
Publ. Math. Debrecen

Manuscript

Irreducibility criteria for sums of two relatively prime

multivariate polynomials

By Nicolae Ciprian Bonciocat, Yann Bugeaud, Mihai Cipu and Maurice Mignotte

Abstract. We provide irreducibility conditions for some classes of multivariate

polynomials over a field K, namely for polynomials of the form f + pkg, where f, g ∈
K[X1, . . . , Xr], degr f < degr g, p ∈ K[X1, . . . , Xr−1] is irreducible over K(X1, . . . , Xr−2),

and k ≥ 1 is an integer. More precisely, we prove that if f and g regarded as polynomials

in Xr with coefficients in K[X1, . . . , Xr−1] are relatively prime over K(X1, . . . , Xr−1),

k is prime to degr g − degr f , and degr−1 p
k is sufficiently large, then the polynomial

f + pkg is irreducible over K(X1, . . . , Xr−1).

1. Introduction

Given two relatively prime polynomials with coefficients in a unique factor-

ization domain, to decide whether their sum is irreducible or not, is in general

a difficult problem, and no general answer in this respect seems to be available.

The problem seems to be a little bit easier if we consider linear combinations of

the two relatively prime polynomials, say n1f(X)+n2g(X), instead of their sum.

Such a linear combination proves to be irreducible, provided some conditions on

the factorization of n1 and n2 are satisfied. In this respect, several recent results

provide irreducibility criteria for polynomials of the form f(X) + pg(X), where f
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and g are relatively prime polynomials with rational coefficients, and p is a suffi-

ciently large prime number. In [7] Cavachi proved that given two relatively prime

polynomials f(X), g(X) ∈ Q[X] with deg f < deg g, the polynomial f(X)+pg(X)

must be irreducible over Q for all but finitely many prime numbers p. This re-

sult has been improved in [8] by providing an explicit lower bound p0 depending

on the coefficients of f and g, such that for all primes p > p0, the polynomial

f(X)+pg(X) is irreducible over Q. The method in [8] was adapted in [5] in order

to obtain sharper bounds p0 as well as explicit upper bounds for the total number

of factors over Q of a linear combination of the form n1f(X) + n2g(X), where

f and g are relatively prime polynomials with deg f ≤ deg g, and n1 and n2 are

non-zero integers with absolute value of n2/n1 sufficiently large. Similar results

have been also provided for compositions of polynomials with integer coefficients

[3] and for multiplicative convolutions of polynomials with integer coefficients [2].

Some analogous results for multivariate polynomials over an arbitrary field have

been also obtained for linear combinations of relatively prime polynomials [9], for

compositions of multivariate polynomials [4], and for multiplicative convolutions

of multivariate polynomials [1].

In [6] we provided irreducibility criteria for polynomials of the form f(X) +

pkg(X) with f, g ∈ Z[X], f, g relatively prime, deg g > deg f , p a prime number

that divides none of the leading coefficients of f and g, and k a positive integer

prime to deg g − deg f . More precisely, we proved the following result.

Theorem 1.1. ([6, Theorem 1.1]) Let f, g ∈ Z[X] be two relatively

prime polynomials with deg g = n and deg f = n− d, d ≥ 1. Then for any prime

number p that divides none of the leading coefficients of f and g, and any positive

integer k prime to d such that

pk ≥
(

2 +
1

2n+1−dH(g)n+1

)n+1−d

H(f)H(g)n − H(f)

H(g)
,

the polynomial f(X) + pkg(X) is irreducible over Q.

Here, for a polynomial f ∈ Z[X], H(f) stands for the usual height of f , that

is the maximum of the absolute values of its coefficients. For the proof of this

result we used the following lemma, which might be of independent interest.
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Lemma 1.2. ([6, Lemma 1.4]) Let f, g ∈ Z[X] be two polynomials with

deg g = n and deg f = n−d, d ≥ 1. Let also p be a prime number that divides none

of the leading coefficients of f and g, and let k be any positive integer prime to d.

If f(X) + pkg(X) may be written as a product of two non-constant polynomials

with integer coefficients, say f1 and f2, then one of the leading coefficients of f1

and f2 must be divisible by pk.

The aim of this paper is to complement the results in [6] and [9], by providing

irreducibility conditions for some classes of multivariate polynomials over a field

K, namely for polynomials of the form f + pkg, where f, g ∈ K[X1, . . . , Xr]

regarded as polynomials in Xr with coefficients in K[X1, . . . , Xr−1] are relatively

prime over K(X1, . . . , Xr−1), p ∈ K[X1, . . . , Xr−1] is irreducible over the field

K(X1, . . . , Xr−2), and k is a positive integer. For any f ∈ K[X1, . . . , Xr] we will

denote by degr f the degree of f regarded as a polynomial in Xr with coefficients

in K[X1, . . . , Xr−1]. We will prove the following effective result that provides an

explicit condition on k and an explicit lower bound for degr−1 p
k depending on

the degrees of the coefficients of f and g, that ensure the irreducibility of the

polynomial f + pkg over K(X1, . . . , Xr−1).

Theorem 1.3. Let K be a field, r ≥ 2, n ≥ d ≥ 1 integers, and let f =∑n−d
i=0 aiX

i
r and g =

∑n
i=0 biX

i
r in K[X1, . . . , Xr] with a0, . . . , an−d, b0, . . . , bn ∈

K[X1, . . . , Xr−1], an−dbn 6= 0. Assume that f and g as polynomials in Xr with

coefficients in K[X1, . . . , Xr−1] are relatively prime over K(X1, . . . , Xr−1). Then

for any polynomial p ∈ K[X1, . . . , Xr−1] irreducible over K(X1, . . . , Xr−2), that

does not divide an−dbn, and any positive integer k prime to d such that

k degr−1 p > max
0≤i≤n−d

degr−1 ai + n max
0≤i≤n

degr−1 bi,

the polynomial f + pkg is irreducible over K(X1, . . . , Xr−1).

We note that for k = 1 we do not need to ask an−dbn to be not divisible by

p, because this condition will be automatically satisfied since p is irreducible over

K(X1, . . . , Xr−2), and our hypothesis on degr−1 p obviously implies degr−1 p >

max{degr−1 bn, degr−1 an−d}. So for k = 1 one obtains the following result.
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Theorem 1.4. Let K be a field, r ≥ 2, n ≥ d ≥ 1 integers, and let f =∑n−d
i=0 aiX

i
r and g =

∑n
i=0 biX

i
r in K[X1, . . . , Xr] with a0, . . . , an−d, b0, . . . , bn ∈

K[X1, . . . , Xr−1], an−dbn 6= 0. Assume that f and g as polynomials in Xr with

coefficients in K[X1, . . . , Xr−1] are relatively prime over K(X1, . . . , Xr−1). Then

for any polynomial p ∈ K[X1, . . . , Xr−1] that is irreducible over K(X1, . . . , Xr−2)

and satisfies

degr−1 p > max
0≤i≤n−d

degr−1 ai + n max
0≤i≤n

degr−1 bi,

the polynomial f + pg is irreducible over K(X1, . . . , Xr−1).

In particular, we deduce from Theorem 1.3 the following corollary.

Corollary 1.5. Let K be a field, r ≥ 2, let f, g ∈ K[X1, . . . , Xr] be

two polynomials with degr g = n and degr f = n − d, d ≥ 1, and assume that

f and g as polynomials in Xr with coefficients in K[X1, . . . , Xr−1] are relatively

prime over K(X1, . . . , Xr−1). Then f + pkg is irreducible over K(X1, . . . , Xr−1)

provided one of the following holds:

(i) p ∈ K[X1, . . . , Xr−1] is a fixed polynomial that is irreducible over the field

K(X1, . . . , Xr−2) and that divides none of the leading coefficients of f and g, and

k is any sufficiently large positive integer that is prime to d;

(ii) k is a fixed positive integer that is prime to d, and p ∈ K[X1, . . . , Xr−1]

is an arbitrary polynomial that is irreducible over K(X1, . . . , Xr−2), and whose

degree with respect to Xr−1 is sufficiently large.

We note here that we will only need to prove the statement in Theorem 1.3

in the bivariate case, that is for polynomials f, g ∈ K[X,Y ] and p ∈ K[X], since

the result for r ≥ 3 will follow from this particular case by writing Y for Xr, X

for Xr−1, and by replacing K with the field generated by K and the variables

X1, . . . , Xr−2.

For the proof of our results we will need the following lemma, which is an

analogue of Lemma 1.4 in [6] for the bivariate case.

Lemma 1.6. Let K be a field and let f, g ∈ K[X,Y ] be two polynomials

with degY g = n and degY f = n − d, d ≥ 1. Regard f and g as polynomials in
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Y with coefficients in K[X], and let p(X) ∈ K[X] be an irreducible polynomial

that divides none of the leading coefficients of f and g. Let k be any positive

integer prime to d. If f(X,Y )+p(X)kg(X,Y ) may be written as a product of two

polynomials f1, f2 ∈ K[X,Y ] with degY f1 ≥ 1 and degY f2 ≥ 1, then one of the

leading coefficients of f1 and f2, regarded as polynomials in Y with coefficients

in K[X], must be divisible by p(X)k.

2. Proof of the main results

As we shall see in this section, the proof of the main result has in some

sense a p -adic nature, requiring on one hand a Newton polygon argument, and

on the other hand the study of a ρ -adic absolute value of the resultant of g and a

hypothetical non-trivial factor of f+pkg, whose leading coefficient is not divisible

by p (whose existence is guaranteed by Lemma 1.6).

We will first recall some facts about Newton polygons (see for instance Pra-

solov [23], or Gouvêa [18] for p -adic Newton polygons), that will be required in

the proof of Lemma 1.6. So let R be a unique factorization domain, p a fixed

prime element of R, and let f(Y ) =
∑n
i=0 aiY

i ∈ R[Y ], a0an 6= 0. Represent

the non-zero coefficients of f in the form ai = αip
βi , where αi is an element of

R that is not divisible by p, and let us assign to each non-zero coefficient αip
βi

a point in the plane with integer coordinates (i, βi). The Newton polygon of

f corresponding to the prime element p is constructed from these points in the

following way. Let A0 = (0, β0) and let A1 = (i1, βi1), where i1 is the largest

integer for which there are no points (i, βi) below the segment A0A1. Next, let

A2 = (i2, βi2), where i2 is the largest integer for which there are no points (i, βi)

below the segment A1A2, and so on (see Figure 1). The very last segment that

we will draw will be Am−1Am, say, where Am = (n, βn). Observe that the broken

line constructed so far is the lower convex hull of the points (i, βi), i = 0, . . . , n.

Now, if some segments of the broken line A0A1 . . . Am are passing through points

in the plane that have integer coordinates, then such points in the plane will

be also considered to be vertices of the broken line. In this way, to the vertices
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A0, A1, . . . , Am plotted in the first phase, we might need to add a number of t ≥ 0

more vertices.

-
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Figure 1. The Newton polygon of f(X,Y ) = X6 +X2Y +X3Y 2 +XY 3 +XY 4 +

Y 5 +X4Y 6−Y 7 +X3Y 8 +X2Y 9 +X5Y 10 in Z[X][Y ] with respect to the prime element

X.

The Newton polygon of f (with respect to the prime element p) is defined to be

the resulting broken line B0B1 . . . Bm+t that is obtained after relabelling all these

points from left to the right, as they appear in this construction (here B0 = A0

and Bm+t = Am). With this notation, AjAj+1 and BiBi+1 are called edges

and segments of the Newton polygon, respectively, while the vectors
−−−−→
BiBi+1 are

called the vectors of the segments of the Newton polygon. Therefore, a segment

BiBi+1 of the Newton polygon will contain no points with integer coordinates

other than its endpoints Bi and Bi+1, while by this procedure, no two edges are

allowed to have the same slope. The collection of all the vectors of the segments

of the Newton polygon, considering each vector with its multiplicity, that is as

many times as it appears, is called the system of vectors for the Newton polygon

with respect to p. With these definitions, we have the following famous result of

Dumas [10], which is a key factor in the theory of Newton polygons.
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Theorem (Dumas). Let R be a unique factorization domain, p be a prime

element of R, and let f = gh, where f, g and h are non-constant polynomials in

R[Y ]. Then the system of vectors for the Newton polygon of f with respect to p

is the union of the systems of vectors for the Newton polygons of g and h with

respect to p.

Here the union of the two systems of vectors contains all the vectors in each

system, the vectors appearing multiple times counted to the total multiplicity that

they occur in both systems. Thus, the edges in the Newton polygon of f = gh

with respect to p may be formed by constructing a polygonal path composed by

translates of all the edges that appear in the Newton polygons of g and h with

respect to p, using exactly one translate for each edge, in such a way as to form

a polygonal path with increasing slopes.

Many fundamental results concerning the irreducibility of some special classes

of polynomials, such as Bessel polynomials and Laguerre polynomials, rely on the

use of Newton polygon method. For such recent applications, we refer the reader

to the work of Filaseta [11], [12], Filaseta, Finch and Leidy [13], Filaseta, Kidd

and Trifonov [14], Filaseta and Lam [15], Filaseta and Trifonov [16], Filaseta and

Williams [17], Hajir [19], [20], [21], and Sell [24]. For an excellent survey on the

use of Newton polygons to test irreducibilty we refer the reader to the paper of

Mott [22].

Proof of Lemma 1.6. Let f(X,Y ) = a0(X) + a1(X)Y + · · ·+ an−d(X)Y n−d

and g(X,Y ) = b0(X) + b1(X)Y + · · ·+ bn(X)Y n, an−dbn 6= 0, and let us write

f(X,Y ) + p(X)kg(X,Y ) = c0(X) + c1(X)Y + · · ·+ cn(X)Y n,

where ci(X) = ai(X)+p(X)kbi(X) for i = 0, . . . , n−d, while ci(X) = p(X)kbi(X)

for i = n−d+ 1, . . . , n. Since by our assumption p - an−dbn, we deduce that cn−d

is not divisible by p, while the coefficients cn−d+1, . . . , cn are all divisible by pk,

and moreover, pk+1 - cn. Therefore, in the Newton polygon of our polynomial

f + pkg with respect to the prime element p, the right-most edge will join the

points (n − d, 0) and (n, k), points that are labelled in Figure 2 below by Bm−1

and Bm, respectively.
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à à
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Bm−1 = (n− d, 0) (n, 0)(0, 0)

Figure 2. The right-most segment in the Newton polygon of f(X,Y )+p(X)kg(X,Y )

with respect to p(X).

Moreover, since k is prime to d, we may easily deduce that Bm−1Bm is in

fact a segment of the Newton polygon, since it contains no points with integer

coordinates other than its endpoints Bm−1 and Bm. To see this, we consider the

equation of the straight line passing through Bm−1 and Bm, which is given by

y =
k

d
· x+

k

d
· (d− n),

and observe that since k and d are coprime, for each j = 1, . . . , d − 1 the y-

coordinate of the point (n− j, k(d− j)/d) on this line is never a rational integer.

Now, since the sequence of the slopes of the edges of the Newton poly-

gon, when considered from left to the right, is strictly increasing, we deduce

that Bm−1Bm is the only segment with positive slope. On the other hand,

if f(X,Y ) + p(X)kg(X,Y ) may be written as a product of two polynomials

f1, f2 ∈ K[X,Y ] with degY f1 ≥ 1 and degY f2 ≥ 1, then each of the factors

f1 and f2 regarded as polynomials in Y with coefficients in K[X], must have

at least one coefficient which is not divisible by p(X). If we assume now that

each of the leading coefficients of f1 and f2 is divisible by p(X), then each of

the Newton polygons of f1 and f2 with respect to p would contain at least one

segment with positive slope. Therefore, by Dumas’ Theorem each factor f1 and

f2 will contribute to the Newton polygon of f + pkg at least one segment with

positive slope, giving a contradiction. Therefore, one of the leading coefficients of

f1 and f2 must be divisible by pk, while the other must be coprime with p. This

completes the proof of our lemma. �
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Proof of Theorem 1.3. As mentioned in the previous section, we will only

need to prove the bivariate case. So let f(X,Y ) =
∑n−d
i=0 ai(X)Y i, g(X,Y ) =∑n

i=0 bi(X)Y i ∈ K[X,Y ] with a0, . . . , an−d, b0, . . . , bn ∈ K[X], an−dbn 6= 0 and

d ≥ 1, and assume that f and g as polynomials in Y with coefficients in K[X] are

relatively prime over K(X). Let also p(X) ∈ K[X] be an irreducible polynomial

that does not divide an−dbn, and let k be a positive integer prime to d such that

k deg p > max
0≤i≤n−d

deg ai + n max
0≤i≤n

deg bi. (1)

We will adapt the ideas in [6] and [9]. First of all we notice that for d = n

the conclusion in Theorem 1.3 holds without restrictions on the degree of p(X).

Indeed, in this case degY f = 0, so f ∈ K[X] and p is not a divisor of f , hence

the Newton polygon of f(X)+p(X)kg(X,Y ) with respect to p consists of a single

segment joining the points A0 = (0, 0) and A1 = (n, k). The fact that A0A1

contains no points with integer coordinates other than A0 and A1, and hence

is a segment of the Newton polygon, follows by the same argument used in the

proof of Lemma 1.6, since k and d are coprime. The irreducibility of f + pkg is

then an immediate consequence of Dumas’ Theorem. So in what follows we may

obviously assume that n− d ≥ 1.

Now we will introduce a nonarchimedean absolute value | · | on K(X), in the

following way. We fix an arbitrary real number ρ > 1, and for any polynomial

F (X) ∈ K[X] we define |F (X)| by the equality

|F (X)| = ρdegF (X).

We then extend the absolute value | · | to K(X) by multiplicativity, that is, for

F (X), G(X) ∈ K[X], G(X) 6= 0, we let
∣∣∣F (X)
G(X)

∣∣∣ = |F (X)|
|G(X)| . Let us note here that

for any non-zero element F of K[X] one has |F | ≥ 1.

Let now K(X) be a fixed algebraic closure of K(X), and let us fix an exten-

sion of our absolute value | · | to K(X), which we will also denote by | · |.
As in [6], the proof will be obtained by contradiction and will consist of two

parts. The first part consists in proving that if our polynomial factorizes as

f(X,Y ) + p(X)kg(X,Y ) = f1(X,Y )f2(X,Y ) (2)
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with f1, f2 ∈ K[X,Y ], degY f1 ≥ 1 and degY f2 ≥ 1, and we regard f1 and f2 as

polynomials in Y with coefficients in K[X], then one of the leading coefficients of

the hypothetical factors f1 and f2, say the leading coefficient of f1, will not exceed

in absolute value the absolute value of the leading coefficient of g. The second

part consists in proving that the conclusion of the first part forces the resultant

Res(g, f1), as a non-zero polynomial in K[X], to be less than 1 in absolute value,

which obviously can not hold.

So let f(X,Y ) = a0(X) + a1(X)Y + · · · + an−d(X)Y n−d and g(X,Y ) =

b0(X)+b1(X)Y + · · ·+bn(X)Y n ∈ K[X,Y ] with a0, . . . , an−d, b0, . . . , bn ∈ K[X],

an−dbn 6= 0, and assume that f and g are algebraically relatively prime, that

is they can only share common factors in K[X]. Now let us assume that the

polynomial f(X,Y ) + p(X)kg(X,Y ) is reducible over K(X), so it satisfies (2)

with f1, f2 given by

f1(X,Y ) = c0(X) + c1(X)Y + · · ·+ cs(X)Y s,

f2(X,Y ) = d0(X) + d1(X)Y + · · ·+ dt(X)Y t,

say, with c0, . . . cs, d0, . . . dt ∈ K[X], csdt 6= 0, and s ≥ 1, t ≥ 1, s + t = n. By

Lemma 1.6 we see that one of the leading coefficients of f1 and f2 will be divisible

by pk, while the other one will be coprime with p. Without loss of generality we

may assume that p(X)k | dt(X) and p(X) - cs(X), hence cs(X) must be a divisor

of bn(X). In particular, we must have deg cs ≤ deg bn, which, using the definition

of our absolute value, reads

|cs| ≤ |bn|. (3)

Now we are going to estimate the resultant Res(g(X,Y ), f1(X,Y )). Since f

and g are relatively prime as polynomials in Y , g and f1 must also be relatively

prime as polynomials in Y , hence the resultant Res(g(X,Y ), f1(X,Y )) must be

a non-zero element of K[X], so in particular we have

|Res(g(X,Y ), f1(X,Y ))| ≥ 1. (4)

If we decompose f1, say f1(X,Y ) = cs(X)(Y − θ1) · · · (Y − θs), with θ1, . . . , θs ∈
K(X), then

|Res(g(X,Y ), f1(X,Y ))| = |cs(X)|n
∏

1≤j≤s

|g(X, θj)| . (5)
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Since each root θj of f1 is also a root of f(X,Y ) + p(X)kg(X,Y ), we have

g(X, θj) = −f(X, θj)

p(X)k
(6)

and moreover, since f and g are relatively prime, f(X, θj) 6= 0 and g(X, θj) 6= 0

for any index j ∈ {1, . . . , s}. Using now (5) and (6), we obtain

|Res(g(X,Y ), f1(X,Y ))| = |cs(X)|n

|p(X)|ks
∏

1≤j≤s

|f(X, θj)| . (7)

We now proceed to find an upper bound for |f(X, θj)|. The equality

f(X, θj) + p(X)kg(X, θj) = 0

yields

|pkbnθnj | =

∣∣∣∣∣
n−d∑
i=0

(ai + pkbi)θ
i
j +

n−1∑
i=n−d+1

pkbiθ
i
j

∣∣∣∣∣ ,
which by the fact that our absolute value is nonarchimedean shows that

|pkbnθnj | ≤ max{ max
0≤i≤n−d

|ai|, |p|k max
0≤i≤n−1

|bi|} · max
0≤i≤n−1

|θj |i. (8)

Since according to our hypothesis on the magnitude of k deg p we obviously have

k deg p > max
0≤i≤n−d

deg ai − max
0≤i≤n−1

deg bi

we deduce that |p|k max
0≤i≤n−1

|bi| > max
0≤i≤n−d

|ai|, so by (8) we obtain

|bnθnj | ≤ max
0≤i≤n−1

|bi| · max
0≤i≤n−1

|θj |i. (9)

We distinguish now two cases and set

M :=

max
0≤i≤n−1

|bi|

|bn|
.

Case 1. |θj | ≥ 1. In this case max
0≤i≤n−1

|θj |i = |θj |n−1, so by (9) we deduce

that

|θj | ≤M.
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We note here that if at least one root θj has absolute value greater than or

equal to 1, we must have |bn| ≤ max
0≤i≤n−1

|bi|, thus M ≥ 1 must hold.

Case 2. |θj | < 1. In this case max
0≤i≤n−1

|θj |i = 1, which in view of (9) yields

|θj | ≤M1/n. (10)

So in either case the roots θj satisfy

|θj | ≤ max{M,M1/n}. (11)

Now, in view of (11) we deduce that

|f(X, θj)| =

∣∣∣∣∣
n−d∑
i=0

aiθ
i
j

∣∣∣∣∣ ≤ max
0≤i≤n−d

|aiθij |

≤ max
0≤i≤n−d

|ai| · max
0≤i≤n−d

|θij |

≤ max
0≤i≤n−d

|ai| ·max{M,M1/n}n−d,

for j = 1, . . . , s.

On combining this upper bound for |f(X, θj)| with (3) and (7) one obtains

|Res(g(X,Y ), f1(X,Y ))| ≤ |bn|n ·

 max
0≤i≤n−d

|ai| ·max{M,M1/n}n−d

|p|k

s

.

Since s ≥ 1, all we need to prove is that our assumption on the magnitude

of |pk| will force

|bn|n ·
max

0≤i≤n−d
|ai| ·max{M,M1/n}n−d

|p|k
< 1,

or equivalently that

|p|k > |bn|n · max
0≤i≤n−d

|ai| ·max{M,M1/n}n−d, (12)

which will give the desired contradiction. Recalling the definition of our absolute

value, and denoting max
0≤i≤n−1

deg bi − deg bn by A, we see that

max{M,M1/n}n−d = max
{
ρA, ρA/n

}n−d
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which shows that (12) is equivalent to

k deg p > ndeg bn + max
0≤i≤n−d

deg ai + (n− d) max

{
A,

A

n

}
.

If max
0≤i≤n−1

deg bi ≥ deg bn, then A ≥ 0 and the above condition reduces to

k deg p > max
0≤i≤n−d

deg ai + ddeg bn + (n− d) max
0≤i≤n−1

deg bi, (13)

while for max
0≤i≤n−1

deg bi < deg bn we have A < 0 and our condition reduces to

k deg p > max
0≤i≤n−d

deg ai +

(
n− n− d

n

)
· deg bn +

n− d
n
· max
0≤i≤n−1

deg bi. (14)

We observe now that our hypothesis (1) implies both inequalities (13) and (14),

since

n max
0≤i≤n

deg bi ≥ (n− u) deg bn + u max
0≤i≤n−1

deg bi

for every real u with 0 ≤ u ≤ n.

Therefore, as condition (1) holds, one obtains |Res(g(X,Y ), f1(X,Y ))| < 1,

which is a contradiction. This completes the proof of the theorem. �

Remark. As one can see from the proof of Theorem 1.3, some additional

information on the coefficients of g may lead us to sharper conditions on k deg p.

More precisely, if max
0≤i≤n−1

deg bi ≥ deg bn, one may replace condition (1) by (13),

while for max
0≤i≤n−1

deg bi < deg bn the same condition may be replaced by (14).

Therefore, instead of (1), one may ask k deg p to exceed both right hand sides in

the inequalities (13) and (14), and the same conclusion on the irreducibility of

f + pkg will hold. In a similar way one may obviously obtain sharper conditions

on k degr−1 p for polynomials in r ≥ 3 variables over K.
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