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1. Introduction

Mabhler [7], in 1932, and Koksma [6], in 1939, introduced two related measures of
the degree of approximation of a complex transcendental number £ by algebraic numbers.
Following Mahler [7], for any integer n > 1, we denote by w,(§) the supremum of the
exponents w for which

0 <[P <H(P) ™

has infinitely many solutions in integer polynomials P(X) of degree at most n. Here, H(P)
stands for the naive height of the polynomial P(X), that is, the maximum of the absolute
values of its coefficients. Following Koksma [6], for any integer n > 1, we denote by w (&)
the supremum of the exponents w for which

0<|¢—al <H(a) ™!

has infinitely many solutions in complex algebraic numbers « of degree at most n. Here,
H(a) stands for the naive height of «, that is, the naive height of its minimal defining
polynomial over Z. Clearly, the functions w; and wj coincide.

For any integer n > 2 and any complex transcendental number ¢ we have

wp(§) < wn(§) Swp(§) +n—1. (1)

The first inequality in (1) is easy (see e.g. [4, Section 3.4]), and the second one is due to
Wirsing [11]. Furthermore, Sprindzuk [10] established that w,(§) = w}(§) = (n — 1)/2
holds for all » > 1 and almost all £ (in the sense of the Lebesgue measure on the complex
plane). This raises the question whether there exist complex numbers £ such that w} (§) <
wy (€) for some integer n > 2. In 1976, R. C. Baker [1] gave a positive answer to this
problem by proving that for any integer n > 2 the function w,, —w;, can take any value in
the interval [0, (n —1)/n]. This has been subsequently improved upon by Bugeaud [2], who
showed that, for any integer n > 3, the set of values taken by the function w,, —w; contains
the interval [0,n/4]. Like Baker’s, his approach originates in two papers by Schmidt [8, 9],
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where the existence of T-numbers is established (these are transcendental numbers £ for
which limsup,,_,, ., w,(§)/n = +00 and w,(§) is finite for any n > 1). The main novelty
introduced in [2] is the use in the inductive construction of integer polynomials having two
zeros very close to each other.

The above quoted results from [1] and [2] have been obtained by constructing suitable
real numbers £ for which w, (§) and w}(§) differ. In the present paper, we are mainly
interested in the approximation of complex non-real transcendental numbers £. In this
case, (1) can be replaced by the sharper inequalities

n—1

wn (§) < wa(€) < wp(€) + ——, (2)

see [11] or Section 9.1 of [4]. Furthermore, we have w,(§) = w; () for 1 < n < 3. Now,
we may ask whether there are complex non-real numbers £ such that w}(§) < wy (&) for
some integer n > 4. A positive answer has been given by Baker [1] when n is even, but
his method does not seem to extend to the case of odd n. In the present paper, we show
that the approach followed in [2] can be adapted to prove, for any odd integer n > 5,
the existence of complex non-real transcendental numbers ¢ with w}(§) < w,(£). This
confirms a guess made at the end of [2]. Our main tool is the construction of families of
irreducible integer polynomials of odd degree having two complex non-real roots very close
to each other.

We further show how to use the integer polynomials introduced in [5] to improve upon
some of the results established in [2].

2. Results

We begin by pointing out a direct consequence of our main result, given in Theorem
2 below.

Theorem 1. Let n > 4 be an integer. Then, there exist complex non-real numbers & such
that w} (&) < wy(§).

For even values of n, Theorem 1 is due to Baker [1]. However, his method does not
seem to extend (at least straightforwardly) to the case of odd values of n.

Theorem 1 is an immediate consequence of [1] and Theorem 2 below, which asserts
the existence of complex non-real numbers with special properties.

Theorem 2. Let n > 5 be an odd integer and set F(n) = (5n° + 5n% + 5n — 3)/2. Let
w, and w; be real numbers such that

1 5)
Wit s Swn Swi+ T wa > F(n), (n=5,7),
wi4+1——<w <w*+n—+5 wy > F(n), (n=9) ?
n DL R T B LT

Then there exist complex non-real numbers £ such that

wy (&) =w,, and wp(§) = wy,.
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The main tool for establishing Theorem 2 is the construction of integer polynomials
of odd degree having two complex non-real roots very close to each other, and not close
to the real axis (thus, two pairs of complex non-real roots). Then, denoting by -; one of
these roots, we construct £ as the limit of a suitable sequence &; = (¢; +7;)/g;j, where the
c;’s and the g;’s are positive integers tending to infinity. To ensure that ¢; is sufficiently
far away from the real axis, we have to choose v; with a strong dependence on g;. The
integer polynomials we are using are the polynomials

Pras(X) = X(X? = 2X + 62+ 1) "7 4 2(X? - 2a(a + 1) X + 20+ 1+ + %)’

defined in Lemma 1 below, which have two roots very close to 1 4+ ib 4+ a~!. They have
been constructed by suitably modifying the polynomials X™ — 2(aX — 1)? used in [2]. As
far as we know, no example of integer polynomials with two complex non-real roots very
close to each other appeared previously in the literature.

A result similar to Theorem 2 can be proved for even integers n > 6 by using in the
inductive construction the polynomials

(X2 —2X + 02+ 1)"? +2(a®X2 — 2a(a+ 1)X + 2a + 1+ a® + a2?)°,

instead of the polynomials P, ,(X). However, a slightly sharper result follows by com-
bining ideas from [1], [2] and results from [5], see Theorem 4 below.

We take the opportunity of the present paper to point out how the results from [2] can
be improved by using families of polynomials introduced in [5], where Theorem A below
is established.

Theorem A. Let n > 6 and a be integers with n even. Set
Pho(X): = (X"? —aX +1)? = 2X" 2 (aX — 1)

If a is large enough, then the polynomial Pnﬁa(X ) is irreducible and has two real roots in

the disc of center a ' + a2 and of radius 3a ™.

Using Theorem A instead of Lemma 3 from [2], it is possible to improve Theorem 1
from [2] as follows.

Theorem 3. Let n > 6 be an even integer. Let A be in [1 — 1/n,n/2). Set p :=

(nA—n+1)/(n—2A) and G(n) =n(n+1)(n+2u) + 3n — 1. Let w,, be a real number
with w,, > G(n). Then there exist real numbers & such that

wp(§) =w, and w,(&) =w! (&) + A.

The proof of Theorem 3 follows exactly the same lines as that of Theorem 3 from
[2] combined with Section 6 of that paper. However, we work with algebraic numbers ~;
having large heights, thus we have to modify the lower bound given in inequality (6) from
[2]. This is the reason why G(n) in Theorem 3 above is much larger than F(n) occurring
in Theorem 1 from [2].

The following corollary is an immediate consequence of our Theorem 3 and Theorem
1 from [1].



Corollary 1. For any even integer n > 6, the set of values taken by the function w,, —w;,
contains the interval [0,1/2).

Using similar ideas as in [1], it is easy to adapt the proof of [2] to construct complex
non-real numbers ¢ for which w,, (§) and w}; (§) differ for some even integer n > 6. Indeed,
we construct £ as a limit of algebraic numbers of degree n of the form &; = (¢;+id; +7;)/9;,
where 2 = —1, the c¢j’s, d;’s and g;’s are positive integers and the v;’s are real algebraic
numbers of degree n/2. As in [2], we can take for the ~;’s roots of the polynomials
Xn/2 —2(aX —1)? or X"/? — 24™/2, for a suitable positive integer a. To improve upon
the results obtained in this way when n is divisible by 4 (as Theorem 3 above improves
Theorem 1 from [2]), we can take for the 7;’s roots of the polynomials P, /2,a(X). Baker
[1] established that, for any even integer n > 4, the set of values taken by the function
wy, — w on complex non-real numbers includes the interval [0, (n — 2)/(2n)]. Proceeding
as described above, we improve upon Baker’s result for n > 6.

Theorem 4. For any even integer n > 6, the set of values taken by the function w, —w;,

on complex non-real numbers contains the interval [0,n/16|. If, moreover, n is divisible by
4, then this set contains the interval [0,n/8].

Theorems 2 to 4 show that inequalities (1) and (2) are close to be best possible.
However, we are unable to solve completely the following question.

Problem. Let n > 2 be an integer, and let A be in [0,n — 1|. Does there exist a real
number £ with w,(§) = w}(§) + A? Let n > 4 be an integer, and let A be in [0, (n—1)/2].
Does there exist a complex non-real number & with w, (&) = w (&) + A?

The above Problem has been (nearly completely) solved for n = 2 and n = 3. Namely,
it is established in [3] that the set of values taken by the function wy — w3 (resp. ws —ws3)
contains the half-open interval [0,1) (resp. [0, 2)).

Presumably, it is possible to extend the range of values in (3) and to prove that, when
n > 6 is congruent to 2 modulo 4, the set of values taken by w,, —w; on complex non-real
numbers include the interval [0, n/8]. Indeed, by a suitable modification of the polynomials
P, o(X) defined in Theorem A above, we can construct families of integer polynomials of
even degree having two complex non-real roots very close to each other, even closer than
in Lemma 1 below. However, we failed to prove that these polynomials are irreducible.

It is apparent from [1, 2] and the present work that Schmidt’s construction offers
much flexibility to confirm the existence of transcendental numbers with special properties
of approximation. In this respect, there remain many interesting unanswered problems,
including the following one. Recall that, for almost all real numbers &, the quality of
approximation to £ by algebraic numbers of degree at most n is the same as the quality of
approximation to £ by algebraic integers of degree at most n+ 1. Is it possible to construct
real numbers which are strictly better approximable by algebraic integers of degree n + 1
than by algebraic numbers of degree at most n ?

The sequel of the paper is organized as follows. In Section 3, we establish the key
lemma. Afterwards, in Section 4, we formulate Theorem 5. Its proof is given in the same
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Section. In Section 5 we derive Theorem 2 from Theorem 5. Finally, Section 6 is devoted
to the proof of Theorem 3, whereas Theorem 4 is established in Section 7.

3. An auxiliary result

The key ingredient for the proof of Theorem 2 is the following lemma, which asserts
the existence of irreducible, monic integer polynomials having two (pairs of) complex roots
very close to each other.

Lemma 1. Let n > 5 be an odd integer. Let a and b be positive integers with a > b/10
and b odd. If a is sufficiently large, then the polynomial
Ppan(X) = X(X2—2X + 02+ 1)" 2 £ 2(a2X? - 2a(a + 1)X + 20 + 1 + a2 + a%b?)”

is irreducible and has two complex non-real roots very close to each other, namely

VI+ib
2v/2

T (n,a,b):=14+ib+a ! + (1 +44)(n=D/2=(dD/4p(n=5)/4 4 o+ (4, b)

and

v1+1b
2v/2

where [T (n, a,b)|, |e™ (n,a,b)| < c1(n) a=(+)/4p(n=5)/4 for some constant ¢, (n), depend-
ing only on n. Furthermore, we have

67 (n,a,b) :=1+ib+a"t — (14 4)(n=D/2 q=(FD/4 p(n=5)/4 4 = (p_q, b),

‘P’rlt,a,b(5+(n, a,b))| = o (n—9)/4 p(n+5)/4 @

Proof : Since b is odd, the irreducibility of P, 4 (X ) follows from the Eisenstein criterion
applied with the prime number 2. Then, we study the function z — P, 4 (1 +ib+a ' +x)
in a neighbourhood of the origin and we use the inequality a > b/10 to show that P, , (X)
has two roots which can be expressed as stated above. The estimate (4) is a straightforward
calculation. O

Actually, Lemma 1 holds under a slightly weaker condition than a > b/10, namely it is
enough to assume that a > co(n)b™=3)/(+3)  for a suitable positive constant co(n). Taking
this into consideration yields a (very) slight improvement of Theorem 2. However, to avoid
additional technical difficulties, we choose to keep the weaker assumption a > b/10.

We direct the reader to our previous work [2] for the other auxiliary results used in
the proof of Theorem 2.

4. The inductive construction

Theorem 5 below gives an explicit inductive construction of sequences (;);>1 of com-
plex non-real algebraic numbers of odd degree n. It will be proved in Section 5 that such
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sequences converge to complex non-real numbers having the property stated in Theorem
2. We use in Theorem 5 the same notation as in Lemma 1, namely we denote by 67 (n, a, b)
the root of the polynomial P, 4 (X ) defined in this lemma.

For any real numbers a, b, ¢, d with a < b and ¢ < d, the set of complex points

{z+iy:a<z<bcec<y<d}

will often be called the rectangle (a,b) x (¢, d) and will be denoted by (a,b) x (¢, d).
The norm of an algebraic number means the product of its conjugates over Q.

Theorem 5. Let n > 5 be an odd integer. Let u, v be real numbers with 1 < u<n-—1
and v > 5. Set H(n) = (5n + 5n* + 3n + 1)/2 and let x > H(n) be a real number.
Then, there exist a positive real number \ < 1/3, prime numbers g; > 11, go, ..., positive
integers ¢y, co,..., and positive even integers di,ds, ... such that the following conditions
are satisfied. Writing ; := % (n,[g}], 9; + d;) for j =1,2,..., we have

(I;) g; does not divide the norm of c¢; + 7; (7 >1).
(I11) §1=(c1+m)/91 € (1,2) x (5,6).
(11;) & = (¢; +74)/g9; belongs to the rectangle

1 _, 5 _, 1 _, 5 _,
Ij—l = (?Re fj_l + §gj_1, Re £j_1 + ggj_l) X (%mﬁj_l + igj_l, Sm fj_l + ggj_l).

(IIIl) |§1 — O[| 2 2)\H(Oé)_x

for any algebraic number o # &; of degree < n.

(I11;) §; —al > AH(a) X

for any algebraic number o ¢ {£1,...,§;} of degree <n (j > 2).

Observe that, under the assumption of Theorem 5, we have g; + d; < 10[95-‘ ] and
g; +d; is odd for any j > 1. Thus, we can indeed apply the results established in Lemma
1. Furthermore, setting s = 4n, we check that there exists a positive constant cz(n) such
that

H(v;) < es(n) g5, for any j > 1. (5)

Since we will also deal in the present work with other families of algebraic numbers playing
the same role as the «;’s, it is convenient to introduce the parameter s, see Section 6 and
the remark at the end of the present section.
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To simplify the notation, in what follows we denote by a a complex algebraic number
of degree less than or equal to n. By the definitions of H(n) and of s, there exists a positive
real number ¢ such that

2x > n(n+1)(n+s) +3n + 1+ 5n’se. (6)

In order to prove Theorem 5, we add three extra conditions (IV}), (V;) and (VI;),
which should be satisfied by the numbers &;. We denote by Leb the Lebesgue measure on
the complex plane.

Let J; denote the subset of I; consisting of the complex numbers z = z + iy € I;
satisfying

max{|z — Rea|, |y — Smal} > 22X H(a) X

for any algebraic number « of degree < n, distinct from &;,...,&;, 2 and of height H(«)
satisfying
H(a) > (Ag))'/x.

The supplementary conditions are the following.

(1Vj) §edi-r (122)
(V;) If Hla) < g?/(n+1+€), then we have [§; —a| > 1/g; (j >1).
(VI;) The measure of J; satisfies Leb(J;) > Leb(1;)/2 (j > 1).

We construct the sequences ¢y, ca, ..., di,do,..., g1,92,... by induction. At the j-th
stage, there are two distinct steps. Step (A,) consists in building an algebraic number

¢+

=
J g

of degree n satisfying conditions (I;) to (V;). In step (Bj), we show that the number &;
constructed in (A;) satisfies (V' I;) as well, provided that g; is chosen large enough in terms
of

n,pu, v, x,¢, )‘5515"'76]'—1' (7)

The symbols o, > and < used throughout Steps (A4,) and (B;) mean that the numerical
implicit constants depend (at most) on the quantities (7). Furthermore, the symbol o
implies ‘as g; tends to infinity’.

Step (A;) is rather easy. Let g; > max{11,n} be a prime number. There are > g3
numbers §; = (¢1 + 71)/¢1 in the rectangle (1,2) x (5,6), since for any fixed d; there
are > g1 suitable choices for ¢;. Observe that condition (I;) is satisfied if, and only if,
g1 does not divide P(—cy), where P(X) denotes the minimal defining polynomial of ~;.
Thus, by Lemma 5 from [2], there are > g7 numbers & = (c1 +71)/g1 in the rectangle
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(1,2) x (5,6) that satisfy condition (I;). These > g7 numbers have mutual distances at
least g; ! and, since there are only 0(g?) algebraic numbers « of degree at most n satisfying

H(a) < gf/(n+1+6), one can choose &; such that (V7) is satisfied. Furthermore, we point
out that there are > ¢? suitable choices for the pair (ci,d;), where the constant implicit
in > depends only on n. Further, by Lemma 2 from [2], we have

&1 — o] > 2AH(a) ™",

with A = (n +1)72(*+1D H(¢&;) /2, for any algebraic number a # &; of degree at most 7.
Thus (I1), (II), (II1;) and (V}) are satisfied.

Let 7 > 2 be an integer and assume that ci,...,cj—1, di,...,dj—1, g1,...,9;—1 have
been constructed. Step (A;) is much harder to verify, since we have no control on the set
Jj—1. Thus, it seems difficult to check that the condition (/V}) holds. To overcome this
problem, we follow Schmidt’s argument [9], also used by Baker [1]. We set &; = (¢;+7;)/9;
for some positive integers c¢;, d; (recall that the definition of «y; requires an integer d;) and
g; > 8g;—1 and we introduce the set JJ’-?1 formed by the complex numbers z = z+iy € I; 4
satisfying

max{|zx — Rea|, |y — Smal} > 2 AH(a)™X

for any algebraic number a of degree < n, distinct from &i,...,¢;, 2, and whose height
H(a) satisfies the inequalities

(AgZ_)YX < H(a) < (ca(n) gf ") O (8)

for a suitable constant c4(n) which will be defined just after inequality (13). Since, by (6),
we have

x—n>nn+1)(n+s)/2, 9)

the exponent of g; in the right member of (8) is strictly less than 2/(n + 1). Thus, there
are o(g;) algebraic numbers o’s satisfying (8), and we observe that, unlike for .J; 1, the
complement in I;_; of the set J]’-f1 is a finite union of very small rectangles, and, more
precisely, a union of o(gf-) rectangles.

We will prove that for g; large enough we have > gj2- choices for the pair (¢;,d;) in
order that conditions (I;) to (Vj) are fulfilled. We stress that if £ = (¢ ++})/g; for some
positive integers ¢; and d’;, then we have

c —c¢j d. —d;
g—g="—"Trid 210", (10)
g; 9j

by Lemma 1.
Let o be an algebraic number of degree < n. Since g; + d; < 10g;, we infer from (5)
and Lemmas 2 and 4 from [2] that there exist positive constants c5(n) and cg(n) such that

€ —a] > es(n) H(E) " H(a) ™ = co(n) g; """ H(a) ™ (11)

J
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In particular, using that 2v/2)\ < 1, we have
& — 0] = 2V2\H(a) X (12)

as soon as
H(a)" > es(n)~ g7, (13)
We take c4(n) = cg(n)~ 1.

By (VI;-1) and J;_; D Jj_1, we have Leb(J;_;) > 1. Since the complement in I;_;
of the set Jj’-_1 is the union of o(gjz-) rectangles, if g; is a sufficiently large prime number,
then, using (10) and Lemma 5 from [2] as in step (A;), we get that there exist > g7
numbers §; = (¢; +7;)/g; in J;_; such that (I;) is satisfied. Such §;’s also belong to J;_1,
since (13) implies (12), and condition (IV}) is satisfied.

Thus, we are left with > gj2- suitable algebraic numbers &;, mutually distant by at
least g;l, as follows from (10). Only o(gj2-) algebraic numbers « of degree at most n satisfy

H(a) < g/ 1), (14)

thus one can choose &; in such a way that [{; — «| > 1/g; for the numbers « satisfying
(14). Consequently, there are > gj2- algebraic numbers &; satisfying (I;), (I1;), (IV;) and

(V5)-
To prove that such a ; also satisfies (I11;), we argue exactly as in [2]. We omit the
details. Thus, the proof of step (A;) is completed.

Let j > 1 be an integer. For the proof of step (B;), we first establish that if g; is large
enough and if z lies in I;, then we have
|z —a| > 2V2\H(a)™X (15)
for any algebraic number o # £; such that

(gf)'/X < H(a) < g/, (16)

Let then a # £; be an algebraic number of degree < n satisfying (16) and let z = = + iy
be in I;, that is, such that

1 5)

—g. "<z —Re& < <-g; "

2 J 8 J (17)

1 —v o~ 5 —v

39 <y—Sm¢; < 39
If g;-'/(xf(nﬂ)/%s) < g?/("ﬂ%), then H(a) < gjg-/("HH) and it follows from (V;), (16)
and (17) that

|z —al > [ —al = ¢ — 2]

18
> g7 — 7" >2V2g;" > 2V2AH(a) . (18)
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Otherwise, we have
g;{/(x—(nJrl)/?—e) > g?/(n+1+€)’ (19)

and, by (11), we get
|z —al > [§ —af =& — 2|
> co(n) g; """ H(o) ™" — g7 (20)
> cg(n) g; """ H(a) /2,

To check the last inequality, we have to verify that
29, < c(n) g; """V H(@) ™ (21)
In view of (16), inequality (21) is true as soon as

2/ —TED/27) ) g o)

which, by (19), holds for g; large enough when

n nn+1+e)(n+s)
N O Y5 S R R (22)

in particular when x satisfies (6).
Moreover, we have

co(n) g; """V H(a) " > 4v2AH(a) . (23)
Indeed, by (16), A < 1 and (19), we get

H(a)X™™ > ()\g;/)(x—n)/x
> )\g](x—n)(2x—n—1—2€)/(xn+x+xs)

> 4V2X cg(n) L gl ),
since we infer from (6) that
(x—n)2x—n—-1—-2¢)>xn(n+1+¢)(n+s). (24)
Combining (20) and (23), we have checked that we have
|z —a| > 2V20H(a) X,

when (19) holds; hence, by (18), (15) is true if o # &; satisfies (16). Consequently, if g, is
large enough, then the complement J7 of J; in I; is contained in the union of the rectangles

(Rea — 2AH(a) ™%, Rea + 2AH(a) 7X) x (Sma — 2AH(a) ™%, Sma + 2XH(a) %),
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where a runs over the set of algebraic numbers of degree < n and with height greater than

g;/(x_(nﬂ)/Q_e). The Lebesgue measure of J¢ is then

< Z H"2X = 0(g;*") = o(Leb(I;)).

J

H>g?/ O (ntD)/2=0)

Thus, we conclude that we can find g; large enough such that Leb(J;) > Leb(Z;)/2. This
completes step (B;) as well as the proof of Theorem 5. |

Remark. Observe that the size of the function n — H(n) occurring in the statement
of Theorem 5 is implied by the conditions (9), (22), and (24), the most constraining one
being (22).

Likewise, we can rework the proof of Theorem 3 from [2] using the upper bound
H(7;) < e3(n) gj. Then, modifying accordingly the inequalities displayed on p. 97, 1.-5, on
p.99, 1.-4, and on p.100, 1.5 from [2], we see that y has to satisfy simultaneously

x—n>nn+1)(n+s),
n<x—-n—1—ec—nn+s)(n+1+e),
(x—n)(x—n—1—¢)>xn(n+s)(n+1+¢).

The most constraining inequality is the second one, which gives
x>n(n+s)(n+1)+2n+1 (25)

when we omit €. This observation will be used in Section 6.
5. Completion of the proof of Theorem 2

For n=5o0r 7, let A be in [7/16,(n + 5)/16] and set

n+16A -7

e L T16A+ T

Observe that p is in [I,n — 1]. For n > 9, let A be in [1 —9/(2n), (n + 5)/16]. If
Ae[1-9/(2n),(n—1)/16], then we set

_4nA—3n—|—9

H n—9 )
and we observe that p is in [1,(n —4)/4]. If A € [(n — 1)/16, (n + 5)/16], then we set

n+16A -7
n—16A+7’

and we observe that p is in [(n — 4)/4,n — 1]. Let w, > (5n3 + 5n? 4+ 5n — 3)/2 and
set w) = w, —A. Set v = n(w) + 1) and x = w, —n + 2, in such a way that x >
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(5n3 4+ 5n? 4+ 3n +1)/2. The sequence (£;);>1 obtained by applying Theorem 5 with these
parameters is a Cauchy sequence, thus it converges towards a complex number denoted by
€. Our choice for the 7;’s implies that £ is non-real.

We write A < B if there exists a constant c¢(n), depending only on n, such that
|A| < ¢(n)B, and we write A < B if we have both A < B and B < A.

By the definition of v;, the minimal defining polynomial of §; is

Qi(X) = (9;X — ¢) (95X — ¢5)* = 2g;X — ¢;) + (g5 +d)* +1) "%+
+2([0412 (05X — ) = 21g")([g5] + 1)(9;X — ¢;) + 2[g4] + 1+ [¢“) + [¢412 (g5 + d3)%)".

This polynomial is indeed irreducible and primitive by (I;) and the first statement of
Lemma 1.
Furthermore, for any j > 1 we have

97" /2<|§ =&l <2957,
and we deduce that
€ — & =< H(&) ™" =< H(g) (26)
Further, if a is of degree < n and is not equal to one of the ;’s, then we have

|§ - O[| > )\H(a)ix7

whence
€ —al > H(a)™"n ", (27)

since x < w} + 1, by (1). It follows from (26) and (27) that
w,(§) = w,.

It now remains for us to prove that wy,(§) = w,. Denote by &; = 81, Bj2,. .., Bjn the
roots of the polynomial @;(X). Observe that, for any k£ > 1, we have

c; + Ok
9j

Bjk =
for a suitable root d; of the polynomial Pn,[g;.*],gj+dj (X). By (26) and Lemma 1, we get
Qi@ =g7 16 =&~ T 1€~ Bl

2<k<n

<gr-16=&1- I 16— Bl
2<k<n
=gj- H(gj)_w:;_l ) ‘P'I{L./[g‘l;]7gj+dj (5+(n7 [g;'b]agj + d]))|

- H(gj)*w;ifl .gj(,"+9)/4fu(nf9)/4_
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Assume first that 1 < p < (n —4)/4. Then, we have H({;) = H(Q;) < g7, which yields
1Q;(6)] = H(Qj)—wii—1+(n+9)/(4n)—u(n—9)/(4n),

hence

3 9
wa() Zwy+ = -+ - = w4+, (28)

9
4 4n
by the definition of A. Assume now that (n
H(Q;) = 9;-1<M+1), which yields

—4)/4 < p <n—1. Then, we have H(;) =

7 n p—1
WO >wt = BTt LA, 29

by the definition of A. In order to show that the inequalities in (28) and (29) are indeed
equalities, we argue exactly as Baker [1] did (see also [2]). We omit the details. This
completes the proof of the theorem. O

6. Proof of Theorem 3

The proof of Theorem 3 follows step by step that of Theorem 1 from [2]. Instead of
working with the integer polynomials given in Lemma 3 from [2], we use Theorem A stated
in Section 2. Let n > 6 be an even integer. Let A be in [(n —1)/n,n/2) and set

- n(A-1)+1
Sy
We observe that p is in [0, +00). Keeping the notation from [2, Section 6], we take for v,
the root of .
Ppo(X) = (X"2 —aX +1)2 = 2X"" 2 (aX — 1)

nearest to a '+a ' ""/242y/2a"", where a = [g;‘] Then, the minimal defining polynomial
of & is

2 2

Qi(X) = ((g;X — ;)" —a(g; X —c;) +1)” = 2(g; X — ;)" 2 (a(g; X — ¢;) — 1)".

Observe further that
n+2
H(&;) = H(Q;) = gf ™. (30)

The inequality H(y;) < 29?_2 used in [2, page 98, line 3] does not hold anymore, thus
we have to modify accordingly inequality (3) from [2] (i.e., we have to assume that y is
sufficiently large) in order to be able to argue as in [2]. The only consequence is that the
fonction n — F(n) defined in Theorem 1 from [2] must be replaced by a larger one. By
the Remark at the end of Section 4, we have to take s = n + 2u in (25), thus, we have to
assume x > 2n(n + p)(n+ 1) + 2n+ 1.

13



We argue as in Section 6 from [2] and as in the above Section 5. Since

|P7/L,[g;‘](’)/])| = ain+27

we get
Q;(6)] =< g; H(Qj)_wn—lgj—u(n_g)'

By (30), this implies the lower estimate

(€) > R e
wn(§) = wy, +1+ "+ 2
By definition of u, we obtain
wn(§) = wy, + A (31)
We prove that there is equality in (31) exactly as in [1] or [2]. O

7. Proof of Theorem 4

Let n > 6 be an even integer. As in Theorem 2 of [1], the number ¢ is obtained as the
limit of a sequence of algebraic numbers of the form

Cj + idj +’)/j

£ =
J g]

where the «;’s are suitable real algebraic numbers of degree n/2 and the ¢;’s, d;’s and g;’s
satisfy g; < ¢; < 2g; and 5g; < d; < 6g;. We omit the details of the construction of the
&;’s, since it is very similar to that in Theorem 5 above. Set m = n/2. Let p, ¢/ and p” be

real numbers in [0, (m —2)/2], in [0, 1] and in [0, +00), respectively. Set a = [g}], a’ = [gé/]

and a” = [g} ”]. We choose for «; roots of the polynomials

A ~

Pro(X)=X"—2(aX — 1) Pro(X)=X"—2d™

or, when n is divisble by 4 (that is, when m is even),

Ppan(X) = (X™?2 —a"X +1)2 —2X™2(a"X — 1)2

We observe that the {;’s are of degree n and roots of polynomials of the form either
Pra(gjX —c¢j—idj) X P a(g;X —¢j+id;), or Prar (95X — ¢ —id;) X Py ar (9;X — ¢ +idy),

or P o (95X — ¢j —id;) X P av(9;X — ¢j + id;), whose heights are =< g™, =< ¢5™, and

= g?(m”“) , respectively. Furthermore, we have
d 2 ; 5 ; . m—pu(m—
@ (Pm,a(X - Zdj) X Pm,a(X + ”Ldj))(’}/j + 2dj) < 9; w 2)/2’
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d , - . . ' ' o
‘ dx (P idj) X Prn,o (X +1id;)) (75 +id;) | < g frm=y,
and .
; J 2 ) ; m—u'" (m—4
’ dx (Prm.ar (X = id;) X P o (X +id;))(v; +idy) | < g;" " ()

These estimates imply that, firstly, working with polynomials of the form Pm,a(ng —cj —
idj) X Pp,.q(9;X — ¢; +1d;), we construct a non-real complex number ¢ such that

m+1 m— 2

wn(§):w:§(§)+1—%+ﬂ'm-

Secondly, working with polynomials of the form P, 4/(9; X —cj—id;) X Py ar (9; X —c;+id;),
we construct a non-real complex number ¢ such that

wn€) = wh(€) +1- T T

2m 2m
Thirdly, working with polynomials of the form Py, o (g; X —cj—id;) X Ppy.ar(g; X —cj+id;),
we construct a non-real complex number & such that

m+1 ' (m —4)

wn(g) :w;kl(g)—{_l - 2(m+21u//) 2(m+2uu)'

Recalling that n = 2m and letting p, ¢/ and p” vary in their respectives ranges of values,
this proves that the set of values taken by the function w, — w;, contains the intervals

1 1 n 1 1
k—;iﬂ and {&i—ﬂ’

and, if n is divisible by 4, the interval

This completes the proof of Theorem 4. O
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