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Abstract. The Littlewood conjecture in Diophantine approxi-
mation claims that

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0

holds for all real numbers α and β, where ‖ · ‖ denotes the distance
to the nearest integer. Its p-adic analogue, formulated by de Mathan
and Teulié in 2004, asserts that

inf
q≥1

q · ‖qα‖ · |q|p = 0

holds for every real number α and every prime number p, where
| · |p denotes the p-adic absolute value normalized by |p|p = p−1. We
survey the known results on these conjectures and highlight recent
developments.
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A famous open problem in simultaneous Diophantine approximation, cal-
led the Littlewood conjecture, claims that, for every given pair (α, β) of real
numbers, we have

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0,

where ‖·‖ denotes the distance to the nearest integer. According to Montgomery
[27], the first occurrence of the Littlewood conjecture appeared in 1942 in a
paper by Spencer [34], a student of Littlewood.

Since 2000, there has been much activity on and around the Littlewood
conjecture, including the formulation by de Mathan and Teulié [26] of a closely
related open problem, called the mixed Littlewood conjecture. The purpose of
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the present survey is to highlight recent results and developments on these
questions. We make the choice to state more than twenty theorems and to give
only a single proof.

Section 1 is devoted to the Littlewood conjecture itself, while the mixed and
the p-adic (a special case of the mixed) Littlewood conjectures are addressed
in Section 2. The reader will observe that the state-of-the-art regarding the
Littlewood and the p-adic Littlewood conjectures is essentially the same. The
proof of one result from [5] is given in Section 3. We conclude in Section 4 by
mentioning recent results and open questions on inhomogeneous variations of
the Littlewood and the mixed Littlewood conjectures.

The number of papers just appeared, being submitted or in preparation
shows that there is currently a lot of activities on this topic.

Throughout, we assume that the reader is familiar with the theory of conti-
nued fractions and ‘almost all’ (or ‘almost every’) always refers to the Lebesgue
measure.

1. The Littlewood conjecture

Let α and β be real numbers. Clearly,

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0 (1.1)

always holds when 1, α, β are linearly dependent over the rationals or when α
or β has unbounded partial quotients in its continued fraction expansion. Thus,
we may assume that α and β belong to the set Bad of badly approximable
real numbers, where

Bad = {α ∈ R : inf
q≥1

q · ‖qα‖ > 0}.

The set Bad is the set of real numbers whose sequence of partial quotients is
bounded. It has zero Lebesgue measure and full Hausdorff dimension (that is,
Hausdorff dimension one).

In 1955 Cassels and Swinnerton-Dyer [14] made the first significant contri-
bution on the Littlewood conjecture in showing that (1.1) holds when α and β
belong to the same cubic field. Note that it is still not known whether or not
cubic real numbers belong to Bad.

Pollingon and Velani [32] showed in 2000 that, for every badly approximable
real number α, there exist uncountably many badly approximable real numbers
β such that a strong form of (1.1) holds for the pair (α, β).

Theorem 1. — For every real number α in Bad, there exists a subset G(α)
of Bad with full Hausdorff dimension such that, for any β in G(α), there exist
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arbitrarily large integers q satisfying

q · (log q) · ‖qα‖ · ‖qβ‖ ≤ 1.

For an alternative proof of a slightly weaker form of Theorem 1, together
with some additional interesting results, the reader is referred to [22] ; see also
Theorem 29 in Section 4.

Einsiedler, Katok, and Lindenstrauss [16] (see also [35]) established that
the set of exceptions to the Littlewood conjecture is very small.

Theorem 2. — The set of pairs (α, β) of real numbers such that

inf
q≥1

q · ‖qα‖ · ‖qβ‖ > 0

has Hausdorff dimension zero. Furthermore, it is contained in a countable
union of compact sets of box dimension zero.

Furthermore, Lindenstrauss [24] stressed that one may deduce from the
techniques of [16] an explicit, sufficient criterion for a real number α in or-
der that the Littlewood conjecture holds for every pair (α, β), where β is an
arbitrary real number.

To present his result (and also subsequent results given in Section 2), we
adopt a point of view from combinatorics on words. We look at the continued
fraction expansion of a given real number α as an infinite word. For an infinite
word w = w1w2 . . . and an integer n ≥ 1, we denote by p(n,w) the number of
distinct blocks of n consecutive letters occurring in w, that is,

p(n,w) := Card{w`+1 . . . w`+n : ` ≥ 0}.
The function n 7→ p(n,w) is called the complexity function of w. For an irra-
tional real number α = [a0; a1, a2, . . .], we set

p(n, α) := p(n, a1a2 . . .), n ≥ 1.

Clearly, for positive integers n, n′ we have

p(n+ n′, α) ≤ p(n, α) · p(n′, α).
This inequality implies that the sequence (log p(n, α))n≥1 is subadditive, thus,
((log p(n, α)/n)n≥1 converges.

Definition 3. — The entropy of a real number α is the quantity

E(α) = lim
n→+∞

log p(n, α)

n
.

It is an easy exercise to show that the set of real numbers α such that
E(α) = 0 has Hausdorff dimension zero.

With the above notation, the result alluded to below Theorem 2 and stated
as Theorem 5 in [24] can be formulated as follows.
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Theorem 4. — If the real number α satisfies E(α) > 0, then, for every real
number β, we have

inf
q≥1

q · ‖qα‖ · ‖qβ‖ = 0.

Theorem 1 is a metrical result and, as such, does not tell us how to associate
explicitly to some given badly approximable number α a badly approximable
number β such that 1, α and β are linearly independent over the integers and
(1.1) holds for the pair (α, β). This problem has been addressed in [1] (see [25]
for a weaker previous result).

Theorem 5. — Let ϕ be a positive, non-increasing function defined on the
set of positive integers and satisfying ϕ(1) = 1, limq→+∞ ϕ(q) = 0 and
limq→+∞ qϕ(q) = +∞. Given α in Bad, there exists an uncountable subset
Bϕ(α) of Bad such that, for any β in Bϕ(α), there exist infinitely many
positive integers q with

q · ‖qα‖ · ‖qβ‖ ≤ 1

q · ϕ(q)
. (1.2)

In particular, the Littlewood conjecture holds for the pair (α, β) for any β in
Bϕ(α). Furthermore, the set Bϕ(α) can be effectively constructed.

The proof of Theorem 5 rests on the theory of continued fractions. For given
α and ϕ, we construct inductively the sequence of partial quotients of a suitable
real number β such that (1.2) holds for the pair (α, β).

Going back to metrical results, the following theorem of Gallagher [19] shows
that (1.1) can be improved for almost all pairs (α, β) of real numbers.

Theorem 6. — Let ψ : Z≥1 → R be a non-negative decreasing function. Then,
for almost every pair (α, β) of real numbers, the inequality

‖qα‖ · ‖qβ‖ ≤ ψ(q)
has infinitely (resp. finitely) many integer solutions q ≥ 1 if the series∑

q≥1 ψ(q) log q diverges (resp. converges). In particular, for almost every pair
(α, β) of real numbers, we have

inf
q≥2

q · (log q)2 · ‖qα‖ · ‖qβ‖ = 0.

Since we are, at present, not able to confirm nor to deny the Littlewood
conjecture, we may search for pairs (α, β) of real numbers for which there
exists a slowly growing function ϕ such that

lim inf
q→+∞

q · ϕ(q) · ‖qα‖ · ‖qβ‖ > 0. (1.3)

In view of Theorem 6, a first non-trivial step is to show the existence of pairs
(α, β) for which (1.3) holds with the function q 7→ ϕ(q) = (log q)2. This has
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been done in 2011 in [12], by means of a method introduced by Peres and Schlag
[31]. This result has been subsequently considerably improved by Badziahin
[3], who used an intricate Cantor-type construction to establish the following
theorem.

Theorem 7. — For every real number α in Bad, the set of real numbers β
such that

inf
q≥3

q · log q · log log q · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension. In particular, the set of pairs (α, β) of real num-
bers satisfying

inf
q≥3

q · log q · log log q · ‖qα‖ · ‖qβ‖ > 0

has full Hausdorff dimension in R2.

It remains an open problem to show the existence of pairs (α, β) of real
numbers for which inequality (1.3) holds with the function ϕ : q 7→ log q.

2. The mixed and the p-adic Littlewood conjectures

In 2004 de Mathan and Teulié [26] proposed a mixed Littlewood conjecture
which can be stated as follows. Let D = (dk)k≥1 be a sequence of integers
greater than or equal to 2. Set e0 = 1 and, for n ≥ 1,

en =
∏

1≤k≤n
dk.

For an integer q, set

wD(q) = sup{n ≥ 0 : q ∈ enZ}

and
|q|D = 1/ewD(q) = inf{1/en : q ∈ enZ}.

When D is the constant sequence equal to p, where p is a prime number,
then | · |D is the usual p-adic value | · |p normalized by |p|p = p−1. In analogy
with the Littlewood conjecture, de Mathan and Teulié formulated the following
conjecture.

Conjecture 8. — (Mixed Littlewood Conjecture.) For every real number α
and every sequence D as above, we have

inf
q≥1

q · ‖qα‖ · |q|D = 0. (2.1)



6

Obviously, (2.1) holds if α is rational or has unbounded partial quotients.
Thus, we only consider the case when α is an element of the set Bad defined
in Section 1.

By Lemme 3.1 of [26], if (α,D) does not satisfy (2.1), then there exists a real
numberM such that all the partial quotients of the real numbers {enα}, n ≥ 0,
are less than M . Here and below, {·} denotes the fractional part function.

De Mathan and Teulié proved that (2.1) and even the stronger statement

lim inf
q→+∞

q · log q · ‖qα‖ · |q|D < +∞

holds for every real quadratic number α, provided that the sequence D is
bounded ; see [5, 23] for alternative proofs when D is the constant sequence
equal to a prime number, a particular case which deserves to be highlighted.

Conjecture 9. — (p-adic Littlewood Conjecture.) For every real number α
and every prime number p, we have

inf
q≥1

q · ‖qα‖ · |q|p = 0. (2.2)

Einsiedler and Kleinbock [17] showed that a slightly weaker form of the p-
adic Littlewood conjecture, namely Theorem 11 below, can easily be deduced
from the following theorem of Furstenberg [18].

Theorem 10. — Let r and s be multiplicatively independent integers. Then,
for every irrational number α, the set of real numbers {αrmsn}, where m and
n run through the set of non-negative integers, is dense in [0, 1].

An alternative proof of Theorem 10 was given by Boshernitzan [8] and is
reproduced in the monograph [13].

Theorem 11. — Let p1 and p2 be distinct prime numbers. Then,

inf
q≥1

q · ‖qα‖ · |q|p1 · |q|p2 = 0

holds for every real number α.

Bourgain, Lindenstrauss, Michel and Venkatesh [9] established a quantita-
tive version of Theorem 11.

Theorem 12. — Let p1 and p2 be distinct prime numbers. There exists a po-
sitive real number c such that, for any real number α, we have

inf
q≥16

q · (log log log q)c · ‖qα‖ · |q|p1 · |q|p2 = 0.

Harrap and Haynes [21] managed recently to extend Theorem 11. We quote
below their Corollary 1. For an integer a ≥ 2 and for D being the infinite
sequence a, a, . . ., we write | · |a instead of | · |D.
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Theorem 13. — Let a ≥ 2 be an integer and D be a bounded sequence of
integers coprime to a and greater than or equal to 2. Then,

inf
q≥1

q · ‖qα‖ · |q|a · |q|D = 0

holds for every real number α.

The proof of Theorem 13 is a nice combination of ideas from [9, 15] and lower
bounds for linear forms in logarithms of algebraic numbers (Baker’s theory).

Einsiedler and Kleinbock [17] established that the set of possible exceptions
to the p-adic Littlewood conjecture is very small from the metric point of view.

Theorem 14. — Let p be a prime number. The set of real numbers α such
that

inf
q≥1

q · ‖qα‖ · |q|p > 0

has Hausdorff dimension zero.

Theorem 14 is the analogue of Theorem 2. Einsiedler and Kleinbock also
explained how to modify their proof to get an analogous result when D is the
constant sequence equal to an integer a ≥ 2 (not necessarily prime).

The analogue of Theorem 4 was very recently proved in [5].

Theorem 15. — If the real number α satisfies E(α) > 0, then for every prime
number p we have

inf
q≥1

q · ‖qα‖ · |q|p = 0.

Theorem 15 asserts that the complexity function of the continued fraction
expansion of every potential counterexample to the p-adic Littlewood conjec-
ture cannot grow exponentially fast.

We present now various explicit examples of real numbers α inBad for which
(2.2) and even (2.1) hold. First, we need some classical results and definitions
from combinatorics on words.

A well-known result of Morse and Hedlund [28, 29] asserts that p(n,w) ≥
n + 1 for n ≥ 1, unless w is ultimately periodic (in which case there exists
a constant C such that p(n,w) ≤ C for n ≥ 1). Infinite words w satisfying
p(n,w) = n + 1 for every n ≥ 1 do exist and are called Sturmian words. We
start with a classical definition (see e.g. [2]).

Definition 16. — An infinite word w is recurrent if every finite block occur-
ring in w occurs infinitely often.

Classical examples of recurrent infinite words include periodic words, Stur-
mian words, the Thue–Morse word, etc.
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Theorem 17. — Let (ak)k≥1 be a sequence of positive integers. If there exists
an integer m ≥ 0 such that the infinite word am+1am+2 . . . is recurrent, then,
for every sequence D of integers greater than or equal to 2, the real number
α := [0; a1, a2, . . .] satisfies

inf
q≥1

q · ‖qα‖ · |q|D = 0.

The proof of Theorem 17, given in Section 3, is elementary, in the sense that
it uses only the theory of continued fractions.

As a particular case, Theorem 17 asserts that (2.1) holds for every quadratic
number α and every (bounded or unbounded) sequence D of integers greater
than or equal to 2.

As shown in [5], Theorem 17 implies a non-trivial lower bound for the com-
plexity function of the continued fraction expansion of a putative counter-
example to (2.1).

Corollary 18. — Let α be a real number such that

lim
n→+∞

p(n, α)− n < +∞.

Then, for every sequence D of integers greater than or equal to 2, we have

inf
q≥1

q · ‖qα‖ · |q|D = 0.

The next corollary of Theorem 17 deals with a special family of infinite
recurrent words. A finite word w1 . . . wn is called a palindrome if wn+1−h = wh

for h = 1, . . . , n.

Corollary 19. — Let (ak)k≥1 be a sequence of positive integers. If there exists
an increasing sequence (nj)j≥1 of positive integers such that a1 . . . anj is a
palindrome for j ≥ 1, then, for every sequence D of integers greater than or
equal to 2, the real number α := [0; a1, a2, . . .] satisfies

inf
q≥1

q · ‖qα‖ · |q|D = 0.

To derive Corollary 19 from Theorem 17, it is sufficient to note that, if
a1 . . . an and a1 . . . an′ are palindromes with n′ > 2n, then

an′−n+1 . . . an′ = an . . . a1 = a1 . . . an.

The corollary then follows from Theorem 17 applied with m = 0.
The next result asserts that the mixed Littlewood conjecture holds for every

prime number p and every real number α whose sequence of partial quotients
contains arbitrarily long concatenations of a given finite block.
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Theorem 20. — Let α = [a0; a1, a2, . . .] be a real number. Let T ≥ 1 be an
integer and b1, . . . , bT be positive integers. If there exist two sequences (mk)k≥1
and (hk)k≥1 of positive integers with (hk)k≥1 being unbounded and

amk+j+nT = bj , for every j = 1, . . . , T and every n = 0, . . . , hk − 1,

then, for every prime number p, we have

inf
q≥1

q · ‖qα‖ · |q|p = 0.

The following consequence of Theorem 20 deserves to be pointed out. Let α
be a real number having exactly m distinct partial quotients in its continued
fraction expansion. If E(α) = logm, then for every prime number p we have

inf
q≥1

q · ||qα|| · |q|p = 0.

Clearly, this has been superseded by Theorem 15.
The assumption of Theorem 20 can be restated as follows. To an irrational

real number α := [a0; a1, a2, . . .] we associate the set

Adh(α) := {[0; am, am+1, . . .] : m ≥ 1},

which is the closure of the set composed of the iterates of {α} under the
Gauss transformation. Then, Theorem 20 asserts that the mixed Littlewood
conjecture holds for every irrational real number α such that Adh(α) contains
a quadratic number.

In the case of the p-adic Littlewood conjecture, Badziahin [4] established a
common extension to Corollary 18 and Theorem 20.

Theorem 21. — Let α be an irrational real number. If the set Adh(α)
contains a real number α′ satisfying

lim
n→+∞

p(n, α′)− n < +∞,

then
inf
q≥1

q · ||qα|| · |q|p = 0

holds for every prime number p.

Badziahin’s paper [4] contains further new results, which show that the
continued fraction expansion, viewed as an infinite word, of a putative coun-
terexample to the p-adic Littlewood conjecture must satisfy various strong
combinatorial properties.

Metric considerations in the same spirit as in Gallagher’s paper [19] can be
found in [11, 7]. We state below Theorem 1 from [11].
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Theorem 22. — Let p1, . . . , pk be distinct prime numbers and let ψ : Z≥1 →
R be a non-negative decreasing function. Then, for almost every real number
α the inequality

‖qα‖ · |q|p1 · · · |q|pk ≤ ψ(q)
has infinitely (resp. finitely) many integer solutions q if the series∑

q≥1
(log q)kψ(q)

diverges (resp. converges). In particular, for almost all real numbers α, we have

inf
q≥2

q · (log q)2 · ‖qα‖ · |q|p = 0,

for every prime number p.

It is proved in [12] that the set of real numbers α in Bad such that, for
every prime number p, we have

inf
q≥2

q · (log q)2 · ‖qα‖ · |q|p > 0

has full Hausdorff dimension. This was considerably improved by Badziahin
and Velani [6], by means of a subtle Cantor-type construction.

Theorem 23. — For every sequence D of integers greater than or equal to 2,
the set of real numbers α such that

inf
q≥3

q · log q · log log q · ‖qα‖ · |q|D > 0

has full Hausdorff dimension. Moreover, if D denotes the sequence (22
n
)n≥1,

then the set of real numbers α such that

inf
q≥16

q · log log q · log log log q · ‖qα‖ · |q|D > 0

has full Hausdorff dimension.

Theorem 23 was proved shortly before Theorem 7.

3. Proof of Theorem 17

Without any loss of generality, we consider real numbers in (0, 1). We as-
sociate to every real irrational number α := [0; a1, a2, . . .] the infinite word
a := a1a2 . . . formed by the sequence of its partial quotients. Set

p−1 = q0 = 1, p0 = q−1 = 0,

and
pn
qn

= [0; a1, . . . , an], for n ≥ 1.
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By the theory of continued fractions, we know that
qn
qn−1

= [an; an−1, . . . , a1].

This is one of the key tools of our proof.
For simplicity, we establish Theorem 17 only in the case m = 0.
Assume that the infinite word a1a2 . . . is recurrent. Then, there exists an

increasing sequence of positive integers (nj)j≥1 such that

a1a2 . . . anj is a suffix of a1a2 . . . anj+1 , for j ≥ 1.

Said differently, there are finite words V1, V2, . . . such that

a1a2 . . . anj+1 = Vja1a2 . . . anj , for j ≥ 1.

Actually, these properties are equivalent.
Let ` ≥ 2 be an integer. Let k ≥ `2 + 1 be an integer. By Dirichlet’s

Schubfachprinzip, there exist integers i, j with 1 ≤ i < j ≤ k such that

qni ≡ qnj (mod `), qni−1 ≡ qnj−1 (mod `)

and j is minimal with this property.
Setting

Q := |qniqnj−1 − qni−1qnj |,
we observe that

` divides Q (3.1)

and that
qni−1
qni

= [0; ani , ani−1, . . . , a1]

is a convergent of
qnj−1

qnj

= [0; anj , anj−1, . . . , a1].

Consequently, we get

0 < Q = qniqnj

∣∣∣qnj−1

qnj

− qni−1
qni

∣∣∣
≤ qniqnjq

−2
ni

= q−1ni
qnj .

Since
||Qα|| ≤ 2qniq

−1
nj
,

we finally obtain
Q · ||Qα|| ≤ 2. (3.2)

It then follows from (3.1) and (3.2) that

Q · ||Qα|| · |Q|` ≤ 2`−1,

where |Q|` is equal to `−a if `a divides Q but `a+1 does not. Since ` is arbitrary,
this proves Theorem 17 when m = 0.
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Exactly the same idea works for m ≥ 1 and there is no extra difficulty, just
a little more care is needed in the various estimates.

4. Inhomogeneous approximation

The Littlewood conjecture and its p-adic analogue can be extended in a
natural way to inhomogeneous approximation.

Problem 24. — Let α, β be real numbers such that 1, α, β are linearly inde-
pendent over the rationals. Is it true that, for all real numbers α0, β0, we have

lim inf
q→+∞

q · ‖qα− α0‖ · ‖qβ − β0‖ = 0?

The assumption that 1, α, β are linearly independent over the rationals is
clearly necessary.

Shapira [33] established that the answer to Problem 24 is positive for almost
all pairs (α, β), including all pairs (α, β) of cubic real numbers in a same cubic
field.

Theorem 25. — Almost every pair (α, β) of real numbers satisfies

lim inf
q→+∞

q · ‖qα− α0‖ · ‖qβ − β0‖ = 0, (4.1)

for all real numbers α0, β0. Moreover, if 1, α, β forms a basis of a real cubic
field, then (4.1) holds for all real numbers α0, β0.

Gorodnik and Vishe [20] established recently a quantitative version of Theo-
rem 25.

Theorem 26. — There exists a positive constant c such that almost every pair
(α, β) of real numbers satisfies

lim inf
q→+∞

q · (log log log log log q)c · ‖qα− α0‖ · ‖qβ − β0‖ = 0, (4.2)

for all real numbers α0, β0. Moreover, if 1, α, β forms a basis of a real cubic
field, then (4.2) holds for all real numbers α0, β0.

We highlight the following problem, which can be viewed as the p-adic ana-
logue of Problem 24.

Problem 27. — Let p be a prime number. Let α be an irrational real number.
Is it true that, for every integer q0 and every irrational α0, we have

lim inf
q→+∞

q · ‖qα− α0‖ · |q − q0|p = 0? (4.3)
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Examples of real numbers α for which (4.3) holds with α0 = 0 are given in
[10]. For metrical results related to Problem 27, see [22].

Gorodnik and Vishe [20] proved the p-adic analogue of their Theorem 26.

Theorem 28. — Let p be a prime number. There exists a positive constant c
such that almost every real number α satisfies

lim inf
q→+∞

q · (log log log log log q)c · ‖qα− α0‖ · |q − q0|p = 0, (4.4)

for every real number α0 and every integer q0. Moreover, every quadratic real
number α satisfies (4.4) for every real number α0 and every integer q0.

Haynes, Jensen and Kristensen [22] have obtained several metrical results
related to the inhomogeneous Littlewood conjecture and its p-adic analogue.
One of their results is the following theorem.

Theorem 29. — Let ε be a positive real number. Let (αi)i≥1 be a countable
sequence of badly approximable numbers. There exists a subset G of Bad with
full Hausdorff dimension such that, for every β in G, every i ≥ 1 and every
real number β0, there exist arbitrarily large integers q satisfying

q · (log q)1/2−ε · ‖qαi‖ · ‖qβ − β0‖ ≤ 1.

In view of Theorem 11, we may ask whether, for some integer d ≥ 3, we
have

inf
q≥1

q · ‖qα1‖ · · · ‖qαd‖ = 0,

for all badly approximable real numbers α1, . . . , αd. Except the following result
of Peck [30], nothing more is known on this question than on the Littlewood
conjecture.

Theorem 30. — Let d ≥ 2 be an integer and 1, α1, . . . , αd be a basis of a real
number field of degree d+ 1. Then, we have

lim inf
q→+∞

q · (log q) · ‖qα1‖ · · · ‖qαd‖ < +∞,

thus, in particular,
inf
q≥1

q · ‖qα1‖ · · · ‖qαd‖ = 0.

We do not know whether the algebraic numbers α1, . . . , αd in the statement
of Theorem 30 are badly approximable. Theorem 30 extends and improves
the result of Cassels and Swinnerton-Dyer [14] mentioned in Section 1. The
second statements of Theorem 25 and of Theorem 26 can be viewed as inho-
mogeneous analogues of Theorem 30 when d = 2. This motivates the following
open problem.
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Problem 31. — Let d ≥ 3 be an integer and 1, α1, . . . , αd be a basis of a real
number field of degree d+ 1. Is it true that

lim inf
q→+∞

q · ‖qα1 − α′1‖ · · · ‖qαd − α′d‖ = 0

holds for all real numbers α′1, . . . , α
′
d ?
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