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Abstract. Classical ways to represent a real number are by its continued fraction ex-
pansion or by its expansion in some integer base. It is commonly expected that algebraic
irrational numbers behave, in many respects, like almost all numbers. For instance, their
decimal expansion should contain every finite block of digits from {0, . . . , 9}. We are
very far away from establishing such a strong assertion. However, there has been some
recent progress, and it is now possible to prove that the decimal expansion of an irra-
tional algebraic number cannot be ‘too simple’, in a suitable sense. The same applies for
the continued fraction expansion of an algebraic number of degree at least three (recall
that a continued fraction is ultimately periodic if, and only if, it represents a quadratic
number). The main tool for the proofs is a deep result from Diophantine approximation,
namely the Schmidt Subspace Theorem, a powerful multi-dimensional extension of the
Roth Theorem.
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1. Representation of real numbers

The most classical ways to represent real numbers are by means of their continued
fraction expansion or their expansion to some integer base, in particular to base two
or ten. In this text, we consider only these expansions and deliberately ignore β-
expansions, Lüroth expansions, Q-Cantor series, etc., as well as the many variations
of the continued fraction algorithm.

The first example of a transcendental number (recall that a real number is
algebraic if it is root of a nonzero polynomial with integer coefficients and it is
transcendental otherwise) was given by Liouville [51, 52] in 1844. He showed that
if the sequence of partial quotients of an irrational real number grows sufficiently
rapidly, then this number is transcendental. He mentioned only at the very end of
his note the now classical example of the series (keeping his notation)

1

a
+

1

a1·2 +
1

a1·2·3 + . . .+
1

a1·2·3···m + . . . ,

where a ≥ 2 is an integer.
Let b denote an integer at least equal to 2. Any real number ξ has a unique

b-ary expansion, that is, it can be uniquely written as

ξ = bξc+
∑
`≥1

a`
b`

= bξc+ 0 · a1a2 . . . , (1.1)
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where b·c denotes the integer part function, the digits a1, a2, . . . are integers from
the set {0, 1, . . . , b− 1} and a` differs from b− 1 for infinitely many indices `. This
notation will be kept throughout this text.

In a seminal paper published in 1909, Émile Borel [21] introduced the notion
of normal number.

Definition 1.1. Let b ≥ 2 be an integer. Let ξ be a real number whose b-ary
expansion is given by (1.1). We say that ξ is normal to base b if, for every k ≥ 1,
every finite block of k digits on {0, 1, . . . , b − 1} occurs with the same frequency
1/bk, that is, if for every k ≥ 1 and every d1, . . . , dk ∈ {0, 1, . . . , b− 1} we have

lim
N→+∞

#{` : 0 ≤ ` < N, a`+1 = d1, . . . , a`+k = dk}
N

=
1

bk
.

The above definition differs from that given by Borel, but is equivalent to it;
see Chapter 4 from [27] for a proof and further equivalent definitions.

We reproduce the fundamental theorem proved by Borel in [21]. Throughout
this text, ‘almost all’ always refers to the Lebesgue measure, unless otherwise
specified.

Theorem 1.2. Almost all real numbers are normal to every integer base b ≥ 2.

Despite the fact that normality is a property shared by almost all numbers, we
do not know a single explicit example of a number normal to every integer base,
let alone of a number normal to base 2 and to base 3. However, Martin [54] gave in
2001 a nice and simple explicit construction of a real number normal to no integer
base.

The first explicit example of a real number normal to a given base was given
by Champernowne [34] in 1933.

Theorem 1.3. The real number

0 · 12345678910111213 . . . , (1.2)

whose sequence of decimals is the increasing sequence of all positive integers, is
normal to base ten.

Further examples also obtained by concatenation of sequences of integers have
been given subsequently in [35, 37]. In particular, the real number

0 · 235711131719232931 . . . , (1.3)

whose sequence of decimals is the increasing sequence of all prime numbers, is
normal to base ten. This is due to the fact that the sequence of prime numbers
does not increase too rapidly. However, we still do not know whether the real
numbers (1.2) and (1.3) are normal to base two.

Constructions of a completely different type were found by Stoneham [66] and
Korobov [49]; see Bailey and Crandall [18] for a more general statement which
includes the next theorem.
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Theorem 1.4. Let b and c be coprime integers, both at least equal to 2. Let d ≥ 2
be an integer. Then, the real numbers∑

j≥1

1

cjbcj
and

∑
j≥1

1

cdj bcd
j

are normal to base b.

Regarding continued fraction expansions, we can as well define a notion of
normal continued fraction expansion using the Gauss measure (see Section 5) and
prove that the continued fraction expansion

α = bαc+ [0; a1, a2, . . .] = bαc+
1

a1 +
1

a2 +
1

. . .

of almost every real number α is a normal continued fraction expansion. Here, the
positive integers a1, a2, . . . are called the partial quotients of α (throughout this
text, a` denotes either a b-ary digit or a partial quotient, but this should be clear
from the context; furthermore, we write ξ for a real number when we consider its
b-ary expansion and α when we study its continued fraction expansion). In 1981,
Adler, Keane, and Smorodinsky [13] have constructed a normal continued fraction
in a similar way as Champernowne did for a normal number.

Theorem 1.5. Let 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, . . . be the infinite sequence obtained
in writing the rational numbers in (0, 1) with denominator 2, then with denominator
3, denominator 4, etc., ordered with numerators increasing. Let x1x2x3 . . . be the
sequence of positive integers constructed by concatenating the partial quotients (we
choose the continued fraction expansion which does not end with the digit 1) of this
sequence of rational numbers. Then, the real number

[0;x1, x2, . . .] = [0; 2, 3, 1, 2, 4, 2, 1, 3, 5, . . .]

has a normal continued fraction expansion.

All this shows that the b-ary expansion and the continued fraction expansion
of a real number taken at random are well understood. But what can be said for
a specific number, like 3

√
2, log 2, π, etc.?

Actually, not much! We focus our attention on algebraic numbers. Clearly, a
real number is rational if, and only if, its b-ary expansion is ultimately periodic.
Analogously, a real number is quadratic if, and only if, its continued fraction
expansion is ultimately periodic; see Section 5. The purpose of the present text is to
gather what is known on the b-ary expansion of an irrational algebraic number and
on the continued fraction expansion of an algebraic number of degree at least three.
It is generally believed that all these expansions are normal, and some numerical
computation tend to support this guess, but we are very, very far from proving such
a strong assertion. We still do not know whether there is an integer b ≥ 3 such that
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at least three different digits occur infinitely often in the b-ary expansion of
√

2.
And whether there exist algebraic numbers of degree at least three whose sequence
of partial quotients is bounded. Actually, it is widely believed that algebraic
numbers should share most of the properties of almost all real numbers. This is
indeed the case from the point of view of rational approximation, since Roth’s
theorem (see Section 6) asserts that algebraic irrational numbers do behave like
almost all numbers, in the sense that they cannot be approximated by rational
numbers at an order greater than 2.

The present text is organized as follows. Section 2 contains basic results from
combinatorics on words. The main results on the complexity of algebraic numbers
are stated in Section 3. They are proved by combining combinatorial transcendence
criteria given in Section 4 and established in Sections 9 and 10 with a combinatorial
lemma proved in Section 8. In Sections 5 and 6 we present various auxiliary
results from the theory of continued fractions and from Diophantine approximation,
respectively. Section 7 is devoted to a sketch of the proof of Theorem 4.1 and
to a short historical discussion. We present in Section 11 another combinatorial
transcendence criterion for continued fraction expansions, along with its proof.
Section 12 briefly surveys some refined results which complement Theorem 3.1.
Finally, in Section 13, we discuss other points of view for measuring the complexity
of the b-ary expansion of a number.

A proof of Theorem 4.1 can already be found in the surveys [20, 8] and in the
monograph [27]. Here, we provide two different proofs. Historical remarks and
discussion on the various results which have ultimately led to Theorem 4.2 are
given in [30].

2. Combinatorics on words and complexity

In the sequel, we often identify a real number with the infinite sequence of its b-ary
digits or of its partial quotients. It appears to be convenient to use the point of
view from combinatorics on words. Throughout, we denote by A a finite or infinite
set. A finite word on the alphabet A is either the empty word, or a finite string
(or block) of elements from A. An infinite word on A is an infinite sequence of
elements from A.

For an infinite word w = w1w2 . . . on the alphabet A and for any positive
integer n, we let

p(n,w,A) := #{wj+1 . . . wj+n : j ≥ 0}

denote the number of distinct strings (or blocks) of length n occurring in w. Ob-
viously, putting #A = +∞ if A is infinite, we have

1 ≤ p(n,w,A) ≤ (#A)n,

and both inequalities are sharp. Furthermore, the function n 7→ p(n,w,A) is
non-decreasing.
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Definition 2.1. An infinite word w = w1w2 . . . is ultimately periodic if there exist
positive integers n0 and T such that

wn+T = wn, for every n ≥ n0.

The word wn0
wn0+1 . . . wn0+T−1 is a period of w. If n0 can be chosen equal to 1,

then w is (purely) periodic, otherwise, w1 . . . wn0−1 is a preperiod of w.

We establish a seminal result from Morse and Hedlund [55, 56].

Theorem 2.2. Let w be an infinite word over a finite or infinite alphabet A. If w
is ultimately periodic, then there exists a positive constant C such that p(n,w,A) ≤
C for every positive integer n. Otherwise, we have

p(n+ 1,w,A) ≥ p(n,w,A) + 1, for every n ≥ 1,

thus,
p(n,w,A) ≥ n+ 1, for every n ≥ 1.

Proof. Throughout the proof, we write p(·,w) instead of p(·,w,A).
Let w be an ultimately periodic infinite word, and assume that it has a prepe-

riod of length r and a period of length s. Fix h = 1, . . . , s and let n be a positive
integer. For every j ≥ 1, the block of length n starting at wr+js+h is the same as
the one starting at wr+h. Consequently, there cannot be more than r + s distinct
blocks of length n, thus, p(n,w) ≤ r + s.

Write w = w1w2 . . . and assume that there is a positive integer n0 such that
p(n0,w) = p(n0+1,w). This means that every block of length n0 extends uniquely
to a block of length n0 + 1. It implies that p(n0,w) = p(n0 + j,w) holds for every
positive integer j. By definition of p(n0,w), two among the words wj . . . wn0+j−1,
j = 1, . . . , p(n0,w) + 1, are the same. Consequently, there are integers k and `
with 0 ≤ k < ` ≤ p(n0,w) and wk+m = w`+m for m = 1, . . . , n0. Since every block
of length n0 extends uniquely to a block of length n0 + 1, this gives wk+m = w`+m
for every positive integer m. This proves that the word w is ultimately periodic.

Consequently, if w is not ultimately periodic, then p(n + 1,w) ≥ p(n,w) + 1
holds for every positive integer n. Then, p(1,w) ≥ 2 and an immediate induction
show that p(n,w) ≥ n+ 1 for every n. The proof of the theorem is complete.

We complement Theorem 2.2 by pointing out that there exist uncountably
many infinite words w on A = {0, 1} such that

p(n,w,A) = n+ 1, for n ≥ 1.

These words are called Sturmian words; see e.g. [16].
To prove that a real number is normal to some given integer base, or has a

normal continued fraction expansion, is in most cases a much too difficult problem.
So we are led to consider weaker questions on the sequence of digits (resp. partial
quotients), including the following ones:

* Does every digit occur infinitely many times in the b-ary expansion of ξ?
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* Are there many non-zero digits in the b-ary expansion of ξ?

* Is the sequence of partial quotients of α bounded from above?

* Does the sequence of partial quotients of α tend to infinity?

We may even consider weaker questions, namely, and this is the point of view
we adopt until the very last sections, we wish to bound from below the number
of different blocks in the infinite word composed of the digits of ξ (resp. partial
quotients of α).

Let b ≥ 2 be an integer. A natural way to measure the complexity of a real
number ξ whose b-ary expansion is given by (1.1) is to count the number of distinct
blocks of given length in the infinite word a = a1a2a3 . . . We set p(n, ξ, b) =
p(n,a, b) with a as above. Clearly, we have

p(n, ξ, b) = #{aj+1aj+2 . . . aj+n : j ≥ 0} = p(n,a, {0, 1, . . . , b− 1})

and

1 ≤ p(n, ξ, b) ≤ bn,

where both inequalities are sharp.

Since the b-ary expansion of a real number is ultimately periodic if, and only
if, this number is rational, Theorem 2.2 can be restated as follows.

Theorem 2.3. Let b ≥ 2 be an integer. If the real number ξ is irrational, then

p(n, ξ, b) ≥ n+ 1, for n ≥ 1.

Otherwise, the sequence (p(n, ξ, b))n≥1 is bounded.

Let α be an irrational real number and write

α = bαc+ [0; a1, a2, . . .].

Let a denote the infinite word a1a2 . . . over the alphabet Z≥1. A natural way to
measure the intrinsic complexity of α is to count the number p(n, α) := p(n,a,Z≥1)
of distinct blocks of given length n in the word a.

Since the continued fraction expansion of a real number is ultimately periodic
if, and only if, this number is quadratic (see Theorem 5.7), Theorem 2.2 can be
restated as follows.

Theorem 2.4. Let b ≥ 2 be an integer. If the real number α is irrational and not
quadratic, then

p(n, α) ≥ n+ 1, for n ≥ 1.

If the real number α is quadratic, then the sequence (p(n, α))n≥1 is bounded.

We show in the next section that Theorem 2.3 (resp. 2.4) can be improved
when ξ (resp. α) is assumed to be algebraic.
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3. Complexity of algebraic numbers

As already mentioned, we focus on the digital expansions and on the continued
fraction expansion of algebraic numbers. Until the end of the 20th century, it
was only known that the sequence of partial quotients of an algebraic number
cannot grow too rapidly; see Section 12. Regarding b-ary expansions, Ferenczi and
Mauduit [43] were the first to improve the (trivial) lower bound given by Theorem
2.3 for the complexity function of the b-ary expansion of an irrational algebraic
number θ. They showed in 1997 that p(n, θ, b) strictly exceeds n + 1 for every
sufficiently large integer n. Actually, as pointed out a few years later by Allouche
[14], their approach combined with a combinatorial result of Cassaigne [32] yields
a slightly stronger result, namely that

lim
n→+∞

(
p(n, θ, b)− n

)
= +∞, (3.1)

for any algebraic irrational number θ.
The estimate (3.1) follows from a good understanding of the combinatorial

structure of Sturmian sequences combined with a combinatorial translation of Rid-
out’s theorem 6.6. The transcendence criterion given in Theorem 4.1, established
in [10, 3], yields an improvement of (3.1).

Theorem 3.1. For any irrational algebraic number θ and any integer b ≥ 2, we
have

lim
n→+∞

p(n, θ, b)

n
= +∞. (3.2)

Although (3.2) considerably strengthens (3.1), it is still very far from what is
commonly expected, that is, from confirming that p(n, θ, b) = bn holds for every
positive n when θ is algebraic irrational.

Regarding continued fraction expansions, it was proved in [15] that

lim
n→+∞

(
p(n, θ)− n

)
= +∞,

for any algebraic number θ of degree at least three. This is the continued fraction
analogue of (3.1).

Using ideas from [1], the continued fraction analogue of Theorem 3.1 was es-
tablished in [29].

Theorem 3.2. For any algebraic number θ of degree at least three, we have

lim
n→+∞

p(n, θ)

n
= +∞. (3.3)

The main purpose of the present text is to give complete (if one admits Theo-
rem 6.7, whose proof is much too long and involved to be included here) proofs of
Theorems 3.1 and 3.2. They are established by combining combinatorial transcen-
dence criteria (Theorems 4.1 and 4.2) and a combinatorial lemma (Lemma 8.1).
This is explained in details at the end of Section 8.
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4. Combinatorial transcendence criteria

In this section, we state the combinatorial transcendence criteria which, combined
with the combinatorial lemma from Section 8, yield Theorems 3.1 and 3.2.

Throughout, the length of a finite word W on the alphabet A, that is, the
number of letters composing W , is denoted by |W |.

Let a = (a`)`≥1 be a sequence of elements from A. We say that a satisfies
Condition (♠) if a is not ultimately periodic and if there exist three sequences of
finite words (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 such that:

• (i) For every n ≥ 1, the word WnUnVnUn is a prefix of the word a;

• (ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above;

• (iii) The sequence (|Wn|/|Un|)n≥1 is bounded from above;

• (iv) The sequence (|Un|)n≥1 is increasing.

Theorem 4.1. Let b ≥ 2 be an integer. Let a = (a`)`≥1 be a sequence of elements
from {0, 1, . . . , b− 1}. If a satisfies Condition (♠), then the real number

ξ :=

+∞∑
`=1

a`
b`

is transcendental.

Theorem 4.2. Let a = (a`)`≥1 be a sequence of positive integers. Let (p`/q`)`≥1

denote the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

Assume that the sequence (q
1/`
` )`≥1 is bounded. If a satisfies Condition (♠), then

α is transcendental.

The common tool for the proofs of Theorems 4.1 and 4.2 is a powerful theorem
from Diophantine approximation, the Subspace Theorem; see Section 6.

Let us comment on Condition (♠) when, for simplicity, the alphabet A is finite
and has b ≥ 2 elements. Take an arbitrary infinite word a1a2 . . . on {0, 1, . . . , b−1}.
Then, by the Schubfachprinzip, for every positive integer m, there exists (at least)
one finite word Um of length m having (at least) two (possibly overlapping) occur-
rences in the prefix a1a2 . . . abm+m. If, for simplicity, we suppose that these two
occurrences do not overlap, then there exist finite (or empty) words Vm,Wm, Xm

such that
a1a2 . . . abm+m = WmUmVmUmXm.

This simple argument gives no additional information on the lengths of Wm and
Vm, which a priori can be as large as bm −m. In particular, they can be larger
than some constant greater than 1 raised to the power the length of Um.
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We demand much more for a sequence a to satisfy Condition (♠), namely we
impose that there exists an integer C such that, for infinitely many m, the lengths
of Vm and Wm do not exceed C times the length of Um. Such a condition occurs
quite rarely.

We end this section with a few comments on de Bruijn words.

Definition 4.3. Let b ≥ 2 and n ≥ 1 be integers. A de Bruijn word of order n on
an alphabet of cardinality b is a word of length bn + n− 1 in which every block of
length n occurs exactly once.

A recent result of Becher and Heiber [19] shows that we can extend de Bruijn
words.

Theorem 4.4. Every de Bruijn word of order n on an alphabet with at least three
letters can be extended to a de Bruijn word of order n+ 1. Every de Bruijn word
of order n on an alphabet with two letters can be extended to a de Bruijn word of
order n+ 2.

Theorem 4.4 shows that there exist infinite de Bruijn words obtained as the
inductive limit of extended de Bruijn sequences of order n, for each n (when the
alphabet has at least three letters; for each even n, otherwise). Let b ≥ 2 be
an integer. By construction, for every m ≥ 1, the shortest prefix of an infinite
de Bruijn word having two occurrences of a same word of length m has at least
bm +m letters if b ≥ 3 and at least 2m−1 +m− 1 letters if b = 2.

5. Continued fractions

In this section, we briefly present classical results on continued fractions which will
be used in the proofs of Theorems 4.2 and 11.1. We omit most of the proofs and
refer the reader to a text of van der Poorten [58] and to the books of Bugeaud [22],
Cassels [33], Hardy and Wright [44], Khintchine [47], Perron [57], Schmidt [64],
among many others.

Let x0, x1, . . . be real numbers with x1, x2, . . . positive. A finite continued frac-
tion denotes any expression of the form

[x0;x1, x2, . . . , xn] = x0 +
1

x1 +
1

x2 +
1

. . .+
1

xn

.

We call any expression of the above form or of the form

[x0;x1, x2, . . .] = x0 +
1

x1 +
1

x2 +
1

. . .

= lim
n→+∞

[x0;x1, x2, . . . , xn]
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a continued fraction, provided that the limit exists.
Any rational number r has exactly two different continued fraction expansions.

These are [r] and [r − 1; 1] if r is an integer and, otherwise, one of them reads
[a0; a1, . . . , an−1, an] with an ≥ 2, and the other one is [a0; a1, . . . , an−1, an − 1, 1].
Any irrational number has a unique expansion in continued fraction.

Theorem 5.1. Let α = [a0; a1, a2, . . .] be an irrational number. For ` ≥ 1, set
p`/q` := [a0; a1, a2, . . . , a`]. Let n be a positive integer. Putting

p−1 = 1, q−1 = 0, p0 = a0, and q0 = 1,

we have
pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, (5.1)

and
pn−1qn − pnqn−1 = (−1)n. (5.2)

Furthermore, setting αn+1 = [an+1; an+2, an+3, . . .], we have

α = [a0; a1, . . . , an, αn+1] =
pnαn+1 + pn−1

qnαn+1 + qn−1
, (5.3)

thus

qnα− pn =
(−1)n

qnαn+1 + qn−1
,

and

1

(an+1 + 2)q2
n

<
1

qn(qn + qn+1)
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1
<

1

an+1q2
n

≤ 1

q2
n

. (5.4)

It follows from (5.3) that any real number whose first partial quotients are
a0, a1, . . . , an belongs to the interval with endpoints (pn + pn−1)/(qn + qn−1) and
pn/qn. Consequently, we get from (5.2) an upper bound for the distance between
two real numbers having the same first partial quotients.

Corollary 5.2. Let α = [a0; a1, a2, . . .] be an irrational number. For ` ≥ 0,
let q` be the denominator of the rational number [a0; a1, a2, . . . , a`]. Let n be a
positive integer and β be a real number such that the first partial quotients of β are
a0, a1, . . . , an. Then,

|α− β| ≤ 1

qn(qn + qn−1)
<

1

q2
n

.

Under the assumption of Theorem 5.1, the rational number p`/q` is called the
`-th convergent to α. It follows from (5.1) that the sequence of denominators of
convergents grows at least exponentially fast.

Theorem 5.3. Let α = [a0; a1, a2, . . .] be an irrational number. For ` ≥ 0, let
q` be the denominator of the rational number [a0; a1, a2, . . . , a`]. For any positive
integers `, h, we have

q`+h ≥ q`(
√

2)h−1

and
q` ≤ (1 + max{a1, . . . , a`})`.
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Proof. The first assertion follows from induction on h, since qn+2 ≥ qn+1+qn ≥ 2qn
for every n ≥ 0. The second assertion is an immediate consequence of (5.1).

The next result is sometimes called the mirror formula.

Theorem 5.4. Let n ≥ 2 be an integer and a1, . . . , an be positive integers. For
` = 1, . . . , n, set p`/q` = [0; a1, . . . , a`]. Then, we have

qn−1

qn
= [0; an, an−1, . . . , a1].

Proof. We get from (5.1) that

qn
qn−1

= an +
qn−2

qn−1
,

for n ≥ 1. The theorem then follows by induction.

An alternative proof of Theorem 5.4 goes as follows. Observe that, if a0 = 0
and n ≥ 1, then, by (5.1), we have

Mn :=

(
pn−1 pn
qn−1 qn

)
=

(
0 1
1 a1

)(
0 1
1 a2

)
. . .

(
0 1
1 an

)
.

Taking the transpose, we immediately get that

tMn =
t
((

0 1
1 a1

)(
0 1
1 a2

)
. . .

(
0 1
1 an

))
=
t
(

0 1
1 an

)
t
(

0 1
1 an−1

)
. . .

t
(

0 1
1 a1

)
=

(
0 1
1 an

)(
0 1
1 an−1

)
. . .

(
0 1
1 a1

)
=

(
pn−1 qn−1

pn qn

)
,

which gives Theorem 5.4.
Theorem 5.4 is a particular case of a more general result, which we state below

after introducing the notion of continuant.

Definition 5.5. Let m ≥ 1 and a1, . . . , am be positive integers. The denominator
of the rational number [0; a1, . . . , am] is called the continuant of a1, . . . , am and is
usually denoted by Km(a1, . . . , am).

Theorem 5.6. For any positive integers a1, . . . , am and any integer k with 1 ≤
k ≤ m− 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1), (5.5)

and
Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am)

≤ Km(a1, . . . , am)

≤ 2Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am).

(5.6)
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Proof. The first statement is an immediate consequence of Theorem 5.4. Combi-
ning

Km(a1, . . . , am) = amKm−1(a1, . . . , am−1) +Km−2(a1, . . . , am−2)

with (5.5), we get

Km(a1, . . . , am) = a1Km−1(a2, . . . , am) +Km−2(a3, . . . , am),

which implies (5.6) for k = 1. Let k be in {1, 2, . . . ,m− 2} such that

Km := Km(a1, . . . , am)

= Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am)

+Kk−1(a1, . . . , ak−1) ·Km−k−1(ak+2, . . . , am),

(5.7)

where we have set K0 = 1. We then have

Km = Kk(a1, . . . , ak) ·
(
ak+1Km−k−1(ak+2, . . . , am) +Km−k−2(ak+3, . . . , am)

)
+Kk−1(a1, . . . , ak−1) ·Km−k−1(ak+2, . . . , am)

=
(
ak+1Kk(a1, . . . , ak) +Kk−1(a1, . . . , ak−1)

)
·Km−k−1(ak+2, . . . , am)

+Kk(a1, . . . , ak) ·Km−k−2(ak+3, . . . , am),

giving (5.7) for the index k + 1. This shows that (5.7) and, a fortiori, (5.6) hold
for k = 1, . . . ,m− 1.

The ‘only if’ part of the next theorem is due to Euler [39], and the ‘if’ part was
established by Lagrange [50] in 1770.

Theorem 5.7. The real irrational number α = [a0; a1, a2, . . .] has a periodic con-
tinued fraction expansion (that is, there exist integers r ≥ 0 and s ≥ 1 such that
an+s = an for all integers n ≥ r+ 1) if, and only if, α is a quadratic irrationality.

We display an elementary result on ultimately periodic continued fraction ex-
pansions.

Lemma 5.8. Let θ be a quadratic real number with ultimately periodic continued
fraction expansion

θ = [0; a1, . . . , ar, ar+1, . . . , ar+s],

and denote by (p`/q`)`≥1 the sequence of its convergents. Then, θ is a root of the
polynomial

(qr−1qr+s − qrqr+s−1)X2 − (qr−1pr+s − qrpr+s−1

+ pr−1qr+s − prqr+s−1)X + (pr−1pr+s − prpr+s−1).
(5.8)

Proof. It follows from (5.3) that

θ = [0; a1, . . . , ar, θr+1] =
prθ
′ + pr−1

qrθ′ + qr−1
=
pr+sθ

′ + pr+s−1

qr+sθ′ + qr+s−1
,
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where θ′ = [ar+1; ar+2, . . . , ar+s, ar+1]. Consequently, we get

θ′ =
pr−1 − qr−1θ

qrθ − pr
=
pr+s−1 − qr+s−1θ

qr+sθ − pr+s
,

from which we obtain

(pr−1 − qr−1θ)(qr+sθ − pr+s) = (pr+s−1 − qr+s−1θ)(qrθ − pr).

This shows that θ is a root of (5.8).

We do not claim that the polynomial in (5.8) is the minimal polynomial of θ
over the integers. This is indeed not always true, since its coefficients may have
common prime factors.

The sequence of partial quotients of an irrational real number α in (0, 1)
can be obtained by iterations of the Gauss map TG defined by TG(0) = 0 and
TG(x) = {1/x} for x ∈ (0, 1). Namely, if [0; a1, a2, . . .] denotes the continued frac-
tion expansion of α, then TnG (α) = [0; an+1, an+2, . . .] and an = b1/Tn−1

G (α)c for
n ≥ 1.

In the sequel, it is understood that α is a real number in (0, 1), whose partial
quotients a1(α), a2(α), . . . and convergents p1(α)/q1(α), p2(α)/q2(α), . . . are writ-
ten a1, a2, . . . and convergents p1/q1, p2/q2, . . . when there should be no confusion.

The map TG possesses an invariant ergodic probability measure, namely the
Gauss measure µG , which is absolutely continuous with respect to the Lebesgue
measure, with density

µG(dx) =
dx

(1 + x) log 2
.

For every function f in L1(µG) and almost every α in (0, 1), we have (Theorem
3.5.1 in [36])

lim
n→+∞

1

n

n−1∑
k=0

f(T kGα) =
1

log 2

∫ 1

0

f(x)

1 + x
dx. (5.9)

For subsequent results in the metric theory of continued fractions, we refer the
reader to [47] and to [36].

Definition 5.9. We say that [0; a1, a2, . . .] is a normal continued fraction, if, for
every integer k ≥ 1 and every positive integers d1, . . . , dk, we have

lim
N→+∞

#{j : 0 ≤ j ≤ N − k, aj+1 = d1, . . . , aj+k = dk}
N

=

∫ r′/s′

r/s

µG(dx) = µG(∆d1,...,dk),

(5.10)

where r/s, r′/s′ denote the rational numbers [0; d1, . . . , dk−1, dk] and [0; d1, . . . ,
dk−1, dk + 1] ordered such that r/s < r′/s′, and ∆d1,...,dk = [r/s, r′/s′].
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Let d1, . . . , dk be positive integers. It follows from Theorem 5.1 that the set
∆d1,...,dk of real numbers α in (0, 1) whose first k partial quotients are d1, . . . , dk
is an interval of length 1/(qk(qk + qk−1)). Applying (5.9) to the function f =
1∆d1,...,dk

, we get that for almost every α = [0; a1, a2, . . .] in (0, 1) the limit de-
fined in (5.10) exists and is equal to µG(∆d1,...,dk). Thus, we have established the
following statement.

Theorem 5.10. Almost every α in (0, 1) has a normal continued fraction expan-
sion.

The construction of [13], reproduced in [27], is flexible enough to produce many
examples of real numbers with a normal continued fraction expansion.

6. Diophantine approximation

In this section, we survey classical results on approximation to real (algebraic)
numbers by rational numbers.

We emphasize one of the results of Theorem 5.1.

Theorem 6.1. For every real irrational number ξ, there exist infinitely many
rational numbers p/q with q ≥ 1 and∣∣∣ξ − p

q

∣∣∣ < 1

q2
.

Theorem 6.1 is often, and wrongly, attributed to Dirichlet, who proved in 1842
a stronger result, namely that, under the assumption of Theorem 6.1 and for every
integer Q ≥ 1, there exist integers p, q with 1 ≤ q ≤ Q and |ξ − p/q| < 1/(qQ).
Theorem 6.1 was proved long before 1842.

An easy covering argument shows that, for almost all numbers, the exponent
of q in Theorem 6.1 cannot be improved.

Theorem 6.2. For every ε > 0 and almost all real numbers ξ, there exist only
finitely many rational numbers p/q with q ≥ 1 and∣∣∣ξ − p

q

∣∣∣ < 1

q2+ε
. (6.1)

Proof. Without loss of generality, we may assume that ξ is in (0, 1). If there are
infinitely many rational numbers p/q with q ≥ 1 satisfying (6.1), then ξ belongs to
the limsup set ⋂

Q≥1

⋃
q≥Q

q⋃
p=0

(
p

q
− 1

q2+ε
,
p

q
+

1

q2+ε

) ⋂
(0, 1).

The Lebesgue measure of the latter set is, for every Q ≥ 1, at most equal to∑
q≥Q

q
2

q2+ε
,
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which is the tail of a convergent series and thus tends to 0 as Q tends to infinity.
This proves the theorem.

The case of algebraic numbers is of special interest and has a long history. First,
we define the (näıve) height of an algebraic number.

Definition 6.3. Let θ be an irrational, real algebraic number of degree d and let
adX

d + · · ·+ a1X + a0 denotes its minimal polynomial over Z (that is, the integer
polynomial of lowest positive degree, with coprime coefficients and positive leading
coefficient, which vanishes at θ). Then, the height H(θ) of θ is defined by

H(θ) := max{|a0|, |a1|, . . . , |ad|}.

We begin by a result of Liouville [51, 52] proved in 1844, and alluded to in
Section 1.

Theorem 6.4. Let θ be an irrational, real algebraic number of degree d and height
at most H. Then, ∣∣∣∣θ − p

q

∣∣∣∣ ≥ 1

d2H(1 + |θ|)d−1qd
(6.2)

for all rational numbers p/q with q ≥ 1.

Proof. Inequality (6.2) is true when |θ − p/q| ≥ 1. Let p/q be a rational number
satisfying |θ − p/q| < 1. Denoting by P (X) the minimal defining polynomial of θ
over Z, we have P (p/q) 6= 0 and |qdP (p/q)| ≥ 1. By Rolle’s Theorem, there exists
a real number t lying between θ and p/q such that

|P (p/q)| = |P (θ)− P (p/q)| = |θ − p/q| × |P ′(t)|.

Since |t− θ| ≤ 1 and

|P ′(t)| ≤ d2H(1 + |θ|)d−1,

the combination of these inequalities gives the theorem.

Thue [67] established in 1909 the first significant improvement on Liouville’s
result. There were subsequent progress by Siegel, Dyson and Gelfond, until Roth
[61] proved in 1955 that, as far as approximation by rational numbers is concerned,
the irrational, real algebraic numbers do behave like almost all real numbers.

Theorem 6.5. For every ε > 0 and every irrational real algebraic number θ, there
exist at most finitely many rational numbers p/q with q ≥ 1 and∣∣∣θ − p

q

∣∣∣ < 1

q2+ε
. (6.3)

For a prime number ` and a non-zero rational number x, we set |x|` := `−u,
where u ∈ Z is the exponent of ` in the prime decomposition of x. Furthermore,
we set |0|` = 0. The next theorem, proved by Ridout [59], extends Theorem 6.5.
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Theorem 6.6. Let S be a finite set of prime numbers. Let θ be a real algebraic
number. Let ε be a positive real number. The inequality∏

`∈S

|pq|` ·min

{
1,

∣∣∣∣θ − p

q

∣∣∣∣} <
1

q2+ε

has only finitely many solutions in non-zero integers p, q.

Theorem 6.5 is ineffective in the sense that their proofs do not allow us to
compute explicitly an integer q0 such that (6.3) has no solution with q greater
than q0. Nevertheless, we are able to bound explicitly the number of primitive
solutions (that is, of solutions in coprime integers p and q) to inequality (6.3). The
first result in this direction was proved in 1955 by Davenport and Roth [38]; see
the proof of Theorem 12.1 for a recent estimate.

The Schmidt Subspace Theorem [62, 63, 64] is a powerful multidimensional
extension of the Roth Theorem, with many outstanding applications [20, 26, 69].
We quote below a version of it which is suitable for our purpose, but the reader
should keep in mind that there are more general formulations.

Theorem 6.7. Let m ≥ 2 be an integer. Let S be a finite set of prime numbers.
Let L1,∞, . . . , Lm,∞ be m linearly independent linear forms with real algebraic coef-
ficients. For any prime ` in S, let L1,`, . . . , Lm,` be m linearly independent linear
forms with integer coefficients. Let ε be a positive real number. Then, there is
an integer T and proper subspaces S1, . . . , ST of Qm such that all the solutions
x = (x1, . . . , xm) in Zm to the inequality

∏
`∈S

m∏
i=1

|Li,`(x)|` ·
m∏
i=1

|Li,∞(x)| ≤ (max{1, |x1|, . . . , |xm|})−ε (6.4)

are contained in the union S1 ∪ . . . ∪ ST .

Let us briefly show how Roth’s theorem can be deduced from Theorem 6.7.
Let θ be a real algebraic number and ε be a positive real number. Consider the
two independent linear forms θX − Y and X. Theorem 6.7 implies that there are
integers T ≥ 1, x1, . . . , xT , y1, . . . , yT with (xi, yi) 6= (0, 0) for i = 1, . . . , T , such
that, for every integer solution (p, q) to

|q| · |qθ − p| < |q|−ε,

there exists an integer k with 1 ≤ k ≤ T and xkp+ ykq = 0. If θ is irrational, this
means that there are only finitely many rational solutions to |θ − p/q| < |q|−2−ε,
which is Roth’s theorem.

Note that (like Theorems 6.5 and 6.6) Theorem 6.7 is ineffective in the sense
that its proof does not yield an explicit upper bound for the height of the proper
rational subspaces containing all the solutions to (6.4). Fortunately, Schmidt [65]
was able to give an admissible value for the number T of subspaces; see [42] for a
common generalization of Theorems 6.6 and 6.7, usually called the Quantitative
Subspace Theorem, and [41] for the current state of the art.
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7. Sketch of proof and historical comments

Before proving Theorems 3.1 and 3.2, we wish to highlight the main ideas and
explain how weaker results can be deduced from various statements given in Section
6. We focus only on b-ary expansions.

The general idea goes as follows. Let us assume that (3.2) does not hold.
Then, the sequence of digits of our real number satisfies a certain combinatorial
property. And a suitable transcendence criterion prevents the sequence of digits
of an irrational algebraic numbers to fulfill the same combinatorial property.

Let us see how transcendence results listed in Section 6 apply to get combi-
natorial transcendence criterion. We introduce some more notation. Let W be a
finite word. For a positive integer `, we write W ` for the word W . . .W (` times
repeated concatenation of the word W ) and W∞ for the infinite word constructed
by concatenation of infinitely many copies of W . More generally, for any positive
real number x, we denote by W x the word W bxcW ′, where W ′ is the prefix of W
of length d(x− bxc)|W |e. Here, d·e denotes the upper integer part function. In
particular, we can write

aabaaaabaaaa = (aabaa)12/5 = (aabaaaabaa)6/5 = (aabaa)log 10.

Let a = (a`)`≥1 be a sequence of elements from A. Let w > 1 be a real number.
We say that a satisfies Condition (♠)w if a is not ultimately periodic and if there
exist two sequences of finite words (Zn)n≥1, and (Wn)n≥1 such that:

• (i) For every n ≥ 1, the word WnZ
w
n is a prefix of the word a;

• (ii) The sequence (|Wn|/|Zn|)n≥1 is bounded from above;

• (iii) The sequence (|Zn|)n≥1 is increasing.

We say that a satisfies Condition (♠)∞ if it satisfies Condition (♠)w for every
w > 1.

Our first result is an application of Theorem 6.4 which gives a combinatorial
condition on the sequence b-ary expansion of a real number which ensures that this
number is trancendental.

Theorem 7.1. Let b ≥ 2 be an integer. Let a = (a`)`≥1 be a sequence of elements
from {0, 1, . . . , b− 1}. If a satisfies Condition (♠)∞, then the real number

ξ :=
+∞∑
`=1

a`
b`

is transcendental.

Proof. Let w > 1 be a real number. By assumption, there exist two sequences of
finite words (Zn)n≥1, and (Wn)n≥1 and an integer C such that |Wn| ≤ C|Zn| and
WnZ

w
n is a prefix of a for n ≥ 1. Let n ≥ 1 be an integer. In particular, ξ is very
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close to the rational number ξn whose b-ary expansion is the eventually periodic
word WnZ

∞
n . A rapid calculation shows that there is an integer pn such that

ξn =
pn

b|Wn|(b|Zn| − 1)

and

|ξ − ξn| =
∣∣∣ξ − pn

b|Wn|(b|Zn| − 1)

∣∣∣ ≤ 1

b|Wn|+w|Zn|

≤
( 1

b|Wn|(b|Zn| − 1)

)(|Wn|+w|Zn|)/(|Wn|+|Zn|)
.

Since |Wn| ≤ C|Zn|, the quantity (|Wn| + w|Zn|)/(|Wn| + |Zn|) is bounded from
below by (C + w)/(C + 1). Consequently, we get∣∣∣ξ − pn

b|Wn|(b|Zn| − 1)

∣∣∣ ≤ ( 1

b|Wn|(b|Zn| − 1)

)(C+w)/(C+1)

. (7.1)

Let d be the integer part of (C +w)/(C + 1). Since (7.1) holds for every n ≥ 1, it
follows from Theorem 6.4 that ξ cannot be algebraic of degree ≤ d − 1. Since w
can be taken arbitrarily large, one deduces that ξ must be transcendental.

It is apparent from the proof of Theorem 7.1 that, if we replace the use of
Liouville’s theorem by that of Roth’s (Theorem 6.5) or, even better, by Ridout’s
Theorem 6.6, then the assumptions of Theorem 7.1 can be substantially weakened.
Indeed, Roth’s theorem is sufficient to establish the transcendence of ξ as soon as
the exponent (C +w)/(C + 1) strictly exceeds 2, that is, if w > 2 +C. We explain
below how Ridout’s theorem yields a much better result.

Theorem 7.2. Let b ≥ 2 be an integer. Let a = (a`)`≥1 be a sequence of elements
from {0, 1, . . . , b− 1}. Let w > 2 be a real number. If a satisfies Condition (♠)w,
then the real number

ξ :=

+∞∑
`=1

a`
b`

is transcendental.

Proof. We keep the notation of the proof of Theorem 7.1, where it is shown that,
for any n ≥ 1, we have∣∣∣ξ − pn

b|Wn|(b|Zn| − 1)

∣∣∣ ≤ 1

b|Wn|+w|Zn|
,

that is,

b−|Wn|
∣∣∣ξ − pn

b|Wn|(b|Zn| − 1)

∣∣∣ ≤ 1

b2|Wn|+w|Zn|

<
( 1

b|Wn|(b|Zn| − 1)

)(2|Wn|+w|Zn|)/(|Wn|+|Zn|)
.
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Observe that, for n ≥ 1,

2|Wn|+ w|Zn|
|Wn|+ |Zn|

= 2 +
(w − 2)|Zn|
|Wn|+ |Zn|

≥ 2 +
w − 2

C + 1
.

Consequently, taking for S the set of prime divisors of b and setting ε := (w −
2)/(C + 1), we have proved that there are infinitely many rational numbers p/q
such that ∏

`∈S

|pq|` ·min

{
1,

∣∣∣∣ξ − p

q

∣∣∣∣} <
1

q2+ε
.

By Theorem 6.6, this shows that ξ is transcendental, since w > 2.

We postpone to Section 9 the proof that the conclusion of Theorem 7.2 remains
true under the weaker assumption w > 1 (the reader can easily check that this
corresponds exactly to Theorem 4.1).

8. A combinatorial lemma

The purpose of this section is to establish a combinatorial lemma which allows us
to deduce Theorems 3.1 and 3.2 from Theorems 4.1 and 4.2.

Lemma 8.1. Let w = w1w2 . . . be an infinite word over a finite or an infinite
alphabet A such that

lim inf
n→+∞

p(n,w,A)

n
< +∞.

Then, the word w satisfies Condition (♠) defined in Section 4.

Proof. By assumption, there exist an integer C ≥ 2 and an infinite setN of positive
integers such that

p(n,w,A) ≤ Cn, for every n in N . (8.1)

This implies in particular that w is written over a finite alphabet.
Let n be in N . By (8.1) and the Schubfachprinzip, there exists (at least) one

block Xn of length n having (at least) two occurrences in the prefix of length
(C + 1)n of w. Thus, there are words Wn, W ′n, Bn and B′n such that |Wn| < |W ′n|
and

w1 . . . w(C+1)n = WnXnBn = W ′nXnB
′
n.

If |WnXn| ≤ |W ′n|, then define Vn by the equality WnXnVn = W ′n. Observe
that

w1 . . . w(C+1)n = WnXnVnXnB
′
n (8.2)

and
|Vn|+ |Wn|
|Xn|

≤ C. (8.3)

Set Un := Xn.
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If |W ′n| < |WnXn|, then, recalling that |Wn| < |W ′n|, we define X ′n by W ′n =
WnX

′
n. Since XnBn = X ′nXnB

′
n and |X ′n| < |Xn|, the word X ′n is a prefix strict

of Xn and Xn is the concatenation of at least two copies of X ′n and a (possibly
empty) prefix of X ′n. Let tn be the largest positive integer such that Xn begins
with 2tn copies of X ′n. Observe that

2tn|X ′n|+ 2|X ′n| ≥ |X ′nXn|,

thus
n = |Xn| ≤ (2tn + 1)|X ′n| ≤ 3tn|X ′n|.

Consequently, Wn(X ′n
tn)2 is a prefix of w such that

|X ′n
tn | ≥ n/3

and
|Wn|
|X ′n

tn |
≤ 3

n
·
(
(C + 1)n− 2|X ′n

tn |
)
≤ 3C + 1. (8.4)

Set Un := X ′n
tn and let Vn be the empty word.

It then follows from (8.2), (8.3), and (8.4) that, for every n in the infinite set
N ,

WnUnVnUn is a prefix of w

with
|Wn|+ |Vn| ≤ (3C + 1) |Un|.

This shows that w satisfies Condition (♠).

We are now in position to deduce Theorems 3.1 and 3.2 from Theorems 4.1 and
4.2.

Proof of Theorem 3.1. Let b ≥ 2 be an integer and ξ be an irrational real number.
Assume that p(n, ξ, b) does not tend to infinity with n. It then follows from Lemma
8.1 that the infinite word composed of the digits of ξ written in base b satisfies
Condition (♠). Consequently, Theorem 4.1 asserts that ξ cannot be algebraic. By
contraposition, we get the theorem.

2

Proof of Theorem 3.2. Let α be a real number not algebraic of degree at most two.
Assume that p(n, α) does not tend to infinity with n. It then follows from Lemma
8.1 that the infinite word composed of the partial quotients of ξ satisfies Condition
(♠). Furthermore, p(1, α) is finite, thus the sequence of partial quotients of α is
bounded, say by M . It then follows from Theorem 5.3 that q` ≤ (M + 1)` for

` ≥ 1, hence the sequence (q
1/`
` )`≥1 is bounded. Consequently, all the hypotheses

of Theorem 4.2 are satisfied, and one concludes that α cannot be algebraic of de-
gree at least three. By contraposition, we get the theorem.

2
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9. Proof of Theorem 4.1

We present two proofs of Theorem 4.1, which was originally established in [10].
Throughout this section, we set |Un| = un, |Vn| = vn and |Wn| = wn, for

n ≥ 1. We assume that ξ is algebraic and we derive a contradiction by a suitable
application of Theorem 6.7.

First proof.
Let n ≥ 1 be an integer. We observe that the real number ξ is quite close to

the rational number ξn whose b-ary expansion is the infinite word Wn(UnVn)∞.
Indeed, there exists an integer pn such that

ξn =
pn

bwn(bun+vn − 1)

and

|ξ − ξn| ≤
1

bwn+vn+2un
,

since ξ and ξn have the same first wn + vn + 2un digits in their b-ary expansion.
Consequently, we have

|bwn+un+vnξ − bwnξ − pn| = |bwn(bun+vn − 1)ξ − pn| ≤ b−un .

Consider the three linearly independent linear forms with real algebraic coefficients:

L1,∞(X1, X2, X3) =X1,

L2,∞(X1, X2, X3) =X2,

L3,∞(X1, X2, X3) =ξX1 − ξX2 −X3.

Evaluating them on the integer points xn := (bwn+un+vn , bwn , pn), we get that∏
1≤j≤3

|Lj,∞(xn)| ≤ b2wn+vn . (9.1)

For any prime number ` dividing b, we consider the three linearly independent
linear forms with integer coefficients:

L1,`(X1, X2, X3) =X1,

L2,`(X1, X2, X3) =X2,

L3,`(X1, X2, X3) =X3.

We get that ∏
`|b

∏
1≤j≤3

|Lj,`(xn)|` ≤ b−2wn−un−vn . (9.2)

Since a satisfies Condition (♠), we have

lim inf
n→+∞

un
wn + un + vn

> 0.
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It then follows from (9.1) and (9.2) that there exists ε > 0 such that∏
1≤j≤3

|Lj,∞(xn)| ·
∏
`|b

∏
1≤j≤3

|Lj,`(xn)|` ≤ b−un

≤ max{bwn+un+vn , bwn , pn}−ε,

for every n ≥ 1.
We then infer from Theorem 6.7 that all the points xn lie in a finite number of

proper subspaces of Q3. Thus, there exist a non-zero integer triple (z1, z2, z3) and
an infinite set of distinct positive integers N1 such that

z1b
wn+un+vn + z2b

wn + z3pn = 0, (9.3)

for any n in N1.
Dividing (9.3) by bwn+un+vn , we get

z1 + z2b
−un−vn + z3

pn
bwn+un+vn

= 0. (9.4)

Since un tends to infinity with n, the sequence (pn/b
wn+un+vn)n≥1 tends to ξ. Let-

ting n tend to infinity along N1, we then infer from (9.4) that either ξ is rational,
or z1 = z3 = 0. In the latter case, z2 must be zero, a contradiction. This shows
that ξ cannot be algebraic.

2

Second proof.
Here, we follow an alternative approach presented in [2].
Let pn and p′n be the rational integers defined by

wn+vn+2un∑
`=1

a`
b`

=
pn

bwn+vn+2un
and

wn+un∑
`=1

a`
b`

=
p′n

bwn+un
·

Observe that there exist integers fn and f ′n such that

pn = awn+vn+2un
+ awn+vn+2un−1b+ · · ·+ awn+vn+un+1b

un−1 + fnb
un (9.5)

and
p′n = awn+un

+ awn+un−1b+ · · ·+ awn+1b
un−1 + f ′nb

un . (9.6)

Since, by assumption,

awn+un+vn+j = awn+j , for j = 1, . . . , un,

it follows from (9.5) and (9.6) that pn − p′n is divisible by an integer multiple of
bun . Thus, for any prime number ` dividing b, the `-adic distance between pn and
p′n is very small and we have

|pn − p′n|` ≤ |b|
un

` .
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Furthermore, it is clear that

|bwn+unξ − p′n| < 1 and |bwn+vn+2unξ − pn| < 1.

Consider now the four linearly independent linear forms with real algebraic
coefficients:

L1,∞(X1, X2, X3, X4) =X1,

L2,∞(X1, X2, X3, X4) =X2,

L3,∞(X1, X2, X3, X4) =ξX1 −X3,

L4,∞(X1, X2, X3, X4) =ξX2 −X4.

Evaluating them on the integer points xn := (bwn+vn+2un , bun+wn , pn, p
′
n), we get

that ∏
1≤j≤4

|Lj,∞(xn)| ≤ b2wn+vn+3un . (9.7)

For any prime number p dividing b, we consider the four linearly independent
linear forms with integer coefficients:

L1,`(X1, X2, X3, X4) =X1,

L2,`(X1, X2, X3, X4) =X2,

L3,`(X1, X2, X3, X4) =X3,

L4,`(X1, X2, X3, X4) =X4 −X3.

We get that ∏
`|b

∏
1≤j≤4

|Lj,`(xn)|` ≤ b−(2wn+vn+3un) b−un . (9.8)

Since a satisfies Condition (♠), we have

lim inf
n→+∞

un
wn + 2un + vn

> 0.

It then follows from (9.7) and (9.8) that there exists ε > 0 such that∏
1≤j≤4

|Lj,∞(xn)| ·
∏
`|b

∏
1≤j≤4

|Lj,`(xn)|` ≤ b−un

≤ max{bwn+vn+2un , bun+wn , pn, p
′
n}−ε,

for every n ≥ 1.
We then infer from Theorem 6.7 that all the points xn lie in a finite num-

ber of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple
(z1, z2, z3, z4) and an infinite set of distinct positive integers N1 such that

z1b
wn+vn+2un + z2b

un+wn + z3pn + z4p
′
n = 0, (9.9)

for any n in N1.
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Dividing (9.9) by bwn+vn+2un , we get

z1 + z2b
−un−vn + z3

pn
bwn+vn+2un

+ z4b
−un−vn p′n

bun+wn
= 0. (9.10)

Recall that un tends to infinity with n. Thus, the sequences (pn/b
wn+vn+2un)n≥1

and (p′n/b
un+wn)n≥1 tend to ξ as n tends to infinity. Letting n tend to infinity

along N1, we infer from (9.10) that either ξ is rational, or z1 = z3 = 0. In the
latter case, we obtain that ξ is rational. This is a contradiction, since the sequence
(a`)`≥1 is not ultimately periodic. Consequently, ξ cannot be algebraic.

2

Also, the Schmidt Subspace Theorem was applied similarly as in the first proof
of Theorem 4.1 by Troi and Zannier [68] to establish the transcendence of the
number

∑
m∈S 2−m, where S denotes the set of integers which can be represented

as sums of distinct terms 2k + 1, where k ≥ 1.

Moreover, in his short paper Some suggestions for further research published
in 1984, Mahler [53] suggested explicitly to apply the Schmidt Subspace Theorem
exactly as in the first proof of Theorem 4.1 given in Section 9 to investigate whether
the middle third Cantor set contains irrational algebraic elements or not. More
precisely, he wrote: A possible approach to this question consists in the study of

the non-homogeneous linear expressions

|3pr+PrX − 3prX −Nr|.

It may be that a p-adic form of Schmidt’s theorem on the rational approximations
of algebraic numbers [10] holds for such expressions.

The reference [10] above is Schmidt’s book [64].

We end this section by mentioning an application of Theorem 4.1. Adamczewski
and Rampersad [12] proved that the binary expansion of an algebraic number
contains infinitely many occurrences of 7/3-powers. They also established that the
ternary expansion of an algebraic number contains infinitely many occurrences of
squares or infinitely many occurrences of one of the blocks 010 or 02120.

10. Proof of Theorem 4.2

We reproduce the proof given in [29].

Throughout, the constants implied in � depend only on α. Assume that the
sequences (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 occurring in the definition of Condition
(♠) are fixed. For n ≥ 1, set un = |Un|, vn = |Vn| and wn = |Wn|. We assume
that the real number α := [0; a1, a2, . . .] is algebraic of degree at least three. Set
p−1 = q0 = 1 and q−1 = p0 = 0.
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We observe that α admits infinitely many good quadratic approximants ob-
tained by truncating its continued fraction expansion and completing by periodic-

ity. Precisely, for every positive integer n, we define the sequence (b
(n)
k )k≥1 by

b
(n)
h = ah for 1 ≤ h ≤ wn + un + vn,

b
(n)
wn+h+j(un+vn) = awn+h for 1 ≤ h ≤ un + vn and j ≥ 0.

The sequence (b
(n)
k )k≥1 is ultimately periodic, with preperiod Wn and with period

UnVn. Set

αn = [0; b
(n)
1 , b

(n)
2 , . . . , b

(n)
k , . . .]

and note that, since the first wn + 2un + vn partial quotients of α and of αn are
the same, it follows from Corollary 5.2 that

|α− αn| ≤ q−2
wn+2un+vn

. (10.1)

Furthermore, Lemma 5.8 asserts that αn is root of the quadratic polynomial

Pn(X) := (qwn−1qwn+un+vn − qwn
qwn+un+vn−1)X2

− (qwn−1pwn+un+vn − qwn
pwn+un+vn−1

+ pwn−1qwn+un+vn − pwn
qwn+un+vn−1)X

+ (pwn−1pwn+un+vn − pwn
pwn+un+vn−1).

By (5.4), we have

|(qwn−1qwn+un+vn − qwn
qwn+un+vn−1)α− (qwn−1pwn+un+vn − qwn

pwn+un+vn−1)|
≤ qwn−1|qwn+un+vnα− pwn+un+vn |+ qwn

|qwn+un+vn−1α− pwn+un+vn−1|
≤ 2 qwn

q−1
wn+un+vn

(10.2)
and, likewise,

|(qwn−1qwn+un+vn − qwn
qwn+un+vn−1)α− (pwn−1qwn+un+vn − pwn

qwn+un+vn−1)|
≤ qwn+un+vn |qwn−1α− pwn−1|+ qwn+un+vn−1|qwn

α− pwn
|

≤ 2 q−1
wn
qwn+un+vn .

(10.3)
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Using (10.1), (10.2), and (10.3), we then get

|Pn(α)| = |Pn(α)− Pn(αn)|
= |(qwn−1qwn+un+vn − qwnqwn+un+vn−1)(α− αn)(α+ αn)

− (qwn−1pwn+un+vn − qwnpwn+un+vn−1

+ pwn−1qwn+un+vn − pwnqwn+un+vn−1)(α− αn)|
= |(qwn−1qwn+un+vn − qwnqwn+un+vn−1)α

− (qwn−1pwn+un+vn − qwnpwn+un+vn−1)

+ (qwn−1qwn+un+vn − qwnqwn+un+vn−1)α

− (pwn−1qwn+un+vn − pwnqwn+un+vn−1)

+ (qwn−1qwn+un+vn − qwnqwn+un+vn−1)(αn − α)| · |α− αn|
� |α− αn| ·

(
qwn

q−1
wn+un+vn + q−1

wn
qwn+un+vn + qwn

qwn+un+vn |α− αn|
)

� |α− αn|q−1
wn
qwn+un+vn

� q−1
wn
qwn+un+vn q

−2
wn+2un+vn

.
(10.4)

We consider the four linearly independent linear forms:

L1(X1, X2, X3, X4) =α2X1 − α(X2 +X3) +X4,

L2(X1, X2, X3, X4) =αX1 −X2,

L3(X1, X2, X3, X4) =αX1 −X3,

L4(X1, X2, X3, X4) =X1.

Evaluating them on the quadruple

xn :=(qwn−1qwn+un+vn − qwn
qwn+un+vn−1, qwn−1pwn+un+vn − qwn

pwn+un+vn−1,

pwn−1qwn+un+vn − pwn
qwn+un+vn−1, pwn−1pwn+un+vn − pwn

pwn+un+vn−1),

it follows from (10.2), (10.3), (10.4), and Theorem 5.3 that∏
1≤j≤4

|Lj(xn)| � q2
wn+un+vn q

−2
wn+2un+vn

� 2−un

� (qwn
qwn+un+vn)−δun/(2wn+un+vn),

if n is sufficiently large, where we have set

M = 1 + lim sup
`→+∞

q
1/`
` and δ =

log 2

logM
.

Since a satisfies Condition (♠), we have

lim inf
n→+∞

un
2wn + un + vn

> 0.
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Consequently, there exists ε > 0 such that∏
1≤j≤4

|Lj(xn)| � (qwn
qwn+un+vn)−ε

holds for any sufficiently large integer n.
It then follows from Theorem 6.7 that the points xn lie in a finite union of

proper linear subspaces of Q4. Thus, there exist a non-zero integer quadruple
(x1, x2, x3, x4) and an infinite set N1 of distinct positive integers such that

x1(qwn−1qwn+un+vn − qwnqwn+un+vn−1)

+ x2(qwn−1pwn+un+vn − qwnpwn+un+vn−1)

+ x3(pwn−1qwn+un+vn − pwnqwn+un+vn−1)

+ x4(pwn−1pwn+un+vn − pwnpwn+un+vn−1) = 0,

(10.5)

for any n in N1.

• First case: we assume that there exist an integer ` and infinitely many integers
n in N1 with wn = `.

By extracting an infinite subset of N1 if necessary and by considering the real
number [0; a`+1, a`+2, . . .] instead of α, we may without loss of generality assume
that wn = ` = 0 for any n in N1.

Then, recalling that q−1 = p0 = 0 and q0 = p−1 = 1, we deduce from (10.5)
that

x1qun+vn−1 + x2pun+vn−1 − x3qun+vn − x4pun+vn = 0, (10.6)

for any n in N1. Observe that (x1, x2) 6= (0, 0), since, otherwise, by letting n tend
to infinity along N1 in (10.6), we would get that the real number α is rational.
Dividing (10.6) by qun+vn , we obtain

x1
qun+vn−1

qun+vn

+ x2
pun+vn−1

qun+vn−1
· qun+vn−1

qun+vn

− x3 − x4
pun+vn

qun+vn

= 0. (10.7)

By letting n tend to infinity along N1 in (10.7), we get that

β := lim
N13n→+∞

qun+vn−1

qun+vn

=
x3 + x4α

x1 + x2α
.

Furthermore, observe that, for any sufficiently large integer n in N1, we have∣∣∣∣β − qun+vn−1

qun+vn

∣∣∣∣ =

∣∣∣∣x3 + x4α

x1 + x2α
− x3 + x4pun+vn/qun+vn

x1 + x2pun+vn−1/qun+vn−1

∣∣∣∣
� 1

qun+vn−1qun+vn

,

(10.8)

by (5.4). Since the rational number qun+vn−1/qun+vn is under its reduced form
and un + vn tends to infinity when n tends to infinity along N1, we see that, for
every positive real number η and every positive integer N , there exists a reduced
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rational number a/b such that b > N and |β − a/b| ≤ η/b. This implies that β is
irrational.

Consider now the three linearly independent linear forms

L′1(Y1, Y2, Y3) = βY1 − Y2, L′2(Y1, Y2, Y3) = αY1 − Y3, L′3(Y1, Y2, Y3) = Y2.

Evaluating them on the triple (qun+vn , qun+vn−1, pun+vn) with n ∈ N1, we infer
from (5.4) and (10.8) that∏

1≤j≤3

|L′j(qun+vn , qun+vn−1, pun+vn)| � q−1
un+vn .

It then follows from Theorem 6.7 that the points (qun+vn , qun+vn−1, pun+vn) with
n ∈ N1 lie in a finite union of proper linear subspaces of Q3. Thus, there exist a
non-zero integer triple (y1, y2, y3) and an infinite set of distinct positive integers
N2 ⊂ N1 such that

y1qun+vn + y2qun+vn−1 + y3pun+vn = 0, (10.9)

for any n in N2. Dividing (10.9) by qun+vn and letting n tend to infinity along N2,
we get

y1 + y2β + y3α = 0. (10.10)

To obtain another equation relating α and β, we consider the three linearly
independent linear forms

L′′1(Z1, Z2, Z3) = βZ1 − Z2, L′′2(Z1, Z2, Z3) = αZ2 − Z3, L′′3(Z1, Z2, Z3) = Z2.

Evaluating them on the triple (qun+vn , qun+vn−1, pun+vn−1) with n in N1, we infer
from (5.4) and (10.8) that∏

1≤j≤3

|L′′j (qun+vn , qun+vn−1, pun+vn−1)| � q−1
un+vn .

It then follows from Theorem 6.7 that the points (qun+vn , qun+vn−1, pun+vn−1) with
n ∈ N1 lie in a finite union of proper linear subspaces of Q3. Thus, there exist
a non-zero integer triple (z1, z2, z3) and an infinite set of distinct positive integers
N3 ⊂ N2 such that

z1qun+vn + z2qun+vn−1 + z3pun+vn−1 = 0, (10.11)

for any n in N3. Dividing (10.11) by qun+vn−1 and letting n tend to infinity along
N3, we get

z1

β
+ z2 + z3α = 0. (10.12)

We infer from (10.10) and (10.12) that

(z3α+ z2)(y3α+ y1) = y2z1.
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Since β is irrational, we get from (10.10) and (10.12) that y3z3 6= 0. This shows
that α is an algebraic number of degree at most two, which is a contradiction with
our assumption that α is algebraic of degree at least three.

• Second case: extracting an infinite subset N4 of N1 if necessary, we assume
that (wn)n∈N4 tends to infinity.

In particular (pwn
/qwn

)n∈N4
and (pwn+un+vn/qwn+un+vn)n∈N4

both tend to α
as n tends to infinity.

We make the following observation. Let a be a letter and U, V,W be three finite
words (V may be empty) such that a begins with WUV U and a is the last letter of
W and of UV . Then, writing W = W ′a, V = V ′a if V is non-empty, and U = U ′a
if V is empty, we see that a begins with W ′(aU)V ′(aU) if V is non-empty and with
W ′(aU ′)(aU ′) if V is empty. Consequently, by iterating this remark if necessary,
we can assume that for any n in N4, the last letter of the word UnVn differs from
the last letter of the word Wn. Said differently, we have awn

6= awn+un+vn for any
n in N4.

Divide (10.5) by qwn
qwn+un+vn−1 and write

Qn := (qwn−1qwn+un+vn)/(qwn
qwn+un+vn−1).

We then get

x1(Qn − 1) + x2

(
Qn

pwn+un+vn

qwn+un+vn

− pwn+un+vn−1

qwn+un+vn−1

)
+ x3

(
Qn

pwn−1

qwn−1
− pwn

qwn

)
+ x4

(
Qn

pwn−1

qwn−1

pwn+un+vn

qwn+un+vn

− pwn

qwn

pwn+un+vn−1

qwn+un+vn−1

)
= 0,

(10.13)
for any n in N4. To shorten the notation, for any ` ≥ 1, we put R` := α − p`/q`
and rewrite (10.13) as

x1(Qn − 1) + x2

(
Qn(α−Rwn+un+vn)− (α−Rwn+un+vn−1)

)
+ x3

(
Qn(α−Rwn−1)− (α−Rwn

)
)

+ x4

(
Qn(α−Rwn−1)(α−Rwn+un+vn)− (α−Rwn

)(α−Rwn+un+vn−1)
)

= 0.

This yields

(Qn − 1)
(
x1 + (x2 + x3)α+ x4α

2
)

= x2QnRwn+un+vn − x2Rwn+un+vn−1 + x3QnRwn−1 − x3Rwn

− x4QnRwn−1Rwn+un+vn + x4Rwn
Rwn+un+vn−1

+ α(x4QnRwn−1 + x4QnRwn+un+vn − x4Rwn
− x4Rwn+un+vn−1).

(10.14)

Observe that
|R`| ≤ q−1

` q−1
`+1, ` ≥ 1, (10.15)

by (5.4).
We use (10.14), (10.15) and the assumption that awn

6= awn+un+vn for any n
in N4 to establish the following claim.
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Claim. We have
x1 + (x2 + x3)α+ x4α

2 = 0.

Proof of the Claim. If there are arbitrarily large integers n in N4 such that Qn ≥ 2
or Qn ≤ 1/2, then the claim follows from (10.14) and (10.15).

Assume that 1/2 ≤ Qn ≤ 2 holds for every large n in N4. We then derive from
(10.14) and (10.15) that

|(Qn − 1)(x1 + (x2 + x3)α+ x4α
2)| � |Rwn−1| � q−1

wn−1q
−1
wn
.

If x1 + (x2 + x3)α+ x4α
2 6= 0, then we get

|Qn − 1| � q−1
wn−1q

−1
wn
. (10.16)

On the other hand, observe that, by Theorem 5.4, the rational number Qn is
the quotient of the two continued fractions [awn+un+vn ; awn+un+vn−1, . . . , a1] and
[awn

; awn−1, . . . , a1]. Since awn+un+vn 6= awn
, we have either awn+un+vn−awn

≥ 1
or awn

− awn+un+vn ≥ 1. In the former case, we see that

Qn ≥
awn+un+vn

awn +
1

1 +
1

awn−2 + 1

≥ awn
+ 1

awn
+
awn−2 + 1

awn−2 + 2

≥ 1 +
1

(awn
+ 1)(awn−2 + 2)

.

In the latter case, we have

1

Qn
≥
awn

+
1

awn−1 + 1

awn+un+vn + 1
≥ 1+

1

(awn−1 + 1)(awn+un+vn + 1)
≥ 1+

1

(awn−1 + 1)awn

.

Consequently, in any case, we have

|Qn − 1| � a−1
wn

min{a−1
wn−2, a

−1
wn−1} � a−1

wn
q−1
wn−1.

Combined with (10.16), this gives

awn � qwn � awnqwn−1,

which implies that n is bounded, a contradiction. This proves the Claim.
2

Since α is irrational and not quadratic, we deduce from the Claim that x1 =
x4 = 0 and x2 = −x3. Then, x2 is non-zero and, by (10.5), we have, for any n in
N4,

qwn−1pwn+un+vn − qwn
pwn+un+vn−1 = pwn−1qwn+un+vn − pwn

qwn+un+vn−1.

Thus, the polynomial Pn(X) can simply be expressed as

Pn(X) :=(qwn−1qwn+un+vn − qwn
qwn+un+vn−1)X2

− 2(qwn−1pwn+un+vn − qwn
pwn+un+vn−1)X

+ (pwn−1pwn+un+vn − pwn
pwn+un+vn−1).
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Consider now the three linearly independent linear forms

L′′′1 (T1, T2, T3) =α2T1 − 2αT2 + T3,

L′′′2 (T1, T2, T3) =αT1 − T2,

L′′′3 (T1, T2, T3) =T1.

Evaluating them on the triple

x′n := (qwn−1qwn+un+vn − qwnqwn+un+vn−1, qwn−1pwn+un+vn − qwnpwn+un+vn−1,

pwn−1pwn+un+vn − pwnpwn+un+vn−1),

for n in N4, it follows from (10.2) and (10.4) that∏
1≤j≤3

|L′′′j (x′n)| � qwn
qwn+un+vn q

−2
wn+2un+vn

� (qwn
qwn+un+vn)−ε,

with the same ε as above, if n is sufficiently large.
We then deduce from Theorem 6.7 that the points x′n, n ∈ N4, lie in a finite

union of proper linear subspaces of Q3. Thus, there exist a non-zero integer triple
(t1, t2, t3) and an infinite set of distinct positive integers N5 included in N4 such
that

t1(qwn−1qwn+un+vn − qwn
qwn+un+vn−1)

+ t2(qwn−1pwn+un+vn − qwn
pwn+un+vn−1)

+ t3(pwn−1pwn+un+vn − pwn
pwn+un+vn−1) = 0,

(10.17)

for any n in N5.
We proceed exactly as above. Divide (10.17) by qwn

qwn+un+vn−1 and set

Qn := (qwn−1qwn+un+vn)/(qwn
qwn+un+vn−1).

We then get

t1(Qn − 1) + t2

(
Qn

pwn+un+vn

qwn+un+vn

− pwn+un+vn−1

qwn+un+vn−1

)
+ t3

(
Qn

pwn−1

qwn−1

pwn+un+vn

qwn+un+vn

− pwn

qwn

pwn+un+vn−1

qwn+un+vn−1

)
= 0,

(10.18)

for any n in N5. We argue as after (10.13). Since pwn
/qwn

and pwn+un+vn/qwn+un+vn

tend to α as n tends to infinity along N5, we derive from (10.18) that

t1 + t2α+ t3α
2 = 0,

a contradiction since α is irrational and not quadratic. Consequently, α must be
transcendental. This concludes the proof of the theorem.

2
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11. A transcendence criterion for quasi palindromic contin-
ued fractions

In this section, we present another combinatorial transcendence for continued frac-
tions which was established in [29], based on ideas from [5].

For a finite word W := w1 . . . wk, we write W := wk . . . w1 its mirror image.
The finite word W is called a palindrome if W = W .

Let a = (a`)`≥1 be a sequence of elements from A. We say that a satisfies
Condition (♣) if a is not ultimately periodic and if there exist three sequences of
finite words (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 such that:

• (i) For every n ≥ 1, the word WnUnVnUn is a prefix of the word a;

• (ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above;

• (iii) The sequence (|Wn|/|Un|)n≥1 is bounded from above;

• (iv) The sequence (|Un|)n≥1 is increasing.

Theorem 11.1. Let a = (a`)`≥1 be a sequence of positive integers. Let (p`/q`)`≥1

denote the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

Assume that the sequence (q
1/`
` )`≥1 is bounded. If a satisfies Condition (♣), then

α is transcendental.

A slight modification of the proof of Theorem 11.1 allows us to remove the as-
sumption on the growth of the sequence (q`)`≥1, provided that a stronger condition
than Condition (♣) is satisfied.

Theorem 11.2. Let a = (a`)`≥1 be a sequence of positive integers and set

α := [0; a1, a2, . . . , a`, . . .].

Assume that a = (a`)`≥1 is not eventually periodic. If there are arbitrarily large
integers ` such that the word a1 . . . a` is a palindrome, then α is transcendental.

We leave to the reader the proof of Theorem 11.2, established in [5], and es-
tablish Theorem 11.1.

Proof. Throughout, the constants implied in � are absolute.
Assume that the sequences (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 are fixed. Set wn =

|Wn|, un = |Un| and vn = |Vn|, for n ≥ 1. Assume that the real number α :=
[0; a1, a2, . . .] is algebraic of degree at least three.

For n ≥ 1, consider the rational number Pn/Qn defined by

Pn
Qn

:= [0;WnUnVnUnWn]
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and denote by P ′n/Q
′
n the last convergent to Pn/Qn which is different from Pn/Qn.

Since the first wn+2un+vn partial quotients of α and Pn/Qn coincide, we deduce
from Corollary 5.2 that

|Qnα− Pn| < Qnq
−2
wn+2un+vn

, |Q′nα− P ′n| < Qnq
−2
wn+2un+vn

, (11.1)

Furthermore, it follows from Theorem 5.4 that the first wn + 2un + vn partial
quotients of α and of Q′n/Qn coincide, thus

|Qnα−Q′n| < Qnq
−2
wn+un

, (11.2)

again by Corollary 5.2, and, by Theorem 5.6,

Qn ≤ 2qwnqwn+2un+vn ≤ 2qwn+unqwn+2un+vn . (11.3)

Since

α(Qnα− Pn)− (Q′nα− P ′n) = αQn

(
α− Pn

Qn

)
−Q′n

(
α− P ′n

Q′n

)
= (αQn −Q′n)

(
α− Pn

Qn

)
+Q′n

(
P ′n
Q′n
− Pn
Qn

)
,

it follows from (11.1), (11.2) and (11.3) that

|α2Qn − αQ′n − αPn + P ′n| � Qnq
−2
wn+un

q−2
wn+2un+vn

+Q−1
n

� Q−1
n .

(11.4)

Consider the four linearly independent linear forms with algebraic coefficients

L1(X1, X2, X3, X4) =α2X1 − αX2 − αX3 +X4,

L2(X1, X2, X3, X4) =αX2 −X4,

L3(X1, X2, X3, X4) =αX1 −X2,

L4(X1, X2, X3, X4) =X2.

We deduce from (11.1), (11.2), (11.3) and (11.4) that∏
1≤j≤4

|Lj(Qn, Q′n, Pn, P ′n)| � Q2
n q
−2
wn+2un+vn

q−2
wn+un

� q2
wn
q−2
wn+un

.

By combining Theorems 5.3 and 5.6 with (11.3), we have

q2
wn
q−2
wn+un

� 2−un � Q−δun/(2wn+2un+vn)
n ,

if n is sufficiently large, where we have set

M = 1 + lim sup
`→+∞

q
1/`
` and δ =

log 2

logM
.
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Since a satisfies Condition (♣), we have

lim inf
n→+∞

un
2wn + 2un + vn

> 0.

Consequently, there exists ε > 0 such that∏
1≤j≤4

|Lj(Qn, Q′n, Pn, P ′n)| � Q−εn ,

for every sufficiently large n.
It then follows from Theorem 6.7 that the points (Qn, Q

′
n, Pn, P

′
n) lie in a finite

number of proper subspaces of Q4. Thus, there exist a non-zero integer quadruple
(x1, x2, x3, x4) and an infinite set of distinct positive integers N1 such that

x1Qn + x2Q
′
n + x3Pn + x4P

′
n = 0, (11.5)

for any n in N1. Dividing by Qn, we obtain

x1 + x2
Q′n
Qn

+ x3
Pn
Qn

+ x4
P ′n
Q′n
· Q
′
n

Qn
= 0.

By letting n tend to infinity along N1, we infer from (11.2) and (11.3) that

x1 + (x2 + x3)α+ x4α
2 = 0.

Since (x1, x2, x3, x4) 6= (0, 0, 0, 0) and since α is irrational and not quadratic, we
have x1 = x4 = 0 and x2 = −x3. Then, (11.5) implies that

Q′n = Pn.

for every n in N1. Thus, for n in N1, we have

|α2Qn − 2αQ′n + P ′n| � Q−1
n . (11.6)

Consider now the three linearly independent linear forms

L′1(X1, X2, X3) =α2X1 − 2αX2 +X3,

L′2(X1, X2, X3) =αX2 −X3,

L′3(X1, X2, X3) =X1.

Evaluating them on the triple (Qn, Q
′
n, P

′
n) for n in N1, it follows from (11.1),

(11.3) and (11.6) that∏
1≤j≤3

|L′j(Qn, Q′n, P ′n)| � Qnq
−2
wn+2un+vn

� qwn
q−1
wn+2un+vn

� qwn
q−1
wn+un

� Q−ε/2n ,

with the same ε as above, if n is sufficiently large.
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It then follows from Theorem 6.7 that the points (Qn, Q
′
n, P

′
n) lie in a finite

number of proper subspaces of Q3. Thus, there exist a non-zero integer triple
(y1, y2, y3) and an infinite set of distinct positive integers N2 such that

y1Qn + y2Q
′
n + y3P

′
n = 0, (11.7)

for any n in N2.
Dividing (11.7) by Qn, we get

y1 + y2
Pn
Qn

+ y3
P ′n
Q′n
· Pn
Qn

= 0. (11.8)

By letting n tend to infinity along N2, it thus follows from (11.8) that

y1 + y2α+ y3α
2 = 0.

Since (y1, y2, y3) is a non-zero triple of integers, we have reached a contradiction.
Consequently, the real number α is transcendental. This completes the proof of
the theorem.

12. Complements

We collect in this section several results which complement Theorems 3.1 and 3.2.
The common tool for their proofs (which we omit or just sketch) is the Quantitative
Subspace Theorem, that is, a theorem which provides an explicit upper bound for
the number T of exceptional subspaces in Theorem 6.7.

We have mentioned at the beginning of Section 3 that the sequence of par-
tial quotients of an algebraic irrational number θ cannot grow too rapidly. More
precisely, it can be derived from Roth’s Theorem 6.5 that

lim
n→+∞

log log qn
n

= 0, (12.1)

where (p`/q`)`≥1 denotes the sequence of convergents to θ. This is left as an
exercise. The use of a quantitative form of Theorem 6.5 allowed Davenport and
Roth [38] to improve (12.1). Their result was subsequently strengthen [4, 25] as
follows.

Theorem 12.1. Let θ be an irrational, real algebraic number and let (pn/qn)n≥1

denote the sequence of its convergents. Then, for any ε > 0, there exists a constant
c, depending only on θ and ε, such that

log log qn ≤ c n2/3+ε.

Proof. We briefly sketch the proof of a slightly weaker result. Let d be the degree
of θ. By Theorem 6.4, there exists an integer n0 such that∣∣∣θ − pn

qn

∣∣∣ > 1

qd+1
n

,
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for n ≥ n0. Combined with Theorem 5.1, this gives

qn+1 ≤ qdn, for n ≥ n0. (12.2)

On the other hand, a quantitative form of Theorem 6.5 (see e.g. [40]) asserts that
there exists a positive number η0 < 1/5, depending only on θ, such that for every
η with 0 < η < η0, the inequality∣∣∣θ − p

q

∣∣∣ < 1

q2+η
,

has at most η−4 rational solutions p/q with p and q coprime and q > 161/η.
Consequently, for every n ≥ 8/η with at most η−4 exceptions, we have

qn+1 ≤ q1+η
n . (12.3)

Let N ≥ (8/η)2 be a large integer and set h := d
√
Ne. We deduce from (12.2) and

(12.3) that
log qN
log qh

=
log qN

log qN−1
× log qN−1

log qN−2
× . . .× log qh+1

log qh

≤ (1 + η)N dη
−4

,

thus
log log qN − log log qh ≤ N η + η−4(log d).

Observe that it follows from (12.1) that

log log qh ≤ N1/2,

when N is sufficiently large. Choosing η = N−1/5, we obtain the upper bound

log log qN ≤ log log qh +N4/5(log 3d) ≤ 2N4/5(log 3d),

when N is large enough. A slight refinement yields the theorem.

We first observe that, if we assume a slightly stronger condition than

lim inf
n→+∞

p(n,w,A)

n
< +∞

in Lemma 8.1, namely if we assume that

lim sup
n→+∞

p(n,w,A)

n
< +∞,

then the word w satisfies a much stronger condition than Condition (♠). Indeed,
there then exists an integer C ≥ 2 such that

p(n,w,A) ≤ Cn, for n ≥ 1,
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instead of the weaker assumption (8.1). In the case of the first proof of Theorem
4.1 given in Section 9, this means that, keeping its notation, one may assume that,
up to extracting subsequences, there exists an integer c such that

2(un + vn + wn) ≤ un+1 + vn+1 + wn+1 ≤ c(un + vn + wn), n ≥ 1.

This observation is crucial for the proofs of Theorems 12.2 to 12.4 below.
Now, we mention a few applications to the complexity of algebraic numbers, be-

ginning with a result from [31]. Recall that the complexity function n 7→ p(n, θ, b)
has been defined in Section 2.

Theorem 12.2. Let b ≥ 2 be an integer and θ an algebraic irrational number.
Then, for any real number η such that η < 1/11, we have

lim sup
n→+∞

p(n, θ, b)

n(log n)η
= +∞.

The main tools for the proof of Theorem 12.2 are a suitable extension of the
Cugiani–Mahler Theorem and a suitable version of the Quantitative Subspace The-
orem, which allows us to get an exponent of log n independent of the base b. Using
the recent results of [41] allows us to show that Theorem 12.2 holds for η in a
slightly larger interval than [0, 1/11).

As briefly mentioned in Section 6, one of the main features of the theorems of
Roth and Schmidt is that they are ineffective, in the sense that we cannot produce
an explicit upper bound for the denominators of the solutions to (6.3) or for the
height of the subspaces containing the solutions to (6.4). Consequently, Theorems
3.1 and 3.2 are ineffective, as are the weaker results from [14, 43]. It is shown in
[24] that, by means of the Quantitative Subspace Theorem, it is possible to derive
an explicit form of a much weaker statement.

Theorem 12.3. Let b ≥ 2 be an integer. Let θ be a real algebraic irrational number
of degree d and height at most H, with H ≥ ee. Set

M = exp{10190(log(8d))2(log log(8d))2}+ 232 log(240 log(4H)).

Then we have

p(n, θ, b) ≥
(

1 +
1

M

)
n, for n ≥ 1.

Unfortunately, the present methods do not seem to be powerful enough to get
an effective version of Theorem 3.1.

We have shown that, if the b-ary or the continued fraction expansion of a real
number is not ultimately periodic and has small complexity, then this number
cannot be algebraic, that is, the distance between this number and the set of
algebraic numbers is strictly positive. A natural question then arises: is it possible
to get transcendence measures for ξ, that is, to bound from below the distance
between ξ and any algebraic number? A positive answer was given in [6], where
the authors described a general method to obtain transcendence measures by means
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of the Quantitative Subspace Theorem. In the next statement, proved in [9], we
say that an infinite word w written on an alphabet A is of sublinear complexity if
there exists a constant C such that the complexity function of w satisfies

p(n,w,A) ≤ Cn, for all n ≥ 1.

Recall that a Liouville number is an irrational real number γ such that for every
real number w, there exists a rational number p/q with |γ − p/q| < 1/qw.

Theorem 12.4. Let ξ be an irrational real number and b ≥ 2 be an integer. If
the b-ary expansion of ξ is of sublinear complexity, then, either ξ is a Liouville
number, or there exists a positive number C such that

|ξ − θ| > H(θ)−(2d)C log log(3d)

,

for every real algebraic number θ of degree d.

In Theorem 12.4, the quantity H(θ) is the height of θ as introduced in Definition
6.3.

The analogue of Theorem 12.4 for continued fraction expansions has been es-
tablished in [7, 28]. The analogues of Theorems 12.2 and 12.3 have not been written
yet, but there is little doubt that they hold and can be proved by combining the
ideas of the proofs of Theorems 3.2, 12.2 and 12.3.

13. Further notions of complexity

For an integer b ≥ 2, an irrational real number ξ whose b-ary expansion is given
by (1.1), and a positive integer n, set

NZ(n, ξ, b) := # {` : 1 ≤ ` ≤ n, a` 6= 0},

which counts the number of non-zero digits among the first n digits of the b-ary
expansion of ξ.

Alternatively, if 1 ≤ n1 < n2 < . . . denote the increasing sequence of the indices
` such that a` 6= 0, then for every positive integer n we have

NZ(n, ξ, b) := max {j : nj ≤ n}.

Let ε > 0 be a real number and θ be an algebraic, irrational number. It follows
from Ridout’s theorem 6.6 that nj+1 ≤ (1 + ε)nj holds for every sufficiently large
j. Consequently, we get that

lim
n→+∞

NZ(n, θ, b)

log n
= +∞.

For the base b = 2, this was considerably improved by Bailey, Borwein, Crandall,
and Pomerance [17] (see also Rivoal [60]), using elementary considerations and
ideas from additive number theory. A minor modification of their method allows
us to get a similar result for expansions to an arbitrary integer base. The following
statement is extracted from [27] (see also [11]).
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Theorem 13.1. Let b ≥ 2 be an integer. For any irrational real algebraic number
θ of degree d and height H and for any integer n exceeding (20bdd3H)d, we have

NZ(n, θ, b) ≥ 1

b− 1

(
n

2(d+ 1)ad

)1/d

,

where ad denotes the leading coefficient of the minimal polynomial of θ over the
integers.

The idea behind the proof of Theorem 13.1 is quite simple and was inspired by
a paper by Knight [48]. If an irrational real number ξ has few non-zero digits, then
its integer powers ξ2, ξ3, . . ., and any finite linear combination of them, cannot
have too many non-zero digits. In particular, ξ cannot be a root of an integer
polynomial of small degree. This is, in general, not at all so simple, since we have
to take much care of the carries. However, for some particular families of algebraic
numbers, including roots of positive integers, a quite simple proof of Theorem 13.1
can be given. Here, we follow [60] and (this allows some minor simplification) we
treat only the case b = 2.

For a non-negative integer x, let B(x) denote the number of 1’s in the (finite)
binary representation of x.

Theorem 13.2. Let θ be a positive real algebraic number of degree d ≥ 2. Let
adX

d + · · ·+ a1X + a0 denote its minimal polynomial and assume that a1, . . . , ad
are all non-negative. Then, there exists a constant c, depending only on θ, such
that

NZ(n, θ, 2) ≥ B(ad)
−1/dn1/d − c,

for n ≥ 1.

Proof. Observe first that, for all positive integers x and y, we have

B(x+ y) ≤ B(x) +B(y)

and
B(xy) ≤ B(x)B(y).

For simplicity, let us write NZ(n, ·) instead of NZ(n, ·, 2). Let ξ and η be
positive irrational numbers (the assumption of positivity is crucial) and n be a
sufficiently large integer. We state without proof several elementary assertions. If
ξ + η is irrational, then we have

NZ(n, ξ + η) ≤ NZ(n, ξ) +NZ(n, η) + 1.

If ξη is irrational, then we have

NZ(n, ξη) ≤ NZ(n, ξ) · NZ(n, η) + log2(ξ + η + 1) + 1,

where log2 denotes the logarithm in base 2. If m is an integer, then we have

NZ(n,mξ) ≤ B(m)(NZ(n, ξ) + 1).
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Furthermore, for every positive integer A, we have

NZ(n, ξ) · NZ(n,A/ξ) ≥ n− 1− log2(ξ +A/ξ + 1)). (13.1)

Let θ be as in the statement of the theorem. The real number |a0|/θ is irrational,
as are the numbers ajθ

j−1 for j = 2, . . . , d provided that aj 6= 0. Since

|a0|θ−1 = a1 + a2θ + · · ·+ adθ
d−1

and NZ(n, θ) tends to infinity with n, the various inequalities listed above imply
that

NZ(n, |a0|θ−1) ≤ d+B(a1) +NZ(n, a2θ) + · · ·+NZ(n, adθ
d−1)

≤ d+B(a1) +B(a2)(NZ(n, θ) + 1) + · · ·
+B(ad)(NZ(n, θd−1) + 1)

≤ B(ad)NZ(n, θ)d−1 + c1NZ(n, θ)d−2,

(13.2)

where c1, like c2, c3, c4 below, is a suitable positive real number depending only on
θ. By (13.1), we get

NZ(n, |a0|θ−1) ≥ n

NZ(n, θ)
− c2.

Combined with (13.2), we obtain

B(ad)NZ(n, θ)d + c3NZ(n, θ)d−1 ≥ n

and we finally deduce that

NZ(n, θ) ≥ B(ad)
−1/dn1/d − c4,

as asserted.

We may also ask for a finer measure of complexity than simply counting the
number of non-zero digits and consider the number of digit changes.

For an integer b ≥ 2, an irrational real number ξ whose b-ary expansion is given
by (1.1), and a positive integer n, we set

NBDC(n, ξ, b) := # {` : 1 ≤ ` ≤ n, a` 6= a`+1},

which counts the number of digits followed by a different digit, among the first n
digits in the b-ary expansion of ξ. The functions n 7→ NBDC(n, ξ, b) have been
introduced in [23]. Using this notion for measuring the complexity of a real number,
Theorem 13.3 below, proved in [23, 31], shows that algebraic irrational numbers
are ‘not too simple’.

Theorem 13.3. Let b ≥ 2 be an integer. For every irrational, real algebraic
number θ, there exist an effectively computable constant n0(θ, b), depending only
on θ and b and an effectively computable constant c, depending only on the degree
of θ, such that

NBDC(n, θ, b) ≥ c (log n)3/2 (log log n)−1/2, (13.3)

for every integer n ≥ n0(θ, b).
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A weaker result than (13.3), namely that

lim
n→+∞

NBDC(n, θ, b)
log n

= +∞, (13.4)

follows quite easily from Ridout’s Theorem 6.6. The proof of Theorem 13.3 depends
on a quantitative version of Ridout’s Theorem. We point out that the lower bound
in (13.3) does not depend on b.

Further results on the number of non-zero digits and the number of digit changes
in the b-ary expansion of algebraic numbers have been obtained by Kaneko [45, 46].
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[37] H. Davenport and P. Erdős, Note on normal decimals, Canadian J. Math. 4 (1952),
58–63.

[38] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Math-
ematika 2 (1955), 160–167.

[39] L. Euler, De fractionibus continuis, Commentarii Acad. Sci. Imperiali Petropolitanae
9 (1737).

[40] J.-H. Evertse, The number of algebraic numbers of given degree approximating a
given algebraic number. In: Analytic number theory (Kyoto, 1996), 53–83, London
Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997.

[41] J.-H. Evertse and R. G. Ferretti, A further improvement of the Quantitative Subspace
Theorem, Ann. of Math. 177 (2013), 513–590.

[42] J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace
Theorem, J. reine angew. Math. 548 (2002), 21–127.

[43] S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity ex-
pansion, J. Number Theory 67 (1997), 146–161.

[44] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th.
edition, Clarendon Press, 1979.

[45] H. Kaneko, On the binary digits of algebraic numbers, J. Austral. Math. Soc. 89
(2010), 233–244.

[46] , On the number of digit changes in base-b expansions of algebraic numbers,
Uniform Distribution Theory 7 (2012), 141–168.

[47] A. Ya. Khintchine, Continued Fractions. The University of Chicago Press, Chicago
Ill., London, 1964.

[48] M. J. Knight, An ‘Ocean of Zeroes’ Proof That a Certain Non-Liouville Number is
Transcendental, Amer. Math. Monthly 98 (1991), 947–949.

[49] A. N. Korobov, Continued fractions of some normal numbers, Mat. Zametki 47
(1990), 28–33, 158 (in Russian). English transl. in Math. Notes 47 (1990), 128–132.
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