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Abstract. For a positive integer n and a real number ξ, let λn(ξ) denote
the supremum of the real numbers λ such that there are arbitrarily large
positive integers q such that ||qξ||, ||qξ2||, . . . , ||qξn|| are all less than q−λ.
Here, || · || denotes the distance to the nearest integer. We study the set
of values taken by the function λn and, more generally, we are concerned
with the joint spectrum of (λ1, . . . , λn, . . .). We further address several
open problems.

Sur l’approximation rationnelle simultanée d’un nombre réel et de ses puissances entières

Résumé. Pour un entier strictement positif n et un nombre réel ξ, on
note λn(ξ) le supremum des nombres réels λ pour lesquels il existe des
entiers q arbitrairement grands tels que ||qξ||, ||qξ2||, . . . , ||qξn|| sont tous
inférieurs à q−λ. Ici, || · || désigne la distance à l’entier le plus proche.
Nous étudions l’ensemble des valeurs prises par la function λn et, plus
généralement, nous nous intéressons au spectre de (λ1, . . . , λn, . . .). Nous
formulons également plusieurs problèmes ouverts.

1. Introduction

In 1932, in order to define his classification of real numbers, Mahler [18] introduced
the exponents of Diophantine approximation wn.

Definition 1. Let n ≥ 1 be an integer and let ξ be a real number. We denote by wn(ξ)
the supremum of the real numbers w such that, for arbitrarily large real numbers X, the
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inequalities

0 < |xnξn + . . .+ x1ξ + x0| ≤ X−w, max
0≤m≤n

|xm| ≤ X,

have a solution in integers x0, . . . , xn.

The Dirichlet theorem implies that wn(ξ) is at least equal to n for every real number
ξ which is not algebraic of degree at most n. Sprindžuk [20] showed that there is equality
for almost all ξ, with respect to the Lebesgue measure. Furthermore, it follows from the
Schmidt Subspace Theorem that wn(ξ) = min{n, d − 1} for every positive integer n and
every real algebraic number ξ of degree d; see [6] for an overview of the known results on
the exponents wn. In the present paper, we consider, besides wn, several functions defined
on the set of real numbers and whose values at algebraic numbers are known. Therefore,
by spectrum of a function, we mean the set of values taken by this function on the set of
transcendental real numbers.

By means of the theory of continued fractions, it is easy to show that the spectrum
of w1 is equal to the whole interval [1,+∞]; see Section 2 below. A more precise result
was proved by Jarńık [13]. For n ≥ 2, the determination of the spectrum of wn is much
more delicate, and the crucial tool is the theory of Hausdorff measure. It is an immediate
consequence of a deep result established in 1983 by Bernik [4], on the Hausdorff dimension
of the set of real numbers ξ such that wn(ξ) exceeds some prescribed real number w, that,
for any positive integer n, the exponent wn takes any value greater than or equal to n.
However, to construct explicit examples of real numbers ξ with a prescribed value w for
wn(ξ) remains an open question unless n = 1 or w is sufficiently large compared to n. In
Section 2, we give a new contribution to this problem.

Another exponent of Diophantine approximation, which measures the quality of the
simultaneous rational approximation to a number and its n first integral powers, has been
introduced recently [9].

Definition 2. Let n ≥ 1 be an integer and let ξ be a real number. We denote by λn(ξ)
the supremum of the real numbers λ such that, for arbitrarily large real numbers X, the
inequalities

0 < |x0| ≤ X, max
1≤m≤n

|x0ξm − xm| ≤ X−λ,

have a solution in integers x0, . . . , xn.

The Dirichlet theorem implies that λn(ξ) is at least equal to 1/n for every real number
ξ which is not algebraic of degree at most n. The combination of Sprindžuk’s above
mentioned result with a classical transference principle shows that there is equality for
almost all ξ, with respect to the Lebesgue measure. Furthermore, it follows from the
Schmidt Subspace Theorem that λn(ξ) = max{1/n, 1/(d− 1)} for every positive integer n
and every real algebraic number ξ of degree d.

The following question is Problem 5.5 from [10] (see also Question 1 in [8]).

Problem 1. Let n ≥ 1 be an integer. Is the spectrum of the function λn equal to
[1/n,+∞] ?

In the present note, we summarize what is known on this problem and establish several
new related results. We begin in Section 2 by a new result on the exponents wn. Section
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3 is then devoted to the study of the spectra of the exponents λn. In Section 4 we address
the question of determining the joint spectrum of (λ1, . . . , λn, . . .) and establish two partial
results. In Section 5, following a recent work of Laurent [17], we introduce new Diophatine
exponents, which can be viewed as intermediate exponents between λn and wn, and we
give partial results on their spectra. Finally, in Section 6, we restrict our attention to the
set of values taken by λn on the triadic Cantor set.

We assume that the reader is familiar with the theory of continued fractions. Through-
out this note, b·c denotes the integer part function. The notation a �d b means that a
exceeds b times a constant depending only on d. When� is written without any subscript,
it means that the constant is absolute. We write a � b if both a� b and a� b hold.

2. New result for the exponents wn

Besides the exponents wn and λn defined in Section 1, the exponents w∗n which measure
the quality of the approximation by algebraic numbers of degree at most n have also been
extensively studied (see, e.g. [6]). Recall that the height H(P ) of an integer polynomial
P (X) is the maximum of the moduli of its coefficients, and the height H(α) of an algebraic
number α is the height of its minimal polynomial over Z.

Definition 3. Let n ≥ 1 be an integer and let ξ be a real number. We denote by w∗n(ξ)
the supremum of the real numbers w∗ for which the inequality

0 < |ξ − α| ≤ H(α)−w
∗−1

is satisfied for infinitely many algebraic numbers α of degree at most n.

Recall that w∗n(ξ) ≤ wn(ξ) holds for every n ≥ 1 and every real number ξ, but
the inequality can be strict. It is a well-known problem, often referred to as the Wirsing
conjecture [22], to decide whether w∗n(ξ) ≥ n holds for every n ≥ 1 and every transcendental
real number ξ.

We improve a result of Güting [12] (see Theorem 7.7 from [6]) as follows.

Theorem 1. Let m ≥ 1 and k ≥ 0 be integers. Let w be a real number with

(w + 1−m)(w + 1−m− k) ≥ m(m+ k)w. (2.1)

Then, there exist uncountably many real numbers ξ such that

wm(ξ) = w∗m(ξ) = . . . = wm+k(ξ) = w∗m+k(ξ) = w.

Theorem 1 is a new contribution towards the resolution of the Main Problem investi-
gated in [6]. It improves Theorem 7.7 from [6], where (2.1) is replaced by the inequality
(w + 1−m)(w + 1−m− k) ≥ m(m+ k)(w + 1).

The key idea, which goes back to Güting [12], is to construct suitable real numbers
with many very good algebraic approximations of degree exactly m. This was done in
earlier works by means of lacunary series; here, we obtain an improved result by using
continued fractions.

We display an immediate corollary of Theorem 1 obtained by taking m = 1 and
k = n− 1 in its statement.
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Corollary 1. Let n ≥ 1 be an integer. For any real number w ≥ 2n − 1, there exist
uncountably many real numbers ξ such that

w1(ξ) = w∗1(ξ) = . . . = wn(ξ) = w∗n(ξ) = w.

The assumption w ≥ 2n − 1 in Corollary 1 replaces the stronger assumption w >
(2n−1+

√
4n2 + 1)/2 in [6]. Note that Corollary 1 for n = 1 and the existence of Liouville

numbers imply that the spectrum of w1 is equal to [1,+∞], a result first proved by Jarńık.

Proof of Theorem 1. For simplicity, we only give a full proof for the case m = 1 (thus, we
establish Corollary 1) and explain the modifications to be done to get the whole statement.

Let w > 1 be a real number. Let M be a large positive integer and consider the real
number

ξ = [0; 2,Mbqw−11 c,Mbqw−12 c,Mbqw−13 c, . . .], (2.2)

where q1 = 2 and qj is the denominator of the j-th convergent to ξ, that is, of the rational
number pj/qj = [0; 2,Mbqw−11 c, . . . ,Mbqw−1j−1 c], for j ≥ 2. By construction, we have

qj+1 �Mqwj and

∣∣∣∣ξ − pj
qj

∣∣∣∣ � 1

Mqw+1
j

, (2.3)

for j ≥ 1. Consequently, we have

w = w1(ξ) ≤ . . . ≤ wd(ξ), (2.4)

for every positive integer d.
Let d be a positive integer with d < w. Let P (X) be an integer polynomial of degree at

most d and of large height H(P ). Assume first that P (X) does not vanish at any element
of the sequence (pj/qj)j≥1. Let j be defined by qj ≤ H(P ) < qj+1. Observe that

|P (pj/qj)| ≥ q−dj

and
|P (pj/qj)− P (ξ)| �d H(P )|ξ − pj/qj | �d H(P )q−w−1j M−1,

by (2.3). Consequently, we have

|P (ξ)| ≥ |P (pj/qj)| − |P (pj/qj)− P (ξ)| ≥ q−dj /2 ≥ H(P )−w/2

as soon as H(P )q−w−1j M−1 �d q
−d
j , that is, as soon as

H(P )�d Mqw+1−d
j . (2.5)

Similarly, we observe that

|P (pj+1/qj+1)| ≥ q−dj+1
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and
|P (pj+1/qj+1)− P (ξ)| �d H(P )q−w−1j+1 M−1 �d q

−w
j+1M

−1.

Since w > d, this implies that, if j (that is, if H(P )) is large enough, we have |P (ξ)| ≥
q−dj+1/2. We then have |P (ξ)| ≥ H(P )−w if H(P )−w ≤ q−dj+1/2, that is, by (2.3), if

H(P )�d M
d/wqdj . (2.6)

Selecting M sufficiently large in terms of d, it follows from (2.5) and (2.6) that the
whole range of values qj ≤ H(P ) < qj+1 is covered as soon as

d ≤ w + 1− d. (2.7)

This means that, for w ≥ 2d − 1 and for any polynomial P (X) of degree at most d that
does not vanish at pj/qj and whose height satisfies qj ≤ H(P ) < qj+1, we have

|P (ξ)| ≥ H(P )−w/2.

In particular, if the polynomial P (X) of degree at most d does not vanish at any element
of the sequence (pj/qj)j≥1, then it satisfies

|P (ξ)| � H(P )−w. (2.8)

If there are positive integers a1, . . . , ah, distinct positive integers n1, . . . , nh and an
integer polynomial R(X) such that the polynomial P (X) of degree at most d can be written
as

P (X) = (qn1X − pn1)a1 · · · (qnh
X − pnh

)ahR(X),

where R(X) does not vanish at any element of the sequence (pj/qj)j≥1, then it follows
from (2.3), (2.8) and the so-called Gelfond inequality

H(P ) �d qa1n1
· · · qahnh

H(R)

that
|P (ξ)| �d,M q−a1wn1

· · · q−ahwnh
|R(ξ)|

�d,M q−a1wn1
· · · q−ahwnh

H(R)−w

�d,M

(
qa1n1
· · · qahnh

H(R)
)−w �d,M H(P )−w.

We conclude that, if (2.7) is satisfied, then

|P (ξ)| �d,M H(P )−w

holds for every polynomial P (X) of degree at most d and sufficiently large height, hence
wd(ξ) ≤ w. Combined with (2.4), this completes the proof of Theorem 1 in the case m = 1,
since our construction is flexible enough to yield uncountably many real numbers with the
required property.
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As for the general case, that is, m ≥ 2, we proceed exactly as above, with ξ replaced
by its m-th root ξ1/m and with the rational numbers pj/qj replaced by their m-th roots
(pj/qj)

1/m. Note that

|ξ1/m − (pj/qj)
1/m| �m |ξ − pj/qj |.

We follow the proof of Theorem 7.7 of [6], however, there is a slight additional difficulty;
indeed, we have to ensure that (pj/qj)

1/m is of degree exactly m. This can be guaranteed
by choosing instead of (2.2) the real number

ξ = [0; 2,Mbqw−11 c+ f2,Mbqw−12 c+ f3,Mbqw−13 c+ f4, . . .], (2.9)

where q1 = 2, qj is the denominator of the j-th convergent to ξ, and f2, f3, . . . are suitable
non-negative integers less than m. To see this, recall that ([16], Theorem 9.1), if q is not an
h-th power for 2 ≤ h ≤ m and if q/4 is not a fourth power, then the polynomial qXm − p
is irreducible when p is coprime with q. If we have

(Mbqw−1j−1 c+ f)qj−1 + qj−2 = yh (2.10)

for integers y, 0 ≤ f ≤ m and h ≥ 2, then (y+1)h exceeds (Mbqw−1j−1 c+f)qj−1+qj−2+q
w/2
j−1 .

By (2.1) we have w > 2, thus the number (Mbqw−1j−1 c+`)qj−1 +qj−2, where ` = 0, 1, . . . ,m,
` 6= f , cannot be a perfect h-th power, if j is large enough. This shows that at most one
number of the form

(Mbqw−1j−1 c+ f)qj−1 + qj−2, (2.11)

with 0 ≤ f ≤ m, is an h-th power with 2 ≤ h ≤ m. The same argument applies when yh

is replaced by 4y4 in (2.10). Consequently, there exists f with 0 ≤ f ≤ m such that the
number of the form (2.11) is neither an h-th power, for any h ≥ 2 at most equal to m,
nor is equal to four times a fourth power. This shows that we can construct inductively
integers f2, f3, . . . in [0,m] such that the number ξ defined in (2.9), whose sequence of
convergents is (pj/qj)j≥1, is such that the polynomial qjX

m − pj is irreducible for j ≥ 2.

3. The exponents λn

Let ξ be an irrational real number. Clearly, we have

λ1(ξ) = w1(ξ) ≥ 1

and

λ1(ξ) ≥ λ2(ξ) ≥ . . . (3.1)

Our first lemma establishes a relation between the exponents λn and λm when m
divides n.
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Lemma 1. For any positive integers k and n, and any transcendental real number ξ we
have

λkn(ξ) ≥ λk(ξ)− n+ 1

n
.

Proof. Let v be a positive real number and q be a positive integer such that

max
1≤j≤k

|qξj − pj | ≤ q−v,

for suitable integers p1, . . . , pk. Let h be an integer with 1 ≤ h ≤ kn. Write h = j1+. . .+jm
with m ≤ n and 1 ≤ j1, . . . , jm ≤ k. Then,

|qmξh − pj1 . . . pjm | �m qm−1q−v

and
||qnξh|| � qn−m||qmξh|| �m qn−1−v �m (qn)−(v−n+1)/n,

independently of h. This proves the lemma.

We display an immediate consequence of Lemma 1.

Corollary 2. Let ξ be a real irrational number. Then, λn(ξ) = +∞ holds for every
positive n if, and only if, λ1(ξ) = +∞.

We recall two relations between the exponents wn and λn deduced from Khintchine’s
transference principle (see e.g. Theorem 3.9 of [6]).

Proposition 1. For any positive integer n and any real number ξ which is not algebraic
of degree at most n, we have

wn(ξ)

(n− 1)wn(ξ) + n
≤ λn(ξ) ≤ wn(ξ)− n+ 1

n
.

The real numbers ξ defined in (2.2) satisfy w1(ξ) = λ1(ξ) = w, thus it is easy to
construct explicitly real numbers ξ having any arbitrarily prescribed value for λ1(ξ). The
same question for any exponent λn with n ≥ 2 is not yet solved. We start with a new
contribution to this problem, which improves Theorem 5.4 of [10].

Theorem 2. Let n ≥ 1 be an integer and λ ≥ 1 be a real number. There are uncount-
ably many real numbers ξ, which can be constructed explicitly, such that λn(ξ) = λ. In
particular, the spectrum of λn includes the interval [1,+∞].

Proof. Let n ≥ 2 be an integer and ξ be a transcendental real number. Lemma 1 with
k = 1 implies the lower bound

λn(ξ) ≥ w1(ξ)− n+ 1

n
. (3.2)

On the other hand, Proposition 1 gives the upper bound

λn(ξ) ≤ wn(ξ)− n+ 1

n
.
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Now, Corollary 1 asserts that for any given real number w ≥ 2n−1, there exist uncountably
many real numbers ξw such that

w1(ξw) = . . . = wn(ξw) = w.

Then, the equalities

λk(ξw) =
w

k
− 1 +

1

k
, k = 1, . . . , n,

hold; in particular,

λn(ξw) =
w

n
− 1 +

1

n
,

and this gives the requested result.

Unfortunately, and unlike what happens for the exponents wn, the metrical theory is
not sufficiently developed at present to solve Problem 2 below (which may imply a positive
answer to Problem 1).

Problem 2. Let n ≥ 1 be an integer and λ ≥ 1/n be a real number. To determine the
Hausdorff dimension of the sets

{ξ ∈ R : λn(ξ) ≥ λ} and {ξ ∈ R : λn(ξ) = λ}.
We complement Theorem 2 with various metrical results which give a partial answer to

Problem 2. We begin this short survey with a statement that is an immediate consequence
of seminal results of Jarńık [13].

Theorem J. For any real number λ ≥ 1, we have

dim{ξ ∈ R : λ1(ξ) = λ} =
2

1 + λ
.

Theorem J was recently extended by Budarina, Dickinson, and Levesley [5] as follows.

Theorem BDL. Let n ≥ 2 be an integer. Let λ ≥ n − 1 be a real number. Then, we
have

dim{ξ ∈ R : λn(ξ) = λ} =
2

n(1 + λ)
.

We point out that the inequality

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ 2

n(1 + λ)

is valid for any λ ≥ 1/n. Indeed, for n ≥ 2 and λ ≥ 1/n, we infer from (3.2) and Theorem
J that

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ dim{ξ ∈ R : λ1(ξ) ≥ nλ+ n− 1}

≥ 2

1 + (nλ+ n− 1)
=

2

n(1 + λ)
.

This was already established in [5], but with a different proof.
It follows from Theorem BDL that, for any n ≥ 2, the spectrum of λn includes the

interval [n− 1,+∞], a weaker conclusion than Theorem 2.
Problem 2 for n = 2 and λ ∈ [1/2, 1] was solved by Beresnevich, Dickinson, Vaughan

and Velani [3, 21].
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Theorem BDVV. For any real number λ with 1/2 ≤ λ ≤ 1, we have

dim{ξ ∈ R : λ2(ξ) = λ} =
2− λ
1 + λ

.

We display an immediate consequence of Theorems 2 and BDVV. This solves Problem
1 for n = 2.

Corollary 3. The spectrum of λ2 is equal to [1/2,+∞].

To conclude this section, we quote a recent result of Beresnevich [2] dealing with small
values of λn.

Theorem B. Let n ≥ 2 be an integer. Let λ be a real number with 1/n ≤ λ < 3/(2n−1).
Then, we have

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ n+ 1

λ+ 1
− (n− 1). (3.3)

By Theorem BDVV, the inequality (3.3) is an equality for n = 2 and Beresnevich
conjectures that this is also an equality for n ≥ 3.

4. Prescribing simultaneously the values of all the exponents λn

The results stated in Section 3 show that, under a suitable (very strong) assumption,
it is possible to construct real numbers ξ with prescribed values of λn(ξ) for finitely many
integers n.

Theorem 3. Let k be a positive integer and n1, . . . , nk be distinct positive integers. Let
λ1, . . . , λk and τ be positive real numbers such that τ ≥ 2,

τ = nj(1 + λj), λj ≥ nj − 1, (j = 1, . . . , k).

Then, we have

dim{ξ ∈ R : λnj (ξ) = λj for j = 1, . . . , k} =
2

τ
. (4.1)

Proof. We use Theorem 1 of [5] to construct a suitable dimension function f such that the
Hausdorff f -measure of the set defined in (4.1) is positive, while, for every positive integer
h and for i = 1, . . . , k, the set

{ξ ∈ R : λnj
(ξ) ≥ λj , for j = 1, . . . , k and λni

(ξ) ≥ λi + 1/h}

has zero Hausdorff f -measure. Then, we conclude as in the proof of Theorem 5.8 of [6].

Unfortunately, Theorem 3 cannot be extended to an infinite set of positive integers
since, clearly, for any real number τ ≥ 2, there are only finitely many pairs (n, λ) in
(Z≥1,R≥1) such that n(1 + λ) = τ .

The Main Problem investigated in [6] asks whether, for any non-decreasing sequence
(wn)n≥1 of real numbers such that wn ≥ n for n ≥ 1, there exists a real number ξ for
which wn(ξ) = wn for n ≥ 1. We refer the reader to Section 7.8 of [6] for a summary of
the known results towards the Main Problem. In view of this and of Lemma 1, we propose
the following generalisation of Problem 1.
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Problem 3. Let (λn)n≥1 be a non-increasing sequence of positive real numbers such that

λn ≥
1

n
, (n ≥ 1),

and

λkn ≥
λk − n+ 1

n
, (k ≥ 1, n ≥ 1).

Does there exist a real number ξ with

λn(ξ) = λn, for n ≥ 1?

We state our first modest contribution to this problem, which is apparently much
more difficult than the (still unsolved) Main Problem.

Theorem 4. There exist uncountably many real numbers ξ satisfying

λn(ξ) = 1, for n ≥ 1. (4.2)

The idea is to construct suitable real numbers which are very well approximable by
quadratic numbers. This is a natural approach, since for every quadratic number γ and
every positive integer n we have λn(γ) = 1.

Proof. Let (mj)j≥1 be a very rapidly increasing sequence of positive integers. Let A1 =
1m12 be the finite word composed of m1 digits 1 and terminating by the digit 2. For j ≥ 2,
denote by nj the number of digits of the word A

mj

j−1 and define the word Aj = A
mj

j−12
composed of mj copies of Aj−1 and terminating by the digit 2. Let ξj be the quadratic
number in (0, 1) whose continued fraction is purely periodic of period Aj . We define the
infinite word a = a1a2a3 . . . as the limit of the finite words Aj when j tends to infinity.
Clearly, a is not ultimately periodic and ξ := [0; a1, a2, a3, . . .] is the limit of the quadratic
numbers ξj as j tends to infinity.

Let γ be a quadratic real number with minimal defining polynomial c2X
2 + c1X + c0

over Z and height at most H. Let q be the denominator of a convergent to γ. Then we
have ||qγ|| < q−1, where || · || denotes the distance to the nearest integer. Observe that
||qc2γ2|| = ||qc1γ|| < Hq−1 and that

||qc22γ3|| ≤ ||qc1c2γ2||+ ||qc2c0γ|| < 2H2q−1.

An easy induction then shows that

||qcj2γj+1|| < (2H)jq−1, for j ≥ 1,

and we get

||qch2γj+1|| ≤ ch−j2 ||qcj2γj+1|| ≤ (2H)hq−1, for j ≥ 1 and h ≥ j. (4.3)

Let j ≥ 2. Let Qj denote the denominator of the nj+1-th convergent to ξj (that is, of the
nj+1-th convergent to ξ since, by construction, ξ and ξj have the same first nj+1 partial
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quotients). Let Lj be the leading coefficient of the minimal defining polynomial of ξj over
Z and let Hj be its height. Classical results from the theory of continued fraction ensure
that Qj ≥ (3/2)nj+1 and Hj ≤ 3nj , since the partial quotients of ξj belong to {1, 2}. In
view of this and of (4.3), we get

max{||QjLj−1j ξj ||, ||QjLj−1j ξ2j ||, . . . , ||QjL
j−1
j ξjj ||} ≤ (2Hj)

jQ−1j

≤ (QjL
j−1
j )−1 log(QjL

j−1
j ),

(4.4)

if nj+1 is sufficiently large compared to nj . Since

|ξhj − ξh| ≤ jQ−2j , for 1 ≤ h ≤ j,

we infer from (4.4) that, provided that nj+1 is sufficiently large, we have

||QjLj−1j ξh|| ≤ QjLj−1j · |ξhj − ξh|+ ||QjL
j−1
j ξhj ||

≤ jQ−1j Lj−1j + (QjL
j−1
j )−1 log(QjL

j−1
j ) ≤ 2(QjL

j−1
j )−1 log(QjL

j−1
j ),

for h = 1, . . . , j. This implies that λh(ξ) ≥ 1 for h ≥ 1. Since ξ has bounded partial
quotients, it satisfies λ1(ξ) = 1, and the requested result follows from (3.1). Finally, we
observe that there are uncountably many suitable choices for the sequence (nj)j≥1, thus,
uncountably many real numbers ξ satisfy (4.2).

The next theorem gives new information on the joint spectrum of λ1 and λ2.

Theorem 5. Let λ be a real number with 1 ≤ λ ≤ 3. There exist uncountably many real
numbers ξ with λ1(ξ) = λ and λ2(ξ) = 1.

Note that the assumption λ ≤ 3 in Theorem 5 is necessary since λ2(ξ) ≥ (λ1(ξ)−1)/2,
by (3.2).

The constructive proof of Theorem 5 depends on the following auxiliary result. Recall
that a finite word a1a2 . . . an is called a palindrome if aj = an+1−j for j = 1, . . . , n.

Lemma 2. Let a1 ≥ 4 be an integer. Let ξ = [0; a1, a2, . . . , ak, . . .] be an irrational real
number. Assume that there exists n ≥ 4 such that a1a2 . . . an is a palindrome and set

p

q
= [0; a1, . . . , an−1, an] and

p′

q′
= [0; a1, . . . , an−1].

Then we have p = q′, max{||qξ||, ||qξ2||} � a1q
−1, and ||qξ2|| � a−11 q−1. Consequently, if

there are infinitely many integers n such that a1a2 . . . an is a palindrome, then λ2(ξ) ≥ 1.

Proof. The first two assertions are established in Section 5 of [1]. For the last one, observe
that ∣∣∣∣ξ2 − p′

q

∣∣∣∣ =

∣∣∣∣ξ2 − p′

q′
· p
q

∣∣∣∣ =

∣∣∣∣(ξ +
p′

q′

)(
ξ − p

q

)
± ξ

qq′

∣∣∣∣.
Since ∣∣∣∣(ξ +

p′

q′

)(
ξ − p

q

)∣∣∣∣ ≤ 3ξ

q2
and

ξ

qq′
≥ 4ξ

q2
,
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we deduce that ||qξ2|| ≥ ξq−1. This completes the proof of the lemma.

Proof of Theorem 5. We give an inductive construction for the continued fraction expansion
of a suitable real number ξ = [0; a1, a2, . . .], whose sequence of convergents is denoted by
(pn/qn)n≥1. Set a1 = . . . = a4 = 4, n1 = 5 and a5 = bqλ−14 c. We construct a very rapidly
increasing sequence (nj)j≥1 of odd integers. We describe the inductive step. Let j be a
positive integer such that the word a1a2 . . . anj−2anj−1 is a palindrome and anj

= bqλ−1nj−1c.
Let anj+1, . . . , a(nj+1−1)/2 be elements of {1, 2} and set a(nj+1−1)/2+h = a(nj+1−1)/2+1−h for
h = 1, 2, . . . , (nj+1−1)/2. Consequently, the word a1a2 . . . anj+1−2anj+1−1 is a palindrome.
We select nj+1 sufficiently large to secure that

||qnξ|| ≥ q−1n (log qn)−1, for nj ≤ n ≤ nj+1 − 2. (4.5)

Note that (4.5) certainly holds if q(nj+1−1)/2 exceeds exp{anj
}. Finally, we put anj+1

=

bqλ−1nj+1−1c, thus

||qnj+1−1ξ|| � q−λnj+1−1. (4.6)

This completes the inductive step. By construction, we have λ1(ξ) = λ and Lemma 2
implies that λ2(ξ) ≥ 1. It remains to prove that λ2(ξ) cannot exceed 1. Let ν > 1 be a
real number and let q be a (large) positive integer such that ||qξ|| < q−ν . We deduce from
(4.5) and (4.6) that q is necessarily an integer multiple of qnj−1 for some j ≥ 1. Write
then q = Mqnj−1 and note that there are integers p and p′ such that p = Mp′ and

1

qλ+1
nj−1

�
∣∣∣∣ξ − p′

qnj−1

∣∣∣∣ =

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qν+1
.

This shows that qν+1 � qλ+1
nj−1, thus,

M � q
(λ+1)/(ν+1)
nj−1 q−1nj−1 � q

(λ−ν)/(ν+1)
nj−1 .

Since ν > 1 and λ ≤ 3, there exists τ < 1 such that M ≤ qτnj−1 and, consequently,

||qξ2|| = ||Mqnj−1ξ
2|| = M ||qnj−1ξ

2|| �Mq−1nj−1 � q−1,

by Lemma 2. This shows that λ2(ξ) cannot exceed 1. Consequently, λ2(ξ) = 1 and the
theorem is proved, since the method is flexible enough to yield uncoutably many real
numbers with the required property.

5. Intermediate exponents

Let n ≥ 2 be an integer and Θ be a point in Rn. In [17], Laurent introduced new
exponents ωn,d(Θ) (simply denoted by ωd(Θ) in [17], since n is fixed throughout that paper)
measuring the sharpness of the approximation to Θ by linear rational varieties of dimension

12



d. He split the Khintchine transference principle into n− 1 intermediate estimates which
connect the exponents ωn,d(Θ) for d = 0, 1, . . . , n−1 (see also [11]). Actually, Schmidt [19]
was the first to investigate the properties of these exponents ωn,d, but he did not introduce
them explicitly. We briefly recall their definition and we consider new exponents wn,d
defined over R by restricting ωn,d to the Veronese curve (x, x2, . . . , xn). It is convenient
to view Rn as a subset of Pn(R) via the usual embedding (x1, . . . , xn) 7→ (1, x1, . . . , xn).
We shall identify Θ = (θ1, . . . , θn) with its image in Pn(R). Denote by d the projective
distance on Pn(R) and, for any real linear subvariety L of Pn(R), set

d(Θ, L) = min
P∈L

d(Θ, P )

the minimal distance between Θ and the real points P of L. When L is rational over Q,
we indicate moreover by H(L) its height, that is the Weil height of any system of Plücker
coordinates of L. We refer to [17, 11] for precise definitions of the projective distance,
heights, etc.

Definition 4. Let n ≥ 2 and d be integers with 0 ≤ d ≤ n − 1. Let Θ be in Rn. We
denote by ωn,d(Θ) the supremum of the real numbers ω for which there exist infinitely
many rational linear subvarieties L ⊂ Pn(R) such that

dim(L) = d and d(Θ, L) ≤ H(L)−1−ω.

If there exists ξ such that Θ = (ξ, ξ2, . . . , ξn), then we set wn,d(ξ) = ωn,d(Θ).

We observe that the functions λn and wn,0 (resp. wn and wn,n−1) coincide.
Let the spectrum of the function ωn,d denote the set of values taken by the exponents

ωn,d(Θ) when Θ ranges over Rn, with 1,Θ1, . . . ,Θn linearly independent over the rationals.
Using a result of Jarńık [14], Laurent [17] established that the spectrum of ωn,d over Rn

is equal to the whole interval [(d+ 1)/(n− d),+∞] and that ωn,d(Θ) = (d+ 1)/(n− d) for
almost all Θ in Rn. By means of the numbers ξw defined in the proof of Theorem 2, we
get some information on the spectra of the exponents wn,d.

Theorem 6. For n ≥ 2 and 0 ≤ d ≤ n − 1, the spectrum of wn,d contains the whole
interval [(n+ d)/(n− d),+∞] and wn,d(ξ) = (d+ 1)/(n− d) for almost all real numbers ξ.

Theorem 6 plainly includes Theorem 2.
Proof. We follow the proof of the Corollary from [17], where it is established that, for
any w with 1/n ≤ λ ≤ +∞ and for any point Θ in Rn such that ωn,0(Θ) = λ and
ωn,n−1(Θ) = nλ+ n− 1, we have

ωn,d(Θ) =
nλ+ d

n− d
, (d = 0, 1, . . . , n− 1). (5.1)

For w ≥ 2n− 1, the numbers ξw defined in the proof of Theorem 2 satisfy

nλn(ξw) = wn(ξw)− n+ 1 = w − n+ 1,
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that is,

ωn,n−1(ξw, . . . , ξ
n
w) = nωn,0(ξw, . . . , ξ

n
w) + n− 1.

We then get from (5.1) that

wn,d(ξw) =
nλn(ξw) + d

n− d
, (d = 0, 1, . . . , n− 1).

The first assertion of the theorem follows since λn(ξw) takes every value between 1 and
+∞ as w varies from 2n − 1 to +∞. The second assertion is an immediate consequence
of (5.1) and the fact that nλn(ξ) = wn(ξ)− n+ 1 = 1 holds for almost every real number
ξ.

We conclude this section by stating an extension of Problem 1.

Problem 4. Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. Is the spectrum of
the function wn,d equal to [(d+ 1)/(n− d),+∞] ?

Clearly, a positive answer to Problems 1 and 4 would follow if we could prove that,
for any positive integer n and for any real number wn greater than n, there exists a real
number ξ such that w1(ξ) = . . . = wn(ξ) = wn. We feel that condition (2.1) is likely not
best possible, but we have no conjecture to what extent it could be improved.

6. Diophantine approximation on the Cantor set

Let K denote the triadic Cantor set, that is, the set of all real numbers of the form
c13−1+c23−2+ · · ·+ci3−i+ · · · with ci = 0 or 2 for every i ≥ 1. Motivated by a question of
Mahler asking whether there are algebraic irrational numbers in K, several authors have
recently studied the Diophantine approximation properties of the elements of K, see the
references at the end of [7].

Let us mention that Kleinbock, Lindenstrauss, and Weiss (Theorem 7.10 from [15])
proved that almost every element ξ on K (with respect to the standard measure supported
on K) satisfies wn(ξ) = w∗n(ξ) = n for every positive integer n. By Khintchine’s transfer-
ence principle, such a ξ also satisfies λn(ξ) = 1/n for every positive integer n. Furthermore,
it has been established in [7] that w1 (that is, λ1) takes on the Cantor set any arbitrarily
given value greater than or equal to 1. The proof is constructive. It is apparently a very
difficult open problem to prove that for n ≥ 2 the exponent wn (resp. λn) takes on K any
arbitrarily given value greater than or equal to n (resp. 1/n). The following statement,
which follows from the proof of Theorem 5.4 from [10], solves partially this problem.

Theorem BL. Let n ≥ 2 be an integer. The spectrum of wn restricted to the Cantor set
includes the interval [(2n − 1 +

√
4n2 + 1)/2,+∞]. The spectrum of λn restricted to the

Cantor set includes the interval [(1 +
√

4n2 + 1)/(2n),+∞].

Observe that the left-hand side of the first (resp. second) interval is (slightly) larger
than 2n− 1 (resp. than 1).
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Proof. Theorem 7.7 from [6] asserts that for any given real number w > (2n − 1 +√
4n2 + 1)/2 (actually, the strict inequality can be replaced by a large one), the real number

ξ′w := 2
∑
j≥1

3−b(w+1)jc.

satisfies
w1(ξ′w) = . . . = wn(ξ′w) = w.

We conclude as in the proof of Theorem 2.
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