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Abstract. In the present survey paper, we explain how the theory of
Hausdorff dimension and Hausdorff measure is used to answer certain
questions in Diophantine approximation. The final section is devoted
to a discussion around the Diophantine properties of the points lying in
the middle third Cantor set.

1. Introduction

The main goal of this survey paper is to point out how the theory of Hausdorff
dimension and Hausdorff measure can be used to solve various questions in Diophantine
approximation. We also point out several open problems, which hopefully will motivate
further research.

Throughout this text we denote by dim the Hausdorff dimension.
Let ξ be an irrational real number. By the theory of continued fractions (or by

Dirchlet’s Schubfachprinzip), there exist infinitely many rational numbers p/q such that

|ξ − p/q| < q−2.

For any given ε > 0, a covering argument (easy half of the Borel–Cantelli lemma) shows
that, for almost all real numbers ξ (throughout Sections 1 and 2, ‘almost all’ always refers
to the Lebesgue measure), there are only finitely many rational numbers p/q such that

|ξ − p/q| < q−2−ε. (1.1)

However, for certain irrational real numbers ξ, inequality (1.1) has infinitely many solu-
tions.

Definition 1.1. The irrationality exponent of an irrational real number ξ, denoted by
µ(ξ), is the supremum of the real numbers µ such that

|ξ − p/q| < q−µ

has infinitely many solutions in rational numbers p/q.
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By means of the theory of continued fractions, for every real number µ ≥ 2, it is easy
to construct real numbers ξ such that µ(ξ) = µ; see e.g. [17] or [12]. Moreover, Jarńık [16]
proved in 1929 that

dim{ξ ∈ [0, 1] : µ(ξ) ≥ µ} =
2

µ
, (1.2)

a result established independently by Besicovitch [8] a few years later. In 1931 Jarńık [17]
refined his result from [16] by using generalized Hausdorff measures. Although this is not
explicitly written in [17], he showed that

dim{ξ ∈ [0, 1] : µ(ξ) = µ} =
2

µ
. (1.3)

The irrationality exponent µ introduced in Definition 1.1 is an example of an exponent
of approximation, that is, of a function defined on the set of real irrational numbers by
means of consideration from Diophantine approximation.

Definition 1.2. The spectrum of an exponent of approximation is the set of values taken
by this exponent.

For an exponent of approximation w, there are two natural questions:
* (Q1) To determine the spectrum of w;
* (Q2) For a real number w0, to determine the Hausdorff dimension of the set at level

w0, that is, of the set of real numbers ξ such that w(ξ) = w0.
In the case of the irrationality exponent, we have seen above that both questions

have been answered. We introduce in Section 2 three (classical) families of exponents of
approximation and discuss both questions for these exponents. We will see that, in certain
cases, to answer (Q2) is the only known way to solve the apparently simpler (Q1).

Section 3 is devoted to a survey of recent results on Diophantine approximation of
elements of the middle third Cantor set.

2. Three families of exponents of approximation

We define two families of exponents of approximation which generalize the irrationality
exponent. A third family of exponents gives certain information on the expansions of real
numbers to integer bases. Further classical families of exponents are discussed in [13].

For n ≥ 1, the accuracy with which real numbers are approximated by algebraic
numbers of degree at most n is measured by means of the exponents w∗n, introduced in
1939 by Koksma [19]. Recall that the height H(P ) of an integer polynomial P (X) is the
maximum of the moduli of its coefficients, and the height H(α) of an algebraic number α
is the height of its minimal polynomial over Z.

Definition 2.1. Let n ≥ 1 be an integer and let ξ be an irrational real number. We
denote by w∗n(ξ) the supremum of the real numbers w∗ for which the inequality

|ξ − α| ≤ H(α)−w
∗−1 (2.1)

is satisfied for infinitely many algebraic numbers α of degree at most n.
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Clearly, every irrational real number ξ satisfies

µ(ξ) = w∗1(ξ) + 1.

This shows that the exponents w∗n with n ≥ 2 extend in a natural way the irrationality
exponent µ.

The introduction of the exponent −1 in (2.1) is explained on page 48 of [10]. The
reader is directed to this monograph for known results on the exponents w∗n. We only
mention here that w∗n(ξ) = min{n, d−1} for every real algebraic number ξ of degree d ≥ 2
and that almost all real numbers ξ satisfy w∗n(ξ) = n for n ≥ 1. Wirsing [25] proved that
w∗n(ξ) ≥ (n + 1)/2 for every transcendental real number ξ and every n ≥ 1. With the
exception of a result of Davenport and Schmidt [14], showing that w∗2(ξ) ≥ 2 for every real
number ξ not of degree at most 2, there has been no significant improvement of Wirsing’s
statement during the last fifty years.

Problem 2.2. Are there an integer n ≥ 3 and a transcendental real number ξ such that
w∗n(ξ) < n ?

Other natural exponents of approximation, which also extend the irrationality expo-
nent µ, take into account the accuracy with which the first integral powers of a given real
number are simultaneously approximated by rational numbers with the same denominator.
Throughout this text, ‖.‖ denotes the distance to the nearest integer.

Definition 2.3. Let n ≥ 1 be an integer and let ξ be an irrational real number. We
denote by λn(ξ) the supremum of the real numbers λ for which the inequality

max
1≤m≤n

‖qξm‖ ≤ q−λ

has infinitely many solutions q in Z≥1.

We have λn(ξ) = max{1/n, 1/(d − 1)} for n ≥ 1 for every real algebraic number ξ
of degree d ≥ 2. Furthermore, λn(ξ) ≥ 1/n for every irrational real number ξ and every
n ≥ 1; see [12] for further results.

We end this list of definitions with the exponents vb which were introduced in [1].
They provide information on the lengths of blocks of digits 0 (or of digits b− 1) occurring
in the expansion of ξ to base b.

Definition 2.4. Let ξ be an irrational real number. Let b be an integer with b ≥ 2. We
denote by vb(ξ) the supremum of the real numbers v for which the inequality

||bnξ|| < (bn)−v

has infinitely many solutions n in Z≥1.

Let b ≥ 2 be an integer. Clearly, we have

w∗1(ξ) ≥ vb(ξ), µ(ξ) ≥ vb(ξ) + 1, (2.2)
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for all irrational real numbers ξ. These inequalities are rarely sharp since almost all real
numbers ξ satisfy vb(ξ) = 0.

For every b ≥ 2 and for every v with 0 < v < +∞ the real number

ξb,v :=
∑
j≥1

b−b(v+1)jc, (2.3)

where b.c denotes the integer part, satisfies vb(ξb,v) = v. Since

vb

(∑
j≥1

b−j
2

)
= 0 and vb

(∑
j≥1

b−j!
)

= +∞,

this shows that the spectrum of vb is equal to [0,+∞]. Thus, we have given the answer to
(Q1) for the exponent vb.

Now, we explain how to show that, for every real number v > 0, we have

dim{ξ ∈ [0, 1] : vb(ξ) ≥ v} = dim{ξ ∈ [0, 1] : vb(ξ) = v} =
1

v + 1
. (2.4)

To bound this Hausdorff dimension from above by 1/(v + 1) is an immediate application
of a covering argument (easy half of the Hausdorff–Cantelli lemma). To prove that this
dimension is at least equal to 1/(v+1) is much more interesting. We construct inductively
a large Cantor-type set contained in {ξ ∈ [0, 1] : vb(ξ) ≥ v}. Let (nk)k≥1 be a rapidly
increasing sequence of integers with n1 = 1 and n2 > 2/v. Set E1 = [0, 1]. For p =
1, . . . , bn2 − 1, set

E2,p = [p/bn2 − 1/b(v+1)n2 , p/bn2 + 1/b(v+1)n2 ]

and put E2 = E2,1 ∪ . . . ∪ E2,bn2−1. Assume that, for some k ≥ 2, the set Ek has been
constructed and is equal to a finite union of intervals Ek,1, . . . , Ek,tk of length 2b−(v+1)nk

and centered at rational numbers of denominator bnk . Let Ek,p be such an interval. Let
denote by Ek+1,p the set of intervals of the form

[a/bnk+1 − 1/b(v+1)nk+1 , a/bnk+1 + 1/b(v+1)nk+1 ],

with a an integer, which are contained in Ek,p. There are at least

mk+1 := bnk+1(2b−(v+1)nk)− 2

such intervals and the distance between any two distinct such intervals always exceeds

εk+1 := b−nk+1/2.

Putting Ek+1 = Ek+1,1 ∪ . . . ∪ Ek+1,tk , we have completed the inductive step of the con-
struction. Set

K :=
⋂
k≥1

Ek.
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By construction, every element ξ in K satisfies vb(ξ) ≥ v. The mass distribution principle
(as stated e.g. on page 59 of [15] or on page 97 of [10]) shows that

dimK ≥ lim inf
k→+∞

log(m1 . . .mk)

− log(mk+1εk+1)
.

In our situation, if the sequence (nk)k≥1 grows sufficiently rapidly, we deduce that

dim{ξ ∈ [0, 1] : vb(ξ) ≥ v} ≥
1

v + 1
.

To get the same lower bound for the smaller set

dim{ξ ∈ [0, 1] : vb(ξ) = v}

we need to use refined Hausdorff measures, but there is no additional difficulty.

In the above proof, we have used that, if I is an interval of positive length |I| contained
in [0, 1], then, for n large enough in terms of |I|, there are around bn|I| rational points of
the form a/bn in I, and these points are regularly spaced.

The same strategy was used by Jarńık to establish (1.2) and (1.3). He proved that
the set of rational numbers p/q in [0, 1] is evenly distributed in the following sense: For I
as above, if Q is large enough in terms of |I|, then there are� Q2 rational numbers p/q in
I with Q � q � Q and such that the distance between any two of them is � Q−2 (here
and below, the constants implicit in � and � are numerical constants). This is proved
on page 99 of [10]; see also on page 142 of [15] for a weaker result, however sufficient to
derive (1.2) and (1.3).

To formalize the properties of distribution needed to apply the method described
above, Baker and Schmidt [2] have introduced the notion of regular systems, see Section
5.4 of [10]. Several authors prefer to use ubiquitous systems [6], which give more flexibility.

For n ≥ 1, explicit examples of real numbers have been constructed in [12] in order
to show that the spectrum of w∗n includes the interval [2n − 1,+∞). However, the next
question remains open.

Problem 2.5. Let n ≥ 2 be an integer. To construct explicitly a real number w with
n < w < 2n− 1 and a real number ξ such that w∗n(ξ) = w.

Apparently, there is no suitable multidimensional generalisation of the theory of con-
tinued fraction which can be used to solve (at least partially) Problem 2.5.

At present, for n ≥ 2, the only known way to show that the spectrum of w∗n includes
the interval [n,+∞) is by means of the next theorem, proved in 1970 by Baker and Schmidt
[2].

Theorem 2.6. Let n ≥ 1 be an integer. For every real number w∗ ≥ n, we have

dim{ξ ∈ [0, 1] : w∗n(ξ) = w∗} =
n+ 1

w∗ + 1
. (2.5)
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We check that (1.3) and (2.5) for n = 1 coincide. Baker and Schmidt used the same
strategy as explained above. The difficult point is to prove that algebraic numbers of
bounded degree are evenly distributed. Note that, since an algebraic number of degree
n and height H is a root of an integer polynomial of degree n and with all coefficients
bounded in absolute value by H, their number does not exceed (2H + 1)n+1. With I
as above, it is proved in [2] that, if H is large enough in terms of |I|, then there are
� Hn+1|I| algebraic numbers α of degree n in I with H(α)� H(logH)c(n) and such that
the difference between any two of them if � H−n−1. Here, c(n) is a constant depending
only on n. A deep result of Beresnevich [4] from 1999 shows that the above statement
remains true with c(n) = 0.

Thus, we have seen that (Q1) and (Q2) are answered for the exponents of approxi-
mation vb and w∗n. The situation is different and much more complicated for the exponents
λn.

For n ≥ 1, Bugeaud [12] constructed explicit examples of real numbers in order to
show that the spectrum of λn includes the interval [1,+∞). However, the next question
remains open.

Problem 2.7. Let n ≥ 2 be an integer. To construct explicitly a real number λ with
1/n < λ < 1 and a transcendental real number ξ such that λn(ξ) = λ.

At present, the only known way to show that the spectrum of λ2 is the whole interval
[1/2,+∞) is the proof by Beresnevich, Dickinson, Vaughan and Velani [7, 23] that, for
every λ in [1/2, 1], we have

dim{ξ ∈ [0, 1] : λ2(ξ) = λ} =
2− λ
1 + λ

.

The Jarńık–Besicovitch theorem (1.3) was recently extended by Budarina, Dickinson,
and Levesley [9] as follows (see also [12] for an alternative proof).

Theorem 2.8. Let n ≥ 2 be an integer. Let λ ≥ n− 1 be a real number. Then, we have

dim{ξ ∈ [0, 1] : λn(ξ) = λ} =
2

n(1 + λ)
.

The assumption λ ≥ n − 1 in Theorem 2.8 is quite restrictive when n ≥ 3 but is
optimal for n = 2.

We end this section with two open questions.

Problem 2.9. Let n ≥ 3 be an integer. To determine the spectrum of λn.

Problem 2.10. Let n ≥ 3 be an integer. Let λ be a real number with 1/n < λ < n− 1.
To determine

dim{ξ ∈ [0, 1] : λn(ξ) = λ}.
Partial results towards the resolution of the difficult Problems 2.9 and 2.10 have been

given by Beresnevich [5]. He proved that, for an integer n and a real number λ satisfying
1/n ≤ λ < 3/(2n− 1), we have

dim{ξ ∈ [0, 1] : λn(ξ) ≥ λ} ≥ n+ 1

λ+ 1
− (n− 1). (2.6)

He conjectured that equality holds in (2.6).
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3. Approximation to points in the middle third Cantor set

Throughout this section, we denote by K the middle third Cantor set. Certain results
stated below are valid for more general Cantor-type sets, however. We recall that the
Hausdorff dimension of K satisfies

dimK =
log 2

log 3
.

The first significant result on Diophantine approximation to elements of K was proved
in 2001 by Weiss [24]. He showed that the irrationality exponent of almost all ξ in K (in
this section, almost all refers to the standard measure supported by K) is equal to 2.

For v > 0, the real number ξ3,v defined in (2.3) satisfies

v3(ξ3,v) = v, and thus µ(ξ3,v) ≥ v + 1,

by (2.2) or by noticing that∣∣∣∣ξ3,v − J∑
j=1

3−b(v+1)jc
∣∣∣∣ < 2 · 3−b(v+1)J+1c ≤ 6 · (3−b(v+1)Jc)v+1,

for every sufficiently large integer J . At first sight, for v ≥ 1, it could seem that ξ3,v
satisfies

µ(ξ3,v) = v3(ξ3,v) + 1 = v + 1. (3.1)

This is however not clear since there may exist very good rational approximants to ξ3,v
which are not obtained by truncation of the infinite sum giving ξ3,v, that is, which are not

of the form
∑J
j=1 3−b(v+1)jc for some J ≥ 1. However, if v is sufficiently large — precisely,

if v ≥ (
√

5 + 1)/2 —, a simple argument based on triangle inequalities (see e.g. Section 8
of [21]) implies (3.1).

In fact, it appears that (3.1) holds for every v ≥ 1, as proved in [11] by means of the
following observation: the continued fraction expansion of a suitable rational translate of
−ξ3,v can be constructed explictly. The next result is extracted from [11].

Theorem 3.1. Let µ ≥ 2 be a real number. The middle third Cantor set contains
uncountably many elements ξ with µ(ξ) = µ.

Theorem 3.1 answers (Q1) for the restriction to K of the irrationality exponent, but
(Q2) remains open. In order to attack the latter question, the authors of [21] investigated
the analogous problem for the exponent v3. They proved the following statement.

Theorem 3.2. For any positive real number v we have

dim{ξ ∈ K : v3(ξ) = v} =
log 2

log 3
× 1

v + 1

= (dimK)× dim{ξ ∈ [0, 1] : v3(ξ) = v}.
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Things are more easier with the exponent v3 than with the irrationality exponent µ.
Indeed, if for some v > 1 and ξ in K we have

|ξ − p/3n| < (3n)−v,

for some rational number p/3n, then p/3n must lie in K.
We display an immediate consequence of (1.3), (2.4), and Theorem 3.2.

Corollary 3.3. For any real number µ > 2, we have

dim{ξ ∈ K : µ(ξ) ≥ µ} ≥ 1

2
× (dimK)× dim{ξ ∈ [0, 1] : µ(ξ) = µ}. (3.2)

Apparently, the methods used in [21] do not allow us to replace the ≥ sign by the =
sign in the left hand side of (3.2). They, however, give the following slight refinement of
(3.2):

dim{ξ ∈ K : µ ≤ µ(ξ) ≤ 2µ} ≥ 1

2
× (dimK)× dim{ξ ∈ [0, 1] : µ(ξ) = µ}.

Regarding the upper bound, Pollington and Velani [22] (see also [20]) used a simple covering
argument to establish that

dim{ξ ∈ K : µ(ξ) ≥ µ} ≤ (dimK)× dim{ξ ∈ [0, 1] : µ(ξ) ≥ µ},

for every µ ≥ 2.
Let µ > 2 be a real number. The authors of [21] speculate at the end of their paper

that we have

dim{ξ ∈ K : µ(ξ) ≥ µ} = (dimK)× dim{ξ ∈ [0, 1] : µ(ξ) ≥ µ}.

Problem 3.4. Let µ > 2 be a real number. To determine

dim{ξ ∈ K : µ(ξ) = µ}.

A related question involving rational approximation and asymptotic frequencies of
digits in a fixed integer base has been investigated in [3].

Very few is known on the expansions of a given irrational real number to two multi-
plicatively independent bases. The study of the set of values taken by the exponent v2 at
the points in K would give some information on the binary expansions of the elements of
K.

A straightforward adaptation of the arguments of Weiss [24] and Kristensen [20] allows
us to prove the next result.

Theorem 3.5. For any positive real number v we have

dim{ξ ∈ K : v2(ξ) ≥ v} ≤ (dimK)× dim{ξ ∈ [0, 1] : v2(ξ) ≥ v}. (3.3)

However, it does not seem to be easy to give a non-trivial lower bound for the left-hand
side of (3.3).
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Problem 3.6. Let v be a positive real number. To determine

dim{ξ ∈ K : v2(ξ) = v}.

Weiss’ result mentioned at the beginning of this section has been extended in Propo-
sition 7.10 from [18] to the exponents w∗n.

Theorem 3.7. Almost all points ξ in the middle third Cantor set satisfy

w∗n(ξ) = n, for every n ≥ 1

and
λn(ξ) = 1/n, for every n ≥ 1.

The last part of Theorem 3.7 follows by combining Proposition 7.10 from [18] with a
classical transference principle. We omit the details.

We conclude this text by a last open problem; see Section 6 of [12] for a small contri-
bution towards its resolution.

Problem 3.8. Let n ≥ 1 be an integer, w ≥ n and λ ≥ 1/n be real numbers. To determine
the Hausdorff dimension of the sets

{ξ ∈ K : w∗n(ξ) = w}

and
{ξ ∈ K : λn(ξ) = λ}.

For n ≥ 2, to determine the spectra of the restriction to K of w∗n and of λn.
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[19] J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und
die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math.
Phys. 48 (1939), 176–189.

[20] S. Kristensen, Approximating numbers with missing digits by algebraic numbers,
Proc. Edinb. Math. Soc. 49 (2006), 657–666.

[21] J. Levesley, C. Salp and S. L. Velani, On a problem of K. Mahler: Diophantine
approximation and Cantor sets, Math. Ann. 338 (2007), 97–118.

[22] A. D. Pollington and S. Velani, Metric Diophantine approximation and ‘absolutely
friendly’ measures, Selecta Math. 11 (2005), 297–307.

[23] R. C. Vaughan and S. Velani, Diophantine approximation on planar curves: the
convergence theory, Invent. Math. 166 (2006), 103–124.

10



[24] B. Weiss, Almost no points on a Cantor set are very well approximable, R. Soc.
Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 949–952.

[25] E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. reine
angew. Math. 206 (1961), 67–77.

Yann Bugeaud
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