Yann Bugeaud

Abstract. Let p be a prime number. We show that a result of Teulié is nearly best possible by constructing a p-adic number ξ such that ξ and ξ^2 are uniformly simultaneously very well approximable by rational numbers with the same denominator. The same conclusion was previously reached by Zelo in his PhD thesis, but our approach using p-adic continued fractions is more direct and simpler.

1. Introduction

Throughout this paper we set $\lambda = (\sqrt{5} - 1)/2$. In 1969, Davenport and Schmidt [2] established the following statement.

Theorem DS. Let ξ be a real number that is neither rational nor quadratic. Then, there exists a positive real number c such that the system of inequalities

$$|x_0\xi - x_1| \le cX^{-\lambda},$$

$$|x_0\xi^2 - x_2| \le cX^{-\lambda},$$

$$|x_0| \le X$$

has no non-zero integer solution (x_0, x_1, x_2) for arbitrarily large real numbers X.

It was rather unexpected when, in 2003, Roy [5, 7] proved that Theorem DS cannot be improved.

Theorem R. There exist a real number ξ which is neither rational nor quadratic and a positive real number c such that the system of inequalities

$$|x_0\xi - x_1| \le cX^{-\lambda},$$

$$x_0\xi^2 - x_2| \le cX^{-\lambda},$$

$$|x_0| \le X$$
(1.1)

has a non-zero integer solution (x_0, x_1, x_2) for every real number X > 1.

2010 Mathematics Subject Classification: 11J13, 11J61.

Theorem R is quite surprising, since the volume of the convex bodies defined by (1.1) tends rapidly to zero as X grows to infinity. Any real number ξ satisfying a Diophantine condition as in Theorem R was termed by Roy an *extremal number*. He proved [7] that the set of extremal (real) numbers is countable and gave some explicit examples of extremal (real) numbers [5].

Throughout the present paper, p always denotes a prime number. The absolute value $|\cdot|_p$ is normalised in such a way that $|p|_p = p^{-1}$. In 2002, Teulié [8] established the *p*-adic analogue of Theorem DS.

Theorem T. Let ξ be a *p*-adic number that is neither rational nor quadratic. Then, there exists a positive real number *c* such that the system of inequalities

$$|x_0\xi - x_1|_p \le cX^{-1-\lambda}, |x_0\xi^2 - x_2|_p \le cX^{-1-\lambda}, \max\{|x_0|, |x_1|, |x_2|\} \le X$$
(1.2)

has no non-zero integer solution (x_0, x_1, x_2) for arbitrarily large real numbers X.

In analogy with the real case, we define an *extremal p-adic number* to be a *p*-adic number ξ with the property that there is a positive constant *c* such that, for every real number X > 1, the system (1.2) has a non-zero integer solution (x_0, x_1, x_2) .

Very recently, in his PhD thesis, Zelo [9] adapted the method initiated by Roy [7] to show that Teulié's result is nearly best possible. Next result follows from his Corollary 2.5.9.

Theorem Z. Let ε be a positive real number. There exist a *p*-adic number ξ which is neither rational nor quadratic and a positive real number *c* such that the system of inequalities

$$|x_0\xi - x_1|_p \le cX^{-1-\lambda+\varepsilon},$$

$$|x_0\xi^2 - x_2|_p \le cX^{-1-\lambda+\varepsilon},$$

$$\max\{|x_0|, |x_1|, |x_2|\} \le X$$

has a non-zero integer solution (x_0, x_1, x_2) for every real number X > 1.

The purpose of the present note is to give an alternative, simpler proof of Zelo's result. Our approach is inspired by Roy's construction [5] of an extremal number using continued fractions and properties of the infinite Fibonacci word.

2. Result

Let a and b be two symbols. Set $f_1 = b$, $f_2 = a$ and let $f_n = f_{n-1}f_{n-2}$ be the concatenation of the words f_{n-1} and f_{n-2} , for $n \ge 3$. Then,

$$f_{\infty} = \lim_{n \to +\infty} f_n = abaababaabaab \dots$$

is the *Fibonacci word* on the alphabet $\{a, b\}$. Roy [5] proved that the real number

 $\xi = [0; 1, 2, 1, 1, 2, 1, 2, 1, \ldots],$

whose sequence of partial quotients is given by the Fibonacci word on $\{1, 2\}$, is an extremal real number.

In this note we show that a similar construction works in the p-adic setting. Before stating our main result, it is convenient to define an exponent of approximation.

Definition. Let $n \ge 1$ be an integer and let ξ be a *p*-adic number. We denote by $\hat{\lambda}_n(\xi)$ the supremum of the real numbers $\hat{\lambda}$ such that, for every sufficiently large real number X, the system of inequalities

$$\max_{1 \le m \le n} |x_0 \xi^m - x_m|_p \le X^{-1-\lambda}$$

0 < max{|x_0|, |x_1|, ..., |x_n|} ≤ X

has a solution in integers x_0, \ldots, x_n .

It follows from the Dirichlet Schubfachprinzip that $\hat{\lambda}_n(\xi) \geq 1/n$ for every positive integer *n* and every irrational number ξ . Teulié [8] derived upper bounds for $\hat{\lambda}_n(\xi)$ when ξ is not algebraic of degree at most *n*. His Theorem T implies that $\hat{\lambda}_2(\xi) \leq \lambda$ for every *p*-adic number ξ which is neither rational nor quadratic, while Theorem Z asserts that

$$\sup\{\hat{\lambda}_2(\xi): \xi \in \mathbf{Q}_p, \, \xi \text{ is neither rational nor quadratic}\} = \lambda.$$
(2.1)

As in the real case, it remains unknown whether there are transcendental *p*-adic numbers ξ and integers $n \geq 3$ such that $\hat{\lambda}_n(\xi) > 1/n$.

Our Theorem gives a constructive proof of (2.1).

Theorem. Let v be a positive integer and let $(v_n)_{n\geq 1}$ be the Fibonacci word on $\{v, v+1\}$ starting with v. Let ξ_v denote the p-adic number

$$\xi_v := 1 + \lim_{n \to +\infty} \frac{p^{v_1}}{1 + \frac{p^{v_2}}{1 + \frac{p^{v_3}}{\dots + p^{v_n}}}}$$

Then we have $\hat{\lambda}_2(\xi_v) \ge (1 - 7/v)\lambda$ and

$$\sup\{\hat{\lambda}_2(\xi_v): v \ge 1\} = \lambda.$$

Remark 1. It does not seem that Zelo's approach allows him to replace X^{ε} in Theorem Z by a function of X which increases less rapidly, like e.g. $X^{1/\log \log X}$. The same applies for the constructive method described in the present note. In particular, it remains an interesting open problem to decide whether there exist extremal *p*-adic numbers and even whether there exist *p*-adic numbers ξ with $\hat{\lambda}_2(\xi) = \lambda$.

Remark 2. It follows from the *p*-adic version of the Schmidt Subspace Theorem that any *p*-adic number ξ satisfying $\hat{\lambda}_2(\xi) > 1/2$ is either rational, or quadratic, or transcendental.

Remark 3. Zelo's approach is more complicated than ours, but it gives more information. Indeed, it yields a characterization of extremal *p*-adic numbers (if such numbers exist) as well as a characterization of *p*-adic numbers ξ with $\hat{\lambda}_2(\xi)$ sufficiently close to λ . One may hope that, combined with ideas from [6], it could be used to prove the existence of *p*-adic numbers that are very badly approximable by cubic integers.

3. Proof

Before proceeding with the construction of p-adic numbers enjoying special approximation properties, we make several general remarks which were inspired by [3].

• Definition of p-adic continued fractions.

Set

$$p_{-1} = 1, q_{-1} = 0, p_0 = 1, q_0 = 1.$$

Let $\mathbf{v} = (v_n)_{n \ge 1}$ be a sequence of positive integers and set

$$p_n = p^{v_n} p_{n-2} + p_{n-1}, q_n = p^{v_n} q_{n-2} + q_{n-1}, \quad (n \ge 1).$$

Observe that

$$\left|\frac{p_1}{q_1} - \frac{p_0}{q_0}\right|_p = p^{-v_1}$$

and that, for $n \ge 2$, we have

$$\left| \frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} \right|_p = \left| \frac{(p^{v_n} p_{n-2} + p_{n-1})q_{n-1} - (p^{v_n} q_{n-2} + q_{n-1})p_{n-1}}{q_n q_{n-1}} \right|_p$$
$$= p^{-v_n} \left| \frac{p_{n-1}}{q_{n-1}} - \frac{p_{n-2}}{q_{n-2}} \right|_p,$$

since p does not divide $q_n q_{n-1} q_{n-2}$.

Consequently, for $n \ge 0$ and $k \ge 1$, we have

$$\left|\frac{p_{n+k}}{q_{n+k}} - \frac{p_n}{q_n}\right|_p = \left|\frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n}\right|_p = p^{-v_{n+1}-v_n-\dots-v_1}.$$
(3.1)

This shows that the sequence $(p_n/q_n)_{n\geq 1}$ converges *p*-adically. Let $\xi_{\mathbf{v}}$ denote its limit. It follows from (3.1) that

$$\left|\xi_{\mathbf{v}} - \frac{p_n}{q_n}\right|_p = p^{-v_{n+1}-v_n-\dots-v_1}, \quad n \ge 1,$$
(3.2)

and we can write

$$\xi_{\mathbf{v}} := 1 + \lim_{n \to +\infty} \frac{p^{v_1}}{1 + \frac{p^{v_2}}{1 + \frac{p^{v_3}}{\dots + p^{v_n}}}}.$$

• Palindromes.

Let n be a positive integer. We have

$$\frac{p_n}{q_n} = 1 + \frac{p^{v_1}}{1 + \frac{p^{v_2}}{1 + \frac{p^{v_3}}{\dots + p^{v_n}}}}.$$

Furthermore, the classical *mirror formula* (see [4], page 12) asserts that

$$\frac{p_n}{p_{n-1}} = 1 + \frac{p^{v_n}}{1 + \frac{p^{v_{n-1}}}{1 + \frac{p^{v_{n-2}}}{\dots + p^{v_1}}}}.$$

Consequently, if the word $v_1 \dots v_n$ is a *palindrome*, that is, if $v_j = v_{n+1-j}$ for $j = 1, \dots, n$, then

$$\frac{p_n}{q_n} = \frac{p_n}{p_{n-1}},$$

hence,

$$q_n = p_{n-1}$$

This implies that

$$\left| \xi_{\mathbf{v}}^2 - \frac{p_{n-1}}{q_{n-1}} \cdot \frac{p_n}{q_n} \right|_p = \left| \left(\xi_{\mathbf{v}} - \frac{p_{n-1}}{q_{n-1}} \right) \cdot \left(\xi_{\mathbf{v}} + \frac{p_n}{q_n} \right) + \xi_{\mathbf{v}} \left(\frac{p_{n-1}}{q_{n-1}} - \frac{p_n}{q_n} \right) \right|_p$$
$$\leq p^{-v_n - v_{n-1} - \dots - v_1},$$

by (3.1) and (3.2). We then derive from (3.2) that

$$\max\{|q_{n-1}\xi_{\mathbf{v}} - p_{n-1}|_p, |q_{n-1}\xi_{\mathbf{v}}^2 - p_n|_p\} \le p^{-v_n - v_{n-1} - \dots - v_1},\tag{3.3}$$

showing that $\xi_{\mathbf{v}}$ and its square are simultaneously well approximable by rational numbers of denominator q_{n-1} .

• Completion of the proof.

In the sequel, v denotes a positive integer and we assume that the sequence $\mathbf{v} = (v_n)_{n\geq 1}$ takes its values in the set $\{v, v+1\}$. We assume that $v \geq 8$ since the theorem obviously holds for $v \leq 7$. From the inequalities

$$p^{v}q_{n-2} \le q_n \le q_{n-1} + p^{v+1}q_{n-2}, \quad n \ge 1,$$

we deduce that there exist positive constants c_1 and c_2 such that

$$c_1 p^{nv/2} \le q_n \le c_2 p^{n(v+2)/2}, \quad n \ge 1.$$
 (3.4)

Furthermore, we observe that

$$nv \le v_1 + \ldots + v_n \le n(v+1), \quad n \ge 1.$$
 (3.5)

Take for $(v_n)_{n\geq 1}$ the Fibonacci word on $\{v, v+1\}$ starting with v. For simplicity, let us write ξ_v instead of ξ_v . Let $(F_k)_{k\geq 0}$ be the Fibonacci sequence defined by $F_0 = 0, F_1 = 1$ and $F_{k+2} = F_{k+1} + F_k$ for $k \geq 0$. For $k \geq 4$, set $n_k = F_k - 3$. It is well known (see e.g. [1]) that, for $k \geq 4$, the prefix of length $n_k + 1$ of the word

$$v_1v_2v_3\ldots = v(v+1)vv(v+1)v(v+1)v\ldots$$

is a palindrome.

In view of the preceding discussion, for $k \ge 4$, we have

$$\max\{|q_{n_k}\xi_v - p_{n_k}|_p, |q_{n_k}\xi_v^2 - p_{n_k+1}|_p\} \le p^{-v_{n_k+1}-v_{n_k}-\dots-v_1} \le c_3 q_{n_k}^{-2+4/\nu},$$
(3.6)

by (3.3), (3.4) and (3.5). Here and below, c_3, \ldots, c_7 denote positive real numbers independent of k.

Let Q be a large positive integer. Let $k \ge 4$ be the integer defined by the inequalities

$$q_{n_k} \le Q < q_{n_{k+1}}.$$

Since n_k/n_{k+1} tends to λ as k tends to infinity, we may assume that Q is sufficiently large in order to guarantee that

$$\lambda n_{k+1} \le \frac{v+3}{v+2} n_k.$$

Let u be the largest non-negative integer such that $q_{n_k} p^u \leq Q$, and set

$$q'_{n_k} = p^u q_{n_k}, \ p'_{n_k} = p^u p_{n_k}, \ p'_{n_k+1} = p^u p_{n_k+1}.$$

We then have

$$Q^{\lambda} \le q_{n_{k+1}}^{\lambda} \le c_2 p^{\lambda n_{k+1}(v+2)/2} \le c_2 p^{n_k(v+3)/2} \le c_4 q_{n_k}^{1+3/v},$$

and it follows from (3.6) that

$$\max\{|q'_{n_k}\xi_v - p'_{n_k}|_p, |q'_{n_k}\xi_v^2 - p'_{n_k+1}|_p\} \le c_3 p^{-u} q_{n_k}^{-2+4/v} \le c_5 Q^{-1} q_{n_k}^{-1+4/v} \le c_6 Q^{-1} Q^{-(1-7/v)\lambda}$$

Since $0 < p'_{n_k}, p'_{n_k+1}, q'_{n_k} \le c_7 Q$, this shows that

$$\hat{\lambda}_2(\xi_v) \ge (1 - 7/v)\lambda,$$

and the proof of the theorem is complete.

Acknowledgements. The author is pleased to thank Damien Roy for several useful remarks.

References

- [1] J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni, *Transcendence of Sturmian or morphic continued fractions*, J. Number Theory 91 (2001), 39–66.
- [2] H. Davenport and W. M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393–416.
- [3] K. Mahler, Zur Approximation P-adischer Irrationalzahlen, Nieuw Arch. Wisk. 18 (1934), 22–34.
- [4] O. Perron, Die Lehre von den Kettenbrüchen. Teubner, Leupzig, 1929.
- [5] D. Roy, Approximation simultanée d'un nombre et son carré, C. R. Acad. Sci. Paris 336 (2003), 1–6.
- [6] D. Roy, Approximation to real numbers by cubic algebraic numbers, II, Annals of Math. 158 (2003), 1081–1087.
- [7] D. Roy, Approximation to real numbers by cubic algebraic numbers, I, Proc. London Math. Soc. 88 (2004), 42–62.
- [8] O. Teulié, Approximation d'un nombre p-adique par des nombres algébriques, Acta Arith. 102 (2002), 137–155.
- [9] D. Zelo, Simultaneous approximation to real and *p*-adic numbers. PhD thesis. Univ. Ottawa. 2009. arXiv:0903.0086.

Yann Bugeaud Université de Strasbourg Mathématiques 7, rue René Descartes 67084 STRASBOURG (FRANCE)

bugeaud@math.unistra.fr