On a mixed Littlewood conjecture in fields of power series

Yann Buceaubp & Bernard de MATHAN

Abstract. In a recent paper, de Mathan and Teulié asked whether
liminf, .4+~ q-|lga|| - |¢|p = O holds for every badly approximable real
number « and every prime number p. After a survey of the known
results on this open problem, we study the analogous question in fields
of power series.

1. Introduction

A famous open problem in simultaneous Diophantine approximation is the Littlewood
conjecture [17]. It claims that, for every given pair («, 3) of real numbers, we have

inf ¢ flgall - llgll =0, (1.1)

where || - || denotes the distance to the nearest integer. The first significant contribution to
this question goes back to Cassels and Swinnerton-Dyer [8] who showed that (1.1) holds
when « and 3 belong to the same cubic field. Further explicit examples of pairs («, 3) of
real numbers satisfying (1.1) have been given in [18, 1]. Despite some recent remarkable
progress [21, 13| the Littlewood conjecture remains an open problem.

In analogy with (1.1), de Mathan and Teulié [20] proposed recently a ‘mixed Little-
wood conjecture’. For any prime number p, we normalize the usual p-adic value |- |, in
such a way that |p|, = p~ L.

De Mathan—Teulié conjecture. For every real number o and every prime number p,
we have

inf ¢ flgall - lglp = 0. (1.3)

Obviously, the above conjecture holds if « is rational or has unbounded partial quo-
tients. Thus, we only consider the case when « is an element of the set Badgr of badly
approximable real numbers, where

Badg = {a € R: 11r>1f1 q- |lgee|| > 0}
a>
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We briefly survey the main results from [20, 14, 6].
Next theorem, proved in [6], asserts that (1.3) holds for every pair («, p) provided that
the sequence of partial quotients of « is, in some sense, quasi-periodic.

Theorem BDM. Let a be in Badgr with continued fraction expansion
a = |ag;ay,as, .. .|

Let T > 1 be an integer and by, ...,byr be positive integers. If there exist two sequences
(mg)r>1 and (hg)g>1 of positive integers with (hy)r>1 being unbounded and

Ay +j+nT = bj, forevery j=1,...,T and every n =0,...,h; — 1,

then
inf o - . -
inf g~ flgall-lglp =0

for every prime number p.

An immediate consequence of Theorem BDM is that (1.3) holds for every prime p and
every quadratic number «, a result already proved in [20]. Further explicit examples of
pairs («, p) for which (1.3), and even the stronger inequality

lim inf ¢* - gl - |gl, <1 (1.6)
g—+00

holds can be found in [6].
Einsiedler and Kleinbock [14] established that the set of possible exceptions to the de
Mathan—Teulié conjecture is, from the metric point of view, very small.

Theorem EK1. Let p be a prime number. The set of real numbers o which do not satisfy
(1.3) has Hausdorff dimension zero.

Furthermore, Einsiedler and Kleinbock [14] showed that a slight modification of the
de Mathan—Teulié conjecture easily follows from a theorem of Furstenberg [15, 5].

Theorem EK2. Let p; and ps be distinct prime numbers. Then
inf g~ flqall-Iglp, - lalp, =0

holds for every real number «.

The purpose of the present note is to investigate the analogue of the de Mathan—Teulié
conjecture in fields of power series. Given an arbitrary field k and an indeterminate X,
we define a norm |- | on the field k((X 1)) by setting |0] = 0 and, for any non-zero power
series F = F(X) = Y72 f, X" with f_,, # 0, by setting |F| = 2™. We write ||F||
to denote the norm of the fractional part of F', that is, of the part of the series which
comprises only the negative powers of X. Let p be a monic, irreducible polynomial in

k[X] \ k. Let ¢ be an arbitrary polynomial in k[X]. If a denotes the largest non-negative
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integer such that p* divides ¢, we define the norm |- |, by |¢|, = |p|7%. In analogy with
(1.3), we ask whether

seicth o, 12l 1lg®1l - lalp = 0 (1.7)
holds for any given © in k((X~1)).

When the field k is infinite, a negative answer to this question has been obtained
by de Mathan and Teulié [20] for the polynomial p = X. They also proved that, if k is
finite, then (1.7) holds for every quadratic power series © and every monic, irreducible
polynomial p.

To our knowledge, these are the only known results on (1.7). In the present note,
we discuss the analogues of the above-mentioned statements in fields of power series. Our
main results are stated in Section 2 and proved in Sections 3 to 6. Furthermore, Section 7
is devoted to open questions related to the (real form of the) de Mathan—Teulié conjecture.

2. Results

Since (1.7) clearly holds as soon as © has unbounded partial quotients, we restrict
our attention in all what follows to power series © with bounded partial quotients, that is,
belonging to the set

Bad = {© ck((X~1): inf g > 0}.
{ (( ) e o) lql - 14O }

In particular, we always assume that

inf 2. g0 - > 0. 2.1
ut ol - 1a®l - lal, (2.1)

We stress that, in Sections 2 to 4, the letters p and ¢ denote non-zero elements of k[X].

De Mathan and Teulié [20], Théoreme 4.3, established that the analogue of their
conjecture does not hold in fields of power series when the field k is infinite. We extend
their result by showing that, in the same setting, the analogue of Theorem EK2 does not
hold neither.

Theorem 1. Let py,...,p, be distinct irreducible, monic, non-constant polynomials. If
the field k is infinite, then there exist power series © such that

lal - lg®1 - lalp, - -~ lalp, = 1/1X],  for all ¢ € k[X]\ {0}.

Our next result, obtained by means of the Folding Lemma (like Theorem 5 from
[6]), shows that there are power series © in Bad for which (2.1) cannot be replaced by
a stronger inequality. In particular, for any given non-constant polynomial p, it provides
us with explicit examples of power series satisfying the analogue of the de Mathan—Teulié
conjecture.



Theorem 2. For any irreducible, monic polynomial p in k[ X]\ k, there exist uncountably
many power series © in Bad such that

liminf |q|*- [|¢®] - [al, = 1/[p|", (2.2)
deg g——+o0

where h = 2 if k = F9, and h = 1 otherwise.

The proof of Theorem 2 is given in Section 4. If the characteristic of k is 2, then our
construction yields that the power series i>1 p~2'*1is in Bad and satisfies (2.2). This

power series is quadratic and it satisfies the equation ©2 + p© + 1 = 0.
Furthermore, for any finite field k, there exist quadratic power series with (2.2).

Theorem 3. Ifk is a finite field, then there are quadratic power series © such that

lim inf |q|2 1¢®] - l¢|x = 1/]X].
deg g—+oco

Theorem 3, established in Section 5, shows that the analogue of Ridout’s Theorem
[23] is far from being true in positive characteristic.

Davenport and Lewis [11] proved that the analogue of the Littlewood conjecture does
not hold in fields of power series when the ground field is infinite. We refer to [3] for further
results on the Littlewood conjecture in fields of power series. We only mention that, for
k = R, Baker [4] showed that

lal - lge"/X| - [[qe®/ || = 27 for all ¢ € R[X]\ {0},

a result subsequently extended by several authors [7, 9, 10, 16].
As for the de Mathan—Teulié conjecture, we have a similar explicit statement.

Theorem 4. If the field k is the real field, then

lal - lge X - lalx = 1/|X|,  for all g € R[X]\ {0}.

3. Proof of Theorem 1

We begin with an auxiliary lemma.

Lemma 1. Let © = >, a, X" be in k((X~')), where m > 1. We have
lal - [¢©]] = 1/|X],  for all ¢ € k[X]\ {0}, (3.1)

if, and only if, for all n > 1, the determinant

a a9 e Ay,
ao as . An+4+1

Hn(al,...,agn_l) = (32)
Qn  AGpy1 ... A2p—1
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IS non-zero.

For sake of completeness, we give below a proof of Lemma 1, although we could refer
to [20].
Proof. Condition (3.1) means that, for any positive integer n, the inequality

lgo] < |x]7 (3.3)
has no solution with ¢ being a non-zero polynomial of degree less than n. Writing ¢ as
g=x0+...+xp1 X",
we see that (3.3) holds if, and only if, the system
roap + T1Qp41 + ... F Ty 1004, 1 =0, 1<0<mn,

has a solution. Consequently, Condition (3.1) means that this system has no non-trivial
solution, that is, that its determinant is non-zero. This proves the lemma. O

Lemma 2. Let P be a set of non-zero polynomials in k[X] such that, for any positive
integer d, there exist only finitely many polynomials p € P of degree d. Then, there exists
© € k((X 1)) such that, for any p € P, the power series p© satisfies

lq| - lgp®| > 1/|X|, for all ¢ € k[X]\ {0}.

Proof. By successive applications of Lemma 1, we construct inductively aq,...,ay,,... in
k such that the power series

“+oo
0= Z a, X"
n=1

satisfies the conclusion of the lemma.
For a polynomial
p:b0—|—+bdXd

of degree d, let ¢1(p),...,cn(p),... be the elements of k defined by

+o0
PO a(p) X" ek[X]. (3.4)
h=1
Clearly,
d
cn(p) = Z apipbr, for h > 1.
k=0
We proceed by induction. Let n be a positive integer and assume that there exist aq,...,a,

such that, for every p € P and every positive integer m with
2m — 1+ degp < n,
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we have
Hm(cl(p)a ey Cmel(p)) 7£ 07

where H,, is given by (3.2). This is clearly the case for n = 1 as soon as we choose a; # 0
(the condition is empty if P does not contain a constant polynomial). To prove that the
assumption holds for the integer n + 1, we have to select a, 1 such that

Hy(e1(p)s - - -, c2m—-1(p)) # 0
for every p € P and every positive integer m such that
2m —1+degp=n+1,

the condition being already satisfied when 2m—14deg p < n since H,,(c1(p), ..., cam—1(p))
is then a polynomial in ai,...,a,. For each pair (m,p) composed of a positive integer
m and a polynomial p € P such that 2m — 1 + degp = n + 1, we see, by expanding
the determinant H,,(c1(p),...,cam—1(p)) along the last column, that, for m > 2, this
polynomial in aq, ..., a,41 is of the form

Hy(ci(p), -, cam—1(p)) = com—1(0)Hm-1(c1(p), - - ., com—3(p)) + R(a1,-..,an),

thus

Hpy(e1(p), .-y cam—-1(p)) = baans1Hm—_1(c1(p),-- ., cam—3(p)) + S(ay,...,a,),

where R and S are polynomials in aq,...,a,. If m =1, then d = n, and we simply have
d
Hl(Cl(p)) = Cl(p) = Zak+1bk = bdan+1 + bd_lan 4+ ...+ boal.
k=0

By induction, we already have

Hp—1(c1(p)s - - -5 cam—3(p)) # 0.

Consequently, to get
Hy(c1(),- -5 cam—1(p)) # 0
it is sufficient to choose
Gn+1 7£ )\m,p

where

\ _ S(al,---va’n)
m,p baH 1(c1(p),y ..., com 3(p))

if m > 2, and
bd,lan +...+ boCLl )
ba

)‘1,10 ==



But there are only finitely many pairs (m,p) composed of a positive integer m and a
polynomial p € P such that 2m — 1 + deg P = n + 1. Since the field k is infinite, we can
select a, 41 such that

An41 7é )\m,pv

for each of these pairs. To summarize, we have constructed © such that
H,(c1(p),...,cam-1(p)) #0, forallm>1and all p € P.
By (3.4) and Lemma 1, this shows that, for every p € P, the power series p© satisfies
gl g8l > 1/, for all g € k[X]\ {0}.

This completes the proof of the lemma. O

Proof of Theorem 1. We apply Lemma 2 with P being the set of polynomials of the form
pit ... pr, where m; > 0 for ¢ = 1,...,7. Consequently, for all non-negative integers
my,...,m,, we have

lq| - [lgpy™ . ..p7""O| > 1/|X]|, for all ¢ € k[X]\ {0},

that is,
lal - 14©1| - lalp, - - - lalp. = 1/|1X]|,  for all ¢ € k[X]\ {0}.

This completes the proof of Theorem 1. O

4. Proof of Theorem 2
Our proof rests on the Folding Lemma for continued fraction expansions of formal
power series (see Propositions 2 and 3 of [22]), recalled below.
Lemma F. If p,/q, = [0;a1,as,...,a,] with dega; > 1 for i = 1,...,n, then, for every

non constant polynomial t, we have

_1n
Pn o ( 2
an tay

= [G/O; A1,0A2,...,0n, ta —Qp, —Qn—1,..., —0a2, _al]-

Proof of Theorem 2. Let p be an irreducible, monic, non constant polynomial. Observe
that the continued fraction of 1/p reads

1
6 := - =1[0;p|.
p

Let (a;);>2 be a sequence of nonzero elements of k. By repeated applications of Lemma
F with ¢ = Ap, for suitable A € k*, we see that, for any j > 2, the continued fraction of

the rational function
a9 as a;
+ + ...+

9°—1
j-_g ]ﬁ W : p2j—1
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has all its partial quotients equal to p times an element of k*.
Set

By construction, the degree of every partial quotients of © is equal to the degree of p,
hence O is in Bad. Furthermore, it is easily checked that, for any j7 > 2, we have

p*'|-[Ip* 'Ol = 1.
Since |p|, = |p|™!, this implies that

lim inf |g|* - 4®]] - gl = 1/Ip]; (4.1)

as asserted.
Clearly, this gives uncountably many power series © with (4.1), unless k is the field
F5. In the latter case, to get uncountably many power series satisfying

lim inf |g|* - [|¢O] - |ql, = 1/[p|?,
q—+oo
we proceed as above, except that we use repeated applications of Lemma F with t = p

or t = p? (in such a way that ¢t = p? is taken infinitely often). Observe also that, if the
characteristic of k is 2, then the power series

1
@=ZF

j=1
satisfies (4.1) and the quadratic equation
©24+pO+1=0.
If k is a finite field of characteristic different from 2, then it is possible to prove that

any power series © as above is transcendental. The same conclusion follows from the
analogue of the Schmidt Subspace Theorem if k has characteristic zero. O

5. Further examples in positive characteristic

As noted after the statement of Theorem 2, Theorem 3 for finite fields of characteristic
2 has been established in the course of the proof of Theorem 2.

Throughout this section, p is an odd prime number and g = p° is a power of p. We
consider power series over the field k = F,,.



Lemma 3. Let a be in Fy,

and set © = (XLM)VQ with |© — 1| < 1/|X|. Then we have

o (X + a)(pn—l)/Q

— x|,
< | X|

Proof. Observe that

(X+a)(p"+1—1)/2 (X+a>(P"—1)/2

X X
(p"—1)/2 " (p—1)/2 (5-1)
B X +al® X +a\? P _q
X X

We infer from |2%| =1 and ged(p, (p— 1)/2) =1 that

X+a (p_l)/Q_l_X+a_1_ 1
X X X
which, combined with (5.1), gives
(p"F1-1)/2 (p"—1)/2
X+a B X+a 1
X X X

Thus, the sequence ((X +a)/X)®"~1/2 converges to a limit © such that |© — 1| < 1/|X]|
and ©2 = lim,, 4o ((X +a)/X)?" ! = X/(X + a). O

We point out a consequence of Lemma 3. We keep the assumption of that lemma.
Let a and b be distinct elements of F. The power series

De 1/2 De 1/2
= (b = _
© <X~|—a) and <X+b>

are algebraic of degree two, hence they are badly approximable by rational fractions.
Furthermore, 1, © and ® are linearly independent over F,(X). Indeed, ® does not belong

to Fy(©), since f(i‘; is not a square in F,(X). However, for every positive integer n, the

polynomial R, (X) = X®"~1/2 gatisfies

1
|Bn| - [[BnOl| = |Bn| - [| Bn®[| = 57,
RY

thus 1
2
R,|“ ||R,O|| - || Ry®|| = ——.



We further have ]
[Rulx - |Ral? - [|ReOIl =
X
i.e., the power series © satisfies (2.2).
We refer the reader to [24] for further similar results.

6. Proof of Theorem 4

Since .
1/X _ Lok
X =14+ ok
k>1
it is sufficient by Lemma 1 to prove that, for any positive integers k and n, the determinant

1/ k41! o 1k +n)
b [+ R kD)
Uk+n) 1k4n+1)! oo 1/(k+2n)

is non-zero. We do this by induction on n. Observe first that Dy is nonzero for every
positive integer k.

Let n and k be positive integers. Assume that D,_; ¢ is nonzero for every positive
integer /. Observe that

1
Dn = 5n )
T k). (k+2n) P
where
(k+n)...(k+1) (k+n)...(k+2) k+n 1
5 = (k+n+1)...(k+2) (k+n+1)...(k+3) ... k+n+1 1
(k+2n)...(k+n+1) (E+2n)...(k+n+2) ... k+2n 1
For j =n+1,...,2, we subtract the (7 — 1)th line from the jth line to get that
(k+n)...(k+1) (k+n)...(k+2) oo k4+n 1
5, = nk+n)...(k+2) (n—=1)(k+n)...(k+3) . 1 0
nk+2n—1)...(k+n+1) (n—-1)(k+2n—-1)...(k+n+2) ... 1 0

= (—1)“77,' X 5n—1,k+1 = (—1)“77,' X (]C + n)' .. (l{} + 2n — 1)' X Dn—l,k—l—l-

Since, by assumption, D,, 1 j+1 is nonzero, we have established that D, ;. is also nonzero.
This concludes the proof of the theorem.

7. Open questions

Throughout this section, p denotes a prime number. We begin with open problems
motivated by the (usual) de Mathan—Teulié conjecture, and then we continue with ques-
tions suggested by its analogue in fields of power series.

Theorem EK2 motivates the following problems.
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Problem 1. Let r > 2 be an integer and let py,...,p, be distinct prime numbers. Does
there exist a non-decreasing function ¢, : q — ¢,.(q) that tends to infinity with q and
satisfies

lim inf g - [|ga]| - |glp, -~ |glp, - €r(q) =0
g—+o0
for every real number o?
Dirichlet’s Theorem asserts that if a is a given real number, then, for any positive
integer @), there exists an integer ¢ satisfying

1<¢g<@Q and Q-llqall <g,

with ¢ = 1. This result holds true for a real number a with a constant ¢ strictly less than
1 if, and only if, a is badly approximable (see Davenport and Schmidt [12] for a precise
statement). In view of this result, we propose the following open question.

Problem 2. Let p be a prime number. Do there exist a real number o and a positive real
number ¢ such that, for any sufficiently large positive integer (), there exists an integer q
satisfying

1<¢<Q and Q-|lga|l-lgl, < Q7

If the latter statement does not hold, then characterize the real numbers « such that, for
any positive integer (), there exist an integer q satisfying

1<q¢<Q and Q-llqo|l-lalp <c

with some ¢ < 1.
Now, we turn to the power series case.
Problem 3. Does the analogue of Theorem EK2 hold for power series over finite fields?

Problem 4. Does the analogue of Theorem BDM hold for power series over an arbitrary

field?

As pointed out in [20], even particular cases of the analogue of the de Mathan—Teulié
conjecture over a finite field remain mysterious. For instance, we do not know whether,
for a prime power g > 4, there exists a sequence (ap)n>1 of elements of F, for which each
determinant

[079%% Am+1 e Am+n
a a ... Qa
A(m,n) = | Gt m mtnl (3:2)
am+n am—l—n—l—l e am+2n

1S non-zero.
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