On difference graphs of S-units

Kálmán Győry, University of Debrecen

Let S be a finite set of primes, \mathbb{Z}_S the ring of those rationals whose denominators are not divisible by primes outside S, and \mathbb{Z}_S^* the multiplicative group of S-units (i.e. invertible elements) in \mathbb{Z}_S . For a finite subset A of \mathbb{Z}_S , denote by $\mathcal{G}_S(A)$ the difference graph of S-units, i.e. the graph with vertex set A and with an edge between a and b iff $a - b \in \mathbb{Z}_S^*$. If A' = uA + a for some $u \in \mathbb{Z}_S^*$ and $a \in \mathbb{Z}_S$ then A and A' are called S-equivalent. In this case $\mathcal{G}_S(A)$ and $\mathcal{G}_S(A')$ are isomorphic. The graphs $\mathcal{G}_S(A)$ were introduced by the speaker in 1972, and were investigated / applied by many people, including Evertse, Stewart, Tijdeman, Leutbecher, Niklash , Hajdu, Ruzsa and the speaker.

A finite (simple) graph \mathcal{G} is said to be *representable / infinitely representable* with S if \mathcal{G} is isomorphic to $\mathcal{G}_S(A)$ for some A / for infinitely many S-inequivalent A. Recently, with Hajdu and Tijdeman we proved that any finite graph \mathcal{G} can be represented with an appropriate S. Further, \mathcal{G} is representable with every S iff \mathcal{G} is cubical. Several results were also established on the representability / infinite representability of \mathcal{G} with a given S.

In the talk, the most important results will be presented on difference graphs of S-units and their applications.