
IRREDUCIBILITY CRITERIA FOR COMPOSITIONS OF
POLYNOMIALS WITH INTEGER COEFFICIENTS

NICOLAE CIPRIAN BONCIOCAT, YANN BUGEAUD, MIHAI CIPU, AND MAURICE MIGNOTTE
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Abstract. We provide irreducibility criteria for some classes of compositions of polynomials

with integer coefficients of the form F ◦G, with F being a quadratic irreducible polynomial

and G a polynomial of arbitrary degree.

1. Introduction

The composition F ◦G of two polynomials F,G with integer coefficients, with F irreducible,

is by no means necessarily irreducible, as one may see by taking for instance F (X) = X2 +

X + 1 and G(X) = X2, or, more generally, F (X) = aX2 + (2a− 1)X + a and G(X) = aX2,

where a is a nonzero integer. In these cases, we have F ◦G(X) = (X2 +X + 1)(X2−X + 1)

and F ◦G(X) = a(aX2 +X + 1)(aX2 −X + 1), respectively.

However, there are some conditions on the roots of G that ensure the irreducibility of

F ◦ G for some particular classes of irreducible polynomials F . In [6] Brauer, Brauer and

Hopf posed the question of the irreducibility of F◦G ifG(X) = (X−a1) · · · (X−an), where the

ai’s are distinct integers. Dorwart and Ore [9] gave several answers for classes of quadratic

polynomials. According to one of their results, for any irreducible polynomial F (X) =

b0X
2 + b1X + 1 with integer coefficients and any polynomial G(X) = (X − a1) · · · (X − an)

with a1, . . . , an distinct integers, n ≥ 5, the polynomial F ◦ G is irreducible over Q. They

also proved that for any polynomial F (X) = cX2 + 1 with c an integer such that −c is not a

square, and any polynomial G(X) = (X − a1) · · · (X − an) with a1, . . . , an distinct integers,

the polynomial F ◦G is irreducible over Q, except when it is equivalent to

−8(X − 1)2X2(X + 1)2 + 1 = (2X2 − 1)(−4X4 + 6X2 − 1).

Here two polynomials with integer coefficients are said to be equivalent if one can be

obtained from the other one by a transformation of the type X 7→ X − a or X 7→ −X − a,

where a is an integer. Similar results for certain quartic polynomials F and for G having

distinct roots in an imaginary quadratic field have been also obtained in [9]. From the

results Wegner [20] obtained for polynomials F of the fourth degree we mention only one,

asserting that for any polynomial F (X) = X4 + d with d > 0 an integer, d 6≡ 3 (mod 4) and
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any polynomial G(X) = (X − a1) · · · (X − an) with a1, . . . , an distinct integers, n ≥ 5, the

polynomial F ◦G is irreducible over Q.

Variations of the Brauer-Hopf problem have been investigated by Győry in a series of

papers ([12]–[15]), where the author considers much more general situations, relaxing the

requirements on both intervening polynomials. In [12] he studied the case when the roots of

G are not necessarily integers, but instead G(X) has a divisor G1(X) ∈ Z[X] with distinct

real roots, the root field of F is not real and its maximal real subfield is a normal extension

of Q. Under these hypotheses he proved that if the pairs (αi, αj) of roots of G1 satisfying

N(αi−αj) > {2degFF 2(0)}[L:Q]/ degF (where L is the splitting field of G1F ) form a connected

graph with k elements, then the degrees of all the irreducible factors of F ◦G(X) are at least

k degF , so in particular F ◦ G(X) has at most degG
k

irreducible factors. This shows that

if all the roots of G are real and distinct and mini 6=j|αi − αj| > 2|F (0)|2/degF , then F ◦ G
must be irreducible over Q. Moreover, Győry found all the exceptional polynomials F and

G such that F (0) = 1, G(X) = (X − a1) · · · (X − an) with distinct integers ai such that

F ◦G(X) is reducible over Q. In [14] he studied the irreducibility of polynomials F ◦G(X)

over an arbitrary but fixed totally real algebraic number field L, assuming that F and G are

both monic with integer coefficients in L, F is irreducible over L, and its splitting field is

a CM-field. One of the consequences that can be drawn from the main result in [14] states

that if F is fixed, then apart from certain exceptional polynomials G of bounded degree, the

polynomial F ◦G(X) must be irreducible over L for all the polynomials G that have distinct

roots in a given totally real number field. In [15] he studied the case when the splitting field

of F is a CM-field, and described explicitly some examples such that apart from these, there

exist only finitely many pairwise inequivalent monic polynomials G with integer coefficients

and distinct zeros in a totally real algebraic number field, for which the polynomial F ◦G(X)

is reducible over Q.

In [17] Győry, Hajdu and Tijdeman proved the following elegant result (Theorem 7.1) on

the irreducibility of compositions of polynomials F ◦ G for quadratic polynomials F and

polynomials G of the form G(X) = (X − a1) · · · (X − an) with a1, . . . , an distinct rational

integers.

Theorem A Let F (X) be an irreducible polynomial of degree at most 2 with integer coeffi-

cients, F (0) 6= 0, and G(X) = (X−a1) · · · (X−an) with a1, . . . , an distinct rational integers.

If

n > 2τ(F (0))(2 + blog2 |F (0)|c),

then the polynomial F ◦G is irreducible over Q.

Here τ is the usual divisor function. A different idea exploited in the study of irreducibil-

ity of compositions of polynomials over integers is to take into consideration properties of

the leading coefficients. Thus, in [16] the reader can find irreducibility results for integer

polynomials whose leading coefficients have a fixed number of distinct prime factors. There
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are also some conditions on the leading coefficient of a polynomial F that will ensure the

irreducibility of F ◦ G for large classes of polynomials G, as one can see from the following

irreducibility criteria proved in [3].

Theorem B Let F (X) =
∑m

i=0 aiX
i and G(X) =

∑n
i=0 biX

i ∈ Z[X] be non-constant

polynomials of degree m and n respectively, with F irreducible and a0 6= 0. If am = pq with

p a prime satisfying

p > |q|n−1|bn|mnL1

(
F

(
X

|q|n/m|bn|n

))
,

then the polynomial F ◦G is irreducible over Q.

Theorem C Let F (X) =
∑m

i=0 aiX
i and G(X) =

∑n
i=0 biX

i ∈ Z[X] be non-constant

polynomials of degree m and n respectively, with a0 6= 0. If am = pq with p a prime satisfying

p > max

{
|q|m−1L1

(
F

(
X

|q|

))
, |q|n−1|bn|mnL1

(
F

(
X

|q|n/m|bn|n

))}
,

then the polynomial F ◦G is irreducible over Q.

Here L1(F ) stands for the sum of the moduli of the coefficients of F , not counting the

leading one. These results were proven by adapting some ideas introduced in [7], [8] and [4],

where several irreducibility criteria for linear combinations of relatively prime polynomials

have been provided. Similar results have been also provided for multiplicative convolutions

of polynomials with integer coefficients [1] and [2].

The aim of this paper is to complement Theorems A,B and C, by providing irreducibility

conditions for some particular classes of compositions of polynomials F ◦ G, where F is an

irreducible quadratic polynomial whose leading coefficient has a prime factor that does not

divide the constant term of F . This choice for F will allow us to explicitly compute some

resultants and use their properties to prove the irreducibility of F ◦ G for some classes of

polynomials G with integer coefficients, with restrictions only on the factorization of their

leading coefficients. Our irreducibility conditions will not ask the prime p to exceed a certain

lower bound depending on the coefficients of F and G, as in Theorems B and C. Instead,

the prime p will be asked not to divide the leading coefficient of G and the constant term of

F , thus allowing one to also consider some small primes that are excluded by the conditions

in Theorems B and C above. In principle, the procedure that we will use might be also

applied to irreducible polynomials F of degree 3 and 4, but with considerable more involved

computations. It would be however nice to obtain by a similar procedure divisibility condi-

tions on the coefficients of F and G with respect to a given prime number, that ensure the

irreducibility of F ◦G for irreducible polynomials F of arbitrary degree.

For the proof of our results we will adapt some of the ideas employed in [3] and [8], and

we will use the following classical theorem of Capelli.
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Theorem [18, Theorem 22] Let K be a field, G ∈ K[X] be irreducible over K, G(β) = 0,

H ∈ K[X]. If

H(x)− β can
=
K(β)

const
r∏

ρ=1

φρ(x)eρ

then

G(H(x))
can
=
K

const
r∏

ρ=1

NK(β)/Kφρ(x)eρ .

We will also use the following lemma [5] that relies on a Newton polygon argument, that

was crucial in the proof of the results in [5] and [1].

Lemma 1.1. Let f, g ∈ Z[X] be two polynomials with deg g = n and deg f = n−d, d ≥ 1.

Let also p be a prime number that divides none of the leading coefficients of f and g, and

let k be any positive integer prime to d. If f(X) + pkg(X) may be written as a product of

two non-constant polynomials with integer coefficients, say f1 and f2, then one of the leading

coefficients of f1 and f2 must be divisible by pk.

We will first prove the following effective results, that provide divisibility conditions on the

coefficients of F and G that force F ◦G to be irreducible over Q.

Theorem 1.2. Let F (X) = aX2+bX+c be an irreducible quadratic polynomial with integer

coefficients, with a = pq, where p is a prime number and q is an integer such that p - cq.
Then for any non-constant polynomial G with integer coefficients and leading coefficient not

divisible by p, the polynomial F ◦G is irreducible over Q.

For quadratic irreducible polynomials F with leading coefficient divisible by a prime power

we will prove the following result.

Theorem 1.3. Let F (X) = aX2 + bX + c be an irreducible quadratic polynomial with

integer coefficients, with a = pkq, where p is a prime number, k is a positive integer and q is

an integer prime to p. Then for any polynomial G of degree n ≥ 1 with integer coefficients

and leading coefficient not divisible by p, the polynomial F ◦G is irreducible over Q in each

one of the following situations:

i) p - b, pk - c and k is prime to n;

ii) b = 0, p - c and k is prime to 2n.

We note here that for k = 1 Theorem 1.3 provides a result weaker than Theorem 1.2, since,

as we shall see in the proof of these results, for k = 1 and b 6= 0 we do not actually need to

assume that p - b. The condition p - b for b 6= 0 is required for k ≥ 2 in order to apply Lemma

1.1 to deduce that one of the alleged factors of F ◦G has leading coefficient prime to p.

We will also prove the following similar irreducibility criteria for compositions of polyno-

mials F ◦ G, where F is an irreducible quadratic polynomial that may be expressed in the

form F (X) = (aX + b)(cX + d) + (eX + f)(gX + h) with a, b, c, d, e, f, g, h ∈ Z.
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Theorem 1.4. Let F (X) = (aX+b)(cX+d)+(eX+f)(gX+h) with a, b, c, d, e, f, g, h ∈ Z,

aceg 6= 0 be an irreducible quadratic polynomial. Assume that ac + eg = pq, with p a prime

number and q an integer prime to p, and that at least one of the integers (af − be)(ah− bg),

(cf − de)(ch − dg), (af − be)(cf − de), (ah − bg)(ch − dg) is not divisible by p. Then for

any non-constant polynomial G with integer coefficients and leading coefficient prime to p,

the polynomial F ◦G is irreducible over Q.

For the case when the leading coefficient of F is divisible by a prime power we will prove

the following result.

Theorem 1.5. Let F (X) = (aX+b)(cX+d)+(eX+f)(gX+h) with a, b, c, d, e, f, g, h ∈ Z,

aceg 6= 0 be an irreducible quadratic polynomial. Assume that ac+ eg = pkq, with p a prime

number, k a positive integer, and q an integer prime to p, and also assume that at least one

of the integers (af − be)(ah− bg), (cf − de)(ch− dg), (af − be)(cf − de), (ah− bg)(ch− dg)

is not divisible by pk. Then for any polynomial G of degree n ≥ 1 with integer coefficients

and leading coefficient prime to p, the polynomial F ◦G is irreducible over Q in each one of

the following situations:

i) p - ad+ bc+ eh+ fg and k is prime to n;

ii) ad+ bc+ eh+ fg = 0, p - bd+ fh and k is prime to 2n.

Here too, for k = 1, Theorem 1.5 provides a result weaker than Theorem 1.4, since for

k = 1 and ad+ bc+ eh+ fg 6= 0 the condition p - ad+ bc+ eh+ fg is no longer necessary.

The proofs of the main results are presented in Section 2 below. At the end of Section 2

we will show that the method employed in the proof of our results may be also used to prove

the classical Schönemann-Eisenstein irreducibility criterion ([19] and [11]).

A series of examples will be provided in the last section of the paper.

2. Proof of the main results

Proof of Theorem 1.2. We will adapt some of the ideas in [3] and [8]. First of all, let us note

that since F was assumed to be quadratic and irreducible, we have ac 6= 0 and ∆ = b2 − 4ac

is not a perfect square. Let now G(X) = a0 + a1X + · · ·+ anX
n ∈ Z[X], an 6= 0, n ≥ 1, and

let us assume on the contrary that F ◦G is reducible, that is

F ◦G(X) = aG(X)2 + bG(X) + c = F1(X)F2(X),

with F1(X), F2(X) ∈ Z[X] and degF1 ≥ 1, degF2 ≥ 1, say

F1(X) = t0 + t1X + · · ·+ tsX
s,

F2(X) = u0 + u1X + · · ·+ uvX
v,

t0, . . . ts, u0, . . . uv ∈ Z, tsuv 6= 0, and s ≥ 1, v ≥ 1, s + v = 2n. By equating the coefficients,

one finds that

tsuv = aa2n = pqa2n. (1)
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Since by our hypothesis p - qan, we deduce that precisely one of the leading coefficients ts
and uv is divisible by p, while the other is prime to p, say p | uv and p - ts, hence ts must be

a divisor of qa2n. We have so far proved that

ts | qa2n. (2)

Now we are going to estimate the resultant R(G(X)2, F1(X)). Since G(X)2 and F1(X) are

algebraically relatively prime, the resultant R(G(X)2, F1(X)) must be a non-zero rational

integer.

On the other hand, if we decompose F1, say F1(X) = ts(X − θ1) · · · (X − θs), with

θ1, . . . , θs ∈ C, then ∣∣R(G(X)2, F1(X))
∣∣ = |ts|2n

∏
1≤j≤s

∣∣G(θj)
2
∣∣ . (3)

Fortunately, since G(θj) is a root of F , and hence∣∣G(θj)
2
∣∣ =
|bG(θj) + c|
|pq|

,

one may compute exactly |G(θj)
2|. We distinguish two cases:

Case 1. Here we assume that the discriminant ∆ is negative, so the roots x1 and x2 of F

must be complex conjugated, and hence bx1 + c and bx2 + c must have the same modulus,

which by direct computation is easily seen to be equal to

|c| = |ax2j | = |bxj + c| =
∣∣∣∣2ac− b2 ± ib√4ac− b2

2a

∣∣∣∣ .
In view of (3), this shows us that∣∣R(G(X)2, F1(X))

∣∣ = |ts|2n
|c|s

ps|q|s
.

Finally, in view of (2), our assumptions that p - qan and p - c show that R(G(X)2, F1(X))

can not be an integer, which is a contradiction.

For use in the proof of later theorems, we note that since F is irreducible, by Capelli’s

Theorem, degF1(X) = s must be a multiple of degF , that is s must be an even positive

integer, so in this case we actually have∣∣R(G(X)2, F1(X))
∣∣ = |ts|2n

(
c2

p2q2

)m
,

for some positive integer m.

Case 2. Here we assume that ∆ > 0, so the roots x1 and x2 of F are real, and hence

G(θj) is real for each j ∈ {1, . . . , s}. Moreover, in this case we have either

|bG(θj) + c| =

∣∣∣2ac− b2 + b
√

∆
∣∣∣

2|a|
,
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or

|bG(θj) + c| =

∣∣∣2ac− b2 − b√∆
∣∣∣

2|a|
,

according to which root of F we consider. However, since R(G(X)2, F1(X)) must be an

integer, each of the two above possible expressions (which are algebraically conjugated) must

appear in the product in the right side of (3) with exactly the same multiplicity. Therefore,

this product must be a power of

|(2ac− b2)2 − b2(b2 − 4ac)|
4a2p2q2

=
c2

p2q2
,

so we deduce again that ∣∣R(G(X)2, F1(X))
∣∣ = |ts|2n

(
c2

p2q2

)m
,

for some positive integer m. Recalling now the fact that ts | qa2n, and using the fact that

p - qcan, we conclude as in Case 1 that R(G(X)2, F1(X)) can not be an integer, again a

contradiction. This completes the proof of our theorem. �

Proof of Theorem 1.3. i) Here we note that b 6= 0, and since

F ◦G(X) = aG(X)2 + bG(X) + c,

we may write F ◦ G(X) as f̃(X) + pkg̃(X) with f̃(X) = bG(X) + c and g̃(X) = qG(X)2.

Now, since deg g̃ − deg f̃ = n, p - qanb and k is prime to n, we deduce by Lemma 1.1 that if

F ◦G may be written as a product of two non-constant polynomials with integer coefficients,

say F ◦G(X) = F1(X)F2(X) with

F1(X) = t0 + t1X + · · ·+ tsX
s,

F2(X) = u0 + u1X + · · ·+ uvX
v,

then one of the leading coefficients ts and uv, must be divisible by pk, while the other must

be prime to p.

For ii), since b = 0 we may write F ◦ G(X) as f̃(X) + pkg̃(X) with f̃(X) = c and

g̃(X) = qG(X)2. Here deg g̃ − deg f̃ = 2n, so in order to apply Lemma 1.1 we have to ask

k to be prime to 2n, and p - qanc. In this case too, one of the leading coefficients ts and

uv, must be divisible by pk, while the other must be prime to p. In both cases i) and ii), we

may assume without loss of generality that pk | uv and p - ts, hence ts must be a divisor of

qa2n. The rest of the proof is similar to that of Theorem 1.2, and we deduce in this case that

|R(G(X)2, F1(X))| must be of the form∣∣R(G(X)2, F1(X))
∣∣ = |ts|2n ·

(
c2

p2kq2

)m
,
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for some positive integer m. The desired contradiction is obtained in case i) by observing

that since p - qan and pk - c, the resultant R(G(X)2, F1(X)) can not be an integer. The same

conclusion is obtained in case ii) using the fact that p - qcan. �

Proof of Theorem 1.4. We will use the same notations as in the proof of Theorems 1.2 and

1.3. First of all, let us note that since F was assumed to be quadratic and irreducible, we

have ac+ eg 6= 0, af 6= be, ah 6= bg, cf 6= de, ch 6= dg, and ∆ = (ad+ bc+ eh+ fg)2− 4(ac+

eg)(bd+fh) is not a perfect square. Let now G(X) = a0 +a1X+ · · ·+anX
n ∈ Z[X], an 6= 0,

n ≥ 1, and let us assume to the contrary that F ◦G is reducible, that is

F ◦G(X) = (aG(X) + b)(cG(X) + d) + (eG(X) + f)(gG(X) + h) = F1(X)F2(X),

with F1(X), F2(X) ∈ Z[X] and degF1 ≥ 1, degF2 ≥ 1, say

F1(X) = t0 + t1X + · · ·+ tsX
s,

F2(X) = u0 + u1X + · · ·+ uvX
v,

t0, . . . ts, u0, . . . uv ∈ Z, tsuv 6= 0, and s ≥ 1, v ≥ 1, s + v = 2n. By equating the coefficients,

one finds that

tsuv = (ac+ eg)a2n = pqa2n. (4)

Since by our hypothesis p - qan, we deduce again that precisely one of the leading co-

efficients ts and uv is divisible by p, while the other is prime to p, say p | uv and p - ts,
hence

ts | qa2n. (5)

Let us first assume that p - (af − be)(ah− bg). Now we are going to estimate the resultant

R(aG(X)+b, F1(X)). Suppose first that aG(X)+b and F1(X) are not algebraically relatively

prime, so they have a non-constant irreducible common factor H(X), say. Then H will be

also a factor of (eG(X) + f)(gG(X) + h), so at least one of eG(X) + f and gG(X) + h will

be divisible by H. Consider first the case that H is a factor of eG(X) + f . Then H will

be also a factor of a(eG(X) + f)− e(aG(X) + b), that is H(X) must divide af − be, which

is a non-zero constant, and this is a contradiction. Similarly, since ah 6= bg, H can not be

a factor of gG(X) + h, which shows that in fact aG(X) + b and F1(X) must be relatively

prime, and hence the resultant R(aG(X) + b, F1(X)) must be a non-zero rational integer.

If we decompose F1, say F1(X) = ts(X − θ1) · · · (X − θs), with θ1, . . . , θs ∈ C, then

|R(aG(X) + b, F1(X))| = |ts|n
∏

1≤j≤s

|aG(θj) + b| . (6)

Since G(θj) is a root of F , one may compute exactly |aG(θj) + b|. We distinguish again

two cases:

Case 1. Here we assume that the discriminant ∆ is negative, so the roots x1 and x2 of F

must be complex conjugated, and hence ax1 + b and ax2 + b must have the same modulus,
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which by direct computation is easily seen to satisfy the equalities

|ax1 + b|2 = |(ax1 + b)(ax2 + b)| = |a2x1x2 + ab(x1 + x2) + b2|

=

∣∣∣∣a2 · bd+ fh

ac+ eg
− ab · ad+ bc+ eh+ fg

ac+ eg
+ b2

∣∣∣∣
=
|(af − be)(ah− bg)|

|ac+ eg|
,

so

|aG(θj) + b| =

√
|af − be| · |ah− bg|

|ac+ eg|
.

In view of (6), this shows us that

|R(aG(X) + b, F1(X))| = |ts|n
∏

1≤j≤s

√
|af − be| · |ah− bg|

|ac+ eg|

= |ts|n ·
(
|af − be| · |ah− bg|

|ac+ eg|

)s/2
.

Since F is irreducible, by Capelli’s Theorem, s must be a multiple of degF , that is s must

be an even positive integer, say s = 2m with m ∈ N \ {0}, so we have

|R(aG(X) + b, F1(X))| = |ts|n ·
(
|af − be| · |ah− bg|

|ac+ eg|

)m
.

Finally, in view of (5), our assumptions that p - qan and p - (af − be)(ah − bg) show that

R(aG(X) + b, F1(X)) can not be an integer, which is a contradiction.

Case 2. Here we assume that ∆ > 0, so the roots x1 and x2 of F are both real, and hence

G(θj) is real for each j ∈ {1, . . . , s}. Moreover, if we let Γ := ad+ bc+ eh+ fg, then in this

case we have either

|aG(θj) + b| =

∣∣∣2b(ac+ eg)− aΓ + a
√

∆
∣∣∣

2|ac+ eg|
,

or

|aG(θj) + b| =

∣∣∣2b(ac+ eg)− aΓ− a
√

∆
∣∣∣

2|ac+ eg|
,

according to which root of F we consider. However, since R(aG + b, F1(X)) must be an

integer, each of the two above possible expressions (which are algebraically conjugated) must

appear in the product in the right side of (3) with exactly the same multiplicity. Therefore,

this product must be a power of∣∣∣2b(ac+ eg)− aΓ + a
√

∆
∣∣∣ · ∣∣∣2b(ac+ eg)− aΓ− a

√
∆
∣∣∣

4|ac+ eg|2
=
|af − be| · |ah− bg|

|ac+ eg|
,
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so we deduce again that

|R(aG(X) + b, F1(X))| = |ts|n ·
∣∣∣∣(af − be) · (ah− bg)

ac+ eg

∣∣∣∣m ,
for some positive integer m. Recalling now the fact that ts | qa2n, and using the fact that

p - qan(af − be)(ah− bg), we conclude as in Case 1 that R(aG(X) + b, F1(X)) can not be an

integer, again a contradiction.

For the remaining three cases that p - (cf − de)(ch − dg), p - (af − be)(cf − de) and

p - (ah− bg)(ch− dg), all we need to do is to repeat the above computations with aG(X) + b

replaced by cG(X) + d, eG(X) + f and gG(X) + h, respectively. This completes the proof

of the theorem. �

Proof of Theorem 1.5. i) Here we note that ad+ bc+ eh+ fg 6= 0, and since

F ◦G(X) = (ac+ eg)G(X)2 + (ad+ bc+ eh+ fg)G(X) + bd+ fh,

we may write F ◦G(X) as f̃(X) + pkg̃(X) with f̃(X) = (ad+ bc+ eh+ fg)G(X) + bd+ fh

and g̃(X) = qG(X)2. Now, since deg g̃ − deg f̃ = n, p - qan(ad + bc + eh + fg) and k is

prime to n, we deduce again by Lemma 1.1 that if F ◦G may be written as a product of two

non-constant polynomials with integer coefficients, say F ◦G(X) = F1(X)F2(X) with

F1(X) = t0 + t1X + · · ·+ tsX
s,

F2(X) = u0 + u1X + · · ·+ uvX
v,

then one of the leading coefficients ts and uv, must be divisible by pk, while the other must

be prime to p.

For ii), since ad + bc + eh + fg = 0 one may write F ◦ G(X) as f̃(X) + pkg̃(X) with

f̃(X) = bd+ fh and g̃(X) = qG(X)2. Here deg g̃ − deg f̃ = 2n, so in order to apply Lemma

1.1 we have to ask k to be prime to 2n, and p - qan(bd + fh). In this case too, one of the

leading coefficients ts and uv, must be divisible by pk, while the other must be prime to p. In

both cases i) and ii), we may assume without loss of generality that pk | uv and p - ts, hence

ts must be a divisor of qa2n. The rest of the proof is similar to that of Theorem 1.4, and we

deduce again that |R(aG+ b, F1)| must be of the form

|R(aG(X) + b, F1(X))| = |ts|n ·
(
|af − be| · |ah− bg|

pk|q|

)m
,

for some positive integer m. In this case we obtain the desired contradiction by observing

that since p - qan and pk - (af − be)(ah− bg), the resultant R(aG(X) + b, F1(X)) can not be

an integer. �

Remark 2.1. We note here that the case ii) of Theorems 1.3 and 1.5 may be also proved

by using the famous irreducibility criterion of Dumas [10]:
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Irreducibility criterion of Dumas Let f(X) = a0 + a1X + · · ·+ anX
n be a polynomial

with integer coefficients, and let p be a prime number. If

i) νp(ai)

i
> νp(an)

n
for i = 1, . . . , n− 1,

ii) νp(a0) = 0,

iii) gcd(νp(an), n) = 1,

then f is irreducible over Q.

Here for an integer n and a prime number p, νp(n) stands for the largest integer i such

that pi | n (by convention, νp(0) =∞).

Remark 2.2. We end this section by noting that the method employed in the proof

of Theorems 1.2 and 1.3 may be also used to prove the classical Schönemann-Eisenstein

irreducibility criterion. To see this, let F (X) = anX
n + · · · + a1X + a0 be a polynomial

with integer coefficients, and assume that p is a prime number such that p - a0, p | ai for

i = 1, . . . , n and p2 - an. We therefore may write F as F (X) = p · F̃ (X) + a0 with

F̃ (X) =
an
p
Xn + · · ·+ a1

p
X ∈ Z[X].

Let us assume now that F is reducible, that is

F (X) = p · F̃ (X) + a0 = F1(X)F2(X),

with F1(X), F2(X) ∈ Z[X] and degF1 = s ≥ 1, degF2 = v ≥ 1, say

F1(X) = t0 + t1X + · · ·+ tsX
s,

F2(X) = u0 + u1X + · · ·+ uvX
v,

t0, . . . ts, u0, . . . uv ∈ Z, tsuv 6= 0, and s + v = n. By equating the coefficients, one finds that

an = tsuv, and since p2 - an, precisely one of the leading coefficients ts and uv is divisible

by p, while the other is prime to p, say p | uv and p - ts. Since the polynomials F̃ and F1

are relatively prime, their resultant must be a non-zero integer. On the other hand, if we

decompose F1, say F1(X) = ts(X − θ1) · · · (X − θs), with θ1, . . . , θs ∈ C, then

|R(F̃ (X), F1(X))| = |ts|n
∏

1≤j≤s

|F̃ (θj)|.

Now, since θj is also a root of F , we have pF̃ (θj) + a0 = 0, so F̃ (θj) = −a0
p

for j = 1, . . . , s,

which shows that

|R(F̃ (X), F1(X))| = |ts|
n|a0|s

ps
,

which can not be an integer, since p - tsa0. This completes the proof.
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3. Examples

1) For any prime number p, any non-constant polynomial F ∈ Z[X] with leading coefficient

not divisible by p, the polynomial pF (X)2 + F (X) + p+ 1 is irreducible over Q.

The result follows immediately by Theorem 1.2.

2) For any prime number p, any non-constant polynomial F ∈ Z[X] with leading coefficient

not divisible by p, any positive integer k prime to degF , and any integer s with 0 ≤ s < k,

the polynomial pkF (X)2 + F (X) + ps is irreducible over Q.

The proof follows by Theorem 1.3, since the polynomial pkX2 +X + ps is irreducible and

its constant term is not divisible by pk.

3) For any odd prime number p, any non-constant polynomial F ∈ Z[X] with leading

coefficient not divisible by p, the polynomial pF (X)2 + (p2 − 2p + 4)F (X) + p is irreducible

over Q.

Note that one can not apply Theorem 1.2, since the constant term of the polynomial

pX2 + (p2 − p+ 4)X + p is divisible by p. On the other hand, this polynomial is irreducible,

since its discriminant (p − 2)2(p2 + 4) can never be a perfect square for odd primes p, and

one may also write it as

pX2 + (p2 − p+ 4)X + p = (aX + b)(cX + d) + (eX + f)(gX + h)

with a = d = p− 1, b = c = e = f = g = h = 1. Since (af − be)(ah− bg) = (p− 2)2, which is

not divisible by p, one can apply Theorem 1.4 to conclude that pF (X)2+(p2−2p+4)F (X)+p

is irreducible over Q. We also note here that for p = 2 our polynomial is 2(F (X)+1)2, which

is obviously reducible.

4) For any polynomial F of odd degree with integer coefficients and leading coefficient not

divisible by 3, the polynomial 9F (X)2 + 73F (X) + 36 is irreducible over Q.

Here we can not apply Theorem 1.3 with p = 3 and k = 2, since the constant term of the

irreducible polynomial 9X2 + 73X + 36 is divisible by 9. Instead, one may write

9X2 + 73X + 36 = (8X + 4)(X + 8) + (X + 1)(X + 4),

so by Theorem 1.5 with a = 8, b = 4, c = 1, d = 8, e = f = g = 1 and h = 4, since

(af − be)(ah− bg) = 112,

which is not divisible by 9, we conclude that 9F (X)2 + 73F (X) + 36 is irreducible over Q.
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[13] K. Győry, Sur l’irreducibilité d’une classe des polynômes. II, Publ. Math. Debrecen 19 (1973), 293–326.
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