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Abstract. We establish measures of non-quadraticity and transcen-
dence measures for real numbers whose sequence of partial quotients has
sublinear block complexity. The main new ingredient is an improvement
of Liouville’s inequality giving a lower bound for the distance between
two distinct quadratic real numbers. Furthermore, we discuss the gap
between Mahler’s exponent w2 and Koksma’s exponent w∗2 .

1. Introduction

A well-known open question in Diophantine approximation asks whether the continued
fraction expansion of an irrational algebraic number ξ either is ultimately periodic (this is
the case if, and only if, ξ is a quadratic irrational), or it contains arbitrarily large partial
quotients. As a very small step towards its resolution, we have recently established in [20]
two new combinatorial transcendence criteria for continued fraction expansions (we refer
the reader to [6] for references to earlier works). One of these criteria implies Theorem Bu
below, which states that the sequence of partial quotients a1, a2, . . . of an algebraic number
[0; a1, a2, . . .] of degree at least three cannot be too simple, in the following sense.

The complexity function of an infinite sequence a = (a`)`≥1 of positive integers, which
we will often view as the infinite word a = a1a2 . . ., is the function n 7→ p(n,a) defined by

p(n,a) = Card{(a`, a`+1, . . . , a`+n−1) : ` ≥ 1}, for n ≥ 1,

which counts the number of distinct blocks of length n in the word a. Observe that
the sequence (p(n,a))n≥1 is non-decreasing and that p(n,a) is infinite for every n ≥ 1
if the sequence (a`)`≥1 is unbounded. Furthermore, Morse and Hedlund [30, 31] proved
that (p(n,a))n≥1 is bounded if a is ultimately periodic and that, otherwise, it satisfies
p(n,a) ≥ n + 1 for n ≥ 1. The latter inequality is sharp since there exist uncountably
many words a for which p(n,a) = n+ 1 for n ≥ 1.

2000 Mathematics Subject Classification : 11J70, 11J82, 11J87. Keywords: Contin-
ued fraction, transcendence, Schmidt’s Subspace Theorem.

1



Theorem Bu. Let a = (a`)`≥1 be a sequence of positive integers which is not ultimately
periodic and satisfies

lim inf
n→+∞

p(n,a)

n
< +∞. (1.1)

Then, the real number
[0; a1, a2, . . . , a`, . . .]

is transcendental.

One of the purposes of the present work is to study the accuracy with which real
numbers whose sequence of partial quotients satisfies a slightly stronger assumption than
(1.1) are approximated by algebraic numbers of bounded degree. The quality of approxi-
mation is measured by means of the functions wd introduced in 1932 by Mahler [29]. For
every integer d ≥ 1 and every real number ξ, we denote by wd(ξ) the supremum of the real
numbers w for which

0 < |P (ξ)| < H(P )−w

has infinitely many solutions in integer polynomials P (X) of degree at most d. Here, H(P )
stands for the näıve height of the polynomial P (X), that is, the maximum of the absolute
values of its coefficients. Theorem 3.2 below gives a necessary and sufficient condition on
the infinite word a = (a`)`≥1 with

lim sup
n→+∞

p(n,a)

n
< +∞, (1.2)

which ensures that the real number ξ := [0; a1, a2, . . .] satisfies wd(ξ) < +∞ for every
d ≥ 1. Its proof splits into two parts. To bound wd(ξ) for d ≥ 3, we use a general method
described in [5], based on a quantitative version of the Schmidt Subspace Theorem, and
which has been already applied successfully in [6] to a certain class of continued fractions.
The main novelty in the present paper is the method developed to control w2(ξ), based on
a refinement of Liouville’s inequality giving a lower bound for the distance between two
distinct quadratic real numbers. Theorem 2.2 below shows that, if (1.2) holds, then w2(ξ)
is finite if, and only if, the Diophantine exponent of a (a purely combinatorial quantity
associated with a; see Section 2) is finite. Theorems 3.2 and 3.3 give transcendence mea-
sures for a class of transcendental numbers defined by their continued fraction expansion.
The first results of this type were proved by A. Baker [13] in 1964.

Since (1.2) is satisfied when a is an automatic sequence (see Sections 5 and 8), we get
straightforwardly new results on algebraic approximation to real numbers whose sequence
of partial quotients can be generated by a finite automaton. We show that these numbers
are either quadratic, or S- or T -numbers in Mahler’s classification, which is recalled in
Section 3.

Shortly after Mahler, Koksma [28] introduced in 1939 the exponents of approximation
w∗d. For every integer d ≥ 1 and every real number ξ, we denote by w∗d(ξ) the supremum
of the real numbers w∗ for which

0 < |ξ − α| < H(α)−w
∗−1
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has infinitely many solutions in algebraic numbers α of degree at most d. Here, H(α)
stands for the näıve height of the minimal defining polynomial of α over Z. The exponents
w1 and w∗1 coincide and, for every real number ξ, we have

w∗d(ξ) ≤ wd(ξ) ≤ w∗d(ξ) + d− 1, for d ≥ 2. (1.3)

For more results on wd and w∗d, the reader is directed to Chapter 3 of [16].
R. C. Baker [14] was the first to establish the existence of real numbers ξ for which

wd(ξ) differs from w∗d(ξ) for every integer d ≥ 2. To this end, he used a variant of
Schmidt’s construction of T -numbers [37]. By means of a slight modification of Baker’s
proof, Bugeaud [17] established that w2−w∗2 takes any value in [0, 1). In view of (1.3), this is
nearly best possible. Another purpose of the present work is to provide a new, fairly simple
and constructive proof of the latter result. For any δ in (0, 1], we give explicit examples of
real numbers ξ defined by their continued fraction expansion satisfying w2(ξ) = w∗2(ξ) + δ.

The present paper is organized as follows. Our new results are stated in Sections 2 to
5. Measures of non-quadraticity and transcendence measures for continued fractions with
low complexity are given in Sections 2 and 3, respectively. Section 4 is devoted to the study
of the gap between the functions w2 and w∗2 . The results of Sections 2 and 3 are applied in
Section 5 to automatic continued fractions and to a class of morphic continued fractions,
these two notions being defined in Section 8. Various results on continued fractions are
gathered in Section 6. Section 7 is devoted to our improvement on Liouville’s inequality
and to two of its applications to bound, under various assumptions, the values of the
functions w2 and w∗2 . A combinatorial auxiliary lemma is the object of Section 9. Our
main results are proved in Sections 10 and 11. Section 12 is devoted to an extension of
Theorems 2.2 and 3.2 to a family of continued fractions with unbounded partial quotients.

If nothing else is specified, we use the notation A� B (resp. A�a B) when A is less
than some absolute constant (resp. some constant depending at most on a) times B. We
write A � B when A� B and B � A hold simultaneously.

2. Quadratic approximation to continued fractions with low complexity

The following notation will be used throughout this text. Let A be a finite or infinite
set. The length of a word W on the alphabet A, that is, the number of letters composing
W , is denoted by |W |. For any positive integer k, we write W k for the word W . . .W
(k times repeated concatenation of the word W ). More generally, for any positive real
number x, we denote by W x the word W bxcW ′, where W ′ is the prefix of W of length
d(x− bxc)|W |e. Here, and in all what follows, byc and dye denote, respectively, the integer
part and the upper integer part of the real number y.

Let a = (a`)`≥1 be a sequence of elements from A that we identify with the infinite
word a1a2 . . . a` . . . Let ρ ≥ 1 be a real number. We say that a satisfies Condition (∗)ρ if
there exist two sequences of finite words (Un)n≥1, (Vn)n≥1, and a sequence (wn)n≥1 of real
numbers such that:

(i) For n ≥ 1, the word UnV
wn
n is a prefix of a;

(ii) For n ≥ 1, we have |UnV wnn |/|UnVn| ≥ ρ;
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(iii) The sequence (|V wnn |)n≥1 is increasing.

The Diophantine exponent of a, introduced in [3] and denoted by Dio(a), is the supre-
mum of the real numbers ρ for which a satisfies Condition (∗)ρ. It is clear from the
definition that

1 ≤ Dio(a) ≤ +∞

and that the Diophantine exponent of an ultimately periodic sequence is infinite. The
converse is not true: it is easy to construct sequences whose Diophantine exponent is
infinite but which are not ultimately periodic. The Diophantine exponent of a can be
viewed as a measure of periodicity of a. We stress that it is independent of the alphabet
on which a is written.

We define the Diophantine exponent of an irrational real number to be the Diophantine
exponent of its sequence of partial quotients.

Definition 2.1. Let ξ := [0; a1, a2, . . . , a`, . . .] be an irrational real number. The Dio-
phantine exponent of ξ, denoted by Dio(ξ), is the Diophantine exponent of the infinite
word a1a2 . . .

By truncating the continued fraction expansion of an irrational real number ξ and
completing then by periodicity, one can construct good quadratic approximations to ξ
which allow us to bound w∗2(ξ) from below. An easy calculation (see Section 11) shows
that

w∗2(ξ) ≥ Dio(ξ)− 1, (2.1)

if (q
1/`
` )`≥1 converges, where (p`/q`)`≥1 denotes the sequence of convergents to ξ. This

simple argument does not yield any upper bound for w∗2(ξ). However, Theorem 2.2 asserts
that, when the continued fraction expansion of ξ has sublinear complexity, then it is
possible to bound Dio(ξ) from below in terms of w∗2(ξ).

Theorem 2.2. Let κ ≥ 2 and A ≥ 3 be integers. Let a = (a`)`≥1 be a sequence of positive
integers bounded by A for which there exists an integer n0 such that

p(n,a) ≤ κn, for n ≥ n0. (2.2)

If the Diophantine exponent of a is finite, then the real number

ξ := [0; a1, a2, . . . , a`, . . .]

satisfies

max{2,Dio(ξ)− 1} ≤ w∗2(ξ) ≤ w2(ξ) ≤ 118000κ3 Dio(ξ) (log(A+ 1))4. (2.3)

Let (p`/q`)`≥1 denote the sequence of convergents to ξ. If (q
1/`
` )`≥1 converges, then we

have

w2(ξ) ≤ 118000κ3 Dio(ξ). (2.4)
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Let b ≥ 2 be an integer and a = (a`)`≥1 an infinite word on {0, 1, . . . , b− 1} satisfying
(1.2) and which is not ultimately periodic. Théorème 2.1 from [7] asserts that the real
number

ζ :=
∑
`≥1

a`
b`

is a Liouville number (that is, it satisfies w1(ζ) = +∞) if, and only if, the Diophantine
exponent of a is infinite. Theorem 2.2 above provides the analogue of this result for
continued fraction expansions.

The fact that w∗2(ξ) always exceeds 2 when ξ is irrational and not quadratic was proved
by Davenport and Schmidt [25].

It is explained at the end of the proofs of Lemma 9.1 and of Theorem 2.2 that one
can replace log(A+ 1) in (2.3) by the quantity(

lim sup
`→+∞

log q`
`

)
/

(
lim inf
`→+∞

log q`
`

)
.

Consequently, one gets the upper bound (2.4) when the sequence (q
1/`
` )`≥1 converges. We

stress that this bound does not depend on the alphabet on which a is written, a fact which
was not pointed out previously.

At the end of [9], the authors noted that the classical argument based on triangle
inequalities and Liouville’s inequality

|α− β| ≥ 0.03 ·H(α)−2 ·H(β)−2, (2.5)

valid for distinct quadratic numbers α and β, is not powerful enough to yield Theorem 2.2.
Fortunately, in the present situation, we are able to considerably improve (2.5), since one
of the quadratic numbers involved is very close to its Galois conjugate; see Lemma 7.1.

The assumption (2.2) can be slightly relaxed and Theorem 2.2 can be extended to a
class of continued fractions with unbounded partial quotients and having repetitive pat-

terns, provided that, however, the sequence (q
1/`
` )`≥1 remains bounded; see Section 12.

By combining (1.3) and (2.1), every irrational number ξ satisfies w2(ξ) ≥ Dio(ξ)− 1.
We conclude this section with a sharpening of this inequality.

Theorem 2.3. Let ξ be an irrational number with bounded partial quotients. Let
(p`/q`)`≥1 denote the sequence of convergents to ξ. Set

m = lim inf
`→+∞

q
1/`
` and M = lim sup

`→+∞
q
1/`
` .

Then we have

w2(ξ) ≥ logm

logM
(Dio(ξ) + 1)− 1.

In particular, when the sequence (q
1/`
` )`≥1 converges, then

w2(ξ) ≥ Dio(ξ). (2.6)
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The proof of Theorem 2.3 depends on Lemma 6.1. We show in Section 4 that inequal-
ities (2.1) and (2.6) are sharp.

3. Transcendence measures for continued fractions with low complexity

Mahler’s classification of real numbers is based on the functions wd defined in the
Introduction. For a real number ξ, we set w(ξ) = lim supd→∞(wd(ξ)/d) and, according to
Mahler [29], we say that ξ is an

A-number, if w(ξ) = 0;

S-number, if 0 < w(ξ) <∞;

T -number, if w(ξ) =∞ and wd(ξ) <∞ for any integer d ≥ 1;

U -number, if w(ξ) =∞ and wd(ξ) =∞ for some integer d ≥ 1.

Two transcendental real numbers belonging to different classes are algebraically indepen-
dent. The A-numbers are precisely the algebraic numbers and, in the sense of the Lebesgue
measure, almost all numbers are S-numbers. The existence of T -numbers remained an open
problem during nearly forty years, until it was confirmed by Schmidt, see Chapter 3 of
[16] for references and further results. The set of U -numbers can be further divided in
countably many subclasses according to the value of the smallest integer d for which wd(ξ)
is infinite.

Definition 3.1. Let m ≥ 1 be an integer. A real number ξ is a Um-number if, and only
if, wm(ξ) is infinite and wd(ξ) is finite for d = 1, . . . ,m− 1.

We establish the following result, which can be viewed as the analogue for continued
fraction expansions of Théorème 1.1 of [7].

Theorem 3.2. Let a = (a`)`≥1 be a sequence of positive integers such that

lim sup
n→+∞

p(n,a)

n
< +∞, (3.1)

and set
ξ := [0; a1, . . . , a`, . . .].

If Dio(ξ) is finite, then ξ is either an S-number or a T -number; otherwise, ξ is either
quadratic or a U2-number. Moreover, if Dio(ξ) is finite, then there exists a constant c,
depending only on ξ, such that

wd(ξ) ≤ exp(c (log 3d)5 (log log 3d)4), for d ≥ 1.

The proof of Theorem 3.2 splits into two parts. Since the approximation by quadratic
numbers has been delt with in Theorem 2.2, it only remains for us to control the quality
of approximation by algebraic numbers of fixed degree at least equal to three. To do this,
we use the Quantitative Subspace Theorem, following the general method introduced in

6



[5] and already applied to a restricted classes of continued fractions in [6]. There are,
however, some additional technical difficulties. Section 10 is devoted to this part of the
proof of Theorem 3.2.

The dependence on ξ of the constant c can be made more precise and expressed

only in terms of Dio(ξ) and lim supn→+∞ p(n,a)/n, provided that the sequence (q
1/`
` )`≥1

converges, where q` is the denominator of the `-th convergent to ξ.
A. Baker [13]∗ was the first to establish transcendence measures for a class of continued

fractions. He proved the following result.

Theorem Ba. Consider the continued fraction

ξ = [0; a1, . . . an0−1, an0
, . . . , an0+r0−1︸ ︷︷ ︸
λ0 times

, an1
, . . . , an1+r1−1︸ ︷︷ ︸
λ1 times

, . . .],

where the notation implies that nk = nk−1 + λk−1rk−1 and the λk’s indicate the number
of times a block of partial quotients is repeated (it is understood that two blocks which
correspond to consecutive k are not identical). Suppose that the sequences (an)n≥1 and
(rn)n≥0 are respectively bounded by A and K. Set

L = lim sup
k→+∞

λk/λk−1, ` = lim inf
k→+∞

λk/λk−1.

If L is infinite and ` > 1, then ξ is a U2-number. Furthermore, if L is finite and ` >
exp(4AK), then ξ is either an S-number or a T -number.

Theorem Ba was extended in [6], where it is proved that the assumption ` > exp(4AK)
can be replaced by the weaker condition ` > 1. The techniques of the present work allow
us to make a further generalization, that is, to remove the assumption that the sequence
(rn)n≥0 has to be bounded.

Theorem 3.3. Consider the continued fraction

ξ = [0; a1, . . . an0−1, an0
, . . . , an0+r0−1︸ ︷︷ ︸
λ0 times

, an1
, . . . , an1+r1−1︸ ︷︷ ︸
λ1 times

, . . .],

where the notation implies that nk = nk−1 + λk−1rk−1 and the λk’s indicate the number
of times a block of partial quotients is repeated (it is understood that two blocks which
correspond to consecutive k are not identical). Suppose that the sequence (an)n≥1 is
bounded and that λk tends to infinity with k. Set

L′ = lim sup
k→+∞

λkrk
λ1r1 + . . .+ λk−1rk−1

, `′ = lim inf
k→+∞

λkrk
λ1r1 + . . .+ λk−1rk−1

.

If L′ is infinite, then ξ is a U2-number. If L′ is finite and `′ is positive, then ξ is either an
S-number or a T -number.

Theorem 3.3 extends Theorem 3.2 of [6]. It is not a particular case of Theorem
3.2 above since the assumption (3.1) may not be satisfied. The important point is that,
however, Lemma 9.1 can be applied, since the following condition:

∗ Baker’s paper quoted on page 884 of [6] is not the paper containing Theorem Ba.
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There is a positive integer κ such that, for every sufficiently large integer n, there is
a word of length n having two occurrences in the prefix of length (κ + 1)n of the infinite
word composed of the partial quotients of ξ

is satisfied.
The assumption (3.1) can be slightly relaxed and Theorem 3.2 can be extended to a

class of continued fractions with unbounded partial quotients and having repetitive pat-

terns, provided that, however, the sequence (q
1/`
` )`≥1 remains bounded; see Section 12.

4. On the gap between the exponents w2 and w∗2

The gap between the exponents w2 and w∗2 defined in the Introduction was investigated
in [14, 15, 17]. It follows from (1.3) that the set of values taken by the function w2−w∗2 is
contained in the closed interval [0, 1], and we proved in [17] that this set includes the half
open interval [0, 1). The constructions in [14, 15, 17] are variants of Schmidt’s complicated
construction of T -numbers [37] and do not give explicit real numbers ξ for which w2(ξ)
differs from w∗2(ξ).

Lemma 6.1 below, on the continued fraction expansions of conjugate quadratic num-
bers, enables us to construct quite easily explicit examples of real numbers ξ with prescribed
values for w2(ξ), w∗2(ξ) and their difference w2(ξ)− w∗2(ξ).

Theorem 4.1. Let w ≥ 3 be a real number. Let b, c be distinct positive integers. Define
the sequence (an,w)n≥1 by setting an,w = c if there exists an integer j such that n = bwjc
and an,w = b otherwise. Set

ξw := [0; a1,w, a2,w, a3,w, . . .].

Then, Dio(ξw) = w and ξw is either an S- or a T -number. Furthermore, if w ≥ (5+
√

17)/2,
then we have

w∗2(ξw) = w − 1 and w2(ξw) = w. (4.1)

It is very likely that (4.1) remains true for 3 ≤ w < (5 +
√

17)/2, but this seems to be
difficult to prove.

Theorem 4.1 shows that inequalities (2.1) and (2.6) are both sharp.
We can modify our construction to give, for every δ in (0, 1), explicit real numbers ξ

satisfying w2(ξ)− w∗2(ξ) = δ.

Theorem 4.2. Let w ≥ 3 be a real number. Let b, c, d be distinct positive integers. Let
η be a positive real number with η <

√
w/4. For j ≥ 1, set

mj = b(bwj+1c − bwj − 1c)/bηwjcc.

Define the sequence (an,w,η)n≥1 by setting an,w,η = c if there exists an integer j such that
n = bwjc, by setting an,w,η = d if there exist positive integers j and m = 1, . . . ,mj such
that n = bwjc+mbηwjc, and by setting an,w,η = b otherwise. Set

ξw,η := [0; a1,w,η, a2,w,η, a3,w,η, . . .].
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Then, Dio(ξw,η) = w/(1 + η) and ξw,η is either an S- or a T -number. Furthermore, if
w ≥ 16, then we have

w∗2(ξw,η) =
2w − 2− η

2 + η
and w2(ξw,η) =

2w − η
2 + η

,

hence

w2(ξw,η)− w∗2(ξw,η) =
2

2 + η
.

We state an immediate consequence of the combination of (1.3) with Theorems 4.1
and 4.2 (or with [17]).

Theorem 4.3. The set of values taken by the function w2 − w∗2 is equal to the closed
interval [0, 1].

The real numbers defined in Theorems 4.1 and 4.2 are the first explicit examples of
real numbers ξ for which w∗2(ξ) and w2(ξ) differ. They are also the first examples of badly
approximable numbers with this property.

5. Algebraic approximation to automatic continued fractions

An infinite sequence a = (a`)`≥1 is an automatic sequence if it can be generated by
a finite automaton, that is, if there exists an integer k ≥ 2 such that a` is a finite-state
function of the representation of ` in base k, for every ` ≥ 1. Let b ≥ 2 be an integer. In
1968, Cobham [23] asked whether a real number whose b-ary expansion can be generated
by a finite automaton (in the sequel, such a real number is called a b-ary automatic number)
is always either rational or transcendental. A positive answer to Cobham’s question was
recently given in [4], by means of a combinatorial transcendence criterion established in
[8]. We addressed in [1] the analogous question for continued fraction expansions and gave
a positive answer to it in [20]. Namely, we proved that a real number whose continued
fraction expansion can be generated by a finite automaton (in the sequel, such a real
number is called an automatic number) is always either quadratic or transcendental.

More Diophantine properties of b-ary irrational automatic real numbers are known.
Adamczewski and Cassaigne [9] established that the Diophantine exponent of any non-
ultimately periodic automatic sequence is finite (Lemma 8.3 below) and deduced that no
b-ary automatic number is a Liouville number. By Theorem 2.2, we obtain likewise a
measure of non-quadraticity for automatic real numbers which are not quadratic.

Precise definitions of automatic and morphic sequences and of various quantities and
notions associated with them are postponed to Section 8.

Theorem 5.1. Let k ≥ 2 be an integer and a = (a`)`≥1 an infinite sequence of positive
integers generated by a k-automaton. Let A ≥ 3 be an upper bound for the sequence
a = (a`)`≥1. Let m be the cardinality of the k-kernel of the sequence a and let I be the
internal alphabet associated with a. Then, the real number

ξ := [0; a1, a2, . . . , a`, . . .]
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satisfies
w2(ξ) ≤ 31300 (CardI)6 km+3 (log(A+ 1))4. (5.1)

Theorem 5.1 extends Theorem 7.3 of [9], valid only for a restricted class of automatic
numbers.

Theorem 5.1 is an immediate consequence of Theorem 2.2, inequality (8.1) and Lemma
8.3. We can slightly improve Theorem 5.1 by arguing directly (as was done in [9] for showing
that b-ary automatic numbers are not Liouville numbers) rather than applying the general
Lemma 9.1.

The bound (5.1) depends on three parameters CardI, k and m which appear naturally
in the study of automatic sequences. It also depends, and this is rather ennoying, on the
alphabet on which the sequence is written. However, one can remove the latter dependence
when the automatic sequence is generated by a primitive morphism.

Theorem 5.2. Let k ≥ 2 be an integer and let a = (a`)`≥1 be a non-ultimately periodic
infinite sequence of positive integers generated by a primitive morphism σ on an alphabet
of cardinality b ≥ 2. Let v denote the width of σ. Then the real number

ξ := [0; a1, a2, . . . , a`, . . .]

satisfies
w2(ξ) ≤ 3 · 105 v12b−6 b12 Dio(ξ).

We stress that the upper bound in Theorem 5.2 does not depend on the alphabet
on which the morphic sequence is written. Theorem 5.2 is an immediate consequence of
Theorem 2.2 combined with Lemmas 8.4 to 8.6.

The Thue–Morse sequence

abbabaabbaababbabaab . . .

defined on the alphabet {a, b} is a classical example of an automatic sequence satisfying
the assumption of Theorem 5.2. Further examples are given in [12].

Adamczewski and Bugeaud [7] showed that irrational b-ary automatic numbers are
either S- or T -numbers in Mahler’s classification of numbers. Since the complexity function
of every automatic sequence a grows at most linearly with n (see inequality (8.1) below),
Theorem 3.2 implies the analogous result for automatic numbers which are not quadratic.

Theorem 5.3. Let a = (a`)`≥1 be an automatic sequence (or a sequence generated by a
primitive morphism) of positive integers which is not ultimately periodic and set

ξ := [0; a1, a2, . . . , a`, . . .].

Then, ξ is a transcendental number and there exists a constant c, depending only on ξ,
such that

wd(ξ) ≤ exp(c (log 3d)5 (log log 3d)4), for d ≥ 1.

In particular, ξ is either an S-number or a T -number.

The part of Theorem 5.3 dealing with sequences generated by a primitive morphism
follows from Theorem 3.2 combined with Lemmas 8.4 and 8.6.

There have been recently several new results on the rational approximation to real
numbers whose expansion in some integer base is an automatic sequence [10, 18, 21].
Motivated by these works, we address and briefly discuss the following problem.
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Problem 5.4. To determine the set of values taken by the exponents w2 and w∗2 at
automatic continued fractions.

With a suitable modification of the construction given in [18], one can construct
explicitly, for every sufficiently large rational number p/q, an automatic continued fraction
ξ satisfying w∗2(ξ) = p/q. It seems to be a difficult and challenging problem to show
that the sets of values taken by the functions w∗2 and w2 at automatic continued fractions
include every rational number greater than or equal to 2.

Bugeaud and Laurent [22] have computed the values of w2(ξ) and w∗2(ξ) for certain
morphic continued fractions ξ and found that these values are quadratic numbers.

It was proved in [19] that the Thue–Morse–Mahler number ξt, whose sequence of
binary digits is the Thue–Morse sequence on {0, 1} starting with 0, satisfies w1(ξt) = 1.
We address the analoguous question for continued fraction expansions.

Problem 5.5. Let a and b be distinct positive integers. Let ξt,a,b be the real number
whose sequence of partial quotients is the Thue–Morse sequence on {a, b} starting with a.
To compute w∗2(ξt,a,b) and w2(ξt,a,b).

It is known [35] that w∗2(ξt,a,b) ≥ 7/3. In view of Schmidt’s theorem [36], this is
sufficient to conclude that ξt,a,b is transcendental, a result first proved by M. Queffélec [34]
(see also [11]). Since this lower bound is small, one cannot prove that this is the exact
value by arguing as in Lemma 7.3. We suspect, however, that 7/3 is not the correct value
and plan to return to this question in a further work.

6. Continued fractions

We gather in this section various results on continued fraction expansions, but we
assume that the reader is already quite familiar with the subject (otherwise, he is directed
e.g. to [33] or to Chapter 1 of [16]).

In this and the next sections, we use the notation

[0; a1, . . . , ar, ar+1, . . . , ar+s] := [0;U, V ],

where U = a1 . . . ar and V = ar+1 . . . ar+s, to indicate that the block of partial quotients
ar+1, . . . , ar+s is repeated infinitely many times. We also denote by ζ ′ the Galois conjugate
of a quadratic real number ζ.

The key observation for our main results is given in the following lemma.

Lemma 6.1. Let ξ be a quadratic real number with ultimately periodic continued fraction
expansion

ξ = [0; a1, . . . , ar, ar+1, . . . , ar+s],

with r ≥ 3 and s ≥ 1, and denote by ξ′ its Galois conjugate. Let (p`/q`)`≥1 denote the
sequence of convergents to ξ. If ar 6= ar+s, then we have

|ξ − ξ′| � a2r max{ar−2, ar−1} q−2r .
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Proof. By a theorem of Galois (see [33], page 83), the Galois conjugate of

τ = [ar+1; ar+2, . . . , ar+s, ar+1]

is the quadratic number

τ ′ = −[0; ar+s, . . . , ar+2, ar+1].

Since

ξ =
prτ + pr−1
qrτ + qr−1

and ξ′ =
prτ
′ + pr−1

qrτ ′ + qr−1
,

we get

|ξ − ξ′| = τ − τ ′

(qrτ + qr−1) · |qrτ ′ + qr−1|
� 1

qr · |qrτ ′ + qr−1|
. (6.1)

Assume that ar 6= ar+s. Using the mirror formula

qr−1/qr = [0; ar, ar−1, . . . , a1],

we see that

|qrτ ′ + qr−1| = |[0; ar, ar−1, . . . , a1]− [0; ar+s, . . . , ar+2, ar+1]| · qr.

If max{ar, ar+s} ≥ 2 min{ar, ar+s}, then one gets

|qrτ ′ + qr−1| � qr/min{ar, ar+s}.

Otherwise, if ar < ar+s, then an easy computation shows that

|qrτ ′ + qr−1| ≥
∣∣∣∣ 1

ar + 1/(1 + 1/(ar−2 + 1))
− 1

ar+s + 1/(ar+s−1 + 1)

∣∣∣∣ · qr
� qr

a2r
max{a−1r−2, a

−1
r+s−1}

� qr
a2r
× 1

ar−2
,

while, if ar > ar+s, then the similar estimate

|qrτ ′ + qr−1| �
qr
a2r

max{a−1r−1, a
−1
r+s−2} �

qr
a2r
× 1

ar−1

holds. By (6.1), this completes the proof of the lemma.

We display an elementary result on ultimately periodic continued fraction expansions,
whose proof can be found in [33].
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Lemma 6.2. Let ξ be a quadratic real number with ultimately periodic continued fraction
expansion

ξ = [0; a1, . . . , ar, ar+1, . . . , ar+s], (6.2)

and denote by (p`/q`)`≥1 the sequence of its convergents. Then, ξ is a root of the polyno-
mial

(qr−1qr+s − qrqr+s−1)X2 − (qr−1pr+s − qrpr+s−1
+ pr−1qr+s − prqr+s−1)X + (pr−1pr+s − prpr+s−1).

(6.3)

In particular, if the continued fraction expansion of ξ is purely periodic, that is, if

ξ = [0; a1, . . . , as],

then ξ is a root of the polynomial

qs−1X
2 − (ps−1 − qs)X − ps. (6.4)

The polynomials (6.3) and (6.4) may not be primitive, as it is in particular the case
when ar = ar+s. They provide us only with an upper bound for the height of the real
number ξ defined by (6.2).

For the proof of Theorems 4.1 and 4.2 we need a precise estimate of the height of
quadratic numbers of a special form.

Lemma 6.3. Let b, c and d be distinct positive integers. Let n ≥ 3 be an integer and
a1, . . . , an−2 be positive integers. Set

ξ := [0; a1, . . . , an−2, b, c, b].

Then, the height of ξ satisfies

q2n �b,c H(ξ)�b,c q
2
n,

where qn is the denominator of the rational number pn/qn := [0; a1, . . . , an−2, b, c]. Let
m ≥ 3 be an integer and set

ζ := [0; a1, . . . , an−2, b, c, b, b, . . . , b, d],

where the periodic part b, b, . . . , b, d has length m. Then, the height of ζ satisfies

qnqn+m �b,c,d H(ζ)�b,c,d qnqn+m.

where qn+m is the denominator of the rational number [0; a1, . . . , an−2, b, c, b, b, . . . , b, d].

Proof. We deduce from Lemma 6.2 that

H(ξ)�b,c q
2
n and H(ζ)�b,c,d qnqn+m.
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Let

Pξ(X) = AX2 +BX + C = A(X − ξ)(X − ξ′)

denote the minimal defining polynomial of ξ over Z. Since |Pξ(pn/qn)| is a non-zero rational
number of denominator dividing q2n, we have |Pξ(pn/qn)| ≥ q−2n . It follows from Lemma
6.1 and the definition of pn/qn that

|ξ − pn/qn| < q−2n , |ξ′ − pn/qn| �b,c q
−2
n .

Consequently, we get A�b,c q
2
n, thus, H(ξ)�b,c q

2
n. This completes the proof of the first

assertion of the lemma.
Since the resultant of the minimal defining polynomials of ξ and ζ is a non-zero integer,

we get
|ζ − ξ| ≥ H(ξ)−2 ·H(ζ)−2 · |ζ − ξ′|−1 · |ζ ′ − ξ|−1 · |ζ ′ − ξ′|−1

�b,c,d H(ξ)−2 ·H(ζ)−2 · q6n,

by Lemma 6.1. Using |ζ − ξ| �b,c,d q
−2
n+m and H(ξ)�b,c q

2
n, this gives

H(ζ)2 �b,c,d q
2
n · q2n+m.

This finishes the proof of the lemma.

For the proof of Theorem 9.1 we need classical results on continuants which we re-
call below (see [33] for a proof). If a1, . . . , am are positive integers, then the continuant
Km(a1, . . . , am) is the denominator of the rational number [0; a1, . . . , am].

Lemma 6.4. For any positive integers a1, . . . , am and any integer k with 1 ≤ k ≤ m− 1,
we have

Km(a1, . . . , am) = Km(am, . . . , a1),

Km(a1, . . . , am) ≤ (1 + max{a1, . . . , am})m,

Km(a1, . . . , am) ≥ max{(min{a1, . . . , am})m, 2(m−1)/2},

and

Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am).

7. Liouville’s inequality and applications

Observe that if α is a real quadratic number and α′ denotes its Galois conjugate, then
we have

H(α)−1 ≤ |α− α′| ≤ 2H(α). (7.1)
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To see this, it is sufficient to note that, if the minimal defining polynomial of α over Z is
aX2 + bX + c, then

|α− α′| =
√
b2 − 4ac

a
.

Note that |α − α′| can be as small as
√

5H(α)−1. Indeed, for any integer m ≥ 2, the
discriminant of the polynomial

(m2 +m− 1)X2 − (2m+ 1)X + 1

is equal to 5, thus, the distance between its two roots is equal to
√

5 divided by its height.

Lemma 7.1. Let α and β be real quadratic numbers. Denote by Pα(X) := a(X−α)(X−
α′) and Pβ(X) := b(X − β)(X − β′) their minimal defining polynomials over Z. Assume
that α, α′, β, β′ are distinct. Then we have

|α− β| ≥ 0.03 ·max{|α− α′|−1, 1} ·H(α)−2 ·H(β)−2. (7.2)

Under the assumption of Lemma 7.1, the usual form of Liouville’s inequality (see e.g.
Theorem A.1 of [16]) implies that

|α− β| ≥ 0.03 ·H(α)−2 ·H(β)−2. (7.3)

Lemma 7.1 shows that this estimate can be improved if α and its Galois conjugate are
close to each other. Roughly speaking, in the most favourable cases, the exponent −2 of
H(α) in (7.3) can be replaced by −1.

Proof. In view of (7.3), we assume that |α − α′| < 1. Since the resultant of Pα(X) and
Pβ(X) is a non-zero integer, we get

ab2|α− β| · |α′ − β| · |Pα(β′)| ≥ 1. (7.4)

If |β′| ≥ 2, then we have

|bβ′| ≤ |bββ′| ≤ H(β), if |β| ≥ 1,

while
|bβ′| ≤ 2|b(β + β′)| ≤ 2H(β), if |β| ≤ 1.

Consequently, regardless the value of |β′|, this gives

b2 |Pα(β′)| ≤ 3H(α) b2 max{1, |β′|}2 ≤ 12 ·H(α) ·H(β)2,

thus, by (7.4),
|α− β| ≥ |α′ − β|−1 ·H(α)−2 ·H(β)−2/12. (7.5)

Without any loss of generality, we may assume that |α− β| ≤ |α′ − β|.
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If |α′ − β| ≤ 2|α− β|, then (7.5) implies that

|α− β|2 ≥ H(α)−2 ·H(β)−2/24,

which, by (7.1), yields a much better lower bound than (7.2).
If |α′ − β| ≥ 2|α− β|, then, using the triangle inequality

|α− α′| ≥ |α′ − β| − |α− β| ≥ |α′ − β|/2,

it follows from (7.5) that

|α− β| ≥ |α− α′|−1 ·H(α)−2 ·H(β)−2/24.

Combined with (7.3), this gives the lemma.

We point out two important consequences of Lemma 7.1. A first one states that if a
real number ξ is quite close to a dense (in a suitable sense) sequence of quadratic numbers
having a close conjugate, then ξ cannot be too well approximated by quadratic numbers.

Lemma 7.2. Let ξ be a real number. Let C > 1 be a real number and (Qj)j≥1 an
increasing sequence of integers such that Qj+1 ≤ QCj for j ≥ 1. Let w > 2 and 0 < ε < 1
be real numbers. Assume that there exists a sequence (αj)j≥1 of quadratic numbers such
that, denoting by α′j the Galois conjugate of αj , we have

|ξ − αj | < Q−2−εj ·max{|αj − α′j |−1, 1},

H(αj) ≤ Qj ,

and
|ξ − αj | ≥ Q−wj ,

for j ≥ 1. Then, w∗2(ξ) is finite and

w∗2(ξ) ≤ w + 1 + 2wCε−1.

Proof. Set A = 1 + 2Cε−1. Let α be a quadratic real number and let j be the integer
defined by the inequalities

Qj ≤ H(α)A < Qj+1.

By Lemma 7.1, if α 6= αj , then we have

|α− αj | ≥ 0.03 ·max{|αj − α′j |−1, 1} ·Q−2j H(α)−2. (7.6)

For j sufficiently large, the choice of A implies that

H(α) ≤ Q1/A
j+1 ≤ Q

C/A
j ≤ 0.1 ·Qε/2j ,
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hence,

0.01 ·max{|αj − α′j |−1, 1} ·Q−2j H(α)−2 ≥ max{|αj − α′j |−1, 1} ·Q−2−εj

> |ξ − αj |.
(7.7)

Using (7.6) and (7.7), the triangle inequality then gives

|ξ − α| ≥ |α− αj | − |ξ − αj | ≥ 0.02 ·max{|αj − α′j |−1, 1} ·Q−2j H(α)−2

≥ 0.02 ·Q−2j ·H(α)−2

≥ 0.02 ·H(α)−4−4C/ε,

if j is sufficiently large. It remains for us to consider the case where α = αj . Then, we
have

|ξ − α| ≥ Q−wj ≥ H(α)−wA ≥ H(α)−w−2wC/ε.

Since w ≥ 2, this proves the lemma.

Let us briefly explain the novelty in Lemma 7.2. If nothing is known on the Galois
conjugates of the quadratic approximants αj , then, in order to get an upper bound for
w∗2(ξ), we have to assume that αj is very close to ξ, namely, roughly speaking, that
|ξ−αj | < H(αj)

−2−ε for some positive real number ε. This is the strong assumption made
in [9] (see on page 1370) and in [6] (see on page 896). Fortunately, we can considerably
weaken it and replace it even by |ξ − αj | < H(αj)

−1−ε (in the most favourable cases),
provided that αj is very close to its Galois conjugate α′j . This is crucial for the applications
we have in mind, especially for the proof of Theorem 2.2.

Lemma 7.3. Let ξ be a real number. Assume that there exist positive real numbers
c1, c2, c3, δ, ρ, θ and a sequence (αj)j≥1 of quadratic numbers such that

c1H(αj)
−ρ−1 ≤ |ξ − αj | ≤ c2H(αj)

−δ−1. (7.8)

and
H(αj) ≤ H(αj+1) ≤ c3H(αj)

θ,

for j ≥ 1. Set ε = 0 or assume that there exist c4 ≥ 1 and 0 < ε ≤ 1 such that

|αj − α′j | ≤ c4H(αj)
−ε, (7.9)

for j ≥ 1, where α′j denotes the Galois conjugate of αj . Then we have

δ ≤ w∗2(ξ) ≤ ρ

as soon as
(ρ− 1)(δ − 1 + ε) ≥ 2θ(2− ε). (7.10)

Furthermore, if ε > 0, then we have

δ ≤ w∗2(ξ) ≤ ρ and w2(ξ) = w∗2(ξ) + ε,
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as soon as
(δ − 2 + ε)(δ − 1 + ε) ≥ 2θ(2− ε)

and

lim
j→+∞

log |αj − α′j |
logH(αj)

= −ε. (7.11)

Proof. Set Qj = H(αj) for j ≥ 1. Let α be either a rational number, or a quadratic
real number not element of the sequence (αj)j≥1. Let j be the integer defined by the
inequalities

Qj−1 < (c5H(α))2/(ε+δ−1) ≤ Qj ,

where
c5 = (70c2c4)1/2. (7.12)

We assume that H(α), hence j, is sufficiently large. By Lemma 7.2 and (7.12), we have

|α− αj | ≥ 0.03 · |αj − α′j |−1Q−2j ·H(α)−2

≥ 0.03 · c−14 c25Q
−1−δ
j

≥ 2c2Q
−1−δ
j .

Consequently, we get

|ξ − α| ≥ |α− αj | − |ξ − αj | ≥ |α− αj |/2.

Since
Qj ≤ c3Qθj−1 ≤ c3(c5H(α))2θ/(ε+δ−1),

we conclude that

|ξ − α| ≥ 0.01 · c−14 Q−2+εj ·H(α)−2

≥ 0.01 · c−14 c−2+ε3 c
−2θ(2−ε)/(ε+δ−1)
5 H(α)−2−2θ(2−ε)/(ε+δ−1),

(7.13)

thus
w∗2(ξ) ≤ max{ρ, 1 + 2θ(2− ε)/(ε+ δ − 1)}.

Combined with (7.8), this implies that w∗2(ξ) ≤ ρ when (7.10) is satisfied. Furthermore,
the assumption (7.8) ensures that w∗2(ξ) ≥ δ and w2(ξ) ≥ w∗2(ξ) + ε, by (7.9). This proves
the first assertion of the lemma.

If, moreover, (δ − 2 + ε)(δ − 1 + ε) ≥ 2θ(2− ε), then it follows from (7.13) that

|ξ − α| ≥ 0.01 · c−14 c−2+ε3 c
−2θ(2−ε)/(ε+δ−1)
5 H(α)−δ−ε. (7.14)

This means that the best algebraic approximants to ξ of degree at most 2 belong to the
sequence (αj)j≥1. Assume that α is irrational and denote by Pα(X) its minimal defining
polynomial, by α′ its Galois conjugate, and by aα ≥ 1 the leading coefficient of Pα(X).
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Note that aα · |α − α′| ≥ 1. Using (7.14), the fact that δ ≥ 2 and the triangle inequality,
we then get

|Pα(ξ)| ≥ aα · |ξ − α| · |ξ − α′|
≥ aα · |ξ − α| · |α− α′|/2

≥ 0.005 · c−14 c−2+ε3 c
−2θ(2−ε)/(ε+δ−1)
5 H(α)−δ−ε.

(7.15)

For j ≥ 1, denoting by Pj(X) the minimal defining polynomial of αj , we deduce, again
from the triangle inequality, that

|Pj(ξ)| ≤ 2H(αj) · |ξ − αj | · |αj − α′j |. (7.16)

It thus follows from (7.8), (7.11) and (7.16) that

w2(ξ) ≥ w∗2(ξ) + ε ≥ δ + ε. (7.17)

We conclude from (7.15) that the first inequality in (7.17) is an equality. This finishes the
proof of the lemma.

8. Automatic and morphic sequences

We recall in this section basic definitions and several results on automatic and morphic
sequences. For more information, the reader is advised to consult the monograph [12]. As
in [12], but unlike in the rest of the present paper, we index the sequences from ` = 0.

Let k ≥ 2 be an integer and denote by Σk the set {0, 1, . . . , k − 1}. A k-automaton is
a 6-tuple

A = (Q,Σk, δ, q0,∆, τ),

where Q is a finite set of states, Σk is the input alphabet, δ : Q×Σk → Q is the transition
function, q0 is the initial state, ∆ is the output alphabet and τ : Q → ∆ is the output
function.

For a state q in Q and for a finite word W = w1w2 . . . wn on the alphabet Σk, we
define recursively δ(q,W ) by δ(q,W ) = δ(δ(q, w1w2 . . . wn−1), wn). Let n ≥ 0 be an integer

and let wrwr−1 . . . w1w0 in (Σk)
r+1

be the representation of n in base k, meaning that
n = wrk

r+. . .+w0. We denote by Wn the word w0w1 . . . wr. Then, a sequence a = (a`)`≥0
is said to be k-automatic if there exists a k-automaton A such that a` = τ(δ(q0,W`)) for
all ` ≥ 0.

For a finite set A, we denote by A∗ the free monoid generated by A. The empty word
ε is the neutral element of A∗. Let A and B be two finite sets. An application from A
to B∗ can be uniquely extended to a homomorphism between the free monoids A∗ and
B∗. We call morphism from A to B such a homomorphism. If there is a positive integer k
such that each element of A is mapped to a word of length k, then the morphism is called
k-uniform (or, simply, uniform). Similarly, an application from A to B can be uniquely
extended to a homomorphism between the free monoids A∗ and B∗. Such an application
is called a coding (or a ‘letter-to-letter’ morphism).
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A morphism σ from A into itself is said to be prolongable if there exists a letter a such
that σ(a) = aW , where the word W is such that σn(W ) is not the empty word for every
n ≥ 0. In that case, the sequence of finite words (σn(a))n≥1 converges in AZ≥0 (endowed
with the product topology of the discrete topology on each copy of A) to an infinite word
a := σ∞(a). This infinite word is clearly a fixed point for σ and we say that a is generated
by the morphism σ. The width of the morphism σ is the maximum of the lengths of the
words σ(a) for a in A. A morphism σ is primitive if there exists a positive integer n such
that a occurs in σn(a′) for all a, a′ in A.

Cobham [24] established that uniform morphisms and automatic sequences are strong-
ly connected.

Theorem 8.1. Let k ≥ 2 be an integer. A sequence is k-automatic if, and only if, it is
the image under a coding of a fixed point of a k-uniform morphism.

Theorem 8.1 means that one can always associate with a k-automatic sequence a a
5-tuple (φ, σ, i, A, I), where σ is a k-uniform morphism defined over a finite alphabet I, i is
a letter of I, φ is a coding from I into A, and such that a = φ(i), with i = σ∞(i). The set I
and the sequence i are respectively called the internal alphabet and the internal sequence
associated with the 5-tuple (φ, σ, i, A, I). With a slight abuse of language, we say that I
(respectively, i) is the internal alphabet (respectively, internal sequence) associated with a.
Indeed, Cobham gives in fact a canonical way to associate with a a 5-tuple (φ, σ, i, A, I).
He also proved ([24], Theorem 2) that

p(n,a) ≤ k(CardI)2n, for n ≥ 1. (8.1)

The k-kernel of a sequence a = (a`)`≥0 is the set of all sequences (aki·`+j)`≥0, where
i ≥ 0 and 0 ≤ j < ki. This notion gives rise to another useful characterization of k-
automatic sequences which was first proved by Eilenberg [26].

Theorem 8.2. Let k ≥ 2 be an integer. A sequence is k-automatic if, and only if, its
k-kernel is finite.

We reproduce Lemma 5.1 of [9], which gives an upper bound for the Diophantine
exponent of a non-ultimately periodic automatic sequence.

Lemma 8.3. Let k ≥ 2 be an integer. Let a be a k-automatic sequence which is not
ultimately periodic. Let m be the cardinality of the k-kernel of a. Then the Diophantine
exponent of a is less than km.

We conclude this section with three results on fixed points of primitive morphisms.
Mossé [32] established that a fixed point of a primitive morphism either is ultimately

periodic, or contains no occurrence of words of the form W x, with W finite and non-empty
and x sufficiently large (independently of the length of W ). Her result immediately implies
the next lemma.

Lemma 8.4. Let a be a fixed point of a primitive morphism and assume that a is not
ultimately periodic. Then the Diophantine exponent of a is finite.

A second result was proved by M. Queffélec [35].
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Lemma 8.5. Let a = (a`)`≥1 be a fixed point of a primitive morphism on the alphabet
{1, 2, . . .}. For ` ≥ 1, let q` denote the denominator of the `-th convergent to [0; a1, a2, . . .].

Then, the sequence (q
1/`
` )`≥1 converges.

A third result, deduced from the proof of Theorem 10.4.12 of [12], shows that the
complexity of a sequence generated by a primitive morphism is sublinear.

Lemma 8.6. Let a = (a`)`≥1 be a fixed point of a primitive morphism σ on an alphabet
of cardinality b ≥ 2. Let v denote the width of σ. Then we have

p(n,a) ≤ 2v4b−2b3n, for n ≥ 1.

The reader is referred to [12] for many examples of sequences generated by an au-
tomaton or by a primitive morphism.

9. A combinatorial lemma

Throughout this section and the next one, we use the following notation. If ξ =
[0; a1, a2, . . .] is an irrational real number whose sequence of convergents is (p`/q`)`≥−1,
then, for integers r ≥ 0 and s ≥ 1, we define the integer polynomial Pξ,r,s(X) by

Pξ,r,s(X) := (qr−1qr+s − qrqr+s−1)X2

− (qr−1pr+s − qrpr+s−1 + pr−1qr+s − prqr+s−1)X

+ (pr−1pr+s − prpr+s−1).

(9.1)

By Lemma 6.2, the quadratic number

[0; a1, . . . , ar, ar+1, . . . , ar+s]

is a root of the polynomial Pξ,r,s(X). For the proofs of Theorem 2.2 and 3.2, we need the
following auxiliary result.

Lemma 9.1. Let A ≥ 3 be an integer. Let a = (a`)`≥1 be an infinite sequence of positive
integers at most equal to A and set

ξ := [0; a1, a2, . . . , a`, . . .].

Assume that the Diophantine exponent of ξ is finite. Let (p`/q`)`≥1 be the sequence of

convergents to ξ. Let M be an upper bound for the sequence (q
1/`
` )`≥1. Assume that

there are integers n0 ≥ 4 and κ ≥ 3 such that, for every integer n ≥ n0, there is a word
of length n having two occurrences in the prefix of length (κ + 1)n of a. Then, there
exist non-negative integers r1, r2, . . . and positive integers s1, s2, . . . such that, for j ≥ 1,
the word a begins with a word of length rj followed by a word of length sj to the power
1 + 1/κ and

(i) rj ≤ (2κ+ 1)sj ; sj+1 ≥ 2sj ;
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(ii) arj 6= arj+sj ;

(iii) (2qrjqrj+sj )
2 ≤ 2qrj+1

qrj+1+sj+1
≤ (2qrjqrj+sj )

650κ2(logM)2 ;

(iv) |Pξ,rj ,sj (ξ)| ≤ (2qrjqrj+sj )
−1−1/(15κ logM).

Furthermore, if
αj = [0; a1, . . . , arj , arj+1, . . . , arj+sj ],

then αj is the root of Pξ,rj ,sj (X) which is the closest to ξ and, denoting by α′j its Galois
conjugate, we have

H(αj) ≤ 2qrjqrj+sj , (9.2)

|ξ − αj | < (2qrjqrj+sj )
−2−1/(15κ logM) max{|αj − α′j |−1, 1}, (9.3)

and
|ξ − αj | > (2qrjqrj+sj )

−6(logM)Dio(ξ). (9.4)

The estimate (9.2) holds since the quantity 2qrqr+s associated with the polynomial
Pξ,r,s(X) defined in (9.1) is an obvious upper bound for its height. Note, however, that the
height of Pξ,r,s(X) can be much smaller than 2qrqr+s when qr/qr−1 is close to qr+s/qr+s−1;
see Section 12.

By Lemma 6.4, we can choose M = A+1 in Lemma 9.1. We have decided to introduce
the quantity M since the numerical values occurring in Lemma 9.1 heavily depend on the

behaviour of the sequence (q
1/`
` )`≥1, as it is explained after its proof. Moreover, it allows

us to adapt more easily Lemma 9.1 to the case when the sequence (a`)`≥1 is unbounded;
see Section 12. However, in all the applications presented in Sections 2 to 5, the sequence
(a`)`≥1 is bounded.

Proof. The first part is purely combinatorial and we argue as in the proof of Lemma 9.1
from [7]. Let ` ≥ 2 be an integer, and denote by A(`) the prefix of a of length `. By
assumption, for ` ≥ n0, there exists a word W` of length ` having at least two occurrences
in A((κ + 1)`). In other words, there exist (possibly empty) words B`, D`, E` and a
non-empty word C` such that

A((κ+ 1)`) = B`W`D`E` = B`C`W`E`.

We choose these words in such a way that, if B` is non-empty, then the last letter of B`
differs from the last letter of C`.

Assume first that |C`| ≥ |W`|. Then, there exists a word F` such that

A((κ+ 1)`) = B`W`F`W`E`.

Setting U` = B`, V` = W`F`, and w` = |W`F`W`|/|W`F`|, we observe that U`V
w`
` is a

prefix of a. Furthermore, we check that w` ≥ w and

|U`V w`` |
|U`V`|

= 1 +
|W`|
|U`V`|

≥ 1 +
1

κ
.
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Assume now that |C`| < |W`|. This means that the two occurrences of W` do overlap,
hence there exists a rational number d` > 1 such that

W` = Cd`` .

Setting U` = B` and V` = C
dd`/2e
` , and noticing that 3dd`/2e/2 ≤ d` + 1, we observe that

U`V
3/2
` is a prefix of a. Furthermore, we check that |V`| ≤ (`+ 2)/2 and

|V 1/2
` |
|U`V`|

≥ |V`|
2(|V`|+ κ`)

≥ `+ 2

2`+ 4 + 4κ`
≥ 1

4κ+ 3
.

To summarize, setting w = 1 + 1/κ, we have shown that, for ` ≥ n0, there exist two
finite words U`, V` and a rational number w` such that w ≤ w` ≤ 3/2 and

(v) U`V
w`
` is a prefix of a;

(vi) |U`| ≤ (2κ+ 1)|V`|;
(vii) `/2 ≤ |V`| ≤ κ`;
(viii) If U` is not the empty word, then the last letter of U` differs from the last letter of V`;

(ix)
|U`V w`` |
|U`V`|

≥ 1 +
1

4κ+ 3
.

The words U`, ` ≥ n0, constructed above may not be all distinct. For ` ≥ n0, let ρ`
and σ` denote the lengths of U` and V`, respectively. The definition of M and Lemma 6.4
imply that

2(j−1)/2 ≤ qj ≤M j , for j ≥ 3. (9.5)

Set f = d4(logM)/(log 2)e+ 1. Since

`

2
≤ 2ρ` + σ` ≤ 2(κ+ 1)`,

we have, for every ` ≥ n0,

2f(2ρ` + σ`) ≤ 4f(κ+ 1)` ≤ 4ρ4f(κ+1)` + 2σ4f(κ+1)`

≤ 16f(κ+ 1)2` ≤ 32f(κ+ 1)2(2ρ` + σ`),

by using (vi) and (vii). Setting c = 32f(κ + 1)2, rj = ρ(4f)j(κ+1)j , and sj = σ(4f)j(κ+1)j ,
we thus get

2f(2rj + sj) ≤ 2(2rj+1 + sj+1) ≤ c(2rj + sj)

and

sj ≤ κ(4f)j(κ+ 1)j <
(4f)j+1(κ+ 1)j+1

2
≤ sj+1

2
.

It follows from (9.5) that

(2qrjqrj+sj )
2 ≤ 2qrj+1

qrj+1+sj+1
≤ (2qrjqrj+sj )

c(logM)/(log 2).
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Since rj ≤ (2κ + 1)sj , Conditions (i) and (iii) of the lemma are satisfied. Furthermore,
Condition (ii) follows from (viii).

Estimate (9.2) directly follows from Lemma 6.1. Set w′j = w(4f)j(κ+1)j . Since, by
Condition (v), the real numbers ξ and

αj = [0;U(4f)j(κ+1)j , V(4f)j(κ+1)j ]

have the same first rj + bw′jsjc partial quotients, we get

|ξ − αj | ≤ q−2rj+bw′jsjc � q−2rj+sj2
−sj(w′j−1), (9.6)

by Lemma 6.4. The inequality

|αj − α′j | ≥ (qrjqrj+sj )
−1,

combined with (9.6) shows that αj is the root of Pξ,rj ,sj (X) which is the closest to ξ,
provided that j is large enough.

It follows from (ix) that

dsj(w′j − 1)e ≥ (rj + sj)/(4κ+ 3), (9.7)

and, by (9.5) and Lemma 6.4, we get

2rj+sj � (qrjqrj+sj )
(rj+sj)(log 2)/((2rj+sj) logM)

� (qrjqrj+sj )
(log 2)/(2 logM).

(9.8)

Putting together (9.6), (9.7) and (9.8), we deduce that

|ξ − αj | � q2rj (2qrjqrj+sj )
−2−(log 2)/(2(4κ+3) logM). (9.9)

Furthermore, it follows from Lemma 6.1 that

|αj − α′j | � A3q−2rj , (9.10)

thus
q2rj � A3 max{|αj − α′j |−1, 1}. (9.11)

Combining (9.9) and (9.11) with κ ≥ 3, we get (9.3) for j large enough. We also deduce
from (9.9), (9.10) and the triangle inequality that

|Pξ,rj ,sj (ξ)| ≤ 2 · (2qrjqrj+sj ) · |ξ − αj | · |αj − α′j |

≤ 2A3(2qrjqrj+sj )
−1−(log 2)/(2(4κ+3) logM).

This shows that (iv) holds for j large enough.
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If Dio(ξ) is bounded from above by δ, then the continued fraction expansions of αj
and ξ agree at most until the dδ(rj + sj)e partial quotient. Consequently, using Lemma 5
of [2], we get

|ξ − αj | ≥ (A+ 2)−3 q−2dδ(rj+sj)e

≥ (A+ 2)−3M−2M−2δ(rj+sj)

≥ (A+ 2)−3M−2 (2qrjqrj+sj )
−4δ(rj+sj)(logM)/((2rj+sj)(log 2))

≥ (A+ 2)−3M−2 (2qrjqrj+sj )
−4δ(logM)/(log 2).

(9.12)

This shows that (9.4) holds for j large enough. This completes the proof of the lemma.

It is apparent in the proof of Lemma 9.1 that the estimates can be improved if, instead
of (9.5), we use the fact that for some real numbers m,M with M > m ≥

√
2 we have

mj ≤ qj ≤M j ,

for every sufficiently large j. The quantity (logM)/(log
√

2) coming from (9.5) and occur-
ring in the proof of Lemma 9.1 can then be everywhere replaced by (logM)/(logm). In

particular, when the sequence (q
1/`
` )`≥1 converges, then m and M can be taken arbitrarily

close, thus (logM)/(logm) can be taken arbitrarily close to 1. This shows that, under this
assumption, Lemma 9.1 holds with logM replaced by 1 (and, even, by 1/(log

√
2)) in (iii),

(iv), (9.3), and (9.4).

10. Second part of the proof of Theorem 3.2

The proof of Theorem 3.2 partly relies on the quantitative version of the Schmidt
Subspace Theorem. Theorem E below statement was proved by Evertse [27]. We refer to
his paper for the definition of the height H(L) of the linear form

L(x) = α1x1 + . . .+ αmxm,

where α1, . . . , αm are real algebraic numbers belonging to a same number field of degree d.
For our purpose, it is sufficient to stress that H(L) can be bounded from above in terms
of the heights of the coefficients of L. More precisely, inequality (6.6) from [5] asserts that

H(L) ≤ md/2 (d+ 1)m/2
m∏
i=1

H(αi). (10.1)

Theorem E. Let m ≥ 2, H and d be positive integers. Let L1, . . . , Lm be linearly
independent (over Q) linear forms in m variables with real algebraic coefficients. Assume
that H(Li) ≤ H for i = 1, . . . ,m and that the number field generated by all the coefficients
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of these linear forms has degree at most d. Let ε be a real number with 0 < ε < 1. Then,
the primitive integer vectors x = (x1, . . . , xm) in Zm with H(x) ≥ H and such that

m∏
i=1

|Li(x)| < |det(L1, L2, . . . , Lm)| · (max{|x1|, . . . , |xm|})−ε

lie in at most
cm,ε (log 3d) (log log 3d)

proper subspaces of Qm, where cm,ε is a constant which only depends on m and ε.

We keep the notation from Section 9. First, we check that the entries of the quadruple

(qr−1qr+s − qrqr+s−1, qr−1pr+s − qrpr+s−1,
pr−1qr+s − prqr+s−1, pr−1pr+s − prpr+s−1)

(10.2)

are relatively prime. To see this, assume that a positive integer m divides pr−1qr+s −
prqr+s−1 and pr−1pr+s − prpr+s−1. Then, it also divides

pr+s−1(pr−1qr+s − prqr+s−1)− qr+s−1(pr−1pr+s − prpr+s−1) = ±pr−1

and
pr+s−1(qr−1qr+s − qrqr+s−1)− qr+s−1(qr−1pr+s − qrpr+s−1) = ±qr−1.

Since pr−1 and qr−1 are relatively prime, the quadruple (10.2) is primitive.
Incidentally, this shows that when qr−1pr+s−qrpr+s−1 is equal to pr−1qr+s−prqr+s−1,

then the triple

(qr−1qr+s − qrqr+s−1, qr−1pr+s − qrpr+s−1, pr−1pr+s − prpr+s−1)

is primitive. These results will be used in the sequel.

Second part of the proof of Theorem 3.2.
Let ξ be as in the statement of Theorem 3.2. Assume that the Diophantine exponent

of ξ is finite. By Theorem 2.2, this implies that w2(ξ) is also finite. To prove that ξ is
either an S- or a T -number, it remains for us to control the accuracy of the approximation
to ξ by algebraic numbers of exact degree d, for every integer d ≥ 3. We follow the proof
of Theorem 2.1 from [6]. Since there are a few technical difficulties, we give some details.

Let d ≥ 3 be an integer. Let α be an algebraic number of degree d. At several places
in the proof below, it is convenient to assume that the height of α is sufficiently large. Let
χ be a positive real number such that

|ξ − α| < H(α)−χ.

Our aim is to prove that

χ < exp(c (log 3d)5 (log log 3d)4) (10.3)
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for some constant c which does not depend on d.
Let κ ≥ 3 and n0 be integers such that p(n,a) ≤ κn for n ≥ n0. The Schubfachprinzip

implies that the assumption of Lemma 9.1 is satisfied. We keep the notation of that lemma
and let (rj)j≥1 and (sj)j≥1 be the sequences obtained by applying it. Let k be the unique
positive integer such that

2qrkqrk+sk ≤ H(α) < 2qrk+1
qrk+1+sk+1

. (10.4)

Denote by M1 the largest integer such that

(2qrkqrk+sk)χ > (2qrk+M1
qrk+M1

+sk+M1
)3

and observe that
|ξ − α| < (2qrk+hqrk+h+sk+h)−3 (10.5)

for every h = 1, . . . ,M1. From the definition of M1 and using Condition (iii) of Lemma
9.1, we have

(2qrkqrk+sk)χ ≤ (2qrk+M1+1
qrk+M1+1+sk+M1+1

)3

≤ (2qrkqrk+sk)3(650κ
2(logM)2)M1+1

.

Consequently, Inequality (10.3) holds if we have

M1 < c0(log 3d)5(log log 3d)4

for some constant c0 which does not depend on d.
We will argue by contradiction. From now on, we assume that

M1 > c1(log 3d)5(log log 3d)4, (10.6)

for some constant c1, and we will derive a contradiction if c1 is sufficiently large.
For simplicity, for every integer j ≥ 1, we write Pj(X) instead of Pξ,rj ,sj (X), defined

by (9.1). Let j ≥ 1 be an integer. Observe that, by condition (iv),

|Pj(ξ)| � (2qrjqrj+sj )
−1−1/(15κ logM), (j ≥ 1). (10.7)

Furthermore, for j ≥ 1, we infer from the theory of continued fractions that

|(qrj−1qrj+sj − qrjqrj+sj−1)ξ − (qrj−1prj+sj − qrjprj+sj−1)|
≤ qrj−1|qrj+sjξ − prj+sj |+ qrj |qrj+sj−1ξ − prj+sj−1|
� qrj q

−1
rj+sj

(10.8)

and, likewise,

|(qrj−1qrj+sj − qrjqrj+sj−1)ξ − (prj−1qrj+sj − prjqrj+sj−1)|
� q−1rj qrj+sj .

(10.9)
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Using Rolle’s Theorem, Inequalities (10.5) and (10.7) imply that

|Pk+h(α)| < |Pk+h(ξ)|+ 3qrk+hqrk+h+sk+h |ξ − α|
� (2qrk+hqrk+h+sk+h)−1−1/(15κ logM), (1 ≤ h ≤M1).

(10.10)

We apply Theorem E to the system of linear forms

L1(X1, X2, X3, X4) =α2X1 − α(X2 +X3) +X4,

L2(X1, X2, X3, X4) =αX1 −X2,

L3(X1, X2, X3, X4) =αX1 −X3,

L4(X1, X2, X3, X4) =X1.

These linear forms are linearly independent and with algebraic coefficients. For j ≥ 1,
define the quadruple

xj := (qrj−1qrj+sj − qrjqrj+sj−1, qrj−1prj+sj − qrjprj+sj−1,
prj−1qrj+sj − prjqrj+sj−1, prj−1prj+sj − prjprj+sj−1),

Set N1 = {k + h, bM1/2c ≤ h ≤ M1} and P1 =
{
xj , j ∈ N1

}
. Let j be in N1.

Evaluating the linear forms above at the integer point xj , we infer from Inequalities (10.8),
(10.9) and (10.10) that∏

1≤h≤4

|Lh(zj)| � |det(L1, L2, L3, L4)| (qrjqrj+sj )−1/(15κ logM)

< |det(L1, L2, L3, L4)| (qrjqrj+sj )−1/(16κ logM).

Furthermore, as noted after the statement of Theorem E, all the elements of the set P1 are
primitive and, by (10.1), the maximal absolute value of the entries of xj exceeds H(Li) for
i = 1, . . . , 4 and j ∈ N1. Moreover, the coefficients of the linear forms L1, . . . , L4 generate
a number field of degree d. Let T1 be the upper bound for the number of exceptional
subspaces given by Theorem E applied with m = 4 and ε = 1/(16κ logM). Set

M2 := bM1/T1c.

Inequality (10.6) ensures the existence of a constant c2 such that

M2 > c2(log 3d)4(log log 3d)3. (10.11)

By the Schubfachprinzip, there exists a proper subspace of Q4 containing at least M2

points of P1. Thus, there exist a non-zero integer vector (z1, z2, z3, z4) and a set of integers
N2 ⊂ N1 of cardinality M2 such that

z1(qrj−1qrj+sj − qrjqrj+sj−1) + z2(qrj−1prj+sj − qrjprj+sj−1)

+ z3(prj−1qrj+sj − prjqrj+sj−1) + z4(prj−1prj+sj − prjprj+sj−1) = 0,
(10.12)
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for every j ∈ N2. Let l1 < l2 < . . . < lM2 denote the elements of N2 once ordered.
Let j be in N2 such that rj ≥ 1. Dividing (10.12) by qrjqrj+sj−1 and setting

Qj :=
qrj−1qrj+sj
qrjqrj+sj−1

,

we get

z1(Qj − 1) + z2

(
Qj

prj+sj
qrj+sj

−
prj+sj−1

qrj+sj−1

)
+ z3

(
Qj

prj−1

qrj−1
−
prj
qrj

)
+ z4

(
Qj

prj−1

qrj−1

prj+sj
qrj+sj

−
prj
qrj

prj+sj−1

qrj+sj−1

)
= 0.

Setting
Z = max{|z1|, |z2|, |z3|, |z4|}

and using that ∣∣∣∣α− ph
qh

∣∣∣∣ ≤ 1

qhqh+1
,

for
h ∈ {rj − 1, rj , rj − 1 + sj − 1, rj + sj},

it then follows that

|(Qj − 1)(z1 + (z2 + z3)α+ z4α
2)| � QjZq

−1
rj q
−1
rj−1.

Let A be an upper bound for the sequence (a`)`≥1. We deduce from the fact that arj
differs from arj+sj that Qj/|Qj − 1| � A2, thus

|z1 + (z2 + z3)α+ z4α
2| � A2Zq−1rj q

−1
rj−1. (10.13)

At this point, there is a difficulty to overcome which did not occur in [6]. Indeed, rj
and rj − 1 can both be small and (10.13) may not imply that z1 + (z2 + z3)α + z4α

2 is
equal to 0.

As in [6], we first have to distinguish two cases.

Assumption A: There exist three integers 1 ≤ a < b < c ≤ bM2/4c such that the
vectors xla , xlb and xlc are linearly independent.

As explained in [6], if Assumption A is satisfied, then there exist z1, . . . , z4 as above
with

Z ≤ 12(2qrlc qrlc+slc )3. (10.14)

Furthermore, Liouville’s inequality asserts that

|z1 + (z2 + z3)α+ z4α
2| � H(α)−2 · Z−d+1, (10.15)
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if z1 + (z2 + z3)α+ z4α
2 is non-zero. The combination of (10.13), (10.14) and (10.15) gives

qrjqrj−1 � A2H(α)2(qrlc qrlc+slc )3d, (10.16)

for j in N2, if z1 + (z2 +z3)α+z4α
2 is non-zero. Note that (10.16) trivially holds if rj = 0,

since q−1 = 0. There are two subcases to distinguish. For simplicity, put λ = ldM2/2e.
If (10.16) is not satisfied for some j in N2 with j ≥ λ, we get immediately that

z1 + (z2 + z3)α+ z4α
2 = 0, (10.17)

a case to which we will return later. Otherwise, we deduce from (10.4), (10.16) and (iii)
of Lemma 9.1 that, for every j in N2 with j ≥ lb3M2/4c, we have

qrjqrj−1 � A2H(α)2(qrλqrλ+sλ)(3d)·2
−M2/4

� A2q2rk+1+sk+1
(qrλqrλ+sλ)1/M2 ,

thus rj ≤ sλ/(2κ), for every j in N2 with j ≥ lb3M2/4c.
In this case, we replace ξ by a suitable real number equivalent to it in order to reach

a situation where the results of [6] are applicable. Set u = dsλ/(2κ)e,

ξ̃ := [0; au+1, au+2, . . .] =
pu − quξ

qu−1ξ − pu−1
,

and

α̃ := [0; au+1, au+2, . . .] =
pu − quα

qu−1α− pu−1
.

Let j = b3M2/4c, . . . ,M2. Let Wj be the prefix of the word au = au+1au+2 . . . of length
slj . Since a begins with a word of length rlj followed by a word of length slj to the power

1 + 1/κ, the word W
1+1/(2κ)
j is also a prefix of au. Denoting by (p̃`/q̃`)`≥1 the sequence of

convergents to ξ̃, we get from Lemma 6.2 that

|q̃slj−1ξ̃
2 − (pslj−1 − qslj )ξ̃ − pslj | � q̃slj q̃

−2
slj+bslj /(2κ)c

.

Since

|ξ̃ − α̃| � q2u|ξ − α|,

we also get

|q̃slj−1α̃
2 − (pslj−1 − qslj )α̃− pslj | � q̃slj q̃

−2
slj+bslj /(2κ)c

.

Since

M2 > c2(log 3d)3(log log 3d)2,

we can now follow the proof on pages 898 to 903 of [6] to reach a contradiction.
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We return to the case where (10.17) holds. Since α is algebraic of degree at least
three, we get that z1 = z4 = 0 and z2 = −z3. Then, z2 is non-zero and, for any j in N2,
the polynomial Pj(X) can simply be expressed as

Pj(X) := (qrj−1qrj+sj − qrjqrj+sj−1)X2

− 2(qrj−1prj+sj − qrjprj+sj−1)X + (prj−1prj+sj − prjprj+sj−1).

Consider now the three linearly independent linear forms

L′1(X1, X2, X3) =α2X1 − 2αX2 +X3,

L′2(X1, X2, X3) =αX1 −X2,

L′3(X1, X2, X3) =X1.

Evaluating them on the triple

x′j := (qrj−1qrj+sj − qrjqrj+sj−1, qrj−1prj+sj − qrjprj+sj−1,
prj−1prj+sj − prjprj+sj−1),

it follows from (10.8), (10.9) and (10.10) that∏
1≤h≤3

|L′h(x′j)| < |det(L′1, L
′
2, L
′
3)| (qrjqrj+sj )−1/(16κ logM),

by arguing as above.
Applying Theorem E, we get that the points x′j lie in a finite number of proper

subspaces of Q3. Thus, by (10.11), there exist a non-zero integer triple (z′1, z
′
2, z
′
3) and an

infinite set of distinct positive integers N3 included in N2, of cardinality

M3 > c3(log 3d)3 (log log 3d)2, (10.18)

and such that

z′1(qrj−1qrj+sj − qrjqrj+sj−1) + z′2(qrj−1prj+sj − qrjprj+sj−1)

+ z′3(prj−1prj+sj − prjprj+sj−1) = 0,
(10.19)

for any j in N3.
Let j be in N3 with rj ≥ 1. Divide (10.19) by qrjqrj+sj−1. This gives

z′1(Qj − 1) + z′2

(
Qj

prj+sj
qrj+sj

−
prj+sj−1

qrj+sj−1

)
+ z′3

(
Qj

prj−1

qrj−1

prj+sj
qrj+sj

−
prj
qrj

prj+sj−1

qrj+sj−1

)
= 0.

It then follows that
|z′1 + z′2α+ z′3α

2| � A2Z ′Qjq
−1
rj q
−1
rj−1,
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where Z ′ := max{|z′1|, |z′2|, |z′3|}. Since every x′j is primitive, the vectors x′j and x′h are not
collinear for distinct indices j, h in N3. This allows us to bound Z ′. As above, we get that
either

z′1 + z′2α+ z′3α
2 = 0,

in which case we get a contradiction since α is algebraic of degree at least three, or rj
is small for every sufficiently large j in N3. In the latter case, we introduce as above a
number ξ̃ equivalent to ξ and, using (10.18), we get a contradiction in a similar way.

To conclude, it remains for us to treat the case where Assumption A is not satisfied.
Set N4 := {bM2/8c, . . . , bM2/4c}. Observe that the vectors xlj , with j in N4, belong to the
subspace generated by xl1 and xl2 . Arguing as on page 903 of [6], there exists a non-zero
integer vector (z′′1 , z

′′
2 , z
′′
4 ) such that

Z ′′ := max{|z′′1 |, |z′′2 |, |z′′4 |} ≤ 2qrl2 qrl2+sl2 (10.20)

and
z′′1 (qrj−1qrj+sj − qrjqrj+sj−1) + z′′2 (qrj−1prj+sj − qrjprj+sj−1)

+ z′′4 (prj−1prj+sj − prjprj+sj−1) = 0,

for every j ∈ N4. Proceeding exactly as in the proof of (10.13), we obtain

|z′′1 + z′′2α+ z′′4α
2| � A2Z ′′q−1rj−1q

−1
rj , (10.21)

for every j ∈ N4 with rj ≥ 1. Since α is of degree at least three, Liouville’s inequality
gives us that

|z′′1 + z′′2α+ z′′4α
2| � H(α)−2 · (Z ′′)−d+1,

thus, by (10.20) and (10.21),

qrj � A2H(α)2(qrl2 qrl2+sl2 )d,

for every j ∈ N4 (recall that q−1 = 0). This proves that rj is small compared to sl2 and

we apply the same trick as above, where we have introduced the real numbers ξ̃ and α̃.
Since there is no specific difficulty, we omit the details.

11. Proofs

Proof of (2.1) and of Theorem 2.3.
Let a = (a`)`≥1 be an infinite sequence of positive integers. Set

ξ = [0; a1, a2, . . . , a`, . . .],

and denote by (p`/q`)`≥1 the sequence of convergents to ξ. Let m and M be real numbers
greater than 1 such that

m` < q` < M `,
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for every integer ` greater than some integer `0. Assume that Dio(ξ) exceeds 1 and let
δ > 1 be a real number less than Dio(ξ). For every positive integer j, there exist finite
words Uj and Vj and a real number wj such that a begins with the word UjV

wj
j and

|UjV
wj
j |/|UjVj | ≥ δ. Set αj = [0;Uj , Vj ] and denote by rj and sj the lengths of the words

Uj and Vj , respectively. Assume first that (rj)j≥1 is strictly increasing and that r1 exceeds
`0. By Lemma 6.2, αj is a root of an integer polynomial of height less than 2qrjqrj+sj ,
thus

H(αj) ≤ 2M2rj+sj .

Since the first rj + bwjsjc partial quotients of ξ and αj are the same, we get

|ξ − αj | < q−2rj+bwjsjc ≤ (H(αj)/2)−2(rj+wjsj−1)(logm)/((2rj+sj)(logM))

≤ (H(αj)/2)−(rj+wjsj−1)(logm)/((rj+sj)(logM)).
(11.1)

We then deduce that

w∗2(ξ) ≥ logm

logM
Dio(ξ)− 1.

When the sequence (q
1/`
` )`≥1 converges, then m and M can be taken arbitrarily close and

we obtain the lower bound (2.1). The case when the sequence (rj)j≥1 is bounded is easier,
and we omit it.

In (11.1), we have used the trivial upper bound 2rj + sj ≤ 2(rj + sj) which is sharp
when rj is large compare to sj , but very weak otherwise. Assuming now that the sequence
a is bounded by A, it follows from Lemma 6.1 that

|ξ − αj | · |ξ − α′j | � A3 q−2rj+bwjsjc · q
−2
rj

� A3 (H(αj)/2)−2(2rj+wjsj−1)(logm)/((2rj+sj)(logM)).

Since
2rj + wjsj

2rj + sj
≥ rj + δ(rj + sj)

2rj + sj

≥ rj + sj/2 + δ(rj + sj/2)

2rj + sj
≥ 1 + δ

2
,

we deduce that

w2(ξ) ≥ logm

logM
(1 + Dio(ξ))− 1.

In particular, we have shown that w2(ξ) ≥ Dio(ξ) if the sequence (q
1/`
` )`≥1 converges.

Proof of Theorem 2.2.
Let ξ be as in the statement of the theorem. Since p(1,a) is finite, the sequence a is

bounded, thus ξ is a badly approximable number. In particular, it satisfies w1(ξ) = 1. If
Dio(ξ) is infinite, then w∗2(ξ) is also infinite, by (2.1). Consequently, we assume that Dio(ξ)
is finite. It follows from the Schubfachprinzip that we are in position to apply Lemma 9.1.
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By Lemma 6.4, the quantity M occurring in its statement can be taken equal to A + 1.
Thus, Lemma 9.1 gives a sequence (αj)j≥1 of quadratic numbers and a sequence (Qj)j≥1
of integers such that the assumptions of Lemma 7.2 are satisfied with

C = 650κ2(log(A+ 1))2, ε = 1/(15κ log(A+ 1)),

and
w = 6Dio(ξ) log(A+ 1).

It then follows from (1.3) and Lemma 7.2 that

w∗2(ξ) ≤ w2(ξ) ≤ 2 + 6Dio(ξ) log(A+ 1)(1 + 19500κ3(log(A+ 1))3).

This finishes the proof of (2.3). Furthermore, the discussion following the proof of Lemma

9.1 shows that, if the sequence (q
1/`
` )`≥1 converges, then one can apply Lemma 7.2 with

C = 650κ2, ε = 1/(15κ), and w = 6Dio(ξ).

This proves (2.4).

Proof of Theorem 3.3.
Set a = a1a2 . . . Since `′ is positive and λk ≥ 2 for every sufficiently large integer k,

there exists an integer κ such that, for every sufficiently large integer n, there exists a word
of length n having two occurrences in the prefix of a of length (κ+ 1)n. This is precisely
the assumption needed to apply Lemma 9.1. Furthermore, the Diophantine exponent of ξ
is equal to

1 + lim sup
k→+∞

(λk − 1)rk
λ1r1 + . . .+ λk−1rk−1 + rk

.

Since λk tends to infinity with k, the Diophantine exponent of ξ is finite if, and only if, L′

is finite. We then apply Lemma 9.1 and follow the proof of Theorem 3.2.

Proof of Theorem 4.1.
Although the numerical constants implied in� depend on b and c, we write� instead

of �b,c.
Let j ≥ 2 be an integer. Define the quadratic number

ξw,j := [0; a1,w, . . . , abwjc,w, b]

and denote by (p`/q`)`≥1 the sequence of its convergents. Set γ = (b+
√
b2 + 4)/2. There

exists an integer M such that

γ` � q` � `Mγ`, (` ≥ 1).
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Clearly, we have
|ξw − ξw,j | � q−2bwj+1c

and, by Lemmas 6.1 and 6.3,

|ξw,j − ξ′w,j |−1 � q2bwjc � H(ξw,j),

where ξ′w,j denotes the Galois conjugate of ξw,j . We conclude by Lemma 7.3 that

w∗2(ξ) + 1 = w, w2(ξ) = w,

provided that (w − 1)(w − 2) ≥ 2w, that is, provided that w ≥ (5 +
√

17)/2.

Proof of Theorem 4.3.
Although the numerical constants implied in � depend on b, c and d, we write �

instead of �b,c,d.
Let j ≥ 2 be an integer. Define the quadratic number

ξw,η,j := [0; a1,w,η, . . . , abwjc,w,η, b, b, . . . , b, d]

and denote by (p`/q`)`≥1 the sequence of its convergents. Set γ = (b+
√
b2 + 4)/2. There

exists an integer M such that

γ` � q` � `Mγ`, (` ≥ 1).

Since
bwjc+ (mj + 1)bηwjc > bwj+1c − 3,

we have
|ξw − ξw,η,j | � q−2bwj+1c.

It follows from Lemma 6.3 that

H(ξw,η,j)� (2wj)2Mγw
j(2+η).

and from Lemma 6.1 that
|ξw,η,j − ξ′w,η,j | � q−2bwjc,

where ξ′w,η,j denotes the Galois conjugate of ξw,η,j . Thus, assuming that(
2w

2 + η
− 2 +

2

2 + η

)(
2w

2 + η
− 3 +

2

2 + η

)
≥ 2w

(
2− 2

2 + η

)
, (11.2)

we deduce from Lemma 7.3 that

w∗2(ξ) = −1 + 2w/(2 + η) = (2w − 2− η)/(2 + η)
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and
w2(ξ) = (2w − η)/(2 + η).

In particular, we have
w2(ξ)− w∗2(ξ) = 2/(2 + η).

Since η ≤
√
w/4, inequality (11.2) holds for w ≥ 16, this concludes the proof of the

theorem.

12. An extension of Theorem 3.2

Theorems 2.2 and 3.2 apply to continued fractions with bounded partial quotients.
However, their proofs are flexible enough to extend to a wider class of continued fractions
with unbounded partial quotients. The methods of the present paper allow us to establish
the following more general result.

Theorem 12.1. Let a = (a`)`≥1 be an infinite sequence of positive integers and set

ξ := [0; a1, a2, . . . , a`, . . .].

Let (p`/q`)`≥1 be the sequence of convergents to ξ and assume that (q
1/`
` )`≥1 is bounded.

Assume furthermore that there is a positive integer κ such that, for every sufficiently large
integer n, there is a word of length n having two occurrences in the prefix of length (κ+1)n
of a. If Dio(ξ) is finite, then ξ is either an S-number or a T -number; otherwise, ξ is either
quadratic or a U2-number. Moreover, if Dio(ξ) is finite, then there exists a constant c,
depending only on ξ, such that

wd(ξ) ≤ exp(c (log 3d)5 (log log 3d)4), for d ≥ 1.

By Theorem 12.1, the conclusion of Theorem 3.3 still holds if the sequence (an)n≥1 is

unbounded, provided that (q
1/`
` )`≥1 is bounded, where q` denotes the denominator of the

`-th convergent to ξ.
Keeping the notation and the assumption of Theorem 12.1, we first show that ξ is not

a Liouville number. Indeed, since (q
1/`
` )`≥1 is bounded, there exists M such that q` ≤M `

for ` ≥ 1. Since, by Lemma 6.4, we have q` ≥ 2(`−1)/2 for ` ≥ 1, we deduce that

q` ≤M2 · (M2)(`−2)/2 ≤M2 · q(logM
2)/(log 2)

`−1 ,

for ` ≥ 2. Putting v = 2(logM)/(log 2), this can be rewritten as

q` � qv`−1, for ` ≥ 2, (12.1)

where � means, until the end of this section, that the implied constant depends on M .
The upper bound

w1(ξ) ≤ (logM2)/(log 2)
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is an immediate consequence of (12.1).
The strategy to prove Theorem 12.1 is to follow the proofs of Lemma 9.1, Theorems

2.2 and 3.2 and to modify accordingly the few steps where we have used the fact that the
sequence (a`)`≥1 is bounded. There is no big difficulty, but some technical complications.

First, we note that the first part of Lemma 9.1 can be proved with the upper bound
for qj given by (9.5), even if the sequence a is unbounded. The boundedness of a is used
only in (9.10) and in (9.12). By Condition (ii) of the lemma, αj and its Galois conjugate
may not be very close to each other when arj = arj+sj ± 1 and arj−1 and arj+sj−1 are
both large. But, in that case, the height of the polynomial Pξ,rj ,sj (X) is indeed much
smaller than 2qrjqrj+sj . Thus, instead of emphasizing the quantity 2qrqr+s which bounds
the height of Pξ,r,s(X), it is better to work with the refined upper bound

Hr,s := 3qrqr+s · |qr−1/qr − qr+s−1/qr+s|,

after having noticed that the four numbers

|qr−1/qr − qr+s−1/qr+s|, |pr−1/pr − qr+s−1/qr+s|,
|qr−1/qr − pr+s−1/pr+s|, |pr−1/pr − pr+s−1/pr+s|

are very close to each other.
To evaluate Hr,s, we argue as in the proof of Lemma 6.1 to get

Hr,s � qrqr+s|qr−1/qr − qr+s−1/qr+s| �
qrqr+s

ar+sar max{ar+s−1, ar−1}
� (qrqr+s)

1/v2 ,

with v as in (12.1). This shows that one can get the analogue of (iii). To obtain the
analogue of (9.4), one uses Lemma 5.5 of [6].

In the last part of the proof in Section 10, we have to bound from above the quantity
Qj/|Qj − 1|. Arguing as in the proof of Lemma 6.1 we show that

Qj/|Qj − 1| � qrj ,

if rj ≥ 1. Instead of (10.13), we obtain the inequality

|z1 + (z2 + z3)α+ z4α
2| � Zq−1rj−1,

and (10.16) is replaced by

qrj−1 � H(α)2(qrlc qrlc+slc )3d,

if rj ≥ 0. We then proceed exactly as in Section 10 to reach a contradiction.

Acknowledgements: I am very much indebted to the referee, who pointed out several
obscure points in the first version of the present text.
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