On a mixed problem in Diophantine approximation

Yann BuceauD & Bernard de MATHAN

Abstract. Let d be a positive integer. Let p be a prime number. Let o
be a real algebraic number of degree d+ 1. We establish that there exist
a positive constant ¢ and infinitely many algebraic numbers & of degree
d such that | — &| - min{|Norm(¢)|,, 1} < cH(&)~% ! (log 3H (¢))~1/1.
Here, H(§) and Norm(§) denote the naive height of £ and its norm,
respectively. This extends an earlier result of de Mathan and Teulié
that deals with the case d = 1.

1. Introduction

In analogy with the Littlewood conjecture, de Mathan and Teulié [7] proposed recently
a ‘mixed Littlewood conjecture’. For any prime number p, the usual p-adic absolute value
| - |p is normalized in such a way that |p|, = p~'. We denote by | - || the distance to the
nearest integer.

De Mathan—Teulié conjecture. For every real number o and every prime number p,
we have

inf ¢ - lql, = 0. 1.1
Inf ¢ lga] - gl (1.1)

Obviously, the above conjecture holds if « is rational or has unbounded partial quo-
tients in its continued fraction expansion. Thus, it only remains to consider the case when
« is an element of the set Bad; of badly approximable real numbers, where

Bad, = {a € R : inf ¢-|qa| > 0}.
q>1

De Mathan and Teulié [7] proved that (1.1) holds for every quadratic real number « (recall
that such a number is in Bad;) but, despite several recent results [4, 3|, the general
conjecture is still unsolved.
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If we rewrite (1.1) under the form

. a
inf 2 la— =
a,q>1, ged(a,q)=1

'|q|p:07

then we have |q|, = min{|Norm(q/a)|,,1}. Hence, upon replacing a by 1/, the de
Mathan—Teulié conjecture can be reformulated as follows: For every irrational real number
a, for every prime number p and every positive real number e, there exists a non-zero
rational number £ satisfying

o = €] - min{[Norm(€) |, 1} < eH (€)™

Throughout this paper, the height H(P) of an integer polynomial P(X) is the maximal
of the absolute values of its coefficients. The height H (&) of an algebraic number & is the
height of its minimal defining polynomial over the rational integers ag+a1 X +...+aqX¢,
and the norm of ¢, denoted by Norm(¢), is the rational number (—1)%ag/ay.

This reformulation suggests us to ask the following question.

Problem 1. Let d be a positive integer. Let o be a real number that is not algebraic of
degree less than or equal to d. For every prime number p and every positive real number
g, does there exist a non-zero real algebraic number £ of degree at most d satisfying

o — €| - min{[Norm(€) |, 1} < eH(§) "'

The answer to Problem 1 is clearly positive, unless (perhaps) when « is an element of
the set Bad, of real numbers that are badly approximable by algebraic numbers of degree
at most d, where

Bad,; ={a € R : There exists ¢ > 0 such that |a — &| > cH (&) 7471,

for all algebraic numbers & of degree at most d}.

For d > 1, the set Bad, contains the set of algebraic numbers of degree d+1, but it remains
an open problem to decide whether this inclusion is strict for d > 2; see the monograph |[2]
for more information. The purpose of the present note is to give a positive answer to
Problem 1 for every positive integer d and every real algebraic number « of degree d + 1.
This extends the result from [7] which deals with the case d = 1.

2. Results

Throughout this paper, for a prime number p, a number field K, and a non-Archime-
dean place v on K lying above p, we normalize the absolute value | - |, in such a way that
|- |, and | - |, coincide on Q.

Our main result includes a positive answer to Problem 1 when « is a real algebraic
number of degree d + 1.



Theorem 1. Let d be a positive integer. Let o be a real algebraic number of degree d + 1
and denote by r the unit rank of Q(«). Let p be a prime number. There exist positive
constants c1, co, c3 and infinitely many real algebraic numbers & of degree d such that

o =€l < el H(E) ™, (2.1)

€]s < c2(log 3H (€)Y, (2.2)

for every absolute value |- |, on Q(&) above the prime p, and
o — €| - min{|Norm(¢) |, 1} < es H(€) ™" (log BH (€)) /" (2:3)

Theorem 1 extends Théoreme 2.1 of [7] that is only concerned with the case d = 1.

Under the assumptions of Theorem 1, Wirsing [10] established that there are infinitely
many real algebraic numbers ¢ satisfying (2.1).

The proof of Theorem 1 is very much inspired by a paper of Peck [8] on simultaneous
rational approximation to real algebraic numbers. Roughly speaking, we use a method
dual to Peck’s to construct integer polynomials P(X) that take small values at «, and we
need an extra argument to ensure that our polynomials have a root £ very close to a.

De Mathan [6] used the theory of linear forms in non-Archimedean logarithms to
prove that Theorem 1 for d = 1 is best possible, in the sense that the absolute value of the
exponent of (log3H (£)) in (2.2) cannot be too large. Next theorem extends this result to
all values of d.

Theorem 2. Let p be a prime number, d a positive integer and « a real algebraic number
of degree d + 1. Let \ be a positive real number. There exists a positive real number
k = Kk(\) such that for every non-zero real algebraic number £ of degree d satisfying

o =€l < AH (! (2.4)
we have

[€lo = (log 3H(£)) ™"
for at least one absolute value | - |, on Q(§) above the prime p.

As in [6], the proof of Theorem 2 rests on the theory of linear forms in non-Archime-
dean logarithms.

Let d be a positive integer. We recall that it follows from the p-adic version of the
Schmidt Subspace Theorem that for every algebraic number a of degree d + 1 and for
every positive real number ¢, there are only finitely many non-zero integer polynomials
P(X)=ao+ a1 X + ...+ aqX? of degree at most d, with ag # 0, that satisfy

|P(a)| - laol, < H(P)~"7%.

Let £ be a real algebraic number of degree at most d, and denote by P(X) = ap + a1 X +
...+ agX? its minimal defining polynomial over Z. Then,

min{|Norm(§)|,, 1} > |aolp
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and there exists a constant ¢(a), depending only on «, such that
[P(a)] < cla) H(E) - [€ —al.

Let € be a positive real number. Applying the above statement deduced from the p-adic
version of the Schmidt Subspace Theorem to these polynomials P(X), we deduce that

la — €| - min{|Norm(¢)|,, 1} > H(P) "4 '~¢

holds if H(P) is sufficiently large. This implies that if ¢ satisfies (2.4) and if H(§) is
sufficiently large, then we have

[Norm(&)[, > H(§)™",

accordingly
max |¢], > H(¢)~/".

The result of Theorem 2 is more precise, however we cannot obtain a good lower bound
for [Norm(&)|,.

We conclude this section by pointing out that Einsiedler and Kleinbock [4] showed
that a slight modification of the de Mathan—Teulié conjecture easily follows from a theorem
of Furstenberg [5, 1].

Theorem EK. Let p; and py be distinct prime numbers. Then
Inf g flgall - lalp, - lglp. =0

holds for every real number «.

In view of Theorem EK, we formulate the following question, presumably easier to
solve than Problem 1.

Problem 2. Let d be a positive integer. Let a be a real number that is not algebraic of
degree less than or equal to d. For every distinct prime numbers p1, ps and every positive
real number ¢, does there exist a non-zero real algebraic number & of degree at most d
satisfying

ja = &[ - min{|[Norm(&)],, 1} - min{[Norm(¢)|,,, 1} < eH(§) "7

Theorem EK gives a positive answer to Problem 2 when d = 1.

The sequel of the paper is organized as follows. We gather several auxiliary results in
Section 3, and Theorems 1 and 2 are established in Sections 4 and 5, respectively.

In the next sections, we fix a real algebraic number field K of degree d + 1. The
notation A < B means, unless specific indications, that the implicit constant depends on
K. Furthermore, we write A < B if we have simultaneously A < B and B < A.



3. Auxiliary lemmas

Let K be a real algebraic number field of degree d + 1. Let O denote its ring of
integers, and let ag = 1, a1, ..., aq be a basis of K. Let D be a positive integer satisfying

1
D(Z+aZ+...+aq4Z)COC 5(Z+a1Z+...+adZ)
and the corresponding inequalities for the dual basis 3y, ..., 34 defined by
Tr(a;35) = i,

where Tr is the trace and 9; ; is the Kronecker symbol.

We denote by 0g =1d, . ..., 04, the complex embeddings of K, numbered in such a way
that og,...,0,,—1 arereal, 0, ,...,0q are imaginary and o, 4,4 = 0, +; for 0 < j < ra.
Set also r =1r1 +1ro — 1, and let €1, ..., ¢, be multiplicatively independent units in K.

Lemma 1. Let n be a unit in O such that —1 < n < 1 and define the real number N by
In| = N~1. The conditions

o ()| =< NV, 0<j<d, (3.1)

and
loi(m)| < |oi ()], 0<i<j<d, (3.2)

are equivalent. Let v # 0 be in K and let A be a positive integer such that Ay € O. Ifn
satisfies (3.1) or (3.2), write
YN =agp+ ...+ adqoq,

with ag,...,aq in Q. We have DAay € Z for k =0,...,d and

.....

where the implicit constants depend on 7.

Proof. Since 7 is a unit, we have

[T oi(m) = +1.

0<j<d

and (3.1) and (3.2) are clearly equivalent. The formula
d
ar, = Te(ynB) =B+ > o5(n)o;(vBk)
j=1

implies that if n satisfies (3.1), then

lay| < N9, 0<k<d.



Combined with
01(’7)01(77) =ap+ ...+ ad01(04d) )

this shows that
NY9 < oy ()] < ax fag].

EARES]

The proof of the lemma is complete. O

Let a be a real algebraic number of degree d + 1. We keep the above notation with
the field K = Q(«) and the basis 1, ..., a? of K over Q, and we display an immediate
consequence of Lemma, 1.

Corollary 1. Let n be a unit in O such that —1 < n < 1 and set N = |n|~!. Then

DAvn = P(a),
where P(X) is an integral polynomial of degree at most d satisfying
H(P) =< NY4 |P(a)| =< N7,
and thus
|P(a)| = H(P)™.

Denote by 75, j = 0,...,d the embeddings of K into C,. Recall that the absolute
value |- |, on Q has a unique extension to C,, that we also denote by |- |,. In Lemmata 2
to 4 below we work in C,,. Let P(X) be an irreducible integer polynomial of degree n > 1.
Let ¢ be a complex root of P(X) and &q,...,&, be the roots of P(X) in C,. We point out
that the sets

{|£]+ : v is above p on Q(&)}

and
{[&lp:1<i<n}

coincide, since all the absolute values |- |, and | - |, coincide on Q.
Keeping the notation of Lemma 1, we have the following auxiliary result.

Lemma 2. Assume that v = ay. Then
(n) — <
laxlp < max |7;(n) —1lp, 0<k<d,
and
lag = 1]p < max |7;(n) — 1, .

Proof. Since
Tr(aqf;) =0, fork=0,...,d—1,

we get

d
ar, = Tr(ynB) = Tr(aa(n — 1)) = D> (75(n) = D)7s(cabh),
J=0



and deduce that

laklp < max |7;(n) =1, 0<k<d.

It follows from
Tr(ozdﬁd) = 1

that .
ag =1+ Tr(aafa(n—1)) =1+ > (7;(n) — V7j(cafa),
§=0
and we derive that
laq = 1]p < max |7;(n) — 1, .
This concludes the proof. O

Lemma 3. Let 0 < § < 1. There exist arbitrarily large positive real numbers H and units
n satisfying n = H—¢,

%‘_(’7)_1'95, 92<j<d, (3.3)
a1(n)
and

[7j(n) = 1l < (log H) ™'/, 0<j<d
Proof. By taking suitable powers of the units €4, ...,¢,, we can assume that they are all
positive, as well as their real conjugates, and that |7;(e;) — 1|, < p~V/®=Y fori=1,...,r

and j = 0,...,d. This is possible since |7;(g;)|, = 1 fori = 1,...,r and j = 0,...,d.
This allows us to consider the p-adic logarithms of each 7;(¢;). Our aim is to construct a
suitable unit 7 of the form

_ p® o p®
n=-e't ..ehP,

where p; € Z. The conditions for (3.3) are then

p® |11 log lo(21)] + ...+ pr log () ' < (1, 2<j<rm,
|o1(e1)] o (er)]

where C; = C;(0) > 0 is a constant, and

|2 margoy(en 4ot wargoy(e)| <G m<i<n
with C5 = 02(5) > 0. Set

Yj=p (”1 log 21(21)] + ...+ prlog \01(&)\) ’ 2<j<m,

|oj(e1)] |7 (er)]
and 5
Zy = g_w (1 argok(e1) + ...+ prargog(er)) € R/Z, r<k<r.
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Taking 0 < p; < M, we have M" points (p;)1<i<r. The (Yj, Zk)2<j<rr <k<r are in the
product of intervals I, 2 < j < r, of lengths O(Mp®) and of r factors identical to R/Z.
This set can be covered by C3(Mp®)"~! sets of diameter at most max{C}, Cy}, where C3
is a constant depending on d. By Dirichlet’s Schubfachprinzip, choosing M such that

03(Mps)r_1 < Mr?

which can be done with
M = p(r—l)s ,

we get that there is (p1,..., 1) € Z"\ {0} such that

A il < M,
Y;] < C, 2<j <,
and
[ Zk| < Co, rn<k<r.
Set then

n=(ef" ey

in such a way that 0 < n < 1 (if needed, just consider 1/n). This choice implies that
|7i(n) = 1p = [log, Ti(n)|, <p™°, 0<i<d,

and
logn| < p*M < p"*,

and the lemma is proved. O

Lemma 4. Let P(X) € C,[X] be a polynomial of degree d, and write
P(X)=ao+...4+agX?.

Let & (1 <i <d) be the roots of P(X) in C,. Let ¢ be a real number satisfying 0 < ¢ < 1.
If
’fi‘pgc7 1§Z§d7

we get

lak|p < cladlp, 0<k<d. (3.4)

Conversely, if (3.4) holds, then we have

&lp < M4, 1<i<d

Proof. Since

P(X)=aq J[ (X-&).

1<i<d
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if ||, <ec<1lfori=1,...,d, then we have
la|p < claglp, for k=0,...,d—1.

Conversely, if
lak|p < cladlp, 0<k<d,

and if £ € C,, is such that
ad§d+...+a0=0,

then, there exists k with 0 < k < d and

larc®|, > |aqc?,,

thus, ; .
S < €l <e.

This completes the proof of the lemma. O

We conclude this section with two lemmas used in the proof of Theorem 2. The first
of them was proved by Peck [8].

Lemma 5. There exists a sequence (1, )m>1 of positive units in O such that

N = efdm

and
‘O-j(nm)|xem7 1§]§d

Proof. Let us search the unit 7, under the form

__ M1 r
Nm = €1 ... ek,

with u; € Z. We construct real numbers vy, ..., v, such that
vilogey + ...+ v loge, = —dm (3.5)
and
vilogloj(er)| + ...+ v logloj(e,)] = m, 1<j<d. (3.6)

Taking into account that, by complex conjugation, the equations (3.6) corresponding to
an index j with r; < 7 < ry + r2 and to the index j + ro are identical, and that the sum
of (3.5) and equations (3.6) is zero, we simply have to deal with a Cramer system, since
the matrix (0;(g;))1<j<r1<i<r is regular. We solve this system and then replace every v;
by a rational integer p; such that |u; — ;] < 1/2. O

Lemma 6. Let ' be a positive real number. Let (1,,)m>1 be a sequence of positive units
as in Lemma 5. There exists a finite set I' = I'(\') of non-zero elements of K such that for
all integer polynomial P(X) of degree at most d that satisfies

|P()| < NH(P)™, (3.7)
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there exist a positive integer m and ~ in I' for which

P(a) =vnm .

Proof. Below, all the constants implicit in < depend on K and on \. Let m be a positive
integer such that

H(P)=<e™,
and set
v =P(a)n,.
Since Do is an algebraic integer for k = 0, ..., d, the algebraic number D~ is an algebraic
integer, and, by (3.7),
|y < 1.

Furthermore, for j = 1,...,d, we have
o5 ()| = [P(oj(@))] - |oj(m,')| < H(P)e™™ < 1.

The algebraic integers Dy € O and all their complex conjugates being bounded, they form
a finite set. O

4. Proof of Theorem 1

Let 6 be in (0,1) to be selected later. Apply Lemma 3 with this § to get a unit n and
apply Lemma 1 with this unit and with v = a?. Since D?aln € Z + ... + o?Z, we get

D*na =ag + a1+ ...+ agad = P(a),

where, by Corollary 1, P(X) is an integer polynomial of degree d and
|P(a)| < H(P)" =< H~ ¢

By Lemma 2, each coefficient of P(X) has its p-adic absolute value < (log3H (P))~!/7,
except the leading coefficient, whose p-adic absolute value equals \D|f,.

We then infer from Lemma 4 that all the roots of P(X) in C, have their p-adic
absolute value < (log 3H (P))~/(4"), This proves (2.2).

It now remains for us to guarantee that P(X) has a root very close to «. To this end,

we proceed to check that
|P' ()| > H(P).

Since
P'(a)=ai + ...+ daga® !,

we get
P'(a) = D? (Tr(nadﬁl) + 2aTr(naB) + ... + dadilTr(nozdﬁd)) ,
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hence,

Let us write
with

Observe first that

> A #0.

i=1
Indeed, if this is not the case, then, working with the unit n = 1, that is, with P(X) =
D?X? and P'(a) = dD?a%"!, we get

d
da® ' = Ay = o Z k@k_lﬁm
k=1

hence,
d
d=Y ka"p.
k=1

Taking the trace, and recalling that Tr(a*3) = 1, we get

d

dd+1)=> 'k,
k=1
a contradiction.
Write
d d
P'(a)=D*> Aioi(n) + O(H ") = D?01(n) Y _A;+ B
=1 =1
with

Bl <D* Y A |ou(n)|-

2<i<d

01(77)_ —d
2 |+ o).

Selecting now  such that

Y

1
52 ‘Ai|§§

2<i<d

d
>4
=1
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we infer from Lemma 3 that

d

a1(n) ) A

=1

Y

1
[P (a)] = §D2

when H is sufficiently large. This gives
[P'(@)| > |o1(n)| > H .
Consequently, P(X) has a root £ such that
o — €| < H(P)" 1 « H()74 L.

Classical arguments (see at the end of the proof of Theorem 2.11 in [2]) show that £ must
be real and of degree d if H is sufficiently large. This proves (2.1). Inequality (2.3) follows
from (2.1) and (2.2) together with the fact that £ is of degree d. This completes the proof
of the theorem.

5. Proof of Theorem 2

The constants implicit in < and > below depend on K, p and A. There exists
a positive real number )\, depending on A and on d, such that the minimal defining
polynomial P(X) of any real number £ of sufficiently large height and for which (2.4)
holds is of degree d and satisfies

P(a)] < NH(P)™.

Let (m)m>1 be as in Lemma 5. By Lemma 6, it is sufficient to prove Theorem 2 for the
integer polynomials P(X) as above such that

P(a) = vnm = ag +ara+ ...+ aga.

Let &; be the roots of P(X) in C, and set

ui= max [&p-

Assume that v < 1. It follows from Lemma 4 that

lak|p < uladlp, 0<k<d.
Dividing P(X) by p® = |ag|, " if necessary, we can assume that |a4|, = 1, and we obtain
that

laklp < u, 0<k<d.
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For j =1,...,d, we then have

'YUmOFd —Tj (Vnmaid) = Z ak(akid —Tj (O‘kid»a

hence,

d

|’V77m04_ —Tj (’Ynma_d)‘:ﬂ <u.

Since |1, |, = 1, we get that

. . d
Mmoo yTi(ed) ],
Upon writing
A

we have thus

() ™ () |

7j(m) _ y7i(a?)
m Tj (7)05(1

If

holds for j = 1,...,d, the number

Y™ ?

is equal to all its conjuguates, hence is rational, and we have
P(a) = ba?

with b € Q, hence P(X) = bX 4 a contradiction. For every m, there thus exists an index
7 such that 1 < j < d and

Consequently, by the theory of linear forms in non-Archimedean logarithms (see e.g., Kun-
rui Yu [9]), there exists a positive constant x such that

) —K
u > (fgggxr |Higm]) ™"

Since 1, < H(P)~¢ and

| log | =< max |\ tim ],
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the matrix (log|oj(gi)|)1<i<r1<j<r being regular, we conclude that

This

1

u> (log3H(§))™".

completes the proof of the theorem. O
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