n}, we have proved that

λ̂n(ξ) ≤ 1

min{λ1(ξ), n}
= max

{ 1

n
,

1

λ1(ξ)

}
.

This completes the proof of the theorem.

We point out an immediate corollary of Theorem 4.9.

Corollary 4.10. For any positive integer n, any transcendental real number ξ with

w1(ξ) ≥ n satisfies ŵk(ξ) = k for k = 1, . . . , n.

Proof. This follows from Theorem 4.9 combined with Theorem 3.2.

5. Spectra

This section is mainly devoted to the study of the spectra of the six exponents of

approximation defined in Section 2.

We begin with an auxiliary result, extracted from [16], which confirms the existence

of real numbers ξ for which w1(ξ) = wn(ξ), for some integer n ≥ 2.

Theorem 5.1. Let n ≥ 1 be an integer. For any real number w ≥ 2n − 1, there exist

uncountably many real numbers ξ such that

w1(ξ) = w∗1(ξ) = . . . = wn(ξ) = w∗n(ξ) = w.
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In particular, the spectra of wn and w∗n include the interval [2n− 1,+∞].

Proof. This is clear for w = n = 1. Let w > 1 be a real number. Let M be a large positive

integer and consider the real number

ξw = [0; 2,Mbqw−11 c,Mbqw−12 c,Mbqw−13 c, . . .],

where q1 = 2 and qj is the denominator of the j-th convergent to ξw, that is, of the rational

number pj/qj = [0; 2,Mbqw−11 c, . . . ,Mbqw−1j−1 c], for j ≥ 2. By construction, we have

qj+1 �Mqwj and

∣∣∣∣ξw − pj
qj

∣∣∣∣ � 1

Mqw+1
j

,

for j ≥ 1. Consequently, we have

w = w1(ξw) ≤ . . . ≤ wn(ξw). (5.1)

Using triangle inequalities, it is shown in [16] that, if M is sufficiently large and

w ≥ 2n− 1, then

|P (ξw)| �n,M H(P )−w

holds for every polynomial P (X) of degree at most n and sufficiently large height, hence

wn(ξw) ≤ w and the inequalities in (5.1) are indeed equalities. An additional argument is

needed to show that w∗1(ξ) = . . . = w∗n(ξ) = w ; see [16] for the complete proof.

It would be desirable to replace the assumption w ≥ 2n − 1 in Theorem 5.1 by a

weaker one. Actually, the value 2n − 1 comes from Theorem 2.9 (Liouville’s inequality),

which is widely used in the proof of Theorem 5.1.

Theorem 5.1 is a key tool to get results on the spectra of various exponents of

approximation.

The next result, also established in [16], gives a relationship between the exponents

λn and λm when m divides n.

Lemma 5.2. For any positive integers k and n, and any transcendental real number ξ we

have

λkn(ξ) ≥ λk(ξ)− n+ 1

n
.

A similar inequality holds between the uniform exponents, but it gives nothing

interesting since λ̂k(ξ) ≤ 1 for every integer k ≥ 1 and every irrational real number

ξ.

Proof. Let v be a positive real number and q be a positive integer such that

max
1≤j≤k

|qξj − pj | ≤ q−v,
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for suitable integers p1, . . . , pk. Let h be an integer with 1 ≤ h ≤ kn. Write h = j1+. . .+jm
with m ≤ n and 1 ≤ j1, . . . , jm ≤ k. Then,

|qmξh − pj1 . . . pjm | �m qm−1q−v

and

‖qnξh‖ � qn−m‖qmξh‖ �m qn−1−v �m (qn)−(v−n+1)/n,

independently of h. This proves the lemma.

We display an immediate consequence of Lemma 5.2.

Corollary 5.3. Let ξ be a real irrational number. Then, λn(ξ) = +∞ holds for every

positive integer n if, and only if, λ1(ξ) = +∞.

Combined with Theorems 2.5 and 4.8 and Corollary 4.10, Corollary 5.3 allows us

to determine the values taken at Liouville numbers (recall that a Liouville number is, by

definition, a real number ξ satisfying w1(ξ) = +∞) by our six exponents of approximation.

Corollary 5.4. For any positive integer n and any Liouville number ξ, we have

wn(ξ) = w∗n(ξ) = λn(ξ) = +∞, ŵn(ξ) = n, ŵ∗n(ξ) = 1, and λ̂n(ξ) =
1

n
.

The proof of Theorem 5.1 shows how the theory of continued fractions allows us to

construct explicitly real numbers ξ having any arbitrarily prescribed value for λ1(ξ). The

same question for an exponent λn with n ≥ 2 is not yet solved. At present, the best known

result was proved in [16] and is reproduced below.

Theorem 5.5. Let n ≥ 2 be an integer and w ≥ n be a real number. If the real number

ξw satisfies w1(ξw) = . . . = wn(ξw) = w, then

λn(ξw) =
w − n+ 1

n
, ŵ∗n(ξw) =

w

w − n+ 1
,

and

ŵj(ξw) = j, j = 1, . . . , n.

Proof. Let m ≥ 2 be an integer and ξ be a transcendental real number. Lemma 5.2 with

k = 1 implies the lower bound

λm(ξ) ≥ w1(ξ)−m+ 1

m
.

On the other hand, Theorem 3.2 gives the upper bound

λm(ξ) ≤ wm(ξ)−m+ 1

m
.
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Let ξw be such that

w1(ξw) = . . . = wn(ξw) = w.

Then, the equalities

λm(ξw) =
w −m+ 1

m
, m = 1, . . . , n,

hold ; in particular,

λn(ξw) =
w − n+ 1

n
,

and this establishes the first statement of the theorem.

Combining Theorem 2.6 with the case m = 1 of Theorem 4.8 gives

wn(ξw)

wn(ξw)− n+ 1
≤ ŵ∗n(ξw) ≤ w1(ξw)

w1(ξw)− n+ 1
,

thereby proving the second statement of the theorem.

Without any loss of generality, assume that 0 < ξw < 1 and w > n ≥ 2. Let ε be

a real number satisfying 0 < ε < w − n. Let p/q be a rational number such that q ≥ 1,

gcd(p, q) = 1 and |ξw − p/q| < q−1−w+ε. Let P (X) be an integer polynomial of degree j

at most n and height at most q − 1. Observe that P (p/q) is a non-zero rational number

satisfying |P (p/q)| ≥ 1/qj .

By Rolle’s theorem, there exists t lying between ξ and p/q such that

P (ξw) = P (p/q) + (ξw − p/q)P ′(t).

Observe that |P ′(t)| ≤ 2nn2q and |ξw − p/q| · |P ′(t)| ≤ 1/(2qn), if q is large enough. We

then deduce that |P (ξw)| ≥ 1/(2qj) if q is large enough. This shows that ŵj(ξw) = j, as

asserted.

Theorem 5.5 allows us to get some information on the spectra of the exponents λn
and ŵ∗n.

Theorem 5.6. For any positive integer n, the spectrum of λn includes the interval [1,+∞],

the spectrum of ŵ∗n includes the interval [1, 2−1/n] and the spectrum of ŵn− ŵ∗n includes

the interval [n− 2 + 1/n, n− 1].

Proof. This has been already proved for n = 1. If n ≥ 2, the statement follows from the

combination of Theorem 5.1 with Theorem 5.5.

Recall that, by Theorem 3.1, the spectra of wn − w∗n and of ŵn − ŵ∗n are included

in [0, n − 1], for n ≥ 1. The first assertion of the next result was proved by Bugeaud and

Dujella [19] by means of an explicit construction of families of polynomials with close roots.
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Theorem 5.7. For any positive integer n, the spectrum of wn −w∗n includes the interval[
0,
n

2
+

n− 2

4(n− 1)

)
.

Moreover, the spectrum of w2 −w∗2 is equal to [0, 1] and that of w3 −w∗3 is equal to [0, 2].

Explicit examples of real numbers ξ for which w2(ξ) exceeds w∗2(ξ) can be found in

[18].

Very recently, Schleischitz [68] established that, under some extra assumption, the

inequality proved in Lemma 5.2 is indeed an equality.

Theorem 5.8. Let n be a positive integer and ξ be a real number. If λn(ξ) > 1, then we

have

λ1(ξ) = nλn(ξ) + n− 1 (5.2)

and

λj(ξ) =
nλn(ξ)− j + n

j
, λ̂j(ξ) =

1

j
, (j = 1, . . . , n).

Conversely, if λ1(ξ) > 2n− 1, then we have

λn(ξ) =
λ1(ξ)− n+ 1

n
(5.3)

and

λ̂j(ξ) =
1

j
, (j = 1, . . . , n). (5.4)

Proof. Assume that ξ is in (0, 1) and satisfies λn(ξ) > 1. Let q be a large positive integer

and v be a real number greater than 1 such that q−v < 1/(4nq) and

max
1≤j≤n

‖qξj‖ ≤ q−v. (5.5)

Let p be the integer such that |qξ− p| = ‖qξ‖. Then, p and q may not be coprime, but p/q

is a convergent to ξ. Let d be the greatest prime factor of p and q and set p0 = p/d and

q0 = q/d. Observe that, for j = 1, . . . , n, we have

∣∣∣ξj − pj

qj

∣∣∣ =
∣∣∣ξ − p

q

∣∣∣ · ∣∣∣ξj−1 + . . .+
(p
q

)j−1∣∣∣ ≤ 2n

q1+v
≤ 1

2q2
. (5.6)

Assume that q < qn0 and express q in base q0. Recalling that q0 divides q, there exist

integers b1, . . . , bn−1 in {0, 1, . . . , q0 − 1} such that

q = b1q0 + b2q
2
0 + . . .+ bn−1q

n−1
0 .
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Let u be in {2, . . . , n} be the smallest index such that bu−1 is non-zero. Then,

‖qpu0/qu0 ‖ = ‖bu−1pu0/q0‖ ≥ 1/q0. (5.7)

Furthermore, it follows from (5.6) that∣∣∣q(ξu − pu

qu

)∣∣∣ =
∣∣∣q(ξu − pu0

qu0

)∣∣∣ ≤ 1

2q
. (5.8)

Let y be the integer such that |qξu − y| = ‖qξu‖ and observe that

‖qξu‖ ≥
∣∣∣y − q pu0

qu0

∣∣∣− ∣∣∣q(ξu − pu0
qu0

)∣∣∣,
using the triangle inequality. Combined with (5.7) and (5.8), this gives

max
1≤j≤n

‖qξj‖ ≥ ‖qξu‖ ≥ 1

q0
− 1

2q
≥ 1

2q
,

a contradiction to (5.5).

Consequently, b1 = . . . = bn−1 = 0 and we have established that q ≥ qn0 (actually, our

proof shows that q must be an integer multiple of qn0 ). In particular, we have

d ≥ qn−10 . (5.9)

Since

‖q0ξ‖ = |q0ξ − p0| = d−1‖qξ‖,

it follows from (5.5) and (5.9) that

‖q0ξ‖ ≤ q−n+1
0 q−nv0 = q−nv−n+1

0 .

Since v can be taken arbitrarily close to λn(ξ), we deduce that

λ1(ξ) ≥ nλn(ξ) + n− 1.

Combined with Lemma 5.2, this proves the first statement of the theorem.

In particular, we get λ1(ξ) > 2n−1, and it follows from Theorem 4.9 that λ̂j(ξ) = 1/j

for j = 1, . . . , n.

Let j be an integer with 2 ≤ j ≤ n − 1. Since λn(ξ) > 1, we have λj(ξ) > 1 and

λ1(ξ) = jλj(ξ) + j − 1. Combined with (5.2), this gives jλj(ξ) = nλn(ξ) − j + n, as

claimed.

If the real number ξ satisfies λ1(ξ) > 2n−1, then we get by Lemma 5.2 that λn(ξ) > 1

and (5.3) and (5.4) follow from the first assertions of the theorem.

The condition λn(ξ) > 1 in the statement of Theorem 5.8 cannot be removed in view

of Theorem 4.3 of [16], which confirms the existence of uncountably many real numbers ξ

satisfying λn(ξ) = 1 for every n ≥ 1. Furthermore, Theorem 4.4 of [16] asserts that, for an

arbitrary real number λ in [1, 3], there exist uncountably many real numbers ξ satisfying

λ1(ξ) = λ and λ2(ξ) = 1.

We display an immediate consequence of Theorem 5.8.
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Corollary 5.9. Let n be a positive integer and ξ be a transcendental real number. Then,

λn(ξ) > 1 holds if and only if λ1(ξ) > 2n− 1 holds.

The restriction w ≥ 2n − 1 in the statement of Theorem 5.1 prevents us to get the

whole spectra of the exponents wn and λn by the method described above. Actually, we

need the help of metric number theory to determine the whole spectra of the exponents

wn and λ2.

Theorem 5.10. For any positive integer n, the spectrum of wn is equal to the whole

interval [n,+∞] and the spectrum of w∗n includes the whole interval [n,+∞].

The first statement of Theorem 5.10 was proved by Bernik [11] and the second one is

a result of Baker and Schmidt [5].

We display an immediate consequence of results by Beresnevich, Dickinson, Vaughan

and Velani [10, 79].

Theorem 5.11. The spectrum of λ2 is equal to [1/2,+∞].

More is known than the mere statement of Theorems 5.10 and 5.11. Indeed, for an

integer n ≥ 1 and a real number w ≥ n, the Hausdorff dimension of the set of real numbers

ξ for which wn(ξ) = w (resp., w∗n(ξ) = w) is equal to (n + 1)/(w + 1). Furthermore, the

Hausdorff dimension of the set of real numbers ξ for which λ2(ξ) = λ is equal to 1/(1 + λ)

if λ ≥ 1 and to (2− λ)/(1 + λ) if 1/2 ≤ λ ≤ 1.

The spectra of the exponents ŵn and λ̂n remain very mysterious for n ≥ 3, since we

can not even exclude that they are, respectively, reduced to {n} and {1/n} (recall that,

by spectrum, we mean the set of values taken at transcendental points).

For n = 2, the situation is slightly better. By Jarńık’s Theorem 3.3, the value of ŵ2

determines that of λ̂2, thus it is sufficient to determine the range of ŵ2 ; see also below

Theorem 4.7.

As for the exponent ŵ∗n, it is likely that its spectrum includes the interval [1, n], but

this is not yet proved.

6. Intermediate exponents

Let n ≥ 2 be an integer and ξ be a point in Rn. In [46], Laurent introduced new

exponents ωn,d(ξ) (simply denoted by ωd(ξ) in [46], since n is fixed throughout that paper)

measuring the sharpness of the approximation to ξ by linear rational varieties of dimension

d. He split the Khintchine transference principle into n − 1 intermediate estimates which

connect the exponents ωn,d(ξ) for d = 0, 1, . . . , n− 1 (see also [24]). Actually, Schmidt [70]

was the first to investigate the properties of these exponents ωn,d, but he did not introduce

them explicitly. We briefly recall their definition and we consider new exponents wn,d
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defined over R by restricting ωn,d to the Veronese curve (x, x2, . . . , xn). It is convenient

to view Rn as a subset of Pn(R) via the usual embedding (x1, . . . , xn) 7→ (1, x1, . . . , xn).

We shall identify ξ = (ξ1, . . . , ξn) with its image in Pn(R). Denote by d the projective

distance on Pn(R) and, for any real linear subvariety L of Pn(R), set

d(ξ, L) = min
P∈L

d(ξ, P )

the minimal distance between ξ and the real points P of L. When L is rational over Q, we

indicate by H(L) its height, that is the Weil height of any system of Plücker coordinates

of L. We refer to [46, 24] for precise definitions of the projective distance, heights, etc.

Definition 6.1. Let n ≥ 2 and d be integers with 0 ≤ d ≤ n − 1. Let ξ be in Rn. We

denote by ωn,d(ξ) the supremum of the real numbers ω for which there exist infinitely

many rational linear subvarieties L ⊂ Pn(R) of dimension d such that

H(L)d(ξ, L) ≤ H(L)−ω.

We denote by ω̂n,d(ξ) the supremum of the real numbers ω̂ such that, for every sufficiently

large value of H, there exists a rational linear subvariety L ⊂ Pn(R) of dimension d with

H(L)d(ξ, L) ≤ H−ω̂.

If there exists ξ such that ξ = (ξ, ξ2, . . . , ξn), then we set wn,d(ξ) = ωn,d(ξ) and

ŵn,d(ξ) = ω̂n,d(ξ).

We observe that the functions λn and wn,0 (resp. wn and wn,n−1) coincide. The

exponents ω̂n,d were introduced in [23, 64].

The following transference theorem was proved in [70, 46].

Theorem 6.2. Let n be a positive integer. For any non-zero vector ξ in Rn+1, we have

ωn,0(ξ) ≥ 1/n and

jωn,j(ξ)

ωn,j(ξ) + j + 1
≤ ωn,j−1(ξ) ≤

(n− j)ωn,j(ξ)− 1

n− j + 1
, j = 1, . . . , n− 1,

with the convention that the left-hand side is equal to j if ωn,j(ξ) is infinite.

Let the spectrum of the function ωn,d denote the set of values taken by the exponents

ωn,d(ξ) when ξ = (ξ1, . . . , ξn) ranges over Rn, with 1, ξ1, . . . , ξn linearly independent over

the rationals. Using a result of Jarńık [36], Laurent [46] established the following statement.

Theorem 6.3. Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. For

every ω in [(d + 1)/(n − d),+∞], there exists ξ such that ωn,d(ξ) = ω. Furthermore,

ωn,d(ξ) = (d+ 1)/(n− d) for almost all ξ in Rn.

By means of the numbers ξw defined in the proof of Theorem 5.1, we get some

information on the spectra of the exponents wn,d.
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Theorem 6.4. For n ≥ 2 and 0 ≤ d ≤ n − 1, the spectrum of wn,d contains the whole

interval [(n+ d)/(n− d),+∞] and wn,d(ξ) = (d+ 1)/(n− d) for almost all real numbers ξ.

Theorem 6.4 plainly includes the last assertion of Theorem 5.1 and the first assertion

of Theorem 5.6.

Proof. We follow the proof of the Corollary from [46], where it is established that, for

any λ with 1/n ≤ λ ≤ +∞ and for any point ξ in Rn such that ωn,0(ξ) = λ and

ωn,n−1(ξ) = nλ+ n− 1, we have

ωn,d(ξ) =
nλ+ d

n− d
, (d = 0, 1, . . . , n− 1). (6.1)

For w ≥ 2n− 1, the numbers ξw defined in the proof of Theorem 5.1 satisfy

nλn(ξw) = wn(ξw)− n+ 1 = w − n+ 1,

that is,

ωn,n−1(ξw, . . . , ξ
n
w) = nωn,0(ξw, . . . , ξ

n
w) + n− 1.

We then get from (6.1) that

wn,d(ξw) =
nλn(ξw) + d

n− d
, (d = 0, 1, . . . , n− 1).

The first assertion of the theorem follows since λn(ξw) takes every value between 1 and

+∞ as w varies from 2n− 1 to +∞. The second assertion is an immediate consequence of

(6.1) and the fact that nλn(ξ) = wn(ξ)−n+ 1 = 1 holds for almost every real number ξ.

We conclude this section by mentioning that Laurent [45] determined the set of values

taken by the quadruple of functions (ω2,0, ω2,1, ω̂2,0, ω̂2,1) at real points.

7. Parametric geometry of numbers

In 2009, Schmidt and Summerer [73, 74] introduced a new theory, called the parametric

geometry of numbers. They studied the joint behaviour of the n+ 1 successive minima of

certain one parameter families of convex bodies in Rn+1, as a function of the parameter.

They further showed how their results allow them to recover classical inequalities relating

various exponents of Diophantine approximation attached to points in Rn and to find new

ones. Some aspects of their theory have been simplified and completed by Roy [63], who

was then able to derive several spectacular results [64, 65].

Let n be a positive integer and ξ be a non-zero vector in Rn+1. For each real number

Q ≥ 1, we form the convex body

Cξ(Q) = {x ∈ Rn+1 ; ‖x‖2 ≤ 1, |x · ξ| ≤ Q−1},

24



where | · | denotes the scalar product and ‖·‖2 the Euclidean norm. For j = 1, . . . , n+1, we

denote by λj
(
Cξ(Q)

)
the j-th minimum of Cξ(Q), namely the smallest real number λ > 0

such that λCξ(Q) contains at least j linearly independent points of Zn+1. Schmidt and

Summerer [74] defined

Lξ,j(q) = log λj(Cξ(eq)), q ≥ 0, 1 ≤ j ≤ n+ 1,

and considered the map Lξ: [0,∞)→ Rn+1 given by

Lξ(q) = (Lξ,1(q), . . . , Lξ,n+1(q)), q ≥ 0.

They established many properties of this map. For instance, each of its components

Lξ,j : [0,+∞) → R is continuous and piecewise linear with slopes 0 and 1. Schmidt and

Summerer showed that each function Lξ can be approximated up to bounded difference by

functions from a certain class, and Roy [63] showed that the same property holds within a

simpler class.

For j = 1, . . . , n+ 1, Roy [64] also introduced

ψ
j
(ξ) = lim inf

q→+∞

Lξ,1(q) + · · ·+ Lξ,j(q)

q
and ψj(ξ) = lim sup

q→+∞

Lξ,1(q) + · · ·+ Lξ,j(q)

q
.

The following result, established in [64], connects these quantities to those from the

previous section.

Proposition 7.1. Let n be a positive integer and ξ = (1, ξ1, . . . , ξn) be a vector in Rn+1.

For j = 0, . . . , n− 1, we have

ωn,j((ξ1, . . . , ξn)) =
1

ψ
n−j(ξ)

− 1 and ω̂n,j((ξ1, . . . , ξn)) =
1

ψn−j(ξ)
− 1.

We quote below the main result of [64] and observe that it implies the first statement

of Theorem 6.3.

Theorem 7.2. Let n be a positive integer. For any ω0, . . . , ωn−1 ∈ [0,+∞] satisfying

ω0 ≥ 1/n and

jωn,j
ωn,j + j + 1

≤ ωn,j−1 ≤
(n− j)ωn,j − 1

n− j + 1
, 1 ≤ j ≤ n− 1,

there exists a point ξ ∈ Rn, whose coordinates are, together with 1, linearly independent

over Q, such that

ωn,j(ξ) = ωj and ω̂n,j(ξ) =
j + 1

n− j
, 0 ≤ j ≤ n− 1.

Furthermore, the point of view of parametric geometry of numbers has led Schmidt

and Summerer to introduce the following exponents of approximations.
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Definition 7.3. Let ξ = (ξ1, . . . , ξn) be in Rn. For i = 1, . . . , n+ 1, we denote by λi,n(ξ)

(resp. λ̂i,n(ξ)) the supremum of the real numbers λ such that the system of inequalities

0 < |x0| ≤ X, max
1≤j≤n

|x0ξj − xj | ≤ X−λ

has i linearly independent solutions (x0, x1, . . . , xn) in Zn for arbitrarily large X (resp. for

every sufficiently large X).

Schmidt and Summerer [74] observed that λ1,n(ξ) = λn(ξ), λ̂1,n(ξ) = λ̂n(ξ),

λn+1,n(ξ) = 1/ŵn(ξ) and λ̂n+1,n(ξ) = 1/wn(ξ), by Mahler’s theorem on polar recipro-

cal bodies [50].

These exponents have been studied by Schleischitz [66, 69].

8. Real numbers which are badly approximable by algebraic numbers

This short section is devoted to Problems 24 and 25 of [15], which were solved by

Badziahin and Velani [4], for n = 2, and by Beresnevich [8], for n ≥ 3.

Recall that an irrational real number ξ is called a badly approximable number if there

exists a positive real number c such that

|qx− p| > c

|q|
, for every p, q in Z with q 6= 0.

This notion can be extended as follows.

Definition 8.1. Let n be a positive integer. A real number ξ is called n-badly approx-

imable if there exists a positive constant c(ξ, n) such that

|P (ξ)| ≥ c(ξ, n)H(P )−n for any integer polynomial P (X) of degree ≤ n.

Observe that it follows from Liouville’s Inequality (Theorem 2.9) that, for any positive

integer n, any real algebraic number of degree n+ 1 is n-badly approximable.

Davenport [28] asked whether there exist 2-badly approximable transcendental real

numbers. His question remained open for nearly fifty years, until it was finally solved

by Badziahin and Velani [4], using an intricate construction inspired by their proof [3]

of a conjecture of Schmidt. Their result was subsequently extended a few years later by

Beresnevich [8], who confirmed the existence of n-badly approximable transcendental real

numbers, for every given positive integer n. For n = 2, his proof differs greatly from that

of [4].

A closely related problem deals with transcendental numbers badly approximable by

algebraic numbers of degree at most equal to some integer n. As well, it has been solved

by Badziahin and Velani [4], for n = 2, and by Beresnevich [8], for n ≥ 3.
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Theorem 8.2. Let n be a positive integer. There exist transcendental real numbers ξ

which are n-badly approximable and for which there exist positive real numbers c1(ξ, n)

and c2(ξ, n) such that

|ξ − α| ≥ c1(ξ, n)H(α)−n−1, for any real algebraic number α of degree ≤ n,

and

|ξ−α| ≤ c2(ξ, n)H(α)−n−1, for infinitely many real algebraic numbers α of degree ≤ n.

Moreover, the set of real numbers with this property has full Hausdorff dimension.

Actually, Beresnevich [8] established that any intersection of finitely many of the sets

arising in Theorem 8.2 has full Hausdorff dimension.

9. Open problems

In Chapter 10 of [15] we listed several open questions. As we have already seen above,

some of them have now been solved. We gather below some of the still open problems

mentioned in [15], and add a few supplementary ones.

We begin with the conjecture of Wirsing [80] dealing with the approximation of real

transcendental numbers by real algebraic numbers of bounded degree. This celebrated open

problem has motivated many works in this area.

Problem 9.1 (Wirsing’s Conjecture). For any integer n ≥ 1 and for any real

transcendental number ξ, we have w∗n(ξ) ≥ n.

We may even ask for a stronger version of Wirsing’s conjecture, namely whether, for

any positive integer n and any real transcendental number ξ, there exist a constant c(ξ, n)

and infinitely many real algebraic numbers α of degree less than or equal to n such that

|ξ − α| ≤ c(ξ, n)H(α)−n−1.

Davenport and Schmidt [29] gave a positive answer to this question in the case n = 2

(and Theorem 8.2 implies that their result is best possible up to the value of the numerical

constant), but we do not know if we can fix the exact degree of the approximants instead

of just an upper bound for it.

Problem 9.2. For any integer n ≥ 2 and any real transcendental number ξ, there exist

a constant c(ξ, n) and infinitely many real algebraic numbers α of degree exactly n such

that

|ξ − α| ≤ c(ξ, n)H(α)−n−1.

Results of Roy [56, 57] could speak in favour of the existence of transcendental numbers

which do not satisfy the conclusion of Problem 9.2, even for n = 2.

The next problem was called the ‘main problem’ in [15].

27



Problem 9.3. Let (wn)n≥1 and (w∗n)n≥1 be two non-decreasing sequences in [1,+∞] such

that

n ≤ w∗n ≤ wn ≤ w∗n + n− 1, for any n ≥ 1.

Then there exists a real transcendental number ξ such that

wn(ξ) = wn and w∗n(ξ) = w∗n for any n ≥ 1.

Since Problem 9.3 does not take the exponents λn into account, we propose a more

general formulation.

Problem 9.4. For n ≥ 2, determine the joint spectrum of the triple of exponents

(wn, w
∗
n, λn), that is, the set of triples (wn(ξ), w∗n(ξ), λn(ξ)), when ξ goes through the

set of transcendental real numbers.

Theorem 3.2 shows how the exponents λn are related to the exponents wn by means

of a transference theorem.

Problem 9.5. Let n ≥ 2 be an integer, λn ≥ 1/n and wn ≥ n be real numbers satisfying

wn
(n− 1)wn + n

≤ λn ≤
wn − n+ 1

n
.

There exist real numbers ξ such that wn(ξ) = wn and λn(ξ) = λn.

Corollary 2.7 asserts that w∗n(ξ) = n holds if wn(ξ) = n, but the converse is an open

question.

Problem 9.6. For any positive integer n, we have wn(ξ) = n if w∗n(ξ) = n.

We now turn to uniform exponents.

Problem 9.7. For any integer n ≥ 3 and any real transcendental number ξ, we have

ŵn(ξ) = n. At least, obtain a better upper bound than ŵn(ξ) ≤ 2n− 1.

Approximation by algebraic integers (that is, by algebraic numbers, whose minimal

defining polynomial over Z is monic) has been first studied by Davenport and Schmidt

[31]. Roy [56] proved that there exist real numbers ξ which are very badly approximable

by quadratic integers, in the sense that there exists c > 0 such that

|ξ − α| > cH(α)−(1+
√
5)/2,

for every real quadratic number α.

The next problem is the analogue of Wirsing’s conjecture for approximation by

algebraic integers.
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Problem 9.8. For any integer n ≥ 4, any positive real number ε, and any real

transcendental number ξ, there exist a constant c(ξ, n, ε) and infinitely many real algebraic

integers α of degree less than or equal to n such that

|ξ − α| ≤ c(ξ, n, ε)H(α)−n+ε.

In view of auxiliary results from [31], the answer to Problem 9.8 is positive for

some integer n ≥ 4 if one can prove that any real transcendental number ξ satisfies

ŵn−1(ξ) = n− 1.

Despite the recent progress made in [4, 8], the following problem remains open.

Problem 9.9. There exist a real transcendental number ξ and a sequence (c(ξ, n))n≥1 of

positive real numbers such that

|P (ξ)| ≥ c(ξ, n)H(P )−n for any integer n and any polynomial P (X) of degree ≤ n.

It is likely that the answer to Problem 9.9 is positive and that, moreover, the set of

real numbers ξ with this property has full Hausdorff dimension.

We continue with a problem proposed by Schleischitz [68], which corrects and refines

a problem posed in [16].

Problem 9.10. Let m,n be integers with 1 ≤ n ≤ m. Does the inequality

λm(ξ) ≥ nλn(ξ)−m+ n

m

hold for every transcendental real number ξ ?

The next problem extends a question posed by Beresnevich, Dickinson, and Velani [9]

in the case of (simultaneous) rational approximation.

Problem 9.11. Let n be a positive integer and let τ > 1 be real. Is the set of real numbers

ξ for which there exists a positive constant c(ξ) such that

|ξ − α| ≤ H(α)−τ(n+1), for infinitely many algebraic numbers α of degree ≤ n,

and

|ξ − α| ≥ c(ξ)H(α)−τ(n+1), for every algebraic number α of degree ≤ n,

non-empty ? If yes, determine its Hausdorff dimension.

Problem 9.11 has been solved [14] when n = 1. One may also replace the approximation

functions x 7→ x−τ(n+1) by more general non-increasing functions Ψ.

Problems 9.12 and 9.13 deal with metrical results.
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Problem 9.12. Let n ≥ 2 be an integer. Let λn be a real number with λn ≥ 1/n.

Determine the Hausdorff dimension of the set of real numbers ξ such that λn(ξ) = λn.

Problem 9.13. Determine the Hausdorff dimension of the set of real numbers ξ such that

ŵ2(ξ) > 2 (resp. ŵ∗2(ξ) > 2).

We continue with two specific questions on exponents of uniform approximation.

Problem 9.14. Does there exist ξ such that ŵ2(ξ) > 2 and ŵ2(ξ) > ŵ∗2(ξ) ?

Problem 9.15. The spectrum of ŵ∗2 includes the interval [1, 2].

Let m ≥ 2 be an integer. According to LeVeque [47], a real number ξ is a Um-number

if wm(ξ) is infinite and wm−1(ξ) is finite. Furthermore, the U1-numbers are precisely the

Liouville numbers.

It is proved in [1] (see also Section 7.6 of [15]) that, for any integer m ≥ 2, there exist

uncountably many real Um-numbers ξ with

w∗n(ξ) ≤ m+ n− 1, for n = 1, . . . ,m− 1. (9.1)

Schmidt [72] showed that w∗n(ξ) can be replaced by wn(ξ) in (9.1).

Problem 9.16. Let m ≥ 2 be an integer. There exist real Um-numbers ξ satisfying

wn(ξ) = n, for n = 1, . . . ,m− 1.

Corollary 5.4 shows that the values taken by our exponents of approximation at U1-

numbers are known.

Problem 9.17. Let m and n be integers with n ≥ m ≥ 2. Study the values taken by the

exponents of approximation λn, ŵ∗n, . . . at Um-numbers.

Among many questions concerning the exponents wn,d and ŵn,d defined in Section 6,

let us point out the following three ones.

Problem 9.18. Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. Find a real

number Cn,d as small as possible such that every transcendental real number ξ satisfies

ŵn,d(ξ) ≤ Cn,d.

Problem 9.19. Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. Is the spectrum

of the function wn,d equal to [(d+ 1)/(n− d),+∞] ?

A positive answer of Problem 9.19 would (probably) follow from the resolution of the

next problem.
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Problem 9.20. Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. Let w be a real

number satisfying w > (d+ 1)/(n− d). Determine the Hausdorff dimension of the sets

{ξ ∈ Rn : ωn,d(ξ) ≥ w}

and

{ξ ∈ R : wn,d(ξ) ≥ w}.

Throughout this survey, we have focus our attention on approximation to real

numbers. However, we may as well consider approximation to complex numbers or to

p-adic numbers ; see the references given in Chapter 9 of [15] and the works [20, 81, 17,

13, 7, 40, 25].

There are as well several recent papers on uniform Diophantine approximation on

curves in R2 ; see [48, 62, 6].
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[50] K. Mahler, Ein Übertreibungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fyz.
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336 (2003), 1–6.

[55] D. Roy, Approximation to real numbers by cubic algebraic numbers, II, Ann. of Math.

158 (2003), 1081–1087.

34



[56] D. Roy, Approximation to real numbers by cubic algebraic numbers, I, Proc. London

Math. Soc. 88 (2004), 42–62.

[57] D. Roy, Diophantine approximation in small degree, Number Theory, 269–285, CRM

Proc. Lecture Notes 36, Amer. Math. Soc., Providence, RI, 2004.

[58] D. Roy, On two exponents of approximation related to a real number and its square,

Canad. J. Math. 59 (2007), 211–224.

[59] D. Roy, On the continued fraction expansion of a class of numbers. In: Diophantine

approximation, Festschrift for Wolfgang Schmidt, Developments in Math. vol. 16,

Eds: H. P. Schlickewei, K. Schmidt and R. Tichy, Springer-Verlag, 2008, 347–361.

[60] D. Roy, On simultaneous rational approximations to a real number, its square, and

its cube, Acta Arith. 133 (2008), 185–197.

[61] D. Roy, Rational approximation to real points on conics, Ann. Inst. Fourier (Greno-

ble) 63 (2013), 2331–2348.

[62] D. Roy, On Schmidt and Summerer parametric geometry of numbers, Ann. of Math.

To appear.

[63] D. Roy, Spectrum of the exponents of best rational approximation. Preprint.

[64] D. Roy, Construction of points realizing the regular systems of Wolfgang Schmidt
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